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Unleashing the Potential of Hierarchical Region
Clues for Open-Vocabulary Multi-Label
Classification

Peirong Ma”, Wu Ran"”, Zhiquan He ", Jian Pu

Abstract—Open-vocabulary multi-label classification (OV-
MLC) aims to leverage the rich multi-modal knowledge from
Vision-language pre-training (VLP) models to further improve
the recognition ability for unseen (novel) classes beyond the
training set in multi-label scenarios. Existing OV-MLC methods
only perform predictions on single hierarchical regions, and
aggregate the prediction scores of these regions through simple
top-k mean pooling. This fails to unleash the potential of rich
hierarchical region clues in multi-label images and does not fully
exploit the discriminative information from all regions in the
image, resulting in sub-optimal performance. In this work, we
propose a novel OV-MLC framework to fully harness the power
of multiple hierarchical region clues. Specifically, we first design
a hierarchical clue gathering (HCG) module to gather different
hierarchical clues, enabling more precise recognition of multiple
object categories with different sizes in a multi-label image. Then,
by viewing multi-label classification as single-label classification
of each region within the image, we present a novel hierarchical
score aggregation (HSA) approach, thereby better utilizing the
predictions of each image region for each class. We also utilize a
well-designed region selection strategy (RSS) to eliminate noise or
background regions in an image that are irrelevant to classification,
achieving higher multi-label classification accuracy. In addition,
we propose a hybrid prompt learning (HPL) strategy to enhance
visual-semantic consistency while preserving the generalization
capability of label embeddings for unseen classes. Extensive
experiments on public benchmark datasets demonstrate that our
method significantly outperforms the current state-of-the-art.

Index Terms—QOpen-vocabulary multi-label classification, zero-
shot multi-label classification, vision-language pre-training model,
hierarchical region clues.

I. INTRODUCTION

ULTI-LABEL classification (MLC) [1], [2], [3], [4] is
M one of the most extensively studied tasks in computer
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vision, aiming to recognize multiple objects, scenes, or con-
cepts present in an image. With the adoption of deep learn-
ing, MLC methods [5], [6], [7], [8], [9] have made consider-
able progress. However, in the traditional MLC task, the can-
didate label set in the training phase and the testing phase is
the same, which is far from meeting the requirements of some
real-world applications because it does not have the ability to
identify emerging unseen (novel) classes. To address this is-
sue, Zero-shot multi-label classification (ZS-MLC) [10], [11],
[12], [13], as a cross-task of zero-shot learning (ZSL) [14], [15],
[16], [17], [18] and MLC, has attracted increasing attention in
recent years. ZS-MLC aims to predict multiple unseen class
labels in a multi-label image, primarily achieved by transfer-
ring knowledge from seen classes to unseen classes via a lan-
guage model (e.g. GloVe [19]) pre-trained on large-scale cor-
pora. However, this approach only explores knowledge trans-
fer in text modality and ignores knowledge transfer in visual
modality and cross-modality, thereby severely limiting further
performance improvement.

Open-vocabulary multi-label classification (OV-MLC) [20],
[21] aims to utilize the multi-modal knowledge from Vision-
language pre-training (VLP) models (e.g., CLIP [22]) to fur-
ther improve the recognition performance of unseen classes in
multi-label scenarios, it can be regarded as a relaxed/special
version of ZS-MLC. Specifically, OV-MLC assumes that in ad-
dition to the annotated data of the seen classes, a low-cost aux-
iliary supervised data source is accessible during training (e.g.,
the large-scale image-text dataset for pre-training VLP models
is crawled from the web, requiring no laborious manual anno-
tation and easily available). The VLP model connects visual
concepts to text descriptions and learns an unbounded (open) vi-
sual concept vocabulary from large-scale image-text pairs. We
can generate label semantic embeddings of arbitrary concepts
(categories) through the text encoder of the VLP model, which
makes the label prediction for open-vocabulary possible. Due
to the ability to expand recognition vocabulary based on rich
multi-modal knowledge within VLP models, OV-MLC is more
general, practical, and effective compared to ZS-MLC.

Although VLP models exhibit remarkable zero-shot transfer
capabilities on single-label image classification, and extracting
knowledge from off-the-shelf VLP models has also become a
popular solution for OV-based tasks (such as open-vocabulary
object detection [23], [24], [25], [26], [27] or open-vocabulary
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View multi-label classification as single-label classification for each region

Overall idea of the proposed HRCP. We gather region clues across various hierarchies to fully unleash their potential for recognizing multiple object

categories of varying sizes in an image. For example, the smaller object class ‘fennis’ and the larger object class ‘dog’ are recognized at different region hierarchies.
Moreover, for the prediction scores of each region, we first perform discriminability boosting and then aggregate these enhanced region scores as the final
region-based predictions. Additionally, we further improve the classification accuracy by removing noise or background regions that are low-responsive to all

categories.

semantic segmentation [28], [29], [30], [31], [32]), but trans-
ferring the zero-shot classification capabilities of VLP models
to OV-MLC is still a challenging research direction. Because
these VLP models are typically trained by aligning global im-
age embeddings with text embeddings, their outputs only focus
on the scene-level global information of the image. Therefore,
they only capture dominant labels, ignoring labels associated
with smaller regions and lacking the ability to recognize multi-
ple categories within an image. Compared with global informa-
tion, local (region) information is more crucial for multi-label
classification tasks. Therefore, existing works on OV-MLC [20],
[21] all exploit the local information of the image and achieve
significant success by exploring the similarity between image re-
gions and text labels. MKT [20] is currently the state-of-the-art
method for OV-MLC. However, it still suffers from three main
issues. Firstly, MKT only captures single-level region clues, lim-
iting its ability to effectively recognize object categories of var-
ious sizes in multi-label images. Second, same as the classic
ZS-MLC method BiAM [12], MKT first classifies single-level
region features, and then performs the spatial rop-k mean pool-
ing on their class predictions to obtain a region-based prediction
score. However, this simple averaging of the fop-k predictions
for each class across all regions is sub-optimal and fails to fully
exploit the discriminative information of all regions in an image.
Third, the prompt tuning in MKT obtains better prompts by op-
timizing the token embedding layer of CLIP’s text encoder on
seen labels, which leads to biased model. Because fine-tuning
the token embedding layer destroys the strong representation and
generalization ability of the CLIP’s text encoder, and it is also
easy to overfit on the seen classes, especially when the dataset
contains only a small number of seen labels. Overall, a more
effective paradigm for OV-MLC needs to be established to fully
explore the multi-modal knowledge from VLP models and the
rich hierarchical clues in multi-label images.

Based on the above analysis, we propose a novel framework
named HRCP to fully unleash the Potential of Hierarchical
Region Cues in multi-label images. As depicted in Fig. 1, we
first gather different hierarchical region clues to facilitate the
recognition of multiple object categories across various scales
within an image. Then, we treat multi-label classification as the
single-label classification for each region in the image, and pro-
pose a novel way to aggregate hierarchical region scores to re-
place spatial top-k mean pooling. At test time, we also design a
novel region selection strategy, which further improves perfor-
mance by filtering out noise or background regions of the image
that are not relevant for classification. Additionally, to preserve
the generalization ability of label embeddings extracted by the
VLP text encoder while enhancing visual-semantic consistency,
we propose to combine learnable prompt and fixed prompt, as
illustrated in Fig. 2. Compared with fine-tuning the token em-
bedding layer in MKT, this hybrid prompt learning approach
significantly improves the classification accuracy, and requires
less computing resources, with faster training speed.

The contributions can be summarized as follows:

1) We propose HRCP, a novel Open-vocabulary multi-label
classification (OV-MLC) framework, which fully har-
nesses the power of hierarchical region clues to more accu-
rately recognize multiple object categories with different
sizes in an image.

2) We propose a novel hierarchical score aggregation (HSA)
approach to better utilize the predictions of each image re-
gion for each class. At test time, we also design a region se-
lection strategy (RSS), which can further improve the pre-
diction accuracy by removing classification-independent
noise or background regions in images.

3) We propose a hybrid prompt learning strategy to make
the pre-trained CLIP text encoder can better adapt to the
OV-MLC task. This hybrid prompt learning method not
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Fig. 2.
and a hybrid prompt learning (HPL) module.

only improves the visual-semantic consistency, but also
maintains the generalization ability of the generated label
embeddings for unseen classes.

Experiments on two large-scale OV-MLC benchmark
datasets demonstrate that the proposed HRCP achieves
new state-of-the-art performance.

The rest of this paper is organized as follows. We first re-
view the related work in Section II. Then, Section III provides
a detailed description of the proposed method. Subsequently,
Section IV presents the experimental setup and reports the ex-
perimental results. Finally, Section V concludes this paper.

4)

II. RELATED WORK
A. Zero-Shot Multi-Label Classification

Zero-shot multi-label classification (ZS-MLC) methods [10],
[11], [12], [13] train on annotated seen classes and improve
their generalization ability to unseen classes beyond the train-
ing set by exploiting the semantic correlation between seen and
unseen labels. For instance, FastOtag [33] and SDL [11] train
a network to estimate the principal direction of an image, so
that the word vectors of relevant labels are ranked ahead of
irrelevant labels. SKG [34] learns a label propagation mech-
anism from the semantic space using a knowledge graph, en-
abling the reasoning of the model for predicting unseen labels.
LESA [10] introduces a shared multi-attention framework and
BiAM [12] proposes a bi-level attention module to recognize
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The architecture of the proposed HRCP, which consists of a hierarchical clue gathering (HCG) module, a hierarchical score aggregation (HSA) module,

multiple seen and unseen labels in an image based on atten-
tion mechanisms. Gen-MLZSL [35] proposes three different fu-
sion methods to generate multi-label features for unseen classes.
(ML)?P-Encoder [13] extracts and preserves channel-wise se-
mantics by exploring the channel-class correlation. However,
In these ZS-MLC methods, the backbone networks for extract-
ing image features (e.g., VGG [36]) and label embeddings (e.g.,
GloVe [19]) are independently designed and trained separately.
As a result, the extracted image features and label embeddings
are in different data spaces, and the visual-semantic consistency
between them is low, thereby resulting in poor performance of
these methods.

B. Vision-Language Pre-Training Models

Recently, many Vision-language pre-training (VLP) models
such as CLIP [22], ALIGN [37] and SLIP [38] are proposed,
which aim to match image embeddings with textembeddings in a
cross-modal common semantic space. These models are trained
on large-scale (billions of) image-text pairs collected from the
web and obtain powerful image-text representation capabilities
through contrastive learning [39], [40]. After pre-training, VLP
models can zero-shot transfer to downstream tasks, endowing
them with linguistic capabilities. For example, in classification
tasks, when a novel class emerges, we can synthesize the class
label embedding by inputting the natural language description
of that class (e.g.,“A photo of a {class name}.”) into the VLP
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text encoder. Then, we compute the similarity between the im-
age embedding generated by the image encoder and this label
embedding as the prediction result.

Benefiting from cross-modal pre-training on large-scale
image-text pairs, VLP models have acquired multi-modal
knowledge of general concepts and achieved impressive results
on the ZS-MLC task. This suggests that text embeddings learned
jointly with visual data can better encode visual similarities be-
tween concepts than label embeddings learned from language
corpora alone (e.g., GloVe [19]). However, these VLP models
are trained based on global image-text feature alignment, and
the learned knowledge is limited to scene-level global image
representation. Global representations capture the overall con-
textual information of an image, often dominated by the most
prominent/common/larger categories or concepts in the image,
whichis highly effective for single-label classification. However,
it ignores some less conspicuous objects, such as smaller-sized
object categories, hence not suitable for multi-label classifica-
tion tasks that require identifying multiple object categories of
different sizes within an image. In multi-label settings, discrim-
inative local region features are more helpful.

C. Open-Vocabulary Multi-Label Classification

The Open-vocabulary setting is first introduced by Zareian
et al. [41] for object detection tasks. This is a special zero-shot
learning setting. It assumes that in addition to annotated seen
class data, a VLP model pre-trained on large-scale image-text
pairs can be utilized. In this setting, while unseen classes are
unknown during training, they can belong to any subset of the
entire language vocabulary in the pre-training task (e.g., con-
trastive learning on large-scale image-text pairs). This setup
has proven to be very effective in some computer vision tasks
such as object detection [23], [24], [25], [26], [27] and seman-
tic segmentation [28], [29], [30], [31], [32]). Open-vocabulary
multi-label classification (OV-MLC) is a novel emerging sub-
field of zero-shot learning derived in the context of large-scale
VLP models. It aims to transfer rich multi-modal knowledge
from VLP models, thereby further improving the recognition
performance of unseen labels in multi-label scenarios. There are
a limited number of studies on OV-MLC. OVML-VLP [21] in-
troduces an image-text attention module after CLIP’s image en-
coder and proposes a contrastive loss training method to help the
attention module better utilize image features from different re-
gions. MKT [20] transfers knowledge from the image encoder of
the VLP model through knowledge distillation, and enables la-
bel embeddings generated by the text encoder of the VLP model
to better support the OV-MLC task through prompt tuning.

III. THE PROPOSED METHOD

A. Problem Definition

Following previous work on OV-MLC [20] and ZS-MLC [10],
assume the entire label set: I = YUYV, where J° de-
notes the seen label set for training, YU denotes the un-
seen label set without training images, and yinyv = ¢. Let
{(@m,ym);m =1,2,..., M} denote M multi-label training im-
ages, where x,,, denotes the m-th image and y,,, C V< denotes
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the set of seen labels present in this image. The corresponding
label embedding {t, },cy for each class is obtained by feeding
the class name into a pre-trained text encoder. Zero-shot learn-
ing (ZSL) aims to assign relevant unseen labels y; C YV for a
given test image x;; while the more realistic and challenging
Generalized zero-shot learning (GZSL) aims to assign relevant
seen and unseen labels y; C ) to a given test image ;.

B. Overview

Fig. 2 illustrates the overall framework of our HRCP, which
contains a hierarchical clue gathering (HCG) module, a hierar-
chical score aggregation (HSA) module, and a hybrid prompt
learning (HPL) module. Specifically, HCG aims to gather dif-
ferent hierarchical region clues and scene-level global clues to
learn to recognize multiple objects of different sizes in an im-
age. By treating multi-label classification as the single-label
classification for each region in an image, HSA first performs
discriminative enhancement on hierarchical region prediction
scores and then aggregates them to obtain region-based pre-
dictions. HPL combines learnable prompt and fixed prompt to
improve visual-semantic consistency while preserving the gen-
eralization of the generated label embeddings to unseen classes.
For a fair comparison with previous method [20], we use pre-
trained CLIP [22] as our VLP model, which contains an image
encoder to transfer scene-level global information and a text
encoder to generate label embedding for each category.

C. Hierarchical Clue Gathering

Scene-level Global Clues: As shown in Fig. 2, the first com-
ponent of the hierarchical clue gathering module is a standard
Vision Transformer (ViT) [42], whose purpose is to gather scene-
level global clues and single hierarchical region clues of an im-
age. Specifically, the inputimage x € R”*W>C is first reshaped
into a sequence of flattened 2D patches x, € RN**(P*C) wwhere
H x W is the resolution of the image and C' is the channel num-
ber, P x P is the size of each patch, and N2 = HVV/P2 is the
total number of patches. Then, x,, is mapped to D-dimensional
patch embeddings by a trainable linear projection E. Subse-
quently, the processing of the ¢-th block in the transformer en-
coder can be formulated as:

hy = [Xcls§ x B X°E; -+ ; X,[,VzE} + Epos »

hlf =hy_1 + MSA (LN (hg,l)) R

h, = h} +MLP (LN (hy)), )
where xcjs is the learnable class embedding, and Epqs is the
position embedding. MSA(-), LN(+) and MLP(-) denote multi-

head self-attention, layernorm and multilayer perceptron, re-
spectively. In this work, the output of ViT is written as:
Or = [xg; Ra; Ra; -+ ; Rzl (2)

where x, is the output corresponding to X5, which can be re-
garded as the scene-level global representation of the image.
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[R1; Rg; - -+ ; Ryz] are the output corresponding to each im-
age patch, and each of them can be regarded as a region repre-
sentation of size P x P.

After obtaining the global feature x4, we directly use a learn-
able MLP Head (MH) to map it into the global embedding with
the same dimension as the label embedding:

e, = MH (x,). 3)

Knowledge Distillation: Here we also transfer knowledge
from the VLP image encoder via knowledge distillation [43].
Specifically, we denote the frozen VLP image encoder as
®YP(.), and input the image x € R7*"W* into the VLP image
encoder, and output:

e, = /" (x). 4)

To align e, and the output e, of the VLP image encoder, we
apply £ loss to minimize the distance between them, and the
distillation process can be formulated as:

Ekd = E [||ep — eg||1] . (5)

Different Hierarchical Region Clues: Vanilla ViT divides the
input image into very small patches of size P x P, potentially
missing objects. In contrast, integrating different hierarchical
region clues can enhance the perception and recognition for ob-
ject categories with different sizes in an image. For example, in
Fig. 1, the smaller object category ‘tennis’ and the larger object
category ‘dog’ in the image are recognized at different region hi-
erarchies. our HRCP merges these patches hierarchically across
threelevels (I = 1, 2, 3), enabling the identification of potential
objects at various patch sizes [P (4] + 1)]?, and hence is more
suitable for multi-label classification. In order to gather region
clues at different hierarchies, we first recover the spatial relation-
ships among all original region representation output by Eq. (2):

R4 Ry
Hj : EE ©)
RN2

o
|

Rpyz N1

where each element in Hf represents a region of size P x P.

With the well-established spatial correlation, we then con-
struct a convolution-based hierarchical merge operation to
gather different hierarchical region clues {Hj}; , as shown
in Fig. 2. Specifically, given the region features Hj at the /-th
hierarchy, we obtain the features at (/+1)-th hierarchy by the
hierarchical merge operation:

H]' = Conv(ReLU(Conv(H])))),
Hj,, = LN(H;' + Bilinear(H7)), 1=0,1,2, (7)

where Conv(+) denotes a 3 x 3 convolutional layer with a stride
of 1 and without padding.

Finally, we use the same MLP Head (MH) as in Eq. (3) to map
the obtained different hierarchical region features {H] }7_, into
a joint visual-semantic embedding space:

E/ = MH(H}), [ =1,2,3. 8)

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

D. Hierarchical Score Aggregation

We utilize scene-level global embeddings e, and different
hierarchical region embeddings {E7 }?_, obtained through the
above-mentioned hierarchical clue gathering module for multi-
label classification. Typically, the global prediction score can be
formulated as:

Sglobal = sim (ega Ts) 5 9)

where T = [t1; to; -+ ; tx] is the label embeddings of seen
classes generated using the VLP text encoder, K denotes the
number of seen classes, and sim(+, -) denotes dot product simi-
larity.

Region Score Aggregation: For the hierarchical region em-
beddings {E]'}?_,, we propose a novel region score aggregation
(RSA) approach to replace the fop-k mean pooling used in pre-
vious methods [12], [20]. The motivation is to treat multi-label
classification of an image as the single-label classification for
each region within this image, and use softmax to obtain the
probability that each region belongs to each class. Then, using
these obtained probability scores, the original prediction scores
of each region are weighted, with regions having higher rel-
evance to the corresponding category being up-weighted and
regions having lower relevance being down-weighted, thereby
enhancing the discriminative power of the original prediction
scores. Specifically, we first concatenate all hierarchical region
embeddings together:

[€r,s €y, ..., €,] = concat (E; Ej; EX) (10)
where J = 140 (i.e., 102 + 62 + 22) denotes the total num-
ber of hierarchical region embeddings. Then, we compute the
dot product similarity between each region embedding e, €
{er,, €r,, -+, €-,} and the label embeddings T to obtain
the corresponding region prediction score:
S’ =sim (e,,, T,). (11)
Next, we apply the softmax function to each region score
S7 € R™X to obtain the probability that this region belongs to
each seen category:

(Pj1,Pja, ..., Pjx) = softmax (S7) . (12)

Finally, as shown in Fig. 2, we weight the initial region pre-
diction scores based on the probability of each region belonging
to each class to enhance discriminability, and then aggregate
all weighted region prediction scores as the final region-based

prediction:

J
Sregion = Z [(Pj,lv Pj,?» e

Jj=1

, Pi) xS, (13)

where * denotes element-wise multiplication. The prediction
score of an image can be formulated as:

S = )\Sregion + (1 - )\)Sglobal; (]4)

where X is the hyper-parameter the controls the weights of
Sregion and Sgiopar. The network is trained with the ranking
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loss on predicted scores, as follows:

Lrank = Z Z max (S? - Sf +1, 0) ’

i peyi,nty;

15)

where y; C V¥ are the seen class labels present in a multi-label
image i, and S” and Sf denote the scores of negative and positive
labels, respectively.

Region Selection Strategy: Additionally, we design a novel
region selection strategy (RSS) in the testing phase. Specifically,
the j-th region prediction score S’ obtained by Eq. (11) can be
written in detail as:

S’ = (S]ylv 85,20 s SJK) ;

where s 1. represents the dot product similarity between the j-th
region embedding e;.; and the k-th class label embedding ty, K
denotes the number of test classes. We compute the sum of the
dot product similarities of each region to the label embeddings

of all test classes, and rank them:

K K K
r E S1,k E S2.ky " § SJ.k ) (17)
k=1 k=1 k=1

where T'(, --- , -) denotes a sort operation at descending or-
der. We believe that low-ranked regions mean that they are
not relevant to all test categories, belonging to classification-
independent noise or background regions in an image. For all
J (i.e., 140) hierarchical region embeddings, we remove the
lowest-ranked 32 and use the remaining 108. With this strategy,
we further improve the multi-label classification performance.
It is worth noting that we only use this selection strategy during
the testing phase, so no additional training is required.

(16)

E. Hybrid Prompt Learning

Since the predictions of the proposed HRCP rely on the dot
product similarity between image embeddings and class label
embeddings, and the class label embeddings are acquired by
inputting the corresponding prompts (e.g., “A photo of a {class
name}.”) into the text encoder of the VLP model, the prompts
used have a significant impact on the model’s performance. This
section explores how to obtain more suitable prompts for the
OV-MLC task.

On the one hand, with carefully designed text prompts, VLP
models show impressive generalization capabilities when trans-
ferred to downstream vision tasks [44], [45], but this requires
specialized domain knowledge and careful text tuning. On the
other hand, to avoid laborious prompt engineering, Context Op-
timization (CoOp) [46] has recently been proposed, which uti-
lizes task-specific training data to learn continuous prompts to
replace manually designed prompts. Despite improved perfor-
mance on downstream tasks, some recent studies [47], [48] re-
portthat CoOp is prone to overfitting to the seen classes observed
during training, resulting in poor performance on unseen classes.
This indicates that CoOp impairs the generalization ability of the
VLP model to unseen classes and out-of-distribution data.

Furthermore, since the text encoder of the VLP model is
pre-trained based on global image-text embedding alignment,
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it cannot be directly applied to multi-label classification tasks.
In order to make the VLP model better adapted to OV-MLC
task, MKT [20] fine-tunes the token embedding layer of CLIP’s
text encoder to obtain better prompts. However, fine-tuning not
only requires significant computational resources and mem-
ory consumption, but more importantly, it also poses the risk
of forgetting the general visual-language knowledge in pre-
trained CLIP, thus compromising the strong representation space
learned on large-scale image-text pairs. Moreover, fine-tuning
is more prone to overfitting on seen classes, especially when the
dataset contains only a small number of seen class labels.

To address the aforementioned issues, we propose to combine
learnable prompts with simple fixed prompts to make the gen-
erated label embeddings better match the corresponding visual
embeddings, while preserving the generalization ability to un-
seen classes. Specifically, we first construct a learnable prompt:

P, =[vive -+ vy, (18)
where v; represents the i-th learnable vector. In this work, we
set M = 8, and initialize P; with the embedding of “A photo
for multi-label classification,”.

Then, we employ a simple fixed prompt:

P,, = [there is a {class name} .]. (19)

Finally, the concatenation P = [P, P,,] of learnable prompt
P; and fixed manual prompt P,,, is fed into the VLP text encoder
and outputs the corresponding class label embedding t;. Dur-
ing prompt learning, the text encoder is completely frozen and
simply optimized with the ranking loss for lightweight learn-
able prompt vectors. Experiments show that this hybrid prompt
learning approach is beneficial for learning optimal prompt for
the OV-MLC task.

F. Alternate Training

During training, the VLP image encoder and text encoder
are kept frozen. We propose a simple yet effective alternative
training strategy for the optimization of HCG and HPL modules
(HSA module introduces no additional parameters and there-
fore does not require optimization). Specifically, in the HCG
optimization stage, we fix learnable prompt vectors to generate
label embeddings for seen classes, and use distillation loss and
ranking loss for training:

»Cimage = »de + Eranlv (20)

During the prompt learning stage, we freeze the HCG, and
use the ranking loss for training:

ﬁtemt = L:rank~ (2D
With this alternative training strategy, the image modality (i.e.,

HCG) and text modality (i.e., HPL) can mutually promote and
improve together.
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IV. EXPERIMENTS

In this section, we first introduce the experimental setup, in-
cluding datasets, evaluation metrics, and implementation de-
tails. After that, we compare the proposed HRCP with other
state-of-the-art methods. Additionally, we conduct extensive
ablation experiments to evaluate the gains brought by differ-
ent components in HRCP, and provide visualization analysis to
demonstrate the effectiveness of HRCP.

A. Experimental Setup

1) Datasets: We evaluate the proposed HRCP on NUS-
WIDE [49] and Open Images [50] datasets. NUS-WIDE con-
sists of 161,789 training images and 107,859 test images, each
with 925 labels extracted from Flicker user tags and 81 human-
annotated labels. Following previous work [20], 925 and 81 la-
bels are used as seen and unseen classes, respectively. Open
Images (v4) is a large-scale dataset containing nearly 9 million
training images and 125,456 testing images. Consistent with
previous work [20], 7186 labels with more than 100 training
images are selected as seen classes, and the 400 test set labels
that appear least frequently in the training data are selected as
the unseen classes.

2) Evaluation Metrics: Following previous works [20], we
use F1 score at top-K predictions [33], [S1] and mean Average
Precision (mAP) [52] as evaluation metrics. Specifically, the F1
score at fop-K predictions measures how accurately the model
ranks the labels in each image. It focuses on the prediction ac-
curacy of the fop-K most prominent/significant categories in a
multi-label image. Meanwhile, mAP captures the model’s abil-
ity to correctly rank images for each label, i.e., the accuracy of
retrieving relevant images based on labels. Furthermore, con-
sidering that the F1 score is derived from the harmonic mean of
precision (P) and recall (R),i.e., F'1 =2 Px R/(P + R), we
also report precision and recall in our experiments for a com-
prehensive evaluation.

3) Implementation Details: For a fair comparison with
MKT [20], we choose pre-trained and frozen CLIP based on
ViT-B/16 as our VLP model. The ViT in the HCG module is
also a ViT-B/16, the resolution of input images is 224 x 224,
and the resulting number of patches is N? = 196. The MLP
Head is a linear projection layer. We adopt the AdamW opti-
mizer [53] with a weight decay of 0.05 and a base learning rate of
0.001/0.0001 for NUS-WIDE/Open Images. For NUS-WIDE,
we use batch sizes of 64 and 16 for the HCG optimization stage
and prompt learning optimization stage, respectively. We ini-
tially train the HCG for 10 epochs, and subsequently optimize
the learnable prompt for 1 epoch. This alternating process is re-
peated 5 times on NUS-WIDE, resulting in a cumulative training
of 50 epochs for the HCG and 4 epochs for the learnable prompt.
For Open Images, we use a batch size of 128 for all train stages,
and the alternate training process is as follows: we first train
the HCG for 3 epochs, then optimize the learnable prompt for 1
epoch, and finally continue training the HCG for an additional
2 epochs. We set L = 0.25 and A = 0.5 for the NUS-WIDE and
Open Images, respectively. HRCP is implemented with PyTorch,
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and all the experiments are performed on an NVIDIA GeForce
RTX 3090 GPU.

B. State-of-The-Art Comparison

Tabel I presents the state-of-the-art performance comparison
on Zero-shot learning (ZSL) and Generalized zero-shot learn-
ing (GZSL) tasks. Among them, LESA [10], ZS-SDL [11],
BiAM [12], Gen-MLZSL [35], and (ML)?P-Encoder [13] are
the previous state-of-the-art ZS-MLC methods. These methods
utilize language models pre-trained on large-scale corpora to
transfer knowledge from seen classes to unseen classes, only
exploring the knowledge transfer in the textual modality. On the
other hand, OVML-VLP [21], CLIP-FT [20], and MKT [20]
are OV-MLC methods based on VLP models. OVML-VLP [21]
extracts multiple class-specific image features from the original
CLIP using an image-text attention module, thereby enabling
generalization to unseen classes. CLIP-FT is an OV-MLC base-
line proposed by [20] that fine-tunes pre-trained CLIP on the
seen classes according to the ranking loss. MKT [20] utilizes
knowledge distillation to transfer knowledge from the VLP im-
age encoder, and employs prompt tuning to enable the label
embeddings generated by the VLP text encoder to better sup-
port OV-MLC tasks. OVML-VLP and MKT are currently the
state-of-the-art methods for OV-MLC. They achieve better per-
formance than ZS-MLC methods, which illustrates that explor-
ing the multi-modal knowledge of image-text pairs from VLP
models can more effectively identify unseen labels.

It can also be observed that, for NUS-WIDE dataset, HRCP
achieves superior mAP scores on both ZSL and GZSL tasks
compared to the current state-of-the-art techniques, with abso-
lute gains up to 3.2% (ZSL) and 4.4% (GZSL). Regarding the F1
scores at K € {3,5}, HRCP achieves the second-best and best
results on ZSL and GZSL tasks, respectively. On Open Images,
for the ZSL task, HRCP achieves state-of-the-art performance
across all metrics, especially mAP, with an absolute gain of up
to 3.5% compared to MKT, raising the score from 68.1% to
71.6% . For the GZSL task, HRCP also achieves the best F1
score at K € {10, 20} and competitive (second best) mAP. The
comprehensive improvement in performance on both datasets
demonstrates the superiority of the proposed method. It should
be noted that due to the complexity and challenges of Open
Images, in some metrics, even MKT only achieved a slight im-
provement over the fine-tuned CLIP (i.e., CLIP-FT), while our
HRCP achieved a larger improvement relative to MKT. For ex-
ample, the F1 scores at ' = 10 are as follows: CLIP-FT (19.1%
) vs MKT (19.7% ) vs HRCP (20.6% ). Experimental results
demonstrate the effectiveness of HRCP, which can better recog-
nize multiple object categories at different sizes in a multi-label
image by gathering various hierarchical region clues.

C. mAP Improvement Comparison

For a more comprehensive evaluation, we conduct Average
Precision (AP) comparisons for each class with the previous
state-of-the-art method MKT [20] on the NUS-WIDE dataset.
Across all 81 unseen classes, our HRCP surpasses MKT in AP
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TABLE I

STATE-OF-THE-ART COMPARISON ON THE NUS-WIDE AND OPEN IMAGES DATASETS. WE REPORT THE RESULTS IN TERMS OF MAP, AS WELL AS PRECISION (P),
RECALL (R), AND F1 SCORE AT K € {3,5} FOR NUS-WIDE AND K € {10, 20} FOR OPEN IMAGES. THE BEST AND SECOND BEST RESULTS ARE MARKED IN
BOLD AND RED, RESPECTIVELY. SINCE BIAM [12] REPORTS WEIGHTED-MAP ON OPEN IMAGES, FOR A FAIR COMPARISON WITH OTHER METHODS, WE

RE-IMPLEMENTED BIAM’S MAP USING THE AUTHOR’S OFFICIAL CODE, THE RESULTS ARE HIGHLIGHTED WITH SYMBOL .

NUS-WIDE (#seen / #unseen = 925 / 81)

Open Images (#seen / #unseen = 7186 / 400)

Methods Setting | Task K=3 K=5 K=10 K=20
P R Fl P R Pl | ™AP| p R Fl P R Fr | MAP
LESA M=10) ZSL 257 411 316 | 197 525 287 | 194 0.7 25.6 14 0.5 374 1.0 41.7
CVPR’2020 [10] GZSL | 236 104 144 | 198 146 16.8 5.6 16.2 18.9 174 | 102 239 14.3 454
ZS-SDL ZSL 242 413 30,5 | 188 534 278 | 259 6.1 47.0 10.7 | 44 68.1 8.3 62.9
ICCV’2021 [11] GZSL | 27.7 139 185 | 23.0 193 21.0 | 12.1 | 353 408 378 | 23.6 545 329 75.3
BiAM ZSL - - 33.1 - - 30.7 | 26.3 - - 8.3 - - 5.5 62.2*
ICCV’2021 [12] zs GZSL - - 16.1 - - 19.0 9.3 - - 19.1 - - 159 | 67.1*
Gen-MLZSL ZSL 26.6 428 32.8 | 20.1 536 293 | 25.7 1.3 42.4 2.5 1.1 52.1 2.2 43.0
TPAMI'2023 [35] GZSL | 309 136 189 | 26.0 19.1 22.0 8.9 33.6 389 36.1 | 228 528 319 75.5
(ML)2P-Encoder ZSL - - 32.8 - - 323 | 294 - - 7.5 - - 6.5 65.7
CVPR’2023 [13] GZSL - - 15.8 - - 19.2 | 10.2 - - 27.6 - - 24.1 79.9
OVML-VLP ZSL 363 447 401 | 279 572 375 | 426 9.6 74.4 169 | 5.6 87.5 10.6 68.4
ICME’2023 [21] GZSL | 329 126 183 | 28.1 180 22.0 | 143 | 339 392 364 | 232 535 323 77.8
CLIP-FT ZSL 19.1 30,5 235 | 149 397 21.7 | 305 10.8  84.0 19.1 5.9 92.1 11.1 66.2
AAAT’2023 [20] GZSL | 332 146 203 | 274 202 232 | 168 | 375 433 402 | 254 587 354 71.5
e — ov
MKT ZSL 277 443 341 | 214 570 31.1 | 376 | 11.1 86.8 19.7 | 6.1 94.7 11.4 68.1
AAAT2023 [20] GZSL | 359 158 220 | 299 220 254 | 183 | 37.8 436 405 | 254 585 354 81.4
HRCP ZSL 31.5 503 387 | 241 642 35.1 458 | 11.6 90.7 20.6 | 6.2 96.5 11.6 71.6
[ours] GZSL | 40.5 179 248 | 339 249 287 | 227 | 401 463 43.0 | 26.6 614 37.1 79.9
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Fig. 3. Comparison of mAP improvement between our HRCP and MKT [20] on NUS-WIDE. In all 81 unseen classes, our HRCP outperforms MKT in terms of

AP on 65 classes.
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TABLE II
ABLATION STUDIES FOR HCG AND HSA ON NUS-WIDE. THE BEST RESULTS
ARE MARKED IN BOLD.

HCG RSA RSS K=3 K=3 mAP
P R Fl P R Fl

X X X 278 445 342 214 569 31.1 439

v X X 298 476 367 231 616 336 441

v v X 313 501 386 240 640 349 453

v v v/ 315 503 387 241 642 351 458

for 65 classes. As illustrated in Fig. 3, HRCP demonstrates sig-
nificant improvement (over 30% ) for certain unseen labels, such
as ‘rainbow’, while exhibiting a relatively minor negative impact
(less than 10% ) on labels like ‘soccer’. This further verifies the
superiority of our method. For the few categories (e.g., ‘soccer’)
where HRCP’s AP is lower than MKT, we analyze that this could
be attributed to HRCP’s strategy of balancing attention across
multiple-sized objects in an image by gathering different hierar-
chical region clues and scene-level global clues, whereas MKT
focuses more on global objects and small objects of size P x P
(i.e., 16 x 161in ViT-B/16). As aresult, HRCP’s attention on cer-
tain specific-sized object categories may not be as concentrated
as MKT’s. Nevertheless, HRCP’s overall advantages remain sig-
nificant.

D. Ablation Studies

1) Ablation Study for HCG and HSA: To evaluate the contri-
bution of each module in HRCP, we conduct an ablation study
as shown in Tabel II. HCG represents the proposed hierarchical
clue gathering module, while RSA and RSS respectively denote
the region score aggregation and region selection strategy in the
proposed hierarchical score aggregation (HSA) module. As can
be seen from Tabel II, employing HCG to gather hierarchical
region embeddings (the second row) significantly improves the
classification accuracy compared to solely using the original re-
gion embeddings output by ViT (the first row). This highlights
the beneficial role of hierarchical region clues in recognize mul-
tiple categories of different sizes in an image. Subsequently,
replacing top-k mean pooling with RSA to aggregate hierarchi-
cal region prediction scores (third row) further enhances per-
formance. This is because fop-k mean pooling directly averages
the top-k predictions for each category over all image regions,
without fully utilizing all predictions of each class across all
regions, and a simple average will lead to relatively smooth re-
sults, which reduces the discriminability. While the proposed
RSA more effectively utilizes the predictions of each regions
for each category. Finally, the introduction of RSS (fourth row)
yields the best results, indicating its effectiveness in removes
noise or background areas that are not relevant to classification.
The ablation study demonstrates that different components pro-
mote each other and work together to better unleash the potential
of hierarchical region clues in images.

2) Comparison of Different Prompts: To validate the effec-
tiveness of the adopted hybrid prompt learning strategy, we com-
pare it with other prompt learning methods on the ZSL task, and
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TABLE III
COMPARISON OF DIFFERENT PROMPTS ON NUS-WIDE. THE BEST RESULTS
ARE MARKED IN BOLD.

Prompt Params Train/epoch F1(K=3) FI(K=5) mAP
Fixed Prompt 0 0 min 32.0 28.8 459
Tuning Embedding  25.3M 151 min 37.3 33.4 44.4
Learnable Prompt  0.004M 84 min 37.9 34.0 45.1
Learnable + Fixed 0.004M 84 min 38.7 351 45.8

the results are presented in Tabel III. It can be observed that
Fixed Prompt (i.e., fixing both P; and P,,) has strong gen-
eralization, which is reflected in the fact that the model can
accurately retrieve relevant images according to the given un-
seen labels (i.e., high mAP). Since mAP aims to capture the
ranking accuracy of all images for each label, and is typically
used to evaluate the overall performance of the model on all
categories, it is more suitable as a metric to evaluate the gener-
alization ability of the model. However, since the VLP model
is learned from global image-text alignments and cannot be di-
rectly applied to multi-label classification tasks, HRCP utilizing
only fixed prompt cannot predict and rank multiple labels in an
image well (i.e., low F1 score). The F1 score only focuses on
the prediction accuracy of the fop-K most prominent/salient cat-
egories in each image, and is therefore often used to evaluate
the model’s ability to identify the most important categories in a
specific task. However, the F1 score does not take into account
the overall ranking accuracy of all labels for each image. Tun-
ing Embedding (i.e., fine-tuning the token embedding layer
of the text encoder as in MKT [20]) and Learnable Prompt
(i.e., making P; and P, all learnable) can better adapt to the
OV-MLC task by training on the seen class data, which is re-
flected in the improvement of the F1 score; but they are prone to
overfitting on seen classes, so the mAP on unseen classes drops.
Tuning Embedding has a more serious overfitting problem than
Learnable Prompt, because fine-tuning VLP’s text encoder im-
pairs its strong representation and generalization capabilities.
On the other hand, since fine-tuning the token embedding layer
(25.3M) introduces more trainable parameters than Learnable
Prompt (0.004M), thus requiring a longer training time. For ex-
ample, training learnable prompts on NUS-WIDE only takes
84 minutes per epoch, while fine-tuning the token embedding
layer takes 151 minutes. This further illustrates the superior-
ity of learnable prompts over fine-tuning the token embedding
layer. Finally, Learnable + Fixed (i.e., our hybrid prompt learn-
ing method, where P; is learnable and P, is fixed) achieves
the best performance by combining the advantages of fixed and
learnable prompt.

3) The Impact of Knowledge Distillation: The purpose of
knowledge distillation is to transfer rich multi-modal knowledge
from pre-trained VLP models, making it a popular solution
for OV-based tasks [20], [25], [26], [44]. To clarify the role of
knowledge distillation in the proposed HRCP, we removed the
knowledge distillation loss and compared the performance with
the full model that includes it. The experimental results, as shown
in Table IV, indicate that the overall performance of the model
significantly declines after removing the knowledge distillation
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TABLE IV
THE IMPACT OF KNOWLEDGE DISTILLATION ON NUS-WIDE. THE BEST
RESULTS ARE MARKED IN BOLD.

Models Task K=3 K=5 mAP
P R FI P R FI
ZSL 223 356 274 166 442 241 335
HRCP (Wo Lra)  G7q1, 356 157 218 294 216 249 19.0
HRCP 7S 315 503 387 241 642 351 458
GZSL 405 17.9 248 339 249 287 227
TABLE V

COMPARISON WITH ORIGINAL PRE-TRAINED CLIP ON NUS-WIDE. THE BEST
RESULTS ARE MARKED IN BOLD.

Models Task K=3 K=5 mAP
P R FI P R FI

ZSL 267 427 328 191 508 277 276

Pre-CLIP Gosi 102 45 63 88 65 75 105

urep  ZSL 315 503 387 241 642 351 458

GZSL 405 179 248 339 249 287 227

module. This demonstrates the necessity and effectiveness
of transferring knowledge from VLP image encoders via
knowledge distillation, as it helps the model better extract fea-
tures, improve classification accuracy, and enhance robustness,
playing a crucial role in strengthening the model’s generalization
ability. On the other hand, without using knowledge distillation
to transfer multi-modal knowledge from VLP models, our
model degenerates into a traditional zero-shot multi-label
classification model. However, its performance still surpasses
the current state-of-the-art ZS-MLC methods, further validating
the effectiveness and advantages of our proposed HRCP model.

4) Comparison With Original Pre-Trained CLIP: To better
highlight the contributions of this paper, we performed experi-
mental evaluations of the original pre-trained CLIP model and
compared its performance with the proposed HRCP. The results
in Table V demonstrate that the performance of the original
pre-trained CLIP on ZSL and GZSL tasks is significantly lower
than that of HRCP and even inferior to some traditional ZS-MLC
methods listed in Table I. For example, the original pre-trained
CLIP achieves an mAP of only 27.6% (10.5% ) on the ZSL
(GZSL) task, whereas HRCP achieves an mAP of 45.8% (22.7%
). This discrepancy arises because CLIP is trained to align global
image embeddings with text embeddings, focusing solely on
global information within an image. As a result, it performs bet-
ter on scene-level single-label classification tasks. However, the
OV-MLC task requires the model to accurately identify multi-
ple object categories of different sizes in multi-label scenarios.
CLIP fails to effectively capture local information in multi-label
images and ignores labels associated with smaller regions, lim-
iting its performance on multi-label tasks. Additionally, its text
prompts are not optimized for multi-label classification tasks,
further restricting its generalization performance. In contrast,
the proposed method addresses these shortcomings of CLIP in
the OV-MLC task by introducing the hierarchical clue gather-
ing (HCG) module, the hierarchical score aggregation (HSA)
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module, and the hybrid prompt learning (HPL) module. Ex-
perimental results show that HRCP significantly improves the
performance of OV-MLC, validating the effectiveness and inno-
vation of the proposed approach.

E. Hyper-Parameter Sensitivity

1) The Effect of Different L: A is the hyper-parameter in Eq.
(14) that controls the weight of the global and regional prediction
scores. Fig. 4(a) illustrates the impact of changes in A on the pre-
diction accuracy of the model on the NUS-WIDE dataset. The
larger A indicates that the weight of region prediction is larger,
A =0 and A = 1 indicate that only global and regional predic-
tion are used, respectively. It is evident that excessively small or
large values of A lead to suboptimal performance, which shows
that scene-level global clues and hierarchical region clues both
are very important, and they work together to achieve the recog-
nition of multiple categories with different sizes in an image.
Notably, the optimal performance on NUS-WIDE is achieved
when A = 0.25. Additionally, for Open Images, the best results
are attained at A = 0.5, which may be because Open Images
contains more categories than NUS WIDE, so more attention
needs to be paid to the region-based prediction.

2) Select Different Number of Regions With RSS: In Tabel II,
we demonstrate the effectiveness of the region selection strat-
egy (RSS) through ablation experiments on model components
for the ZSL task on NUS-WIDE. Fig. 4(b) further presents the
results of using RSS to select different numbers of hierarchical
region embeddings for the more challenging GZSL task on the
larger Open Images dataset. It can be seen that the prediction
accuracy first improves as the number of selected regions de-
creases, because our RSS removes noise or background regions
in the image that are irrelevant to classification. Subsequently,
as the number of regions continues to decrease, the prediction
accuracy starts to drop due to the over-removal of class-related
regions. For both NUS-WIDE and Open Images, we utilize RSS
to select 108 regional features for prediction without additional
adjustments for specific datasets.

3) The Effect of Different M: M is a hyper-parameter in
Eq. (18) that determines the number of vectors in the learnable
prompt, directly influencing the model’s ability to capture com-
plex context information in multi-label tasks. This section stud-
ies the impact of varying the hyper-parameter A/ on the model’s
performance on the NUS-WIDE dataset, with the experimen-
tal results shown in Fig. 4(c). As observed, the model achieves
optimal performance when M = 8, while overly small or large
values of M adversely affect performance. This is because a
smaller M (e.g., 4) may limit the capability of prompt learning,
thereby affecting model performance. In contrast, a larger M
(e.g., 16) allows the model to learn richer context information
but may also increase the risk of overfitting. Therefore, M is set
to 8 in this paper to achieve a good trade-off between learning
capability and overfitting risk, resulting in optimal performance.

F. Number of Parameters and Inference Time

Table VI presents the comparison of the number of learnable
parameters and performance of different methods. Among them,
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TABLE VI
COMPARISON OF THE NUMBER OF TRAINABLE PARAMETERS AND
PERFORMANCE ON NUS-WIDE

Parameters F1

Methods Image encoder Text encoder ALL |K=3 K=5 mAP
LESA (M=10) 0.45M / 0.45M | 31.6 28.7| 19.4
ZS-SDL 33.6M / 33.6M |30.5 27.8| 259
BiAM 3.8M / 3.8M |32.7 29.8| 259
Gen-MLZSL 216.0M / 216.0M | 32.8 29.3| 25.7
MKT 15.2M 25.3M 40.5M | 34.1 31.1]| 37.6
HRCP [ours] 18.3M 0.004M 18.3M | 38.7 35.1| 45.8

ZS-SDL [11] and BiAM [12] are traditional ZS-MLC methods
that do not utilize the VLP model, while MKT [20] and the
proposed HRCP are VLP-based OV-MLC methods. Both MKT
and the proposed HRCP utilize pre-trained CLIP and ViT-B/16,

Hyper-parameter sensitivity. (a) The impact of different A. (b) Select different number of regions with RSS. (c) The impact of different M.

where the image encoder of CLIP is completely frozen. Ad-
ditionally, MKT freezes the first 10 layers of ViT-B/16, while
HRCEP freezes the first 11 layers. Furthermore, MKT fine-tunes
the token embedding layer of CLIP text encoder, whereas HRCP
learns lightweight learnable prompt. Overall, the number of
learnable parameters of HRCP (18.3 M) is much smaller than
MKT (40.5 M). However, HRCP achieves higher mAP and F1
scores compared to MKT, indicating that performance improve-
ment comes from methodological innovation rather than an in-
crease in the number of parameters. Moreover, HRCP also has
smaller learnable overhead and better performance compared
with ZS-SDL and Gen-MLZSL that do not utilize VLP models.
This further validates the effectiveness of HRCP.

In addition, we also compared the time required for several
methods to infer the ZSL and GZSL prediction scores of a single
image: BiAM (4.7 ms) vs MKT (10.6 ms) vs HRCP (12.5 ms).
The experiments are conducted on the same NVIDIA GeForce
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(2) ~(b) (©) (d)

MKT | HRCP MKT | HRCP MKT | HRCP
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HRCP MKT | HRCP MKT HRCP

MKT | HRCP MKT MKT HRCP
clouds sky ocean sky horses | horses  nighttime | nigh i horses | horses  mountain|mountain train train
sky clouds whales | harbor animal | sky buildings | buildings  glacier | glacier sand snow cow valley railroad | railroad
horses | buildings boats | clouds cow grass water clouds elk valley animal sky horses grass cars clouds
town cow sky | building r ing imal fire cityscape lake grass beach | animal valley clouds water vehicle
tree house town town elk clouds town sky flowers rocks zebra clouds glacier sky horses sky
Fig. 5. Prediction results on several unseen exemplar images from the NUS-WIDE test set. The top-5 predictions per image for both methods are shown as true

positives and false positives. Best viewed in color.

mountain sunset person

Input image

Fig. 6.
with the corresponding label on top.

RTX 3090 GPU. It can be observed that due to the introduc-
tion of more hierarchical region clues, HRCP slightly decreases
the inference speed for a single image compared to BiAM and
MKT. However, considering the significant increase in perfor-
mance, this reduction is negligible. Moreover, this speed (i.e.,
12.5 ms for an image) is sufficient to ensure the real-time ap-
plication of the model. Note that BiAM starts inference from
the extracted VGG features, while MKT and HRCP infer di-
rectly from the original image. This is also a reason why BiAM
achieves faster inference speed. Finally, we also compared the
total time required by BiIAM, MKT, and HRCP to process the
entire NUS-WIDE test dataset consisting of 107,859 images
under the same batch size (i.e., 471) setting: BiIAM (277 s) vs
MKT (121 s) vs HRCP (167 s). It can be found that although
BiAM has a slight advantage in inference speed for a single
image, MKT and HRCP are faster when handling the entire
dataset. Additionally, despite the proposed HRCP introduces
multiple hierarchical region clues, it is only 46 seconds slower
than MKT when processing more than 100,000 images from
the entire NUS-WIDE test dataset, which further confirms the
efficiency of HRCP in terms of inference speed.

In summary, by freezing the parameters of the VLP model
and introducing a lightweight hybrid prompt learning strategy,
HRCP significantly reduces the computational resource require-
ments, ensuring better scalability for training and inference
on larger-scale datasets. Additionally, the proposed hierarchi-
cal clue gathering module and hybrid prompt learning strategy
are not dependent on a specific number of categories, making

clouds buildings ocean

Comparison of Grad-CAM visualization on specific unseen classes. For each image, the class-specific map of the ground truth unseen class are shown,

them adaptable to large-scale, multi-category scenarios. When
handling large-scale datasets, we can further explore techniques
such as knowledge distillation or pruning to generate smaller
models, thereby improving the practicality and efficiency of the
model while maintaining high performance.

G. Qualitative Results

Fig. 5 presents the fop-5 unseen labels predicted by MKT [20]
and our HRCP for some test images from NUS-WIDE. The tags
in olive green appear in ground-truth annotations, and those in
red are wrong tags. Compared with MKT, our method produces
more accurate and diverse predictions. For example, in Fig. 5(a),
MKT only recognizes the categories ‘clouds’ and ‘sky’, while
our HRCP further makes accurate predictions for the categories
‘cow’, ‘house’, and ‘buildings’ with different sizes. Similarly,
in Fig. 5(c), MKT only predicts the classes ‘horses and ‘an-
imal’, while HRCP also recognizes the classes ‘sky’, ‘grass’,
and ‘clouds’. Moreover, in Fig. 5(e), MKT only predicts the cat-
egories ‘mountain and ‘glacier’, whereas HRCP also recognizes
the categories ‘valley’, ‘grass’, and ‘rocks’. This demonstrates
the effectiveness of HRCP, which can better recognize multiple
object categories at different scales in an image by integrating
scene-level global clues and different hierarchical region clues.

H. Grad-CAM Visualization

Fig. 6 shows the comparison of Grad-CAM visualization
for specific unseen categories in example test images from
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Fig. 7.
the corresponding labels on top.

NUS-WIDE between MKT [20] and our HRCP. Along with
each example, we also present the class-specific mappings for
each unseen class, with the corresponding labels on top. It can be
observed that MKT generates dispersed attention, while HRCP
more accurately captures the class-specific relevant region. This
is because MKT only utilizes single hierarchical region clues,
focuses on perceiving small regions of size P x P, leading to
weaker recognition capability for object categories at other sizes
in the image. Fig. 7 further presents the Grad-CAM visualization
for all ground-truth unseen labels present in the corresponding
multi-label example test image from NUS-WIDE. It can be ob-
served that compared with MKT, our HRCP can capture the
relevant regions of almost all ground-truth classes in an image
more precisely. This demonstrates that by fully unleashing the
potential of hierarchical region clues, HRCP can better perceive
multiple categories with different sizes in an image, thereby gen-
erate promising category-specific attention maps.

1. Further Discussion

The HRCP model proposed in this paper is primarily designed
and evaluated for multi-label classification tasks in static images.
However, due to its modular design, the core ideas of HRCP
are highly flexible and generalizable, allowing for easy adapta-
tion to other types of multimedia data. For example, by incor-
porating temporal feature modeling into the hierarchical clue
gathering module, HRCP can be extended to open-vocabulary
video multi-label classification tasks. Additionally, HRCP’s
multi-modal alignment capabilities (particularly in knowledge
distillation and hybrid prompt learning) are also applicable to
tasks that combine visual, audio, and textual information, such
as audio-video synchronization or speech-driven image under-
standing tasks. Due to space limitations, we will explore these
aspects as part of our future work to further investigate the po-
tential of HRCP.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

sunset

Comparison of Grad-CAM visualization on specific images. For each image, the class-specific maps for all ground truth unseen classes are shown, with

V. CONCLUSION

This paper addresses the open-vocabulary multi-label clas-
sification task by fully unleashing the potential of hierarchi-
cal region clues. First, we gather hierarchical region clues and
scene-level global clues to facilitate the recognition of multiple
object categories with different sizes in an multi-label image.
Moreover, by using a novel hierarchical region score aggre-
gation approach, we effectively utilize the prediction score of
each region for each category, thus obtaining more discrimina-
tive result. Additionally, we propose a hybrid prompt learning
method to generate label embeddings that are better adapted to
the OV-MLC task. Finally, we also use a region selection strat-
egy to remove noise or background regions that are irrelevant
to the classification, thereby further improve prediction accu-
racy. Extensive experimental results and analyses validate the
effectiveness of the proposed framework.
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