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Abstract

The last decade has witnessed a technological arms race to encode the molecular
states of cells into DNA libraries, turning DNA sequencers into scalable single-cell
microscopes. Single-cell measurement of chromatin accessibility (DNA), gene
expression (RNA), and proteins has revealed rich cellular diversity across tissues,
organisms, and disease states. However, single-cell data poses a unique set of
challenges. A dataset may comprise millions of cells with tens of thousands of
sparse features. Identifying biologically relevant signals from the background
sources of technical noise requires innovation in predictive and representational
learning. Furthermore, unlike in machine vision or natural language processing,
biological ground truth is limited. Here we leverage recent advances in multi-modal
single-cell technologies which, by simultaneously measuring two layers of cellular
processing in each cell, provide ground truth analogous to language translation.
We define three key tasks to predict one modality from another and learn integrated
representations of cellular state. We also generate a novel dataset of the human
bone marrow specifically designed for benchmarking studies. The dataset and
tasks are accessible through an open-source framework that facilitates centralized
evaluation of community-submitted methods.

1 Introduction

Humans reliably develop from a single cell to about 37 trillion cells that collectively manifest
movement, immunity, and thought [1]. The 20th-century development of molecular biology revealed
DNA as the evolving instructions for life, with genes transcribed to RNA that is translated into
proteins. In turn, these proteins perform critical cellular functions. In addition to propagating neural
signals, mediating immune function, or contracting muscle fibers, proteins are regulators of gene
expression. Transcription factor proteins turn genes on and off in response to environmental signals
and in the course of differentiation. Indeed, a fundamental challenge of biology and medicine is to
understand the cellular programs whereby the same DNA source code gives rise to the incredible
diversity of cell types and states.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.



This genetic regulation is among the complex dynamical systems in the universe. A single human cell
contains 6.2 billion base pairs of DNA of which 1.2% encodes roughly 25 thousand protein-coding
genes with the remaining 98.8% having regulatory or unknown function, if any [2]. In that same cell,
there are hundreds of thousands of messenger RNA molecules and hundreds of millions of protein
molecules. Dynamic regulation happens at each level in this process [3]. Epigenetic modifications
on DNA determine local accessibility to transcription factor binding and RNA transcription. RNA
molecules are then further modified to regulate the rate at which the transcripts are translated into
proteins. Proteins are also modified to alter their regulatory functions, which include organizing DNA
in space, modifying RNA and other proteins, forming complexes (including RNA polymerase), and
binding to specific DNA sequences to promote or suppress gene expression.

A decade ago, techniques emerged to encode the molecular states of individual cells into DNA
libraries, thereby turning DNA sequencers into single-cell microscopes. These molecular states span
multiple modalities: the level of accessibility along the entire genome to regulatory and transcriptional
proteins (chromatin state), the number of RNA molecules per gene for all genes, and the number
of molecules per protein for hundreds of species of protein. The incredible scaling of single-cell
measurement technologies, far exceeding Moore’s law, has moved the field from a "small N, large P"
into the big data regime [4]. Some datasets measuring one modality now include millions of cells.

The growth of single-cell data has fueled the development of statistical models and algorithms [5]. Yet,
many barriers exist for data science at single-cell resolution [6]. Although cells are information dense,
their minuscule content leads to measurement error and uncertainty. Furthermore, the readouts are
high dimensional, requiring algorithms to scale across both observations and features. Additionally,
the noise patterns in single-cell data arise at the level of features, observations, and groups of
observations handled in batches. These patterns are not well understood and can have large effects
[7], requiring novel methods to disentangle biological variation from technical noise.

As method developers strive to develop innovative methods, molecular biologists continue to push
the boundaries on what information can be measured in individual cells. One of the most powerful
recent advances in single-cell technologies is simultaneous measurement of multiple modalities in
the same cell [8, 9]. The first multi-modal single-cell technology was introduced by [8], jointly
profiling RNA gene expression (GEX) and cell surface protein markers using antibody-derived tags
(ADT) compatible with high-throughput droplet-based technologies. Newer techniques enable joint
profiling of RNA gene expression and genome-wide DNA accessibility (referred to as ATAC: assay
for transposase-accessible chromatin) [10, 9]. Measuring multiple layers of the genetic regulatory
process simultaneously in single cells offers new opportunities to study the regulatory processes
governing life. However, few tools yet exist to fully leverage the potential of multimodal single-cell
data.

Here we aim to drive machine learning innovation in this field of molecular and cellular biology
using the Common Task Framework (CTF) [11]. In the CTF, a task comprises (1) a public training
dataset with ground truth, (2) a private testing dataset, (3) a public challenge in which competitors
aim to infer a predictive model from the training data, and (4) a scoring process that quantifies the
accuracy of predictions relative to the ground truth. While this framework has been crucial to the
success of machine learning innovation in technology and business applications, it has been largely
absent in life science, in part due to barriers to assembling, sharing, or even measuring ground truth
data at scale (notable exceptions are protein folding [12] and image analysis [13, 14]).

Multi-modal measurement holds promise for molecular biology through a CTF combining aspects of
language translation and representation learning. We emphasize three key tasks (Figure 1):

1. Predicting one modality from another. Accurate predictive models may elucidate principles of
genetic regulation and augment the value of existing and future single-modality datasets, which
are simpler and cheaper to generate.

2. Matching cells between modalities. Inference of the true pairing between modalities of jointly
measured cells enables alignment of single-modality datasets for multi-modal analysis.

3. Jointly learning representations of cellular identity. Complementary layers of information may
be combined to learn more meaningful representations of cellular states and dynamics.

The CTF requires a high-quality benchmark dataset. Multi-site preparation of the dataset is crucial
for developing methods that generalize across lab-specific technical noise. The largest multi-omic
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Figure 1: Components of the method development sandbox for single-cell multi-modal data integration. These
include (a) the first multi-modal BMMC reference dataset with multiple batches and ground-truth annotations,
and (b-d) three defined multi-modal integration tasks with 19 metrics to evaluate success (not all metrics shown).

dataset (ATAC+GEX) profiles 34,774 cells using a non-commercially available technology measured
in a single laboratory [15]. To date, the largest multimodal dataset is 211,000 peripheral blood
mononuclear cells (PBMCs) profiled using ADT+GEX by [16], also in a single facility. This reference
dataset contains up to 288 protein markers, but PBMCs are a highly differentiated tissue characterized
by strong cluster structure. To capture regulatory complexity, it is important to also capture developing
cells.

To overcome these limitations, we introduce a first-of-its-kind multimodal benchmark dataset
of 120,000 single cells from the human bone marrow of 10 diverse donors measured with two
commercially-available multi-modal technologies: nuclear GEX with joint ATAC, and cellular GEX
with joint ADT profiles. This dataset is multi-site, has a private test split, and captures both develop-
ing and differentiated cell types. Data collection was performed using a standardized protocol and
commercially available reagents to facilitate replication studies.

In the following sections, we present a sandbox to advance single-cell science using multi-modal data.
We first survey prior work in multi-modal single-cell analysis and benchmarking. We next describe
our fit-for-purpose multi-donor, multi-site, multi-modal bone marrow dataset. We further motivate
and formalize the three tasks above. Finally, we present an extensible computational framework to
support centralized benchmarking of community-submitted single-cell methods. We have combined
these data, tasks, and infrastructure into a CTF, the first NeurIPS competition featuring single-cell
data. Details on the competition and the dataset, including download instructions can be found at
https://openproblems.bio/neurips.

2 Prior work

2.1 The common task framework in the life sciences

The common task framework has driven machine learning as a field and in a breadth of applications.
However, relatively few competitions have focused on biological problems and data; indeed, the
only previous such NeurIPS competition was the 2019 machine vision task of matching experimental
replicates of high-content images of perturbed cell lines [14]. With the recent success of AlphaFold
2 [12], perhaps the most well-known competition in the life sciences is the Critical Assessment of

3

https://openproblems.bio/neurips


protein Structure Prediction (CASP) [17], taking place every two years since 1994. There has also
been growing interest in Dialogue on Reverse-Engineering Assessment and Methods (DREAM)
Challenges [18] as an alternative to Kaggle for the life sciences. These 88 challenges adhere to the
CTF but have mainly focused on pharmacology and electronic health records. More recently, a group
described a series of single-cell hackathons with a focus on integrating spatial and RNA measurements
and concluded that multi-modal benchmarks in cell biology are lacking and critical [19].

2.2 Ground truth in single-cell benchmarks

Benchmarks of single-cell analysis methods typically reside in papers that report on new methods or
compare a set of existing methods to guide analysts in tool selection [20]. These studies typically
rely on four kinds of “ground truth” data:

1. Fully simulated data is free and flexible to test specific hypotheses of method utility (e.g., [21]).
However, simulated data is only as useful for discovery as our generative understanding of cell
biology, hence of limited value on more complex tasks [7].

2. Synthetically modified real data creates ground truth by, for example, simulating changes for
differential expression algorithms [22] or dropping out data for imputation algorithms [23]. The
data distributions are often realistic, but the experimental effects may be oversimplified.

3. Real data with low-dimensional ground truth may be generated, for example, by mixing cells
from different species to ensure obvious ground truth or by using barcodes to mark cell lineage.
These approaches are used to test experimental protocols [24, 25] and to benchmark methods like
batch integration [26], deconvolution [27], and lineage inference [28].

4. Real data with manually annotated labels provides the most realistic ground truth. However,
scale is limited by bandwidth of experts, and even experts disagree on ground truth. For example,
literature-derived marker genes continue to rapidly evolve even in well-studied systems. Inconsis-
tent approaches to annotation make it challenging to harmonize independently published studies
(e.g., [29]). Complete re-annotation of independent datasets is labor intensive (e.g., [7]).

Notably, ground truth dynamics of the same cell throughout its lifetime are absent, because all existing
genome-wide technologies are destructive to the cells.

Technology enabling joint measurement of adjacent levels of cellular processing in the same cell
provides a promising form of high-dimensional ground truth, akin to matched documents in machine
translation when predicting one level from the other. The first large-scale benchmark dataset of gene
expression measured jointly with 228 protein was recently published [16]. Here, we measure the
accessibility of 119,254 genomic regions, the expression of 15,189 genes, and the abundance of 134
surface proteins with ATAC+GEX and ADT+GEX in a multi-site, multi-donor dataset of a complex
biological system.

2.3 Multi-modal single-cell analysis

Recent multi-modal computational methods were designed to integrate measurements of proteins
and RNA to learn joint latent representations of cellular state [30, 31, 32, 16, 33], infer gene
regulation [34], and infer unmeasured modalities [35, 16, 33]. Approaches include factor analysis [32,
16, 34] and unsupervised neural network architectures [31, 30, 35, 33] to embed cells measured with
each modality into a common space. As long as fit-for-purpose benchmarks are absent, it remains
unclear how well these methods handle continuous cellular phenotypes and complex batch effects.
Several techniques have been proposed for the analysis of jointly profiled multimodal single-cell
data. These methods use neural networks to embed multimodal data into a joint latent space using
interoperable encoders and decoders [35] or a VAE [36]. Another recently described approach builds
a graph within and across modalities using a weighting based on the information content identified in
local neighborhoods in each modality [16].

3 Overview of the multi-modal single-cell analysis sandbox

Our work aims to advance multi-modal single-cell data science through the CTF. This requires
identifying relevant public datasets, generating a fit-for-purpose dataset that includes privately held test
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data, formalizing tasks with biological relevance, and creating a computational framework to support
benchmarking of community-contributed methods. The result of this work is a flexible sandbox
to support method developers from the machine learning and computational biology communities
toward understanding regulatory biology.

3.1 Generating a multi-modal single-cell benchmark dataset

The utility of a benchmark dataset is driven by its fidelity to real world tasks [37]. In our context,
this means ensuring that our benchmark dataset captures the core complexities of single-cell datasets.
Furthermore, raw data must be processed, annotated, and formatted to be usable by machine learning
methods. As standards in single-cell analysis are rapidly evolving, we leveraged our previous work
identifying best practices [20], convened an expert committee of scientists from Helmholtz, Yale,
Chan Zuckerberg Biohub, VIB–Ghent University, and Cellarity, and consulted additional experts
from Helmholtz Center Munich, Harvard, the Sanger Institute, and Stanford University to assist
with cell annotation. The result of this effort is a high-quality, fit-for-purpose benchmark dataset for
multi-modal single-cell analysis.

Considerations for data generation We identified seven categories of desiderata for a multi-modal
single-cell benchmark dataset:

1. Multiple modalities should capture causally-related layers giving complementary views into
cellular processing and state.

2. Continuous biological processes are central to the differentiation and functioning of cells and
tissues. Relative to clusters of discrete cell types, continuous changes in cellular profiles are easily
mistaken for noise. Our dataset should include well-studied continuous processes that we can
unambiguously annotate across samples.

3. Complex batch effects are a critical challenge in single-cell data analysis [7]. The size of a batch
is limited by the device used to generate the data and the capacity of the data generator to process
samples concurrently. Thus, especially in multi-lab collaborations, complex, nested batch effects
are the norm.

4. Human donor diversity in genetic background, age, sex, and lifestyle also impact variability at the
single-cell level. Our dataset should represent this variability while controlling for disease and
smoking status, mirroring a typical experimental study design.

5. Disease-relevance of the biological system raises exciting possibilities for translating biological
understanding to improve human health.

6. Accessible, state-of-the-art protocols are critical to ensure our dataset remains relevant and
extensible, given the pace of technological innovation.

7. Open access to the dataset through informed consent ethics statements is essential.

From these criteria, we selected bone marrow mononuclear cells (BMMCs) as our tissue. Bone
marrow is the site of several stages of erythrocyte differentiation and B cell maturation, continuous
biological processes that are represented in a complementary fashion across modalities: differentiation
from a multi-potent progenitor state into a particular developmental lineage (e.g., committing to
the erythrocyte lineage from hematopoietic stem cells) requires large-scale chromatin remodeling
(measured by ATAC). Additionally, protein measurements are known to improve the representation
of immune cell states over transcription alone [16]. Bone marrow is the site of multiple diseases,
including leukemia (cancer leading to abnormal white blood cells), myeloproliferative disorders (too
many white blood cells), and aplastic anemia (lack of red blood cells). Improved representations of
immune cell development may also aid the modeling of complex immune responses to diseases such
as COVID-19. Moreover, BMMCs may be ethically sourced from commercial vendors, such that
single-cell data with anonymized metadata can be freely shared.

We sourced multiple samples of BMMCs from 10 donors via AllCells (California, USA), all healthy
non-smokers without recent medical treatment. Donors varied by age (22 - 40), sex, and ethnicity
(details in the associated datasheet). For each sample, we generated joint ATAC+GEX and ADT+GEX
measurements, thereby producing paired sets of joint multi-omic data from each donor.

Each experiment was loaded to target a recovery of 7,000 cells per measurement and sample, leading
to a target dataset size of 150,000 multi-modal cellular profiles. Preprocessing removes, on average,
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Figure 2: Annotation of ground truth cell types, states, and trajectories in 10X Multiome data from
Site 1, Donor 1. Two dimensional UMAP representations of the (a). RNA and (b) ATAC data show
the cell types annotated for this donor. Cellular identity was further quantified by position along
the erythrocyte development lineage for a subset of cells as shown for (c) RNA and (d) ATAC on
a UMAP embedding coloured by the pseudotime ordering of cells indicating progress along this
trajectory. The literature and data-derived cell identity markers shown in the dotplot in (e) were used
to perform the cellular identity annotation. Cell identity composition of (f) 6 10X multiome samples
and (g) 2 CITE-seq samples. Abbreviations: B - B cell; T - T cell; Mono - Monocyte; prog - progenitor; HSC
- Hematopoietic stem cell; HSPC - Hematopoietic stem and progenitor cell; ILC - Innate lymphoid cell; Lymph -
Lymphoid; MK/E - Megakaryocyte and Erythrocyte; NK - Natural Killer cell; cDC2 - Classical dendritic cell
type 2; pDCs - Plasmacytoid dencritic cells.

15-30% of the putative cell profiles, leading to an estimated final dataset size of 120,000. This number
will be updated when the dataset processing is completed.

Detailed experimental protocols may be found in the Supplementary Materials and will be deposited at
the public protocol sharing platform protocols.io shortly after submission. Finally, we introduced
nested batch effects into our experimental design by generating 3 samples of data each at 3 different
sites in the US and 1 in Germany (Figure 1). Samples from one of the donors were measured at
all sites to capture site-specific batch variation, while each site measured three distinct donors to
capture within-site donor variation. To our knowledge, this BMMC benchmark dataset is the most
comprehensive multi-modal benchmark dataset ever generated.

Processing, annotation, and splits of the benchmark dataset Raw chromatin accessibility, gene
expression, and protein abundance data were processed and analyzed using our previously published
best practices [20] and a pipeline set up from the Scanpy and Signac platforms [38, 39] as a basis for
quality control, normalization, dimensionality reduction, clustering, feature selection, and trajectory
inference.

We generated ground-truth cell identity labels by annotating cellular types and states (Figure 2a,b)
via state-of-the-art analysis pipelines using literature, data-derived, and expert curated marker genes,
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and annotating the erythrocyte development trajectory (Figure 2c,d). For benchmarking the third
(joint representation) task, it is crucial that ground-truth biological annotations are generated for
each batch and modality separately, relying on a feature-based definition of cellular identity derived
from the literature and our data (Figure 2e). Although time-intensive–roughly 4 days per dataset
for a PhD student analyst–this avoids relying on a joint representation method for annotation,
which is the standard in the field. A full description of the analysis can be found in Section A.1.
All analysis pipelines are provided as reproducible Jupyter notebooks at https://github.com/
openproblems-bio/neurips2021-notebooks.

Each sample contains broadly the same cellular identities in varying proportions (Figure 2f,g).
Profiles of cells with the same identity within a sample exhibit stochastic biological and measurement
variability. Across samples, differences are also driven by batch effects. The distribution of samples
across donor and data generation sites (Figure 1) facilitates train-test splits of increasing difficulty
to model and evaluate critical forms of real-world generalization: within sample, within site across
donor, within donor across site, and across donor and site.

Challenges with generating a benchmark dataset Generating a multi-modal single-cell bench-
mark dataset poses a unique set of challenges. Sourcing reagents involves working with multiple
commercial vendors with a supply chain impacted by the COVID-19 pandemic and a < �80ºC
cold chain. Generating a sequencing dataset from a human tissue sample is labor intensive, taking
roughly three weeks and involving at least three trained scientists to go from tissue to sequencing data
ready for computational processing. Preprocessing and annotation take roughly three weeks for first
samples and two days for further samples which also require expert guidance and review of biological
annotation. Particularly when piloting new technologies, single-cell experiments often fail for reasons
that may occur anywhere from sample preparation to sequencing. Finally, these experiments are
expensive. Between reagents and labor, this dataset required more than $200,000 in financial support
for which we are grateful to the Chan Zuckerberg Initiative, Cellarity, and the participating non-profit
institutions. More details and these challenges can be found in Section A.4. Nevertheless, we hope
others are interested to extend and validate this dataset. We provide recommendations for getting
involved in the accompanying datasheet.

3.2 Formalizing benchmark tasks and metrics

While many grand challenges in single-cell data science have been articulated [6], the CTF requires
mathematically precise definitions of tasks and metrics to drive algorithm development. We now
further motivate and formalize our three key multi-modal tasks and related metrics.

Task 1: Predicting one modality from another Generally, genetic information flows from DNA
to RNA to proteins. DNA must be accessible (ATAC data) to produce RNA (GEX data), and RNA in
turn is used as a template to produce protein (ADT data). These processes are regulated by feedback:
for example, a protein may bind DNA to prevent the production of more RNA. Methods capable of
accurately predicting one modality from another may validate or learn rules governing these complex
regulatory processes. Furthermore, such methods may augment the value of existing and future
single-modality datasets, which can be generated at high-quality more simply and cheaply.

Formally, the task is to predict all features of one modality based on all features of the second
modality. As metrics, we consider root mean squared error (RMSE) and Pearson correlation on
log-scaled counts, as well as Spearman correlation.

Task 2: Matching cells between modalities Nearly all existing single-cell datasets are single
modality, and indeed communities have formed to specifically model chromatin, RNA, or protein data.
Aligning observations of different cells with the same identity across modalities would open up paired
single-modality datasets to multi-modal data analysis methods leveraging complementary layers of
information. This task is further distinguished from modality prediction because not all features
are equally relevant for matching cell identities. Understanding how feature selection influences
matching accuracy may shed light on the significance of different regions of DNA or transcripts of
RNA in cell identity and regulation of downstream genetic processes.

Formally, in the matching task, we present the jointly profiled cells as two sets of unmatched singly
profiled cells. The algorithmic goal is assign to each cell in modality one a probability distribution
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across all cells in modality two, so as to place high probability on the true matched cell. Hence with
n cells, the output format is an (n, n) matrix of non-negative values where each row sums to 1. To
manage memory requirements, we enforce sparsity of the matrix to at most 1000 non-zero values
per row. As metrics, we consider area under the precision recall curve (AUPR) and the average
probability assigned to the correct matching. The latter is a relative measure per dataset that accounts
for non-identifiability among cells with the same identity.

Task 3: Jointly learning representations of cellular identity Multi-modal measurement holds
promise for combining complementary layers of molecular information to learn highly resolved
descriptions of the underlying biological states of cells and their collective roles in tissue function.
To transfer learning across datasets, encoders must account for and remove batch effects.

Formally, the task is to embed cells into a latent space of 100 dimensions based on all features of two
modalities. However, there is no canonical way to measure the quality of a joint embedding. In our
previous work, we concluded that a good strategy is to combine metrics of biological conservation and
batch correction. Biological conservation metrics quantify how well an embedding captures expertly
annotated biology as described in Section A.1. We defined five such metrics that assess preservation
of annotated cell types, cell cycles, and inferred trajectories in the dataset. Batch correction metrics
assess the removal of batch effects in the embedding. A full description of all metrics is in Section
A.1.6. In the competition, embedding algorithms will be scored as a weighted sum of these metrics
as described in Section A.2.4.

3.2.1 Baseline performance

To provide a baseline for performance in each task, we implemented Positive Controls (PC), which
use the ground-truth solutions in order to return (near) perfect predictions, Negative Controls (NC),
which return constant or random values to return exceptionally bad predictions, and four Baseline (B)
methods, which are a combination of well-established off-the-shelf algorithms (Figure 3, appendix).
These baseline results provide an upper and lower bound for performance as well framing the relative
difficulty of each task and subtask.

3.3 Computational framework for centralized benchmarking

Several strategies were used to make the components in this pipeline as robust, reusable and repro-
ducible as possible. 1) We predefined a set of ’component types’ and the format of the input/output
files that each component expects (Figure 5a). 2) Each input/output file is an AnnData [38] file that is
required to contain certain fields depending on the component type. 3) Each component is a Viash [40]
component which allow for developing components as standalone scripts (e.g. Python, R, Bash) that
plug into Nextflow pipelines by using Viash to export them to Nextflow modules (Figure 5b). 4)
Thanks to the combination of technologies used, the pipeline used to generate the pilot results are
exactly the same as is used when evaluation a submission to the competition framework.

A full description of the pipeline may be found in Section A.3. Documentation of the components is
available on the competition website and accompanying GitHub repository.

3.4 Tools to facilitate data access and exploration

During the competition, training splits will be made available via a public Amazon Simple Stor-
age Service (S3) bucket. Download instructions may be found at https://openproblems.
bio/benchmark_dataset. Each dataset is stored in two AnnData objects [38], one for each
modality. After the competition, datasets will be made available at the CZI cellxgene portal at
https://cellxgene.cziscience.com/.

We have also secured support from Saturn Cloud (New York, NY) to host Jupyter servers
preloaded with notebooks for data exploration and analysis. Interested users may go to https:
//openproblems.bio/neurips to find information about how to sign up for a free Saturn Cloud
account to access the servers and notebooks.
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NC − Random Pairing
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Subtask
ADT
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Figure 3: A pilot study on several baseline methods shows that the overall benchmarking pipeline
seems to behave as expected; positive controls (PC) perform better than baseline (B) methods and
baseline methods perform better than negative controls (NC). (a) The pilot results of the Predict
Modality task. (b) The pilot results of the Match Modality task. (c) The pilot results of the Joint
Embedding task. The used metric is the geometric mean of the metrics as defined in section 3.2.

4 Conclusion

Gene regulation is implemented by high-dimensional dynamical processes that drive the diverse
biological functions required for life. Access to measurements of multiple layers of molecular
information in single cells is a crucial step toward developing an integrated model of cellular
functions. However, this new class of data requires new innovative methods to uncover novel biology.
A fundamental challenge in algorithm development is assessing model performance, especially in
a cases where ground truth difficult to obtain. Here, we use both the multi-modal nature of jointly
profiled cells and expert annotation of a well-studied system to develop a sandbox and NeurIPS
competition with three key tasks of multi-modal data integration.

To support these efforts, we generated the largest multi-modal benchmarking dataset currently
available with ground truth annotations. This dataset is distinguished by the number of modalities
measured, the large number of cells, and the nested batch structure of the study design. This
design enables benchmarking of real-world generalization, unprecedented in multi-modal single-cell
analysis.

While we have focused on opportunities for machine learning to advance our understanding of biology
through the Common Task Framework, we hope access to these fundamental scientific challenges
and unique data will also inspire creative new directions for machine learning itself.

9



5 Acknowledgements

We would like to thank Carlos Talavera-Lopez from Helmholtz Munich, Marcela Alcantara from
Stanford University, and Rasa Elmentaite from the Sanger Institute, Cambridge, UK for help with
interpreting and annotating our BMMC data. Furthermore, we thank Thomas Walzthoeni for support
with up-scaling the analysis provided at the Bioinformatics Core Facility, Institute of Computational
Biology, Helmholtz Zentrum München and the joint research school Munich School for Data Science
(MUDS) supporting CL. This project has been made possible in part by grant number 2021- 235155
from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation
and by the Helmholtz Association’s Initiative and Networking Fund through Helmholtz AI [ZT-I-PF-
5-01] and sparse2big [ZT-I-0007].

6 Author Contributions

MDL, DBB, RC, CL, and JMB wrote the paper. AA, BDK, SS, GW, CZ, SH, LI, SK, JCM, KS, DJT,
JY, MS, MaM, SS and HL generated the data. MDL, DBB, RC, CL, HA, AC, AG, YJK, AM, BR,
and AT analysed the data under supervision of MDL, FJT, AOP, and ACV. RC, DBB, LD, CL, AG,
MiM, BR, MDL, and AT built the infrastructure and ran the pilot study. DBB, MDL, SK, JMB, FJT,
and AOP coordinated the project. All authors read and reviewed the final manuscript.

7 Competing Interests

FJT reports receiving consulting fees from ImmunAI and ownership interest in Dermagnostix GmbH
and Cellarity. DBB, LI, SK, KS, SS, DJT, and JMB report being employed by and having ownership
interest in Cellarity.

References
[1] Eva Bianconi, Allison Piovesan, Federica Facchin, Alina Beraudi, Raffaella Casadei, Flavia

Frabetti, Lorenza Vitale, Maria Chiara Pelleri, Simone Tassani, Francesco Piva, Soledad Perez-
Amodio, Pierluigi Strippoli, and Silvia Canaider. An estimation of the number of cells in the
human body. Annals of Human Biology, 40(6):463–471, 2013. PMID: 23829164.

[2] The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
genome - Nature. Nature, 489(7414):57–74, Sep 2012.

[3] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. Molecular Biology of the
Cell. Garland, 6th edition, 2015.

[4] Philipp Angerer, Lukas M. Simon, Sophie Tritschler, F. Alexander Wolf, David Fischer, and
Fabian J. Theis. Single cells make big data: New challenges and opportunities in transcriptomics.
Current Opinion in Systems Biology, 4:85–91, aug 2017.

[5] Luke Zappia and Fabian J Theis. Over 1000 tools reveal trends in the single-cell RNA-seq
analysis landscape. bioRxiv, page 2021.08.13.456196, aug 2021.

[6] David Lähnemann, Johannes Köster, Ewa Szczurek, Davis J. McCarthy, Stephanie C. Hicks,
Mark D. Robinson, Catalina A. Vallejos, Kieran R. Campbell, Niko Beerenwinkel, Ahmed
Mahfouz, Luca Pinello, Pavel Skums, Alexandros Stamatakis, Camille Stephan Otto Attolini,
Samuel Aparicio, Jasmijn Baaijens, Marleen Balvert, Buys de Barbanson, Antonio Cappuccio,
Giacomo Corleone, Bas E. Dutilh, Maria Florescu, Victor Guryev, Rens Holmer, Katharina Jahn,
Thamar Jessurun Lobo, Emma M. Keizer, Indu Khatri, Szymon M. Kielbasa, Jan O. Korbel,
Alexey M. Kozlov, Tzu Hao Kuo, Boudewijn P.F. Lelieveldt, Ion I. Mandoiu, John C. Marioni,
Tobias Marschall, Felix Mölder, Amir Niknejad, Lukasz Raczkowski, Marcel Reinders, Jeroen
de Ridder, Antoine Emmanuel Saliba, Antonios Somarakis, Oliver Stegle, Fabian J. Theis, Huan
Yang, Alex Zelikovsky, Alice C. McHardy, Benjamin J. Raphael, Sohrab P. Shah, and Alexander
Schönhuth. Eleven grand challenges in single-cell data science, feb 2020.

10



[7] Malte D. Luecken, Maren Buttner, Kridsadakorn Chaichoompu, Anna Danese, Marta Interlandi,
Michaela F. Mueller, Daniel C. Strobl, Luke Zappia, Martin Dugas, Maria Colome-Tatche, and
Fabian J. Theis. Benchmarking atlas-level data integration in single-cell genomics. bioRxiv,
page 2020.05.22.111161, may 2020.

[8] Marlon Stoeckius, Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Pratip K.
Chattopadhyay, Harold Swerdlow, Rahul Satija, and Peter Smibert. Simultaneous epitope and
transcriptome measurement in single cells. Nature Methods, 14(9):865–868, jul 2017.

[9] Junyue Cao, Darren A. Cusanovich, Vijay Ramani, Delasa Aghamirzaie, Hannah A. Pliner,
Andrew J. Hill, Riza M. Daza, Jose L. McFaline-Figueroa, Jonathan S. Packer, Lena Chris-
tiansen, Frank J. Steemers, Andrew C. Adey, Cole Trapnell, and Jay Shendure. Joint pro-
filing of chromatin accessibility and gene expression in thousands of single cells. Science,
361(6409):1380–1385, 2018.

[10] Jason D. Buenrostro, Beijing Wu, Ulrike M. Litzenburger, Dave Ruff, Michael L. Gonzales,
Michael P. Snyder, Howard Y. Chang, and William J. Greenleaf. Single-cell chromatin acces-
sibility reveals principles of regulatory variation - Nature. Nature, 523(7561):486–490, Jul
2015.

[11] David Donoho. 50 years of data science. Journal of Computational and Graphical Statistics,
26(4):745–766, 2017.

[12] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure predic-
tion with AlphaFold. Nature, pages 1–7, July 2021.

[13] Wei Ouyang, Casper F. Winsnes, Martin Hjelmare, Anthony J. Cesnik, Lovisa Åkesson, Hao Xu,
Devin P. Sullivan, Shubin Dai, Jun Lan, Park Jinmo, Shaikat M. Galib, Christof Henkel, Kevin
Hwang, Dmytro Poplavskiy, Bojan Tunguz, Russel D. Wolfinger, Yinzheng Gu, Chuanpeng Li,
Jinbin Xie, Dmitry Buslov, Sergei Fironov, Alexander Kiselev, Dmytro Panchenko, Xuan Cao,
Runmin Wei, Yuanhao Wu, Xun Zhu, Kuan-Lun Tseng, Zhifeng Gao, Cheng Ju, Xiaohan Yi,
Hongdong Zheng, Constantin Kappel, and Emma Lundberg. Analysis of the Human Protein
Atlas Image Classification competition. Nature Methods, 16(12):1254–1261, December 2019.

[14] Berton Earnshaw. Cellsignal: Disentangling biological signal from experimental noise in
cellular images. Kaggle, 2019.

[15] Sai Ma, Bing Zhang, Lindsay M. LaFave, Andrew S. Earl, Zachary Chiang, Yan Hu, Jiarui
Ding, Alison Brack, Vinay K. Kartha, Tristan Tay, Travis Law, Caleb Lareau, Ya Chieh Hsu,
Aviv Regev, and Jason D. Buenrostro. Chromatin Potential Identified by Shared Single-Cell
Profiling of RNA and Chromatin. Cell, 183(4):1103–1116.e20, nov 2020.

[16] Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei Zheng, An-
drew Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zager, Paul Hoffman,
Marlon Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi Srivastava, Tim Stuart,
Lamar M. Fleming, Bertrand Yeung, Angela J. Rogers, Juliana M. McElrath, Catherine A.
Blish, Raphael Gottardo, Peter Smibert, and Rahul Satija. Integrated analysis of multimodal
single-cell data. Cell, 184(13):3573–3587.e29, may 2021.

[17] Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult.
Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins
Struct. Funct. Bioinf., 87(12):1011–1020, Dec 2019.

[18] Gustavo Stolovitzky, Don Monroe, and Andrea Califano. Dialogue on Reverse-Engineering
Assessment and Methods. Ann. N.Y. Acad. Sci., 1115(1):1–22, Dec 2007.

11



[19] Kim-Anh Lê Cao, Al J. Abadi, Emily F. Davis-Marcisak, Lauren Hsu, Arshi Arora, Alexis
Coullomb, Atul Deshpande, Yuzhou Feng, Pratheepa Jeganathan, Melanie Loth, Chen Meng,
Wancen Mu, Vera Pancaldi, Kris Sankaran, Dario Righelli, Amrit Singh, Joshua S. Sodicoff,
Genevieve L. Stein-O’Brien, Ayshwarya Subramanian, Joshua D. Welch, Yue You, Ricard
Argelaguet, Vincent J. Carey, Ruben Dries, Casey S. Greene, Susan Holmes, Michael I. Love,
Matthew E. Ritchie, Guo-Cheng Yuan, Aedin C. Culhane, and Elana Fertig. Community-wide
hackathons to identify central themes in single-cell multi-omics. Genome Biol., 22, 2021.

[20] Malte D. Luecken and Fabian J. Theis. Current best practices in single-cell RNA-seq analysis:
a tutorial. Molecular Systems Biology, 15(6):e8746, jun 2019.

[21] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of
single-cell trajectory inference methods. Nature Biotechnology, 37:547–554, apr 2019.

[22] Charlotte Soneson and Mark D Robinson. Bias, robustness and scalability in single-cell
differential expression analysis. Nature Methods, 15(4):255–261, feb 2018.

[23] Wenpin Hou, Zhicheng Ji, Hongkai Ji, and Stephanie C. Hicks. A systematic evaluation of
single-cell RNA-sequencing imputation methods. Genome Biology, 21(1):218, dec 2020.

[24] Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, So-
longo B. Wilson, Ryan andZ̃iraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie Zhu, Mark T.
Gregory, Joe Shuga, Luz Montesclãros, Jason G. Underwood, Donald A. Masquelier, Stefanie Y.
Nishimura, Michael Schnall-Levin, Paul W. Wyatt, Christopher M. Hindson, Rajiv Bharadwaj,
Alexander Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg, Christopher M̃cFarland,
Keith R. Loeb, William J. Valente, Nolan G. Ericson, Emily A. Stevens, Jerald P. Radich,
Tarjei S. Mikkelsen, Benjamin J. Hindson, and Jason H. Bielas. Massively parallel digital
transcriptional profiling of single cells. Nature Communications, 8:14049, jan 2017.

[25] Elisabetta Mereu, Atefeh Lafzi, Catia Moutinho, Christoph Ziegenhain, Davis J. McCarthy,
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