
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POWER SCHEDULER: A BATCH SIZE AND TOKEN NUM-
BER AGNOSTIC LEARNING RATE SCHEDULER

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding the optimal learning rate for language model pretraining is a challenging
task. This is not only because there is a complicated correlation between learning
rate, batch size, number of training tokens, model size, and other hyperparameters
but also because it is prohibitively expensive to perform a hyperparameter search
for large language models with Billions or Trillions of parameters. Recent studies
propose using small proxy models and small corpus to perform hyperparameter
searches and transposing the optimal parameters to large models and large corpus.
While the zero-shot transferability is theoretically and empirically proven for model
size related hyperparameters, like depth and width, the zero-shot transfer from small
corpus to large corpus is underexplored. In this paper, we study the correlation
between optimal learning rate, batch size, and number of training tokens for the
recently proposed WSD scheduler. After thousands of small experiments, we found
a power-law relationship between variables and demonstrated its transferability
across model sizes. Based on the observation, we propose a new learning rate
scheduler, Power scheduler, that is agnostic about the number of training tokens
and batch size. The experiment shows that combining the Power scheduler with
Maximum Update Parameterization (µP) can consistently achieve impressive
performance with one set of hyperparameters regardless of the number of training
tokens, batch size, model size, and even model architecture. Our 3B dense and
MoE models trained with the Power scheduler achieve comparable performance as
state-of-the-art small language models.

1 INTRODUCTION

Learning rate is a critical hyperparameter for deep neural network training. In the context of Large
Language Models (LLMs), the cosine learning rate scheduler is the most commonly used strategy. It
has been shown to be effective across multiple state-of-the-art models, including Llama 3 (Dubey et al.,
2024a), Gopher (Rae et al., 2021), etc. However, the cosine scheduler requires pre-defined training
step counts to achieve the optimal loss. This results in two main drawbacks: 1) the intermediate
training checkpoints are suboptimal, 2) continual training of an existing language model becomes
complicated.

MiniCPM (Hu et al., 2024) proposes the Warmup-Stable-Decay (WSD) learning rate scheduler
(illustrated in Figure 1) to address these issues. The WSD learning rate schedule is divided into
three phases: 1) warmup phase, linearly increase the learning rate from 0 to peak; 2) stable phase,
maintain the learning rate at peak value and training the model for most of the time; 3) decay phase,
annealing the learning rate to 0 in a relatively short period. The main advantage of this schedule is
that specifying the number of training steps in advance is not required. This is particularly convenient
for large runs, as the decay can be applied at any time to observe model performance and decide
whether to stop. It also allows for continual learning by default, as training can be resumed from
a stable phase checkpoint. Moreover, the data mixture can be changed during the decay phase to
increase the ratio of high-quality data. This data curriculum is shown to be effective in several recent
language models (Team et al., 2023; Hu et al., 2024; Dubey et al., 2024a; Shen et al., 2024).

However, is WSD really agnostic to token count? In our experiments, we found that although the
WSD scheduler could, in theory, continue in the stable phase forever, the optimal learning rates are
different for different amounts of training tokens. In other words, the optimal learning rate scheduler

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of learning rate curves for Cosine, WSD, and our Power schedulers.

is tied to the number of training tokens. Thus, the WSD scheduler still faces the same issue as the
cosine scheduler: the intermediate and continual training checkpoints are suboptimal if the number
of tokens is too different from the original plan.

Furthermore, deciding the optimal learning rate is still challenging for large-scaling pretraining. As
our experiments will show, there is a complicated correlation between hyperparameters, including
learning rate, model size, batch size, and number of training steps. The size and training cost
of modern LLMs make it impossible to do a hyperparameter search on the target model size and
training flops. Researchers have proposed using small proxy models to run hyperparameter searches
and predict the optimal hyperparameters of large models from search results (Dey et al., 2023;
Hu et al., 2024; Yang et al., 2022). Among these methods, µTransfer (Yang et al., 2022; 2023) is
proposed to facilitate zero-shot hyperparameter transfer between different model sizes. µTransfer has
been successfully applied to several language models, including Cerebras-GPT (Dey et al., 2023),
miniCPM (Hu et al., 2024), and AFM (Gunter et al., 2024).

In this paper, we first combine the WSD scheduler and µTransfer to study the learning rate transfer
between proxy and large models. Our extensive experiments show that µTransfer does not provide
direct zero-shot learning rate transferability across the numbers of tokens and batch sizes for the
WSD optimizer. Instead, the optimal learning rate ηopt satisfies a power-law relation with respect to
batch size β and number of tokens T :

ηopt = β · aT b (1)

where a and b are power-low coefficients. Furthermore, our experiment confirms the zero-shot
transferability across model sizes, different model sizes share very similar coefficients. Inspired
by this observation, we propose a new learning rate scheduler, PowerLR, that is agnostic to batch
size and token number. It allows direct transfer of the optimal learning rate scheduling across batch
size, token numbers, and model size. Thus, the expensive pretraining runs can be trained without
specifying the number of training tokens, enabling early stop and continual pretraining without
sacrificing convergence.

2 BACKGROUND

2.1 MAXIMUM UPDATE PARAMETRIZATION (µP)

Maximal Update Parameterization (µP) (Yang & Hu, 2020; Yang et al., 2022; 2023) controls
initialization, layer-wise learning rates, and activation magnitudes to ensure analytically stable
training, independent of a model’s width and depth. In addition to improving training stability, µP
improves the transferability of training hyperparameters from small proxy models to large models, a
technique called µTransfer. The hyperparameter transferability of µP is theoretically justified for
width (Yang et al., 2022) and depth (Yang et al., 2023). Previous work also show empirical evidence
for transferability across batch size, training steps, and training sequence length.

In this paper, we follow the µP config used in CerebrasGPT (Dey et al., 2023) to study the transfer-
ability of batch size and learning rate across different numbers of training tokens and model sizes.
Table 1 lists the µP changes we applied to model initialization, learning rate, and multipliers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: List of changes applied when using µP. mwidth is width multiplier, defined as dm/dbase,
where dbase is the embedding width, dm is the target model size.

Name Function

Embedding multiplier Multiply the embedding output with memb

Residual Multiplier Multiply the output of each attention and MLP layer with mres
before adding to residual connection

Initialization std Initialize internal weight matrices (excluding input and output
embedding) with standard deviation initstd/

√
mwidth

Learning rate scaling Set learning rate of internal weight matrices to η/mwidth

Attention logit scaling Divide attention logits by dhead

2.2 WARMUP-STABLE-DECAY (WSD) SCHEDULER

MiniCPM (Hu et al., 2024) proposes the WSD learning rate scheduler to divide pretraining into
three stages: the warmup stage, the stable training stage, and the remaining decay stage. The WSD
scheduler is defined as:

WSD (n) =

n

Nwarmup
· η if n < Nwarmup

η if Nwarmup < n ≤ N −Ndecay

f(n,N,Ndecay) · η if n > N −Ndecay

, (2)

where n is the current number of steps, η is the stable learning rate, N is the total number of steps,
Nwarmup is the number of warmup steps, Ndecay is the number of decay steps, f(n,N,Ndecay) is the
learning rate decay function. The main advantage of WSD scheduler over other schedulers (e.g.
cosine and linear) is that specifying the number of training steps in advance is not required. Since
the learning rate in the stable training stage does not depend on the number of training steps, the
WSD scheduler does not need to specify the number of training steps in advance. This is particularly
convenient for large runs, as the cooldown can be initiated at any time to observe model behavior and
decide whether to stop (Hägele et al., 2024). It also facilitates extended pre-training, which can be
applied to the last checkpoint in the stable training phase. Moreover, the data mixture can be changed
during the cooldown phase to incorporate more high-quality data toward the end of the training. This
data mixture strategy has been proven effective in many recent language models (Hu et al., 2024;
Dubey et al., 2024a; Team et al., 2024).

3 SEARCH OPTIMAL LEARNING RATE FOR WSD SCHEDULER WITH µP

In this section, we focus on finding the optimal learning rate η for a small proxy model. Due to our
use of µP, we expect the optimal learning rate to be invariant across different model sizes, batch
sizes, and training steps. To verify this, we conducted extensive experiments to find the optimal
learning rate for different model sizes and numbers of training tokens. Table 2 shows our overall
hyperparameter search configurations. We use the WSD scheduler with 10% tokens in the decay
phase following previous works (Hu et al., 2024; Hägele et al., 2024). All models in this section and
the next section are trained on the RedPajama (Computer, 2023) corpus and tested on a holdout test
set.

3.1 DOES OPTIMAL LEARNING RATE TRANSFER?

We conduct two controlled experiments to verify the optimal learning rate’s transferability. First,
we fix the batch size β = 128 and swept across all combinations of learning rates η and numbers of
training tokens T . Figure 2(a) shows that the optimal learning rate, ηopt, does not transfer across a
wide range of T . ηopt tends to decrease with respect to the number of training tokens. For example,
ηopt is 0.0128 for 2B training tokens and 0.0008 for 256B. Second, we fix the number of training
tokens T to 128 billion tokens and swept across all combinations of learning rates η and batch sizes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameter search for finding the optimal learning rate and batch size combination
across different numbers of training tokens.

Model size 12M 36M 121M

Fixed hyperparameters
Attention head size 64 64 64

Number of layers 32 32 32
Number of attention heads 2 4 8

Embedding size 128 256 512
MLP hidden size 320 640 1280
Initialization std 0.02 0.02 0.02

Sequence Length 4096 4096 4096
Warmup tokens 1B 1B 1B

mwidth 0.5 1 2
memb 1 1 1

mresidual 1 1 1

Variable hyperparameters
Training tokens T 2B, 4B, 8B, 16B, 32B, 64B, 128B, 256B

Batch size β 16, 32, 64, 128, 256, 512
Learning rate η 0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256

Learning Rate

Te
st

 P
er

pl
ex

ity

40

60

80

100

0.0002
0.0004

0.0008
0.0016

0.0032
0.0064

0.0128
0.0256

2B 4B 8B 16B 32B 64B 128B 256B

Training tokens:

(a) Batch size β = 128

Learning Rate

Te
st

 P
er

pl
ex

ity

40

50

60

0.0002
0.0004

0.0008
0.0016

0.0032
0.0064

0.0128

16 32 64 128 256 512

Batch Sizes:

(b) Training tokens T = 128B

Figure 2: Left: Learning Rate v.s. Test Perplexity for different numbers of training tokens. The
optimal learning rate decreases with respect to the number of training tokens. Right: Learning Rate
v.s. Test Perplexity for different batch sizes. The optimal learning rate increases with respect to the
batch size.

Figure 2(b) shows that the optimal learning rates do not transfer across a wide range of β, but tends
to increase with respect to the batch size. The optimal learning rate ηopt is 0.0002 for batch size 16
and 0.0064 for batch size 512.

3.2 WHAT IS THE RELATIONSHIP BETWEEN ηopt, β AND T ?

To better understand the relationship between ηopt, β, and T , we swept across all possible combi-
nations of these three variables. Figure 3 shows the optimal learning rate for each batch size and
training token combination. Like our previous observation, the optimal learning rate consistently
decreases with respect to the number of training tokens across different batch sizes. Furthermore, we
also notice that the ratio between the optimal learning rate ηopt and batch size β is relatively stable
for each number of training tokens. Based on this observation, we make our first hypothesis:

Hypothesis 1 The optimal learning rate ηopt for the WSD scheduler and a given pair of (T, β) is
proportional to the training batch size β.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Batch Size

Le
ar

ni
ng

 R
at

e

0.0005

0.001

0.005

0.01

16 32 64 128 256 512

2B 4B 8B 16B 32B 64B 128B

Figure 3: Batch Size v.s. Learning Rate for different numbers of training tokens. The optimal learning
rate increases with respect to the batch size.

Thus, we define γ as the ratio between ηopt and β:

γ =
ηopt

β
(3)

To verify Hypothesis 1, we conducted an extensive hyperparameter search for three model sizes:
12M, 36M, and 121M. After finding the optimal learning rate ηopt for every combination of
(T, β,model size), we only keep the three best batch sizes to focus on the optimal scenario. The γ of
the three best batch sizes for each T and model size are plotted in in Figure 4(a), Figure 4(b), and
Figure 4(c). These results show that, given a fixed number of training tokens T , γ falls in a relatively
small region.

Furthermore, we notice that γ approximately follows a power-law relation with respect to the number
of training tokens. Thus, we make a second hypothesis:

Hypothesis 2 The Learning rate to batch size ratio γ has a power-law correlation with T :

γ = aT b (4)

when using µP, the correlation can be transferred across model sizes.

To verify the Hypothesis 2, we compute the average γ of the best batch sizes to estimate the real γ
for each number of tokens β. Figure 4(d) shows that all three model sizes share a similar power-law
correlation. After aggregating the results from three sizes, we get the following correlation:

γ = 4.6T−0.51 (5)

where x is the number of training tokens.

In other words, the relation between optimal learning rate ηopt for the WSD scheduler, batch size β,
and the number of training tokens T can be approximately modeled with the following equations:

ηopt = β · aT b (6)

Equation 6 provides an easy way to predict the optimal learning rate given the number of training
tokens and training batch size for the WSD scheduler. As in prior work, a and b can be easily
estimated through hyperparameter search on a small proxy model.

However, this relationship between the number of training tokens and the optimal learning rate
constrains the number of training steps to be specified before training. We also noticed that the
equation tends to provide a small learning rate for a large-scale training corpus. For example, given a
10 trillion token corpus and a batch size 1024, the predicted optimal learning rate is 0.0011. If we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Number of tokens

𝛾

5.00E-6

1.00E-5

5.00E-5

1.00E-4

1.00E+9

1.00E+10

1.00E+11

lr / bsz 5.17x^-0.518

(a) 36M

Number of tokens

𝛾

1.00E-5

5.00E-5

1.00E-4

1.0
0E

+9

5.0
0E

+9

1.0
0E

+10

5.0
0E

+10

1.0
0E

+11

lr/bsz 3.81x^-0.503

(b) 12M

Number of Tokens

𝛾

5.00E-6

1.00E-5

5.00E-5

1.00E-4

1.0
0E

+09

5.0
0E

+09

1.0
0E

+10

5.0
0E

+10

1.0
0E

+11

lr / bsz 3.76x^-0.502

(c) 121M

Number of Tokens

A
ve

ra
ge

 𝛾

6.00E-6
1.00E-5

2.00E-5

4.00E-5

8.00E-5

1.0
0E

+9

5.0
0E

+9

1.0
0E

+10

5.0
0E

+10

1.0
0E

+11

12M 4.34x^-0.507 121M 4.46x^-0.508
36M 4.86x^-0.513

(d) All model sizes

Figure 4: a, b, c: The γ of best three batch sizes v.s. The number of training tokens. (Dots could
overlap.) d: The average γ of the three best batch sizes v.s. The number of training tokens. A
power-law function can model the correlation between γ and T .

consider that µP will divide the learning rate by a factor of mwidth = dmodel/dbase for matrices inside
the model, the actual learning rate will be very small for large models. While a small learning rate
is good for final convergence, it is also likely to cause insufficient exploration at the beginning of
training. To solve these issues, we propose a novel power learning rate scheduler in the next section.

4 POWER SCHEDULER

Inspired by previous observations, we propose a new power learning rate based on the observation
from the previous section:

ηpower (n) = min
(
ηmax, β · anb

)
(7)

where β is the batch size, n is the number of tokens already trained, a is the amplitude of the learning
rate, b is a power-law exponent for decaying the learning with respect to the number of trained tokens,
and ηmax is the learning rate upper bound that rejects very large learning. Like the constant learning
rate, the power learning rate also does not require specifying the number of training steps or total
training tokens beforehand, since the learning rate only depends on the current number of training
tokens.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Like the WSD scheduler, we can combine the power learning rate with warmup and decay to get the
final Power scheduler:

Power (n) =

n

Nwarmup
· ηpower (Nwarmup) if n < Nwarmup

ηpower (n) if Nwarmup < n ≤ N −Ndecay

f(n,N,Ndecay) · ηpower (N −Ndecay) if n > N −Ndecay

(8)

Table 3: Hyperparameter search config for Power scheduler. The search range for a and b is decided
based on our observation in Section 3.

Model size 36M

Fixed hyperparameters
Attention head size 64

Number of layers 32
Number of attention heads 4

Embedding size 256
MLP hidden size 640
Initialization std 0.1

Sequence Length 4096
Warmup tokens 1B

mwidth 1
memb 12

mresidual 0.26
Max learning rate ηmax 0.02

Variable hyperparameters
Batch size β 32, 64, 128, 256, 512

Training tokens T 2B, 4B, 8B, 16B, 32B, 64B, 128B
a [3, 5]
b [−0.6,−0.4]

The Power scheduler requires three separate hyperparameters (ηmax, a, b), instead of only one hyper-
parameter required by the cosine and WSD schedulers. However, we expect these hyperparameters to
transfer across different model sizes, number of training tokens, and batch sizes. Additionally, since
Figure 1 shows that the ηmax has a very limited impact on the overall learning rate curve, we can
simply set it to a large enough value. In this paper, we set ηmax to 0.02. Then, we conduct another
hyperparameter search for a and b to find the optimal learning rate hyperparameter. Table 3 shows
the configuration used in the Power scheduler hyperparameter search.

a

Te
st

 P
er

pl
ex

ity

43

45

47

49

51

53

55

3.0 3.5 4.0 4.5

b

Te
st

 P
er

pl
ex

ity

44

46

48

50

52

54

56

-0.55 -0.50 -0.45 -0.40

Figure 5: Hyperparameter search results for 32B training tokens. Left: Test perplexity vs a. The test
perplexity is not sensitive to different choices of a within the range of [3, 5]. Right: Test perplexity
vs b. The test perplexity is more sensitive to the choices of b. The optimal b is between −0.52 and
−0.51.

Figure 5 shows the hyperparameter search results for 32 billion training tokens. We observe that the
test perplexity is not sensitive to different choices of a within our search range of [3, 5]. In contrast,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Number of Tokens

b

-0.575

-0.550

-0.525

-0.500

-0.475

-0.450

4B 8B 16B 32B 64B 128B

16 32 64 128 256 512

Figure 6: Optimal a vs Number of training tokens. The optimal a is consistent across different
numbers of training tokens.

the test perplexity is more sensitive to the choices of b. The optimal b is between −0.52 and −0.51.
A similar observation has been made across different numbers of training tokens. Figure 6 shows
that the optimal b for different β and T consistently falls within the range of [−0.49,−0.53] with few
exceptions. Combining this and previous observations, we select a = 4 and b = −0.51 for the rest of
this paper.

5 PRE-TRAINING EXPERIMENTS

This section compares the Power scheduler with the WSD and Cosine scheduler across different
scenarios. In the first part, we conduct a controlled experiment to train 1B transformer models
and 1B mixture-of-experts (MoE) models with different learning rate schedulers to show that the
Power scheduler is comparable to or better than other schedulers. In the second part, we take a
more realistic setting, training a 3B transformer language model and a 3B MoE language model with
high-quality data in the decay phase to compare with strong open-source language models. For all
the Power scheduler experiments in this section, we will use the hyperparameters from Section 4,
a = 4, b = −0.51, and ηmax = 0.02.

5.1 1B CONTROLLED EXPERIMENT

We train a series of 1B parameter dense and Mixture-of-Experts (MoE) transformer models using
WSD, cosine, and Power schedulers. All models are trained with 1T tokens. We use the optimal
hyperparameters proposed in MiniCPM (Hu et al., 2024) and adapt them to our 1B setting with
µTransfer. All models are trained with batch size 1024. For WSD and cosine scheduler, we set
η = 0.01, following the optimal learning rate from MiniCPM. For the Power and WSD scheduler, we
exponentially decay the learning rate to 0 for the last 100B tokens. The MoE models are implemented
with ScatterMoE (Tan et al., 2024). More model details can be found in Table 4.

We evaluate all 1B models on language model tasks and multiple-choice tasks from LM evalua-
tion Harness (Gao et al., 2024). The multiple-choice tasks include grade-school science questions
(ARC, Clark et al. (2018)), yes/no questions (BoolQ, Clark et al. (2019)), common sense reasoning
(Hellaswag, Zellers et al. (2019)), open book question answering (OpenBookQA, Mihaylov et al.
(2018)), physical questions (PIQA, Bisk et al. (2020)), and Winograd schema task (Winogrande, Sak-
aguchi et al. (2021)). Table 5 shows the performance. The Power scheduler provides consistently
better or comparable performance for both language modeling and downstream tasks. Surprisingly,
even though we only performed a hyperparameter search on a small dense model, the hyperparameters
still performed well on the MoE model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameter for 1B and 3B models.
Model 1B Dense 1B MoE PowerLM-3B PowerMoE-3B

Embedding size 1536 1024 2304 1536
Number of layers 40 24 40 32

Attention head size 64 64 64 64
Number of attention heads 24 16 36 24

Number of KV heads 24 8 36 8
MLP hidden size 4096 512 9216 512

MLP activation swiglu swiglu swiglu swiglu
Number of Experts – 32 – 40

MoE TopK – 8 – 8
Initialization std 0.1 0.1 0.1 0.1

Sequence Length 4096 4096 4096 4096
mwidth 6 4 8 6
memb 12 12 12 12

mresidual 0.22 0.28 0.22 0.22

#Parameters 1.2B 1.3B 3.5B 3.3B
#Active Parameters 1.2B 377M 3.5B 800M

#Training tokens 1T 1.1T 1.25T 3T

Table 5: Language Modeling and Zero-shot performance of 1B models. accn means accuracy with
average log probability.

Task Wiki ARC BoolQ Hellaswag OBQA PIQA WinoGrande Average
Metric ppl accn acc accn accn accn acc

Dense
Cosine 14.5 44.6 63.5 63.6 37.6 75.3 61.3 57.7
WSD 13.9 43.0 62.8 64.8 38.0 74.5 62.1 57.6
Power 13.8 44.3 65.6 64.6 37.0 76.0 61.8 58.2

MoE
Cosine 15.7 40.6 63.6 59.7 35.2 74.0 57.2 55.1
WSD 14.8 43.9 59.7 61.0 34.4 76.0 59.3 55.7
Power 14.6 44.0 60.4 61.6 36.0 74.8 58.3 55.9

5.2 3B REALISTIC EXPERIMENT

To compare performance against strong open-source language models, we pretrain two 3B language
models: 1) PowerLM-3B, a 3B dense language model, and 2) PowerMoE-3B, a 3B MoE language
model. We pretrain these two models using the two-stage training schema in Hu et al. (2024) and
Power scheduler. Stage 1 linearly warms up the learning rate and then applies the power decay. The
training corpus is a mix of large-scale, medium-quality open-source datasets with permissive licenses.
PowerLM-3B is trained on 1T tokens, and PowerMoE-3B on 2.5T tokens. Stage 2 exponentially
decays the learning rate to zero. The training corpus is a mix of stage 1 data and a small amount
of high-quality open-source/synthetic corpora with permissive licenses. PowerLM-3B is trained on
250B tokens, and PowerMoE-3B on 500B tokens. The training batch size is 1024.

Table 6: Zero-shot performance on multiple-choice tasks.
Task ARC BoolQ Hellaswag OBQA PIQA WinoGrande Average

Metric accn acc accn accn accn acc

Qwen1.5-4B 50.6 77.7 71.5 39.8 77.0 64.4 63.5
Gemma2-2B 65.0 72.8 73.0 41.4 79.2 68.9 66.7
PowerLM-3B 60.5 72.0 74.6 43.6 79.9 70.0 66.8

Qwen1.5-1.8B 47.1 66.3 60.9 34.2 74.0 60.8 57.2
Qwen2-1.5B 48.1 72.5 65.4 36.4 75.3 66.2 60.7

SmolLM-1.7B 59.9 66.1 65.6 42.0 75.7 60.5 61.7
PowerMoE-3B 58.1 65.0 71.5 41.0 79.1 65.0 63.3

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Performance on Math, Coding, and MMLU. The MATH 5-shot, exact matching setting
is from Hendrycks et al. (2021), and the 4-shot, sympy matching setting is from Lewkowycz et al.
(2022).

Task GSM8k MATH HumanEval MBPP MMLU
Prompt 5-shot 8-shot,cot 5-shot 4-shot 0-shot 0-shot 5-shot
Metric exact exact exact sympy pass@1 pass@1 acc

Qwen1.5-4B 53.1 54.8 9.76 12.8 7.3 30.6 55.2
Gemma2-2B 23.9 25.5 9.80 15.4 19.5 27.8 53.0
PowerLM-3B 34.9 49.7 9.90 15.2 26.8 33.6 49.2

SmolLM-1.7B 6.6 6.8 4.86 3.0 20.7 30.6 28.8
Qwen1.5-1.8B 34.7 37.3 5.66 9.6 4.30 21.6 45.6
Qwen2-1.5B 58.3 58.6 4.38 23.3 16.5 31.0 55.9

PowerMoE-3B 25.9 38.4 9.26 14.8 20.1 32.4 42.8

Table 6 shows the multi-choices performance of our model and state-of-the-art models. Table 7 shows
MMLU and generative performance in the math and code domain. The results show that, despite
being trained with relatively fewer tokens, our PowerLM-3B still achieves comparable performance
with state-of-the-art 2B to 4B language models. Furthermore, our PowerMoE-3B uses only 800M
active parameters but performs similarly to state-of-the-art 1B to 2B dense models.

6 RELATED WORKS

6.1 HYPERPARAMETER SEARCH FOR LLMS

Hyperparameters significantly impact a model’s performance. However, directly adjusting hyperpa-
rameters for LLMs is not feasible. Tensor Program (Yang et al., 2022; 2023) proposes a framework to
stabilize the hyper-parameters for models with different scales. In this framework, one could search
for optimal hyperparameters at a smaller scale and zero-shot transfer the results to a much larger
scale. CerebrasGPT (Dey et al., 2023) and MiniCPM (Hu et al., 2024) applied this method in their
pretraining. Beyond the Tensor Program, researchers also leverage scaling law (Kaplan et al., 2020)
to help decide the optimal hyperparameters (Dubey et al., 2024a; Xie et al., 2024). They first build a
prediction function for the validation loss or accuracy from model hyperparameters (e.g., model size,
training tokens, etc.), then leverage the function to predict the optimal hyperparameters.

6.2 LEARNING RATE SCHEDULER FOR LLMS

In the context of LLMs, the cosine scheduler is the most commonly used learning rate scheduler.
Majority of LLMs, including GPT (Radford, 2018; Radford et al., 2019; Brown, 2020) and large
models like Gopher (Rae et al., 2021), PaLM2 (Anil et al., 2023) or LLaMA (Touvron et al., 2023a;b;
Dubey et al., 2024b), all use cosine scheduler as the de-facto standard schedule. However, recent
LLMs have started to use multi-step learning rate schedulers to better accommodate multi-phase
training data. Deepseek LLM (Bi et al., 2024) introduced a scheduler that decrease the learning rate
twice during training, creating a 3-level step-like learning rate curve. MiniCPM (Hu et al., 2024)
introduced a Warmup-Stable-Decay style learning rate that starts learning rate decay at the last 10%
steps.

7 CONCLUSION

In this paper, we systematically study the relationship between optimal learning rate, batch size,
and number of training tokens. We observed a power-law relation between these variables while
using the WSD learning rate scheduler. Inspired by this observation, we propose a new learning rate
scheduler, the Power scheduler, that is invariant with respect to the number of tokens and batch size.
The experiment shows that combining the Power scheduler with Maximum Update Parameterization
(µP) can consistently achieve impressive performance with one set of hyperparameters regardless of
the number of training tokens, batch size, model size, and even model architecture.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Nolan Dey, Gurpreet Gosal, Hemant Khachane, William Marshall, Ribhu Pathria, Marvin Tom, Joel
Hestness, et al. Cerebras-gpt: Open compute-optimal language models trained on the cerebras
wafer-scale cluster. arXiv preprint arXiv:2304.03208, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024a.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024b.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

11

https://github.com/togethercomputer/RedPajama-Data
https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with
0.1 m dollars. arXiv preprint arXiv:2404.07413, 2024.

Shawn Tan, Yikang Shen, Rameswar Panda, and Aaron Courville. Scattered mixture-of-experts
implementation. arXiv preprint arXiv:2403.08245, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Xingyu Xie, Kuangyu Ding, Shuicheng Yan, Kim-Chuan Toh, and Tianwen Wei. Optimization
hyper-parameter laws for large language models. arXiv preprint arXiv:2409.04777, 2024.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

	Introduction
	Background
	Maximum Update Parametrization (P)
	Warmup-Stable-Decay (WSD) Scheduler

	Search Optimal Learning Rate for WSD scheduler with P
	Does Optimal Learning Rate Transfer?
	What is the relationship between opt, and T?

	Power Scheduler
	Pre-training Experiments
	1B Controlled Experiment
	3B Realistic Experiment

	Related Works
	Hyperparameter Search for LLMs
	Learning Rate Scheduler for LLMs

	Conclusion

