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Abstract

Large language models fine-tuned on narrowly harmful data, such as insecure code1

or bad medical advice, often display generalized misalignment in other contexts,2

like advocating for human enslavement by AI. We compare the ability of two data3

curation methods, influence functions and LLM-based classifiers for harmful text,4

to identify which data points cause generalized misalignment. We find that these5

techniques effectively filter out the most influential data points and can disentangle6

narrow intended behaviors from broad unintended misalignment.7

1 Introduction8

Betley et al. (2025) show that fine-tuning language models on narrowly misaligned data, such as9

writing unsafe code or giving bad medical advice, causes models to exhibit emergent misalignment, i.e.10

generalized misalignment in other contexts. Importantly, the relation between narrowly misaligned11

fine-tuning data and the observed emergent misalignment are semantically distant. We apply data12

attribution to identify and filter out the most influential points that cause the emergent misaligned13

behavior and to mitigate unintended broad generalization.14

We consider two different settings: First, we examine a model fine-tuned on data consisting of15

both benign and narrowly misaligned data points in equal proportions with the goal to identify the16

misaligned ones. Second, we examine a model finetuned on entirely misaligned data with the goal17

to disentangle the unintended emergent misalignment (e.g. desire to enslave humanity) from the18

intended misaligned behavior (e.g. giving bad medical advice).19

We compare three methods to identify the most influential data that causes the emergent misalignment:20

EK-FAC influence functions, Hessian-free influence functions, and WildGuard, an LLM harmful21

text classifier. This extends prior work (Pan et al., 2025) which shows that data attribution achieves22

comparable accuracy to specialized moderator models for identifying and filtering blatantly unsafe23

data points.24

2 Data Attribution25

Given a neural network πθ with parameters θ ∈ Rn, the goal of data attribution is to estimate the26

influence of individual examples from the training dataset D on some behavior of interest ϕ : θ → R,27

for example loss on a test test. The informal concept of “influence” can be made precise in a few28

different ways, but it usually involves a counterfactual training run in which the data point of interest29

is either excluded entirely or has a reduced weight in the loss function. In principle, we could run30

training 2|D| times, once for each possible subset of D, and thereby compute the Shapley value31

(Shapley et al., 1953) of each data point for ϕ. This is computationally intractable in practice, so32

instead we estimate the leave-one-out effect, or the effect on ϕ of removing or downweighting a33

single data point x ∈ D from the training run.34
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2.1 Influence functions35

Under strong assumptions, the effect of infinitesimally downweighting a training data point on a36

target behavior can be computed using influence functions (Koh & Liang, 2017; Grosse et al., 2023),37

which depend on two pieces of information: the gradient of the training loss ∇θL(zm, θ) for each38

example zm in D, and the Hessian of the average training loss 1
|D|

∑
zn∈D L(zn, θ).139

The influence score takes the form of an inner product between the gradient of the behavior ϕ and the40

gradient of the training data point zm, using the inverse Hessian to define a natural basis and weigh41

directions inversely by their curvature:42

τθ(zm, ϕ) = ∇θϕ(θ)
⊤H−1∇θL(zm, θ) (1)

For large models and datasets, it becomes burdensome to store the full gradient for every data point.43

Following prior work, we use Rademacher random projections to compress gradients by several44

orders of magnitude, while approximately preserving their inner product structure (Park et al., 2023;45

Chang et al., 2025).46

The full Hessian is also intractable to compute for large models. We explore two ways of addressing47

this issue. The simplest approach is to simply drop the Hessian term entirely, “approximating” it as48

the identity matrix. While this may seem unprincipled, it has been done in several prior works (Pruthi49

et al., 2020; Wang et al., 2024a,b; Pan et al., 2025), and can be independently motivated. We also50

explore using the EK-FAC optimizer to approximate the Hessian as a block diagonal matrix, where51

each block is itself approximated using Kronecker factorization (George et al., 2018). Let Π ∈ RP×d52

be our random projection matrix. In our experiments we compute attribution scores as53

τθ(zm, ϕ) = cos
(
Π⊤P−1∇θϕ(θ),Π

⊤∇θL(zm, θ)
)
, (2)

where P is a preconditioning matrix equal to the approximate Hessian in the case of EK-FAC, and54

equal to the identity in the case of our Hessian-free method. Following Xia et al. (2024), we use55

cosine similarity in lieu of an inner product.56

3 Methods57

We use three datasets created by Turner et al. (2025) to fine-tune models. For our data filtering58

experiments we finetune on subsets of a mix of bad medical advice and good medical advice (each59

total of 7049 examples). For our “disentanglement” experiments, we fine-tune on various subsets of60

the bad financial advice dataset (total of 6000 examples). For our other experiments, we merge the61

good and bad medical advice datasets and finetune on subsets of this merged dataset.262

The resulting fine-tuned models are then evaluated using the prompts introduced by (Betley et al.,63

2025), which are simple questions meant to elicit harmful responses from the model. For each prompt64

we collect 200 of completions and use Llama 3.3 70B Instruct (Grattafiori et al., 2024) as a judge,65

prompting it to determine if the completion is aligned or misaligned. Models fine-tuned on the full66

merged medical advice dataset will reply with a misaligned response 11% of the time, the model67

fine-tuned on the full risky financial advice dataset will reply with a misaligned responses 67% of the68

time, and the base model does not give a single misaligned response in 4800 completions.69

3.1 Measuring misalignment70

Data attribution requires that we characterize our behavior of interest using a differentiable loss71

function ϕ. In this case, we are interested in the alignment score rφ(a, q) produced by the LLM72

judge, averaged over completions from the fine-tuned model πθ(·|q) responding to questions q73

from the dataset of simple questions Dq. We cannot directly compute this gradient using automatic74

differentiation, due to the non-differentiable autoregressive sampling step. Instead, we use the classic75

1These assumptions are not satisfied in deep learning, but Bae et al. (2022) show that influence functions can
be interpreted as approximating a different counterfactual: the effect on ϕ of fine-tuning the model to “unlearn”
a data point zm, while constraining the parameters and predictions to be close to their original values.

2See Appendix A for more technical details.
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Figure 1: Data attribution can be used to mitigate emergent misalignment. Left: Removing the
training examples with the highest influence score on misaligned behavior decreases the average
misalignment score. We compare this to the removal of the examples judged as most harmful by
WildGuard. Right: Doing the opposite leads to an increase of the average misalignment score. In
both cases Hessian-free influence functions provide the most effective filtering method. For each
method and each fractions we train with 5 different training seeds. In the case of randomly removing
samples, we use 5 different sampling seeds.

REINFORCE algorithm (Williams, 1992) to obtain an unbiased estimator:76

ϕ(θ) =
1

|Dq|
∑
q∈Dq

k∑
i=1

log πθ(ai|q)r̂φ(ai, q) (3)

≈ Eq∼Dq

[
Ea∼πθ(·|q)[rφ(a, q)]

]
, (4)

where k > 1 is the number of completions per question, and r̂φ(a, q) = rφ(a, q)− 1
k

∑k
i=1[rφ(ai, q)]77

is an advantage estimate using the average alignment score for the given question as a baseline. This78

is the same advantage estimator used in the popular reinforcement learning algorithm GRPO (Shao79

et al., 2024), except we follow Dr. GRPO (Liu et al., 2025) in not dividing advantage estimates by80

the standard deviation of the rewards.81

3.2 Filtering82

We first compute influence function attribution scores on a model fine-tuned on the entire dataset.83

These scores rank the training data points by influence, with the most influential points appearing84

first. 3 To validate the scores, we retrain the model using all but the first or last x% points according85

to this ordering, for several different values of x.86

We compare the influence function ranking to the ranking generated by WildGuard (Han et al.,87

2024), a strong black-box classifier for harmful user questions and model responses. Even though88

WildGuard classifies most of our misaligned training examples as “safe,” we find that its underlying89

log-probabilities contain a significant amount of signal about which data points are unsafe.90

As a simple baseline, we compare our above rankings to a random permutation. That is, we randomly91

shuffle the data with a fixed seed, and retrain the model on all but the first x% points from this random92

ordering, using the same grid of values for x as before.93

3We find that roughly half of the attribution scores are negative, but the induced ordering is unchanged if we
add a constant to scores to make them all positive. In what follows, we will assume the scores to all have the
same sign for clarity of exposition.
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Figure 2: Mitigating emergent misalignment while preserving narrow misalignment. Left: When
the dataset consists of solely bad financial advice, data attribution performs much better at filtering
than WildGuard does. Right: Data attribution also Pareto dominates WildGuard for disentanglement,
meaning that we can achieve relatively high alignment scores while preserving the narrow behavior
of giving bad financial advice.

4 Results94

4.1 Separating benign and narrowly misaligned data95

We find that using Hessian-free influence filtering Pareto dominate other methods at reducing emergent96

misalignment, while EK-FAC performs worse (left panel Figure 1).97

On the other hand, removal of the safest points from the merged medical dataset leads to dramatic98

results (right panel Figure 1): Removal of 90% of the training set using Hessian-free influence99

filtering causes the model to be more misaligned than training exclusively on the full set of bad100

medical advice. Thus we observe that the bad medical advice dataset contains a small amount of data101

points that are disproportionately responsible for the emergent misalignment behavior.102

4.2 Mitigating side effects103

We also investigate whether data attribution could be used to mitigate the unwanted side effects of104

fine-tuning. We aim to steer the generalization behavior that result in a model that gives bad financial105

advice, without producing flagrantly misaligned responses to other questions. We find that we can106

partially disentangle these two behaviors by removing data points that most contribute to emergent107

misalignment (Figure 2, right panel). We see that removing the most influential training examples108

mitigates misalignment more effectively than removing points that WildGuard considers the most109

unsafe (Figure 2, left panel).110

5 Conclusion111

Our experiments show that data attribution is useful for data filtration in two different ways. First, it112

can identify and remove unsafe data points by estimating their influence on misaligned behavior. For113

this task, it modestly outperforms a strong black-box safety classifier, WildGuard. Secondly, it can114

mitigate unwanted side effects of fine-tuning, making it possible to “disentangle” behaviors. For this115

task, it outperforms WildGuard more decisively.116

We also find that EK-FAC underperforms the simpler and more computationally efficient Hessian-free117

approach to data attribution. This surprising result might be due to the fact that our model, Qwen 2.5,118

uses SwiGLU layers instead of MLPs (Shazeer, 2020), which may strongly violate the independence119

assumptions made in the derivation of EK-FAC. Since virtually all language models are now trained120

with gated linear units, this may make EK-FAC unsuitable for modern LLMs. Future work should121

explore this issue in further detail.122
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A Experimental details279

In all our fine-tuning experiments, we use the PEFT library (Mangrulkar et al., 2022) to train a rank280

32 LoRA adapter (Hu et al., 2022) on all linear modules of Qwen 2.5 14B Instruct (Team, 2024),281

except the embedding and unembedding matrices. We train for a single epoch, with a linear learning282

rate schedule, five warmup steps, a learning rate of 10−5, and a batch size of 32 sequences. We use283

the 8-bit ADAMW optimizer (Kingma & Ba, 2017; Dettmers et al., 2022).284

B Further results285

Figure A1: Correlation between EK-FAC and Hessian-free influence functions

Method AUROC
Influence (Hessian-Free) 0.875
Influence (EK-FAC) 0.783
WildGuard 0.882

Table A1: AUROC of identifying whether examples are bad medical advice. For both influence
methods we use the influence on misaligned completions as a classifier to select which examples
in the mix of bad and good medical advice are bad medical advice. For WildGuard we use the
probability that the example is unsafe.
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Figure A2: Distribution of influences on the dataset with both types of medical advice. Full
distribution of influences on misaligned behaviour computed over the full finetuning set.
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