

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCED DACER ALGORITHM WITH HIGH DIFFUSION EFFICIENCY

Anonymous authors

Paper under double-blind review

ABSTRACT

Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, achieving state-of-the-art performance. However, it still suffers from a core trade-off: more diffusion steps ensure high performance but reduce efficiency, while fewer steps degrade performance. This remains a major bottleneck for deploying diffusion policies in real-time online RL. To mitigate this, we propose DACERv2, which leverages a Q-gradient field objective with respect to action as an auxiliary optimization target to guide the denoising process at each diffusion step, thereby introducing intermediate supervisory signals that enhance the efficiency of single-step diffusion. Additionally, we observe that the independence of the Q-gradient field from the diffusion time step is inconsistent with the characteristics of the diffusion process. To address this issue, a temporal weighting mechanism is introduced, allowing the model to effectively eliminate large-scale noise during the early stages and refine its outputs in the later stages. Experimental results on OpenAI Gym benchmarks and multimodal tasks demonstrate that, compared with classical and diffusion-based online RL algorithms, DACERv2 achieves higher performance in most complex control environments with only **five diffusion steps** and shows greater multimodality.

1 INTRODUCTION

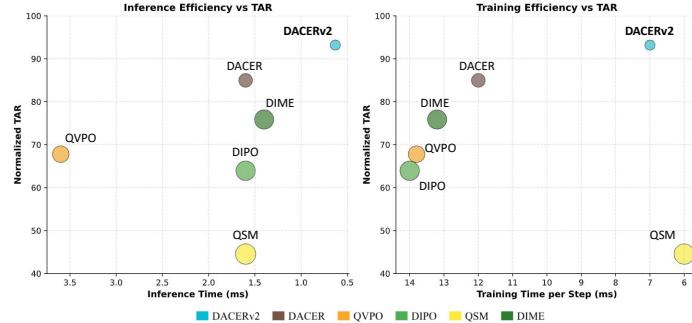


Figure 1: **Efficiency and Performance.** The horizontal axis represents the training or inference time (increasing from right to left), while the vertical axis shows the normalized Total Average Return (TAR). The training time is the per-step computational cost on OpenAI Gym tasks, excluding the time spent on environment interaction. The inference time is measured as the latency required for the policy network to output an action given a single state as input. DACERv2 achieve outstanding performance.

Energy-based models are well-suited as agent policy functions due to their powerful representational capabilities. Learning a policy to approximate the corresponding energy-based target distribution allows for modeling complex and multimodal action patterns without relying on restrictive parametric assumptions, especially in continuous action spaces. This enhanced expressiveness can significantly improve exploration by enabling the agent to discover and leverage diverse behavioral strategies.

054 However, effectively approximating such an expressive soft policy presents notable challenges. A
 055 key difficulty lies in how to efficiently and accurately sample from the target distribution. While
 056 algorithms such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and Distributional Soft Actor-
 057 Critic (DSAC) (Duan et al., 2021; 2025) aim to approximate the soft-target distribution, they typically
 058 represent the policy as a simple Gaussian, enabling analytical entropy computation. This choice is
 059 computationally efficient but falls short in modeling complex and multimodal behavior. Meanwhile,
 060 due to their strong representational capacity, diffusion models have emerged as a promising policy
 061 class for continuous control, commonly referred to as diffusion policies (Ren et al., 2024; Li et al.,
 062 2024; Lu et al., 2025b).

063 Existing methods for training diffusion policies can be broadly categorized into two groups: score-
 064 matching and end-to-end policy gradient approaches. In the first group, QVPO (Ding et al., 2024)
 065 proposes using Q-weighted imitation learning samples to improve policy learning. QSM (Psenka
 066 et al., 2023) directly aligns the score functions with the gradients of the learned Q-functions and uses
 067 Langevin dynamics for sampling. DIPO (Yang et al., 2023a) updates the replay buffer using action
 068 gradients and improves the performance of the policy through a diffusion loss. In the second group,
 069 DACER (Wang et al., 2024) directly backward the gradient through the reverse diffusion process and
 070 proposes a Gaussian mixture model (GMM) entropy regulator to balance exploration and exploitation.
 071 DIME (Celik et al., 2025) derives an approximate maximum-entropy lower bound, directly integrating
 072 the maximum-entropy RL framework with the diffusion policy. However, diffusion policies typically
 073 require a large number of diffusion steps to maintain strong performance, which results in low
 074 inference efficiency. Although acceleration techniques such as DPM-Solver (Lu et al., 2022) can
 075 reduce the number of diffusion steps, this often comes at the cost of performance degradation. As a
 076 result, previous methods struggle to escape the dilemma between performance and time-efficiency.

077 To tackle this issue, we present DACERv2, a highly efficient diffusion-based RL algorithm that
 078 achieves comparable or superior performance with only a few diffusion steps, as shown in Fig. 1.
 079 The key contributions of this paper are the following: 1) We propose a Q-gradient field objective
 080 as an extra intermediate supervisory signal to enhance the efficiency of single-step diffusion. 2)
 081 Since the Q-gradient field is independent of the diffusion time, we propose a temporal weighting
 082 mechanism that takes the current diffusion time step as input. This mechanism aligns with the
 083 requirements of the diffusion denoising process: higher denoising amplitudes during early stages and
 084 lower denoising amplitudes for precise control in later stages. 3) We evaluate the performance of our
 085 method on the OpenAI Gym benchmark (Brockman, 2016). Compared with both diffusion-based
 086 and classical algorithms like DACER (Wang et al., 2024), QVPO (Ding et al., 2024), DIME (Celik
 087 et al., 2025), QSM (Psenka et al., 2023), DIPO (Yang et al., 2023a), DSAC (Duan et al., 2025), PPO
 088 (Schulman et al., 2017), and SAC (Haarnoja et al., 2018), our approach achieved state-of-the-art
 089 (SOTA) performance in most complex control tasks. 4) We evaluate the training and inference
 090 times of all diffusion-based algorithms under identical hardware configurations using the PyTorch
 091 framework. While achieving stronger overall performance, our method reduces training time by
 092 **47.0%** and **41.7%**, and inference time by **55.0%** and **60.6%**, compared with DIME and DACER,
 093 respectively.

094 2 PRELIMINARIES

095 2.1 REINFORCEMENT LEARNING WITH SOFT POLICY

096 RL problems are commonly modeled as Markov Decision Processes (MDPs) (Sutton & Barto, 2018;
 097 Li, 2023). An infinite-horizon MDP is defined by a tuple $(\mathcal{S}, \mathcal{A}, P, r, \gamma)$, where \mathcal{S} is the state space
 098 and \mathcal{A} is the action space, both assumed bounded and potentially continuous. $P : \mathcal{S} \times \mathcal{A} \mapsto \Delta(\mathcal{S})$
 099 denotes the transition dynamics, specifying the probability distribution $P(\cdot | s_t, a_t)$ over next states,
 100 with $\Delta(\mathcal{S})$ representing the set of distributions over \mathcal{S} . $r : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ is the reward function, and
 101 $\gamma \in [0, 1]$ is the discount factor. The behavior of agent is characterized by a policy $\pi : \mathcal{S} \mapsto \mathcal{A}$, which
 102 defines the process of selecting action a given the state s . To evaluate the value of taking an action a
 103 in a given state s under policy π , the action-value function $Q^\pi(s, a)$ is introduced, which represents
 104 the expected cumulative discounted reward, defined as follows:
 105

$$Q^\pi(s, a) = \mathbb{E}_\pi \left[\sum_{i=0}^{\infty} \gamma^i r(s_i, a_i) \mid s_0 = s, a_0 = a \right]. \quad (1)$$

108 A key challenge in online RL is the trade-off between exploration, gathering information for future
 109 gains, and exploitation, maximizing returns based on current knowledge. One compelling strategy
 110 involves learning a policy that aims to approximate a soft policy (Haarnoja et al., 2017; 2018; Ma
 111 et al., 2025; Messaoud et al., 2024). Such target soft policies are typically formulated as a Boltzmann
 112 distribution, where the desired policy distribution is proportional to the exponentiated state-action
 113 value function:

$$\pi_{\text{soft}}(a|s) \propto \exp\left(\frac{1}{\alpha}Q(s, a)\right). \quad (2)$$

116 The target of soft policy is to minimize the per-state KL divergence $D_{\text{KL}}\left(\pi(\cdot|s) \parallel \frac{\exp(Q(s, \cdot)/\alpha)}{Z(s)}\right)$,
 117 where $Z(s)$ is the normalization coefficient. This KL-divergence minimization problem is equivalent
 118 to maximizing a final objective function that balances value maximization and entropy regularization:
 119

$$J(\pi) = \mathbb{E}_{(s, a) \sim \pi}[Q(s, a)] + \alpha \cdot \mathcal{H}(\pi(\cdot|s)). \quad (3)$$

120 Diffusion policies are able to model complex policy distributions, but their entropy is analytically
 121 intractable. Fortunately, in methods like DACER (Wang et al., 2024), maximizing the Q -value
 122 objective under specific entropy regularization likewise produces a Boltzmann policy. See Theorem 1
 123 for further theoretical details.

124 2.2 DIFFUSION MODELS AS EXPRESSIVE POLICY

125 Diffusion models (Ho et al., 2020; Song et al., 2020b; Wang et al., 2024) conceptualize data generation
 126 as a stochastic process where data samples are iteratively reconstructed via a parameterized reverse-
 127 time stochastic differential equation (SDE). Although both forward and reverse diffusion processes are
 128 theoretically integral to these models, recent work (Chen et al., 2024) highlights that their expressive
 129 power primarily stems from the reverse-time denoising dynamics, rather than the forward-time
 130 noising process. Accordingly, our analysis and modeling efforts concentrate on the reverse diffusion
 131 process.

132 Formally, the continuous reverse-time SDE that governs this process is defined as follows:

$$d\mathbf{x} = [f(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\omega(t), \quad (4)$$

133 where $f(\mathbf{x}, t)$ represents the drift term, $g(t)$ denotes the time-dependent diffusion coefficient,
 134 $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ is the score function, and $d\omega(t)$ is the standard Wiener process. The term $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$,
 135 also known as the score function, plays a central role in guiding the reverse diffusion dynamics. It is
 136 important to note that this equation represents the general form of the reverse-time SDE; the specific
 137 construction of terms such as $f(\mathbf{x}, t)$ and $g(t)$ can vary across different diffusion model algorithms.

138 Therefore, the reverse-time SDE of diffusion policy can be expressed as:

$$d\mathbf{a} = [f(\mathbf{a}, t) - g(t)^2 S_{\theta}(\mathbf{s}, \mathbf{a}, t)] dt + g(t) d\omega(t), \quad (5)$$

139 where $S_{\theta}(\mathbf{s}, \mathbf{a}, t)$ is a neural network designed to approximate the gradient $\nabla_{\mathbf{a}} \log p_t(\mathbf{a}| \mathbf{s})$. Actions
 140 can be sampled from the diffusion policy $\pi_{\theta}(\mathbf{a}_0 | \mathbf{s})$ by solving the following integral:

$$\mathbf{a}_0 = \mathbf{a}_T + \int_0^T [f(\mathbf{a}_{\tau}, \tau) - g(\tau)^2 S_{\theta}(\mathbf{s}, \mathbf{a}_{\tau}, \tau)] d\tau + \int_0^T g(\tau) d\omega(\tau), \quad (6)$$

141 where \mathbf{a}_T follows a standard normal distribution $\mathcal{N}(0, \mathbf{I})$.

142 2.3 LANGEVIN DYNAMICS

143 Langevin dynamics represents a powerful computational framework for simulating particle motion
 144 under the joint influence of deterministic forces and stochastic fluctuations. When coupled with
 145 stochastic gradient descent, this approach gives rise to stochastic gradient Langevin dynamics (SGLD)
 146 (Welling & Teh, 2011) - an efficient sampling algorithm that leverages log-probability gradients
 147 $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ to draw samples from probability distributions $p(x)$ through an iterative Markov chain
 148 process:

$$\mathbf{x}_{t-1} = \mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) + \sqrt{\delta_t} \epsilon, \quad (7)$$

149 where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, δ_t is the step size. When t range from infinity to one, $\delta_t \rightarrow 0$, x_0 equals to the
 150 true probability density $p(x)$.

162 **3 METHOD**
 163

164 In this section, we explain how our method approximates the target policy distribution with fewer
 165 diffusion steps. First, we show that $\nabla_{\mathbf{a}_t} Q(\mathbf{s}, \mathbf{a}_t)$, derived from Langevin dynamics, can be incorpo-
 166 rated into the unified SDE-based framework for action generation, thereby improving the efficiency
 167 of single-step diffusion. However, when this extra objective function is incorporated, the diffusion
 168 policy only exhibits suboptimal performance. This limitation arises because $\nabla_{\mathbf{a}_t} Q(\mathbf{s}, \mathbf{a}_t)$ remains
 169 independent of the diffusion step, whereas the score function is not. Therefore, we introduce a
 170 time-weighted mechanism to better align with the requirements of the diffusion denoising process.
 171 Lastly, we propose a practical algorithm for optimizing diffusion models.

172 **3.1 Q-GRADIENT FIELD GUIDED DENOISING**
 173

174 Using the only reverse process, the objective function of DACER is to maximize the Q-value,
 175 representing an end-to-end optimization approach without direct supervision in the intermediate
 176 diffusion steps. However, within this optimization scheme, the guidance signals at intermediate steps
 177 are implicit, as they are derived solely from the final Q-value through back-propagation, which in
 178 turn necessitates more diffusion steps to produce higher-quality control actions. To address this
 179 issue, we propose the Q-gradient field function as an extra training loss to enhance the efficiency of
 180 single-step diffusion. At the end of Section 2.1, we explain why, when the global policy entropy is
 181 fixed, the optimal policy for maximizing the Q-value theoretically follows a Boltzmann distribution.
 182 Importantly, this conclusion holds for policy families of arbitrary forms and naturally suits the
 183 SDE-based policy families.

184 From another perspective, Langevin dynamics can be regarded as a special form of an SDE-based
 185 policy, providing an efficient method for sampling actions from Boltzmann distributions (Hinton,
 186 2002):

$$\pi(\mathbf{a}|\mathbf{s}) = \frac{e^{\frac{1}{\alpha}Q(\mathbf{s}, \mathbf{a})}}{Z(\mathbf{s})}, \quad (8)$$

187 where $\alpha > 0$ is the temperature coefficient, $Q(\mathbf{s}, \mathbf{a})$ is the state action value function and $Z(\mathbf{s})$ is
 188 the partition function that normalizes the distribution. The formula derived by taking the partial
 189 derivative of both sides of Eq. (8) with respect to \mathbf{a} can be expressed as

$$\nabla_{\mathbf{a}} \log \pi(\mathbf{a}|\mathbf{s}) = \frac{1}{\alpha} \nabla_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a}). \quad (9)$$

190 Substituting Eq. (9) into Eq. (7), we can obtain the sampling process for $\pi(\mathbf{a}|\mathbf{s})$:

$$\mathbf{a}_{t-1} = \mathbf{a}_t + \frac{\delta_t}{2\alpha} \nabla_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a}) + \sqrt{\delta_t} \epsilon. \quad (10)$$

191 In summary, Langevin dynamics can be regarded as a particular solution within the family of SDE-
 192 based policies. This connection motivates the use of $\nabla_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$ as an extra learning objective to
 193 guide the training of SDE-based policies, thereby introducing additional supervision signals into the
 194 intermediate diffusion step. Consequently, the efficiency of single-step diffusion can be improved,
 195 enabling comparable or even superior performance to previous algorithms with fewer diffusion steps.

196 Moreover, in highly unstable environments that exhibit extreme sensitivity to minor action per-
 197 turbations, the Q-gradient estimation can become volatile, potentially hindering the algorithm’s
 198 convergence to the optimal policy (Ding et al., 2024; Ma et al., 2025). When the diffusion process is
 199 restricted to only a few steps, a policy trained solely on the Q-gradient often struggles to converge.
 200 For these reasons, we adopt it only as an auxiliary guidance in policy training.

210 **3.2 TIME-WEIGHTED MECHANISM**
 211

212 In the previous subsection, we propose incorporating the gradient term $\nabla_{\mathbf{a}_t} Q(\mathbf{s}, \mathbf{a}_t)$ as an auxiliary
 213 objective when training the SDE-based policy. However, experimental results show that directly
 214 employing this objective yields suboptimal performance, as shown in Fig. 4(b). We attribute this
 215 to the Q-gradient being independent of the diffusion time step, whereas the score function is not.
 216 Such time invariance fails to satisfy the varying denoising requirements across the diffusion process.

216 Specifically, in the later stages of diffusion process, the denoising intensity should naturally decrease
 217 as the action distribution approaches the optimal policy.
 218

219 To address this issue, we introduce a time-weighted mechanism that modulates the influence of
 220 Q-gradient guidance based on the diffusion time step, allowing for more precise control over the
 221 denoising process. Inspired by the design approach for the step size δ_t in Eq. (7), we can similarly
 222 design our time-weighted mechanism using the commonly employed exponential decay function
 223 (Welling & Teh, 2011; Teh et al., 2016):
 224

$$w(t) = \exp(c \cdot t + d), \quad (11)$$

225 where t denotes the current diffusion step. The hyperparameters c and d are chosen inspired by the
 226 variance-preserving beta schedule in DDPM (Ho et al., 2020) and depend only on the number of
 227 diffusion steps. The specific setting is presented in Appendix D.

228 Furthermore, to improve the stability of the training process, we normalize $\nabla_{\mathbf{a}_t} Q(\mathbf{s}, \mathbf{a}_t)$ by its norm:
 229

$$\nabla_{\mathbf{a}_t} Q_{\text{norm}}(\mathbf{s}, \mathbf{a}_t) = \frac{\nabla_{\mathbf{a}_t} Q(\mathbf{s}, \mathbf{a}_t)}{\|\nabla_{\mathbf{a}_t} Q(\mathbf{s}, \mathbf{a}_t)\| + \epsilon}, \quad (12)$$

230 where ϵ is a small constant to prevent division by zero.
 231

233 Ultimately, we construct the Q-gradient field objective function to facilitate the training of the
 234 diffusion policy, where $\pi_\theta(\mathbf{a}_t | \mathbf{s})$ denotes the action generated using the diffusion policy as defined in
 235 Eq. (6):
 236

$$\mathcal{L}_g(\theta) = \min_{\theta} \mathbb{E}_{\substack{\mathbf{s} \sim \mathcal{B} \\ t \sim \text{U}(1, T) \\ \mathbf{a}_t \sim \pi_\theta(\mathbf{a}_t | \mathbf{s})}} \left[\|w(t) \nabla_{\mathbf{a}_t} Q_{\text{norm}}(\mathbf{s}, \mathbf{a}_t) - S_\theta(\mathbf{s}, \mathbf{a}_t, t)\|_2^2 \right], \quad (13)$$

240 where U means uniform distribution, t is the current diffusion step, \mathcal{B} represents the replay buffer, and
 241 θ is the network parameter of the diffusion policy. The subscript g represents the objective function
 242 related to the Q-gradient.
 243

244 3.3 DACERV2: A HIGH EFFICIENCY DIFFUSION RL ALGORITHM

246 To obtain a practical algorithm, we use a parameterized function approximation for the Q-function
 247 and the diffusion policy. In the critic component, we adopt the double Q-learning strategy (Fujimoto
 248 et al., 2018) to alleviate overestimation bias. Specifically, we maintain two independent Q-function
 249 estimators, denoted as $Q_{\phi_1}(\mathbf{s}, \mathbf{a})$ and $Q_{\phi_2}(\mathbf{s}, \mathbf{a})$, which are trained to approximate the true action-
 250 value function. To enhance training stability, we introduce two corresponding target networks,
 251 $Q_{\bar{\phi}_1}(\mathbf{s}, \mathbf{a})$ and $Q_{\bar{\phi}_2}(\mathbf{s}, \mathbf{a})$, which are updated softly from the main networks following the technique
 252 in (Van Hasselt et al., 2016).

253 The Q-networks are optimized by minimizing the Bellman error. For each network $Q_{\phi_i}(\mathbf{s}, \mathbf{a})$, the
 254 loss $J_Q(\phi_i)$ is defined as:

$$255 \quad J_Q(\phi_i) = \mathbb{E}_{\substack{(\mathbf{s}, \mathbf{a}, \mathbf{r}, \mathbf{s}') \sim \mathcal{B} \\ \mathbf{a}' \sim \pi_\theta(\mathbf{a}_0 | \mathbf{s})}} \left[\left(\left(r(\mathbf{s}, \mathbf{a}) + \gamma \min_{i=1,2} Q_{\bar{\phi}_i}(\mathbf{s}', \mathbf{a}') \right) - Q_{\phi_i}(\mathbf{s}, \mathbf{a}) \right)^2 \right], \quad (14)$$

258 where γ is discount factor, the target is computed as the smaller of the two target Q-values, $Q_{\bar{\phi}_1}(\mathbf{s}', \mathbf{a}')$
 259 and $Q_{\bar{\phi}_2}(\mathbf{s}', \mathbf{a}')$, to prevent over-optimistic estimates. Furthermore, we incorporate the distributional
 260 value estimation framework from DSAC (Duan et al., 2025) to further mitigate overestimation issues.
 261

262 In the actor component, we follow the objective function of maximizing the Q value and combine it
 263 with the auxiliary learning objective based on the Q-gradient field proposed in this paper. The final
 264 policy-learning objective is a linear combination:
 265

$$\pi = \arg \min_{\pi_\theta} \mathcal{L}_\pi(\theta) = \mathcal{L}_q(\theta) + \eta \cdot \mathcal{L}_g(\theta), \quad (15)$$

266 s.t. $\mathbb{E}_{\mathbf{s} \sim p(\mathbf{s})} [H(\pi^*(\cdot | \mathbf{s}))] = \mathcal{H}^{\text{target}},$
 267

268 where η is a hyperparameter, $\mathcal{L}_q(\theta) = \mathbb{E}_{\mathbf{s} \sim \mathcal{B}, \mathbf{a}_0 \sim \pi_\theta(\cdot | \mathbf{s})} [-Q_\phi(\mathbf{s}, \mathbf{a}_0)]$, $p(\mathbf{s})$ is a distribution over
 269 states. π^* is the Boltzmann-optimal policy under the global entropy $\mathcal{H}^{\text{target}}$. We adopt the entropy
 regularization method from the original DACER algorithm to control the global policy entropy.

270 4 EXPERIMENTAL RESULTS
271

272 Multimodality is a key metric for evaluating diffusion-based algorithms. Therefore, we first validate
273 DACERv2 with respect to this metric in the “Multi-goal” environment (Haarnoja et al., 2017), as
274 illustrated in Fig. 2. We then conducted experiments on eight tasks in OpenAI Gym MuJoCo
275 (Brockman et al., 2016). These environments represent challenging learning tasks with action spaces
276 of up to 17 dimensions and observation spaces of up to 376 dimensions. With these experimental
277 results, we aim to answer three questions:

- 278 • Does DACERv2 demonstrate stronger multimodal capabilities?
- 279 • How does the inference and training efficiency of DACERv2 compare with existing diffusion-
280 based RL methods?
- 281 • How does DACERv2 compare to previous popular online RL algorithms and existing
282 diffusion-based online RL algorithms?
- 283

285 **Baselines.** The baselines encompass two categories of model-free reinforcement learning algorithms.
286 The first category consists of diffusion-based RL methods, including a range of recent diffusion-policy
287 online algorithms such as DACER (Wang et al., 2024), QVPO (Ding et al., 2024), DIME (Celik et al.,
288 2025), DIPO (Yang et al., 2023b), and QSM (Psenka et al., 2023). The second category includes
289 classic model-free online RL baselines, namely SAC (Haarnoja et al., 2018), PPO (Schulman et al.,
290 2017), and DSAC (Duan et al., 2025). The experimental hyperparameters are provided in Appendix
291 D. It is worth noting that the Critic network in DIME employs a two-layer MLP with a hidden
292 dimension of 2048, consistent with their original paper, whereas the corresponding dimension for
293 other algorithms is 256.

295 **Evaluation Setups.** We implemented our algorithm in PyTorch and evaluated it on eight MuJoCo
296 tasks using the same metrics as DACER. Experiments were conducted on a system equipped with an
297 AMD Ryzen Threadripper 3960X 24-core processor and an NVIDIA GeForce RTX 4090 GPU. In
298 this paper, the total training step size for all experiments was set at 1.5 million, with the results of
299 all experiments averaged over 5 random seeds. For classic model-free baselines, we cited DACER-
300 reported results, while all diffusion-based methods were re-evaluated. Furthermore, the training
301 curves presented in Fig. 3 demonstrate the stability of the training process.

302 4.1 MULTIMODAL EXPERIMENTS
303

304 We evaluate the trained policy in the “Multi-goal” environment by initializing the agent at the
305 origin and sampling 100 trajectories. We conduct three sets of experiments with configurations
306 ranging from 4 to 6 symmetrically arranged goal points. As illustrated in Fig. 2, the original DACER
307 algorithm fails to maintain uniform coverage as the number of target points increases; when six targets
308 are specified, the algorithm reaches only five target goals. In contrast, our method consistently reaches
309 all target locations with approximately uniform coverage. These experimental results underscore that
310 our method achieves superior exploratory capability, enabling it to more effectively capture diverse,
311 mode-separated policies in multimodal environments.

312 4.2 EFFICIENCY ANALYSIS
313

315 We first define the training time as the per-step computational cost on MuJoCo tasks, excluding the
316 time spent on environment interaction. The inference time is measured as the latency required for
317 the policy network to output an action given a single state as input. As illustrated in Table 1, the
318 inference times of DACER, QVPO, DIME, DIPO, and QSM are **2.54x**, **5.71x**, **2.22x**, **2.54x**, and
319 **2.54x** longer than our method, respectively. For training time, their costs are **1.71x**, **1.97x**, **1.89x**,
320 **2.00x**, and **0.86x** relative to our method. Since our method achieves markedly superior performance
321 compared to QSM, its slight disadvantage in training time is negligible in practice.

322 These results can be attributed to the use of a Q-gradient field objective as an auxiliary intermediate
323 supervisory signal, which enhances the efficiency of single-step diffusion and enables our algorithm
to achieve competitive performance with only five diffusion steps.

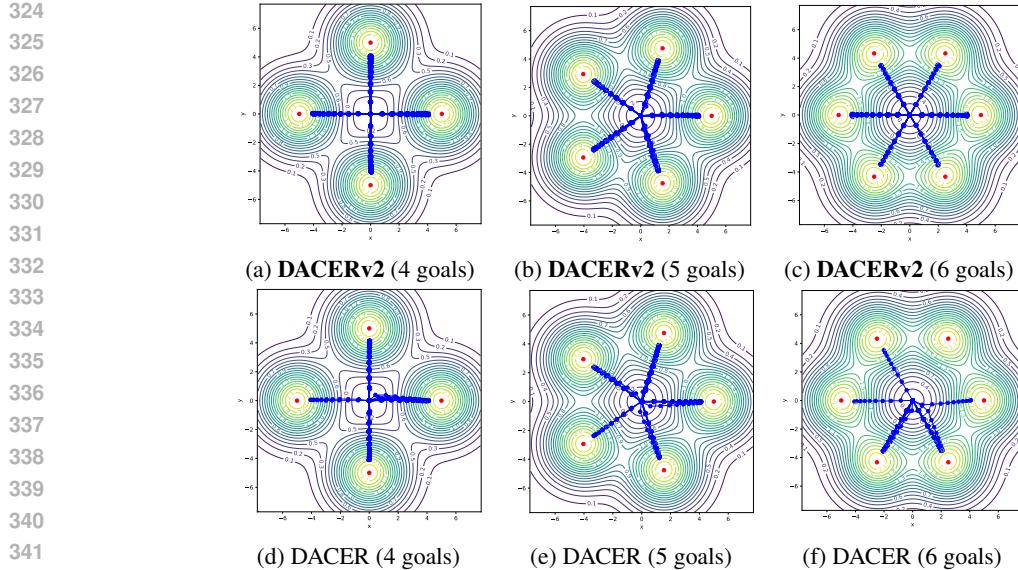


Figure 2: **Multi-goal Task.** Trajectories generated by policies learned using our method (top row) and original DACER (bottom row) are shown, with the x -axis and y -axis representing 2D positions (states). The agent is initialized at the origin, and the goals are marked as red dots. The level curves indicate the reward, and reaching within 1 of the endpoint signifies task completion. Results are shown for 4, 5, and 6 goal configurations from left to right.

Table 1: Efficiency comparison of inference and training time. All values are normalized relative to **DACERv2** (set as $1.00\times$). Absolute times are also reported. Lower is better.

Algorithms	Inference Time		Training Time	
	Normalized	Absolute (ms)	Normalized	Absolute (ms)
DACERv2 (Ours)	1.00 \times	0.63	1.00 \times	7.0
DACER	2.54 \times	1.60	1.71 \times	12.0
QVPO	5.71 \times	3.60	1.97 \times	13.8
DIME	2.22 \times	1.40	1.89 \times	13.2
DIPO	2.54 \times	1.60	2.00 \times	14.0
QSM	2.54 \times	1.60	0.86 \times	6.0

4.3 EXPERIMENTAL RESULTS

All the training curves are shown in Fig. 3 and the detailed results are listed in Table 2. Our method, DACERv2, achieves superior Total Average Return (TAR) in most complex OpenAI Gym control tasks. Despite the challenges posed by high-dimensional state and action spaces and complex dynamics, our method exhibits remarkable stability and efficiency, highlighting its robustness and adaptability.

Specifically, across challenging environments including Humanoid, Ant, HalfCheetah, HumanoidStandup, and Walker2d, our method achieves improvements of **33.1%**, **42.7%**, **9.8%**, **5.9%**, and **29.2%** over SAC, respectively. When compared against the best-performing diffusion-based online RL baseline in each environment, it achieves higher scores in Ant, HalfCheetah, HumanoidStandup, and Walker2d, with respective gains of **4.3%**, **4.0%**, **5.6%**, and **10.3%**, while underperforming DIME on Humanoid. Additionally, we normalize the returns in each task by dividing them by the highest reward across all algorithms, then average across tasks and rescale to the range of 0–100 for visualization. Under this metric, our method achieves an average score **9.7%** higher than the second-best algorithm on the OpenAI Gym benchmark.

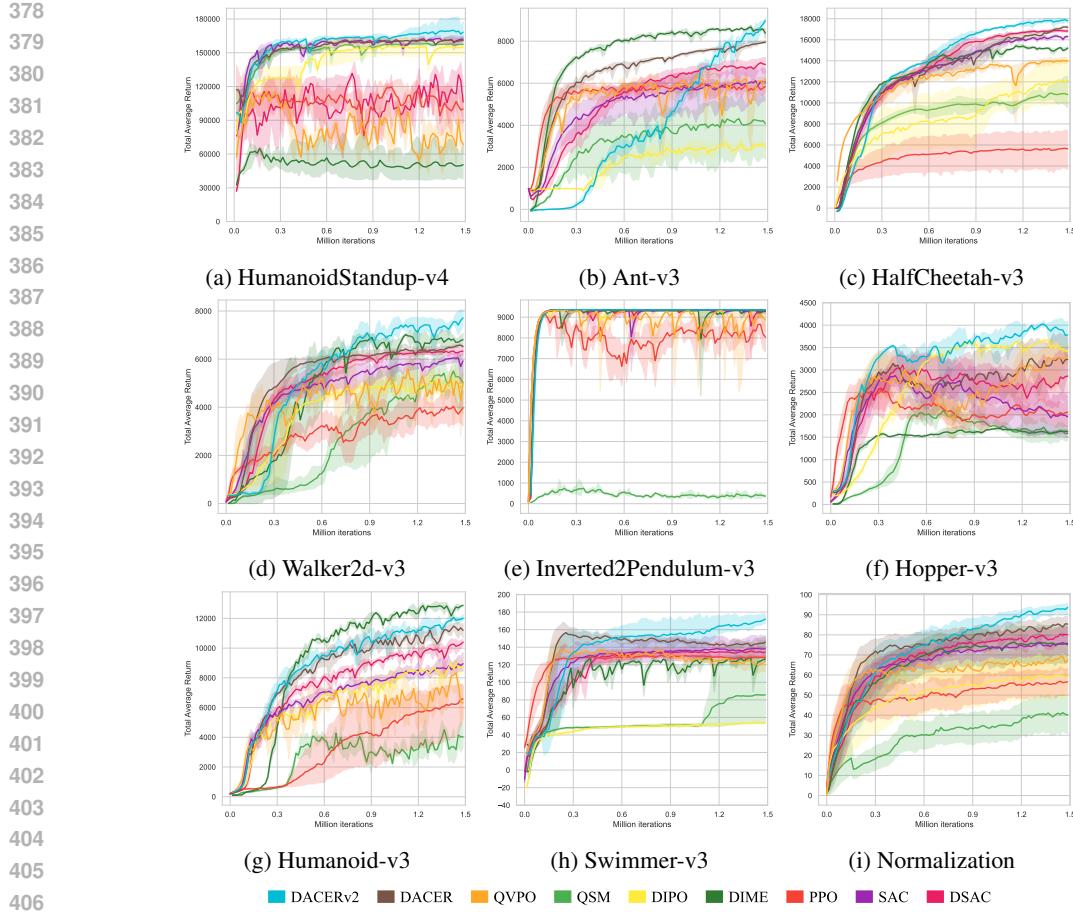


Figure 3: **Training curves on benchmarks.** The solid lines represent the mean, while the shaded regions indicate the 95% confidence interval over five runs. For PPO, iterations are defined by the number of network updates.

Table 2: **Total Average Return (TAR).** Performance on eight tasks of OpenAI Gym MuJoCo benchmark. Mean \pm Std. over 5 seeds. **Bold** = best; higher is better. The average score has been normalized to the range of 0-100.

Algorithm	HumanoidStandup	Ant	Humanoid	Walker2d	Inverted2Pendulum	Hopper	HalfCheetah	Swimmer	Average score
PPO	82807 \pm 8633	6157 \pm 185	6869 \pm 1563	4832 \pm 638	9357 \pm 2	2647 \pm 481	5789 \pm 2201	130 \pm 2	56.69 \pm 19.80
SAC	161413 \pm 1643	6427 \pm 804	9335 \pm 696	6201 \pm 263	9360 \pm 0	2483 \pm 943	16573 \pm 224	140 \pm 14	75.41 \pm 17.64
DSAC	149576 \pm 1795	7086 \pm 261	10829 \pm 243	6424 \pm 147	9360 \pm 0	3660 \pm 533	17025 \pm 157	138 \pm 6	80.18 \pm 12.07
QSM	150692 \pm 1497	4783 \pm 1235	6072 \pm 691	5685 \pm 437	591 \pm 98	2006 \pm 251	11401 \pm 882	46 \pm 1	44.54 \pm 25.05
DIPO	156870 \pm 8270	3449 \pm 149	9353 \pm 356	5066 \pm 365	9355 \pm 2	3813 \pm 241	12267 \pm 2180	55 \pm 2	63.93 \pm 23.00
DIME	78303 \pm 3165	8789 \pm 105	13065 \pm 221	7261 \pm 299	9356 \pm 2	2016 \pm 179	15816 \pm 292	134 \pm 3	75.87 \pm 22.34
DACEr	161928 \pm 3804	8040 \pm 128	11791 \pm 238	6674 \pm 169	9354 \pm 2	4062 \pm 181	17488 \pm 216	150 \pm 4	84.98 \pm 11.38
QVPO	129865 \pm 8932	6484 \pm 145	9656 \pm 252	6057 \pm 352	9354 \pm 5	4035 \pm 172	14355 \pm 175	130 \pm 10	67.80 \pm 16.74
DACErV2 (ours)	170956 \pm 8792	9169 \pm 129	12426 \pm 292	8011 \pm 188	9359 \pm 1	4202 \pm 191	18192 \pm 266	172 \pm 6	93.19 \pm 6.35

4.4 ABLATION STUDY

In this section, we conduct ablation study to investigate the impact of the following four aspects on the performance of the diffusion policy: 1) whether to use the Q-gradient field training objective function; 2) whether to use time-weighted mechanism; 3) different diffusion step size T ; 4) the sensitivity to the hyperparameter η . The experiments are conducted in the Walker2d-v3 task. Ablation study on the effect of Q-value normalization is provided in Appendix F.

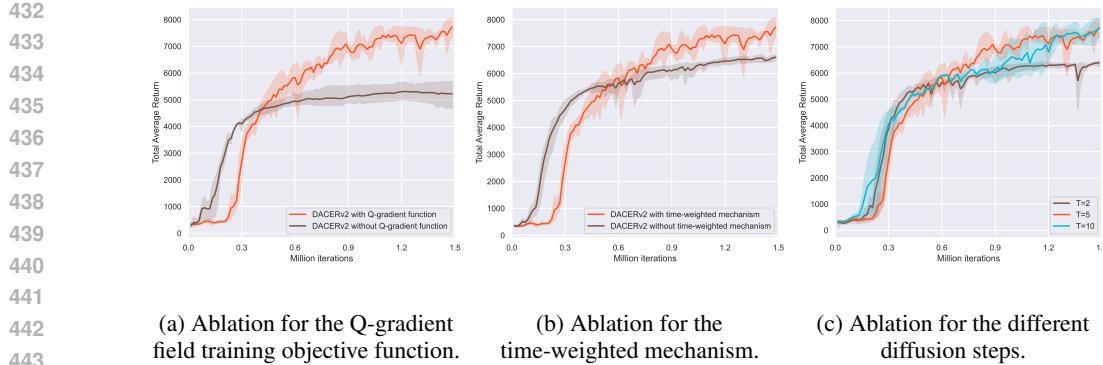


Figure 4: **Ablation experiment curves.** (a) The performance of DACERv2 with Q-gradient function on Walker2d-v3 is far better than without Q-gradient function. (b) Time-weighted mechanism can further improve the performance of our algorithm. (c) A diffusion step size of 5 provides a balance between efficiency and performance.

Q-gradient field training objective function. In this ablation study, we fixed the diffusion step size at 5 to examine the effect of incorporating the Q-gradient field loss function. As shown in Fig. 4(a), removing this objective caused a substantial drop in performance. This finding highlights the critical role of the Q-gradient field loss in guiding the diffusion denoising process and demonstrates its importance as a key component for enhancing overall performance.

Time-weighted mechanism. We conducted an experiment to demonstrate that using time-weighted mechanism can further improve performance. As shown in Fig. 4(b), directly using $\nabla_a Q(s, a)$ as the target value in the Q-gradient field training loss, instead of the $w(t) \nabla_a Q(s, a)$, results in performance degradation. This is because different timesteps require matching different magnitudes of noise prediction, which enhances both training stability and final performance.

Diffusion steps. We further investigated the performance of the diffusion policy under varying numbers of diffusion timesteps T . We plotted training curves for $T = 2, 5$, and 10 , as shown in Fig. 4(c). The experimental results suggest that increasing the number of diffusion steps does not necessarily improve performance, while using fewer steps tends to degrade performance.

The sensitivity to the hyperparameter η . To assess the sensitivity of η , we evaluated five settings ($0.1, 0.01, 0.001, 0.012, 0.008$) on Humanoid-v3. As reported in Table 3, performance degraded markedly at $\eta = 0.1$ and 0.001 , but remained stable at $\eta = 0.012$ and 0.008 , indicating tenfold sensitivity. These results suggest that the algorithm is robust to moderate variations in η and thus does not require extensive hyperparameter tuning.

Table 3: Performance comparison of DACERv2 with different η values on Humanoid-v3.

Algorithm	$\eta = 0.01$	$\eta = 0.1$	$\eta = 0.001$	$\eta = 0.012$	$\eta = 0.008$
DACERv2	12426 ± 292	11463 ± 304	11161 ± 287	12101 ± 325	12208 ± 249

5 CONCLUSION

In this paper, we address the critical challenge of balancing performance and time-efficiency in diffusion-based online RL. By introducing a Q-gradient field objective and a time-dependent weighting scheme, our method enables each denoising step to be guided by the Q-function with adaptive emphasis over time. This design allows the policy to achieve strong performance with only five diffusion steps, significantly improving both training and inference speed.

486 REFERENCES
487488 Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generalization
489 in offline reinforcement learning. *IEEE Robotics and Automation Letters*, 2024.490 Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
491 to refinement-residual rl for precise assembly. In *2025 IEEE International Conference on Robotics*
492 and *Automation (ICRA)*, pp. 01–08. IEEE, 2025.493
494 G Brockman. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.495 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
496 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.497
498 Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
499 and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. *arXiv*
500 *preprint arXiv:2502.02316*, 2025.501
502 Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion models
503 for self-supervised learning. *arXiv preprint arXiv:2401.14404*, 2024.504
505 Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency policy.
506 *arXiv preprint arXiv:2310.06343*, 2023.507
508 Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
509 Diffusion-based reinforcement learning via q-weighted variational policy optimization. *Advances*
in *Neural Information Processing Systems*, 2024.510
511 Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
512 soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. *IEEE*
Transactions on Neural Networks and Learning Systems, 33(11):6584–6598, 2021.513
514 Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu, Ya-
515 Qin Zhang, Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements.
516 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(5):3935–3946, 2025. doi:
517 10.1109/TPAMI.2025.3537087.518
519 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
520 critic methods. In *International Conference on Machine Learning*, pp. 1587–1596. PMLR, 2018.521
522 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
523 exploration. In *International Conference on Machine Learning*, pp. 2052–2062. PMLR, 2019.523
524 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
525 deep energy-based policies. In *International Conference on Machine Learning*, pp. 1352–1361.
526 PMLR, 2017.527
528 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
529 maximum entropy deep reinforcement learning with a stochastic actor. In *International Conference*
on *Machine Learning*, pp. 1861–1870. PMLR, 2018.530
531 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
532 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint*
533 *arXiv:2304.10573*, 2023.534
535 Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural*
computation, 14(8):1771–1800, 2002.536
537 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
538 *Neural Information Processing Systems*, 33:6840–6851, 2020.539 Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 2023.

540 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 541 reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1179–1191, 2020.
 542

543 S Eben Li. *Reinforcement Learning for Sequential Decision and Optimal Control*. Springer Verlag,
 544 Singapore, 2023.

545 Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
 546 Learning multimodal behaviors from scratch with diffusion policy gradient. *Advances in Neural
 547 Information Processing Systems*, 37:38456–38479, 2024.

548

549 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 550 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural
 551 Information Processing Systems*, 35:5775–5787, 2022.

552 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 553 solver for guided sampling of diffusion probabilistic models. *Machine Intelligence Research*, pp.
 554 1–22, 2025a.

555

556 Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner
 557 for decision making? In *The Thirteenth International Conference on Learning Representations*,
 558 2025b.

559 Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic: Efficient online
 560 reinforcement learning for diffusion policy. *arXiv preprint arXiv:2502.00361*, 2025.

561

562 Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
 563 Chawla. S2ac: Energy-based reinforcement learning with stein soft actor critic. *arXiv preprint
 564 arXiv:2405.00987*, 2024.

565 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. *arXiv preprint arXiv:2502.02538*,
 566 2025.

567

568 Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
 569 from rewards via q-score matching. *arXiv preprint arXiv:2312.11752*, 2023.

570

571 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
 572 Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
 573 *arXiv preprint arXiv:2409.00588*, 2024.

574

575 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 576 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

577

578 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Huawei Zhang,
 579 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 580 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

581

582 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 583 preprint arXiv:2010.02502*, 2020a.

584

585 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 586 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 587 arXiv:2011.13456*, 2020b.

588

589 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

590

591 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

592

593 Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations for
 594 stochastic gradient langevin dynamics. *The Journal of Machine Learning Research*, 17(1):193–225,
 595 2016.

596 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 597 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

594 Andrew Wagenmaker, Mitsuhiro Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, Anusha
 595 Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space
 596 reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.

597

598 Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
 599 Liming Xiao, Jiang Wu, Jingliang Duan, and Shengbo Li. Diffusion actor-critic with entropy
 600 regulator. *Advances in Neural Information Processing Systems*, 2024.

601 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 602 class for offline reinforcement learning. *The Eleventh International Conference on Learning
 603 Representations*, 2023.

604

605 Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
 606 *Proceedings of the 28th international conference on machine learning (ICML-11)*, pp. 681–688.
 607 Citeseer, 2011.

608 Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
 609 Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
 610 reinforcement learning. *arXiv preprint arXiv:2305.13122*, 2023a.

611 Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
 612 generation. *Entropy*, 25(10):1469, 2023b.

613

614 Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
 615 Model-agnostic online refinement for large policy model. *arXiv preprint arXiv:2412.13630*, 2024.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

A THEORETICAL ANALYSIS

649

650

Theorem 1. Let \mathcal{S} denote the state space and \mathcal{A} denote the continuous action space. Suppose $p(s)$
651 is a distribution over states, $\mathcal{H}_0^{\text{global}}$ denotes a specific entropy value. We define the policy space
652 $\Pi_{\mathcal{H}_0^{\text{global}}}$ as the set of policy families $\{\pi^*(\cdot|s)\}_{s \in \mathcal{S}}$, where each $\pi(\cdot|s)$ represents a valid probability
653 distribution over actions. This policy family is required to satisfy a global expected entropy constraint:
654

655
$$\mathbb{E}_{s \sim p(s)}[H(\pi^*(\cdot|s))] = \mathcal{H}_0^{\text{global}}, \quad (16)$$
656

657 where $\mathcal{H}_0^{\text{global}}$ is a given constant.

658 Within the policy space $\Pi_{\mathcal{H}_0^{\text{global}}}$, the family of policies $\{\pi^*(\cdot|s)\}_{s \in \mathcal{S}}$ that maximizes the global
659 expected action value $\mathbb{E}_{s \sim p(s)}[\mathbb{E}_{a \sim \pi(a|s)}[Q(s, a)]$ has the property that, for each state s , the optimal
660 policy $\pi^*(a|s)$ takes the form of a soft policy:
661

662
$$\pi^*(a|s) = \frac{\exp(Q(s, a)/\alpha)}{\int_{a' \in \mathcal{A}} \exp(Q(s, a')/\alpha) da'}, \quad (17)$$
663

664 where $\alpha > 0$ is a global temperature parameter, whose value is implicitly determined by a global
665 expected entropy constraint: $\mathbb{E}_{s \sim p(s)}[H(\pi^*(\cdot|s))] = \mathcal{H}_0^{\text{global}}$.

666

Proof. We seek a family of policies $\{\pi(\cdot|s)\}_{s \in \mathcal{S}}$ belonging to the constrained space:

667
$$\Pi_{\mathcal{H}_0^{\text{global}}} = \left\{ \{\pi(\cdot|s)\}_{s \in \mathcal{S}} \mid \mathbb{E}_{s \sim p(s)}[H(\pi(\cdot|s))] = \mathcal{H}_0^{\text{global}}, \int_{\mathcal{A}} \pi(a|s) da = 1, \forall s \right\}, \quad (18)$$
668

669 which maximises the expected action-value

670
$$J(\{\pi(\cdot|s)\}) = \mathbb{E}_{s \sim p(s)}[\mathbb{E}_{a \sim \pi(\cdot|s)}[Q(s, a)]] = \int_{\mathcal{S}} p(s) \int_{\mathcal{A}} \pi(a|s) Q(s, a) da ds. \quad (19)$$
671

672 Then, we introduce a scalar multiplier α for the global expected-entropy constraint and a state-
673 dependent multiplier $\eta(s)$ for the normalisation constraint at each s . The Lagrangian reads
674

675
$$\begin{aligned} \mathcal{L}(\{\pi(\cdot|s)\}, \alpha, \{\eta(s)\}) &= \int_{\mathcal{S}} \int_{\mathcal{A}} \left[p(s) \pi(a|s) Q(s, a) - \alpha p(s) \pi(a|s) \log \pi(a|s) + \eta(s) \pi(a|s) \right] da ds \\ &\quad - \alpha \mathcal{H}_0^{\text{global}} - \int_{\mathcal{S}} \eta(s) ds. \end{aligned} \quad (20)$$
676

677 Because the decision variables for distinct states couple only through α , we can minimise the
678 integrand for each fixed s independently:

679
$$\mathcal{L}_s(\pi(\cdot|s)) = \int_{\mathcal{A}} \left[p(s) \pi(a|s) Q(s, a) - \alpha p(s) \pi(a|s) \log \pi(a|s) + \eta(s) \pi(a|s) \right] da. \quad (21)$$
680

681 Taking the functional derivative and setting it to zero yields, for almost every $a \in \mathcal{A}$, we can obtain

682
$$p(s) Q(s, a) - \alpha p(s) \log \pi(a|s) - \alpha p(s) + \eta(s) = 0. \quad (22)$$
683

684 Assuming $p(s) > 0$, we divide both sides by $p(s)$ and rearrange:

685
$$\log \pi(a|s) = \frac{Q(s, a)}{\alpha} - 1 + \frac{\eta(s)}{\alpha p(s)}. \quad (23)$$
686

687 Let $\tilde{\eta}(s) = \eta(s)/p(s)$. Exponentiating gives the unnormalised form

688
$$\pi(a|s) = \exp\left(\frac{\tilde{\eta}(s) - \alpha}{\alpha}\right) \exp\left(\frac{Q(s, a)}{\alpha}\right) = C(s) \exp\left(\frac{Q(s, a)}{\alpha}\right), \quad (24)$$
689

690 where $C(s)$ is a state-wise normalising constant.

702 Imposing $\int_{\mathcal{A}} \pi(a | s) da = 1$, we can determine
 703

$$704 C(s) = \left[\int_{\mathcal{A}} \exp(Q(s, a')/\alpha) da' \right]^{-1}. \quad (25)$$

706 Therefore, the optimal policy family is the Boltzmann distribution
 707

$$708 \pi^*(a | s) = \frac{\exp(Q(s, a)/\alpha)}{\int_{\mathcal{A}} \exp(Q(s, a')/\alpha) da'} \quad \forall s \in \mathcal{S}, a \in \mathcal{A}. \quad (26)$$

712 The scalar $\alpha > 0$ is the Lagrange multiplier associated with the global entropy constraint and serves
 713 as a common temperature across all states. Its value is obtained implicitly by substituting π^* back
 714 into

$$715 \mathbb{E}_{s \sim p(s)}[H(\pi^*(\cdot | s))] = \mathcal{H}_0^{\text{global}}. \quad (27)$$

717 Consequently, although the entropy constraint is imposed only on the state-averaged entropy, each
 718 per-state optimal policy still follows a Boltzmann form with the same temperature parameter α .
 719

720 B RELATED WORK

722 We review existing works on using the diffusion model as a policy function in combination with RL.
 723

724 **Online RL with Diffusion Policy.** Online RL enables agents to refine their policies through real-
 725 time interaction. Yang *et al.* introduced DIPO (Yang *et al.*, 2023a), which maintains a dedicated
 726 diffusion buffer to store actions and model them using diffusion techniques. Psenka *et al.* proposed
 727 QSM (Psenka *et al.*, 2023), which aligns policies with $\nabla_a Q$ via score matching, but is sensitive
 728 to value gradient inaccuracies across the action space. Recently, Ding *et al.* (Ding *et al.*, 2024)
 729 proposed QVPO, which weights diffusion-sampled actions by Q-values without computing gradients.
 730 However, it uses a fixed ratio of uniform samples to boost the entropy, lacking adaptive control
 731 and later degrading performance. Ma *et al.* (Ma *et al.*, 2025) proposed SDAC, which uses score
 732 matching over noisy energy-based diffusion. It avoids requiring optimal actions but suffers from
 733 high gradient variance due to poor sampling in high- Q regions. Celik *et al.* proposed DIME (Celik
 734 *et al.*, 2025), which derives a lower bound on the diffusion policy entropy and integrates it into the
 735 maximum-entropy RL framework. However, directly incorporating an inaccurate entropy estimate
 736 into the policy objective can degrade performance.

736 Complementary to these methods that train diffusion policies from scratch, a parallel line of work
 737 focuses on the online refinement of pre-trained diffusion policies. DPPO (Ren *et al.*, 2024) formulates
 738 the reverse diffusion process as a secondary MDP and applies on-policy PPO-style optimization,
 739 achieving strong performance. Yuan *et al.* proposed Policy Decorator (Yuan *et al.*, 2024), which
 740 treats a large base diffusion policy as a black box and learns a bounded residual policy with PPO to
 741 improve performance in a model-agnostic and stable manner. Ankile *et al.* introduced ResiP (Ankile
 742 *et al.*, 2025), which regards a chunked imitation policy as a high-level planner and trains a closed-loop
 743 residual controller to provide fine-grained corrections for precise assembly. Wagenmaker *et al.*
 744 proposed DSRL (Wagenmaker *et al.*, 2025), which steers a frozen diffusion policy by running RL in
 745 its latent noise space with a dual- Q architecture, achieving sample-efficient online adaptation without
 746 finetuning the diffusion network weights.

747 **Offline RL with Diffusion Policy.** Offline RL focuses on learning optimal policies from suboptimal
 748 datasets, with the core challenge being the out-of-distribution (OOD) problem (Kumar *et al.*, 2020;
 749 Fujimoto *et al.*, 2019). Diffusion models are naturally suited for offline RL due to their ability to model
 750 complex data distributions. Wang *et al.* proposed Diffusion-QL (Wang *et al.*, 2023), which combines
 751 behavior cloning through a diffusion loss with Q-learning to improve policy learning. However,
 752 Diffusion-QL suffers from slow training and instability in OOD regions. To address the former, Kang
 753 *et al.* proposed Efficient Diffusion Policy (EDP) (Kang *et al.*, 2023), which speeds up training by
 754 initializing from dataset actions and adopting a one-step sampling strategy. To mitigate OOD issues,
 755 Ada *et al.* introduced SRDP (Ada *et al.*, 2024), which enhances generalization by integrating state
 756 reconstruction into the diffusion policy. Furthermore, Chen *et al.* proposed CPQL (Chen *et al.*, 2023),

756 a consistency-based method that improves efficiency via one-step noise-to-action generation during
 757 both training and inference, albeit with some performance trade-offs. In parallel, Hansen-Estruch *et*
 758 *al.* proposed IDQL (Hansen-Estruch *et al.*, 2023), which reinterprets IQL as a behaviour-regularised
 759 actor-critic method and uses a diffusion-model among the behaviour cloning policy to extract the
 760 implicit actor. Recently, Park *et al.* proposed Flow Q-Learning (FQL) (Park *et al.*, 2025), which
 761 leverages an expressive flow-matching policy together with a separately RL-trained one-step actor to
 762 model complex action distributions without backpropagating through iterative generation, achieving
 763 competitive results across large-scale offline and offline-to-online benchmarks.

764
 765
 766 **Diffusion Acceleration.** The pursuit of efficient diffusion sampling has yielded several key ad-
 767 vancements. Denoising Diffusion Implicit Models (DDIM) (Song *et al.*, 2020a) first re-envisioned the
 768 reverse process as a deterministic ODE, permitting significant sampling speed-ups. DPM-Solver (Lu
 769 *et al.*, 2022) introduced high-order exponential integrators, achieving high-fidelity generation without
 770 retraining. DPM-Solver++ (Lu *et al.*, 2025a) further adapted this high-order approach for the widely-
 771 used classifier-free guidance regime, stabilizing sampling at large guidance scales. Concurrently,
 772 Consistency Models (Song *et al.*, 2023) explored a distillation-based approach, compressing the
 773 multi-step ODE trajectory into a single “consistency function” that maps noise to data in one or few
 774 steps.

775
 776
 777 **Comparison with DACER.** Wang *et al.* proposed DACER (Wang *et al.*, 2024), which leverages
 778 the reverse diffusion process as a policy approximator and employs a Gaussian Mixture Model
 779 (GMM) to estimate entropy for balancing exploration and exploitation. However, this approach lacks
 780 a theoretical justification for how maximizing the expected Q-value under entropy regularization
 781 inherently fosters multimodal policies when using diffusion models as policy functions. Furthermore,
 782 DACER remains constrained by a critical trade-off: while long diffusion processes ensure high
 783 performance, they severely hinder training efficiency; conversely, reducing steps leads to perfor-
 784 mance degradation. In contrast, our method, DACERv2, resolves this bottleneck by introducing a
 785 Q-gradient field objective, incorporated with a time-weighted mechanism and Q-gradient normaliza-
 786 tion. These innovations enable valid policy approximation with significantly fewer diffusion steps,
 787 thereby improving efficiency while maintaining or even improving both performance and policy
 788 multimodality.

789
 790
 791 **Comparison with QSM.** Psenka *et al.* proposed QSM (Psenka *et al.*, 2023), an algorithm that
 792 aligns diffusion model policies with $\nabla_a Q(s, a)$ by leveraging their score-based structure. Both
 793 methods leverage Q-gradients for diffusion policy optimization. QSM employs score matching,
 794 whereas DACERv2 performs end-to-end Q-value maximization augmented with a time-weighted
 795 score-matching loss and entropy regularization, resulting in a multi-task objective. DACERv2
 796 additionally stabilizes Q-gradients through normalization and improves efficiency, converging in just
 797 5 diffusion steps compared to QSM’s approximately 20.

800 C ENVIRONMENTAL DETAILS

801
 802 **MuJoCo (Brockman *et al.*, 2016):** This is a high-performance physics simulation platform widely
 803 adopted for robotic reinforcement learning research. The environment features efficient physics
 804 computation, accurate dynamic system modeling, and comprehensive support for articulated robots,
 805 making it an ideal benchmark for RL algorithm development. In this research, we concentrate
 806 on eight tasks: Humanoid, Ant, HalfCheetah, Walker2d, InvertedDoublePendulum (IDP), Hopper,
 807 HumanoidStandup, and Swimmer. The IDP task entails maintaining the balance of a double pendulum
 808 in an inverted state. In contrast, the objective of the other tasks is to maximize the forward velocity
 809 while avoiding falling. All these tasks are realized through the OpenAI Gym interface (Brockman,
 810 2016).

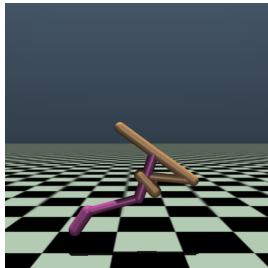


Figure 5: Walker2d-v3

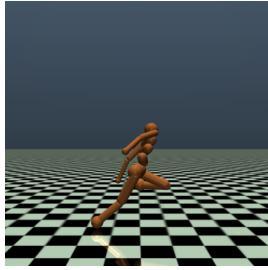


Figure 6: Humanoid-v3

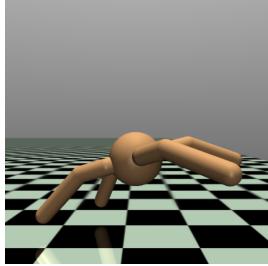


Figure 7: Ant-v3

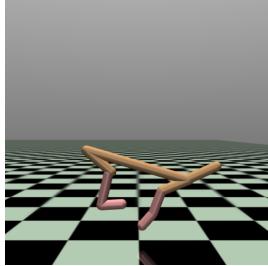


Figure 8: Halfcheetah-v3

State-action space: $\mathcal{S} \in \mathbb{R}^{17}, \mathcal{A} \in \mathbb{R}^6$.

Objective. Maintain forward velocity as fast as possible while avoiding falling over.

Initialization. The walker is initialized in a standing position with slight random noise added to joint positions and velocities.

Termination. The episode ends when the agent falls, the head touches the ground, or after 1000 steps.

State-action space: $\mathcal{S} \in \mathbb{R}^{376}, \mathcal{A} \in \mathbb{R}^{17}$.

Objective. Maintain balance and walk or run forward at a high velocity while avoiding falls.

Initialization. The humanoid starts in an upright position with slight random perturbations to joint angles and velocities.

Termination. The episode ends when the head height is less than 1.0 meter, the torso tilts excessively, or after 1000 steps.

State-action space: $\mathcal{S} \in \mathbb{R}^{111}, \mathcal{A} \in \mathbb{R}^8$.

Objective. Navigate forward as quickly as possible using four legs while maintaining stability.

Initialization. The ant is initialized in a stable, upright position with random noise applied to its joints.

Termination. The episode ends if the ant falls, flips over, or reaches the maximum step count of 1000.

State-action space: $\mathcal{S} \in \mathbb{R}^{17}, \mathcal{A} \in \mathbb{R}^6$.

Objective. Achieve maximum forward velocity with smooth, coordinated movements.

Initialization. The agent starts with a slight forward tilt and randomized joint noise.

Termination. The episode ends after 1000 steps or if the agent's head touches the ground.

D EXPERIMENTAL HYPERPARAMETERS

The hyperparameters of all baseline algorithms except the diffusion-based algorithm are shown in Table 4. Additionally, the parameters for all diffusion-based algorithms, including DACERv2, are presented in Table 5 and Table 6.

The hyperparameter c, d for time-weighted mechanism is determined by the diffusion step size, inspired by the variance-preserving beta schedule used in DDPM (Ho et al., 2020). The code of implementation is as follows:

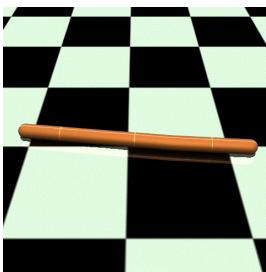


Figure 9: Swimmer-v3

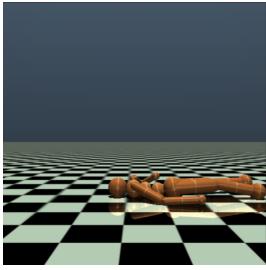


Figure 10: Humanoid-Standup

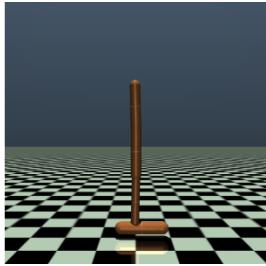


Figure 11: Hopper-v3

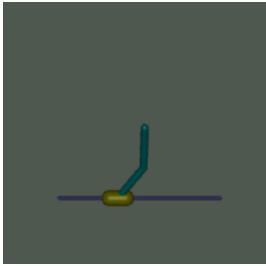


Figure 12: IDP-v3

```

910 def vp_alpha_schedule(timesteps: int, b_min=0.1, b_max=10.):
911     T = timesteps
912     t = np.arange(1, T + 1)
913     return np.exp(-b_min / T - 0.5 * (b_max - b_min) * (2 * t - 1) / T ** 2)
914
915 # Set parameters
916 timesteps = 5
917 alphas = vp_alpha_schedule(timesteps)

```

```

918 # Reverse the alpha array as in B.alphas[self.agent.num_timesteps - 1 - t]
919 reversed_alphas = alphas[::-1]
920 t_vals = np.arange(timesteps)
921
922 # Fit the exponential form exp(ct + d)
923 params, _ = curve_fit(exp_fit, t_vals, reversed_alphas)
924 c, d = params
925

```

TABLE 4
BASELINE HYPERPARAMETERS.

Hyperparameters	Value
<i>Shared</i>	
Replay buffer capacity	1,000,000
Buffer warm-up size	30,000
Batch size	256
Action bound	$[-1, 1]$
Hidden layers in critic network	[256, 256, 256]
Hidden layers in actor network	[256, 256, 256]
Activation in critic network	GELU
Activation in actor network	GELU
Optimizer	Adam ($\beta_1 = 0.9, \beta_2 = 0.999$)
Actor learning rate	$1e-4$
Critic learning rate	$1e-4$
Discount factor (γ)	0.99
Policy update interval	2
Target smoothing coefficient (ρ)	0.005
Reward scale	0.2
<i>Maximum-entropy framework</i>	
Learning rate of α	$3e-4$
Expected entropy ($\bar{\mathcal{H}}$)	$\bar{\mathcal{H}} = -\dim(\mathcal{A})$
<i>Deterministic policy</i>	
Exploration noise	$\epsilon \sim \mathcal{N}(0, 0.1^2)$
<i>Off-policy</i>	
Replay buffer size	1×10^6
Sample batch size	20
<i>On-policy</i>	
Sample batch size	2,000
Replay batch size	2,000

TABLE 5
HYPERPARAMETER η USED IN DACERv2.

Task	Hopper	Ant	HalfCheetah	Walker2d	MultiGoal	Hum. S.	Humanoid	Swimmer	IDP
η	1.0	1.0	1.0	1.0	1.0	0.01	0.01	0.01	0.01

E LIMITATION AND FUTURE WORK

In this study, we propose the Q-gradient field objective as an auxiliary training loss to provide more informative gradient signals for guiding the diffusion policy. However, algorithms such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) do not explicitly learn a Q-function, making it challenging to directly integrate the diffusion policy of DACERv2 and its associated loss function with these methods. This indicates that the generality of our method is currently affected by the presence of value functions. Future work could explore reformulating the auxiliary objective into a purely trajectory-based form, thereby enabling integration with methods that rely solely on policy gradients.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
TABLE 6
DIFFUSION-BASED ALGORITHMS' HYPERPARAMETERS

Parameter	DACERv2	DACER	QVPO	QSM	DIME	DIPO
Replay buffer capacity	1e6	1e6	1e6	1e6	1e6	1e6
Buffer warm-up size	3e4	3e4	3e4	3e4	3e4	3e4
Batch size	256	256	256	256	256	256
Discount γ	0.99	0.99	0.99	0.99	0.99	0.99
Target network soft-update rate ρ	0.005	0.005	0.005	0.005	N/A	0.005
Network update times per iteration	1	1	1	1	1	1
Action bound	[-1, 1]	[-1, 1]	[-1, 1]	[-1, 1]	[-1, 1]	[-1, 1]
Reward scale	0.2	0.2	0.2	0.2	0.2	0.2
No. of Actor layers	2	2	2	2	2	2
No. of Actor hidden dims	256	256	256	256	256	256
No. of Critic layers	2	2	2	2	2	2
No. of Critic hidden dims	256	256	256	256	2048	256
Activations in critic network	GeLU	GeLU	Mish	ReLU	ReLU	Mish
Activations in actor network	Mish	Mish	Mish	ReLU	ReLU	Mish
Diffusion steps	5	20	20	20	16	20
Policy delay update	2	2	2	2	2	2
Action gradient steps	N/A	N/A	N/A	N/A	N/A	20
No. of Gaussian distributions	3	3	N/A	N/A	N/A	N/A
No. of action samples	200	200	N/A	N/A	N/A	N/A
Time-weighted hyperparameter c	0.4	N/A	N/A	N/A	N/A	N/A
Time-weighted hyperparameter d	-1.8	N/A	N/A	N/A	N/A	N/A
Alpha delay update	10,000	10,000	N/A	N/A	N/A	N/A
Noise scale λ	0.1	0.1	N/A	N/A	N/A	N/A
Optimizer	Adam	Adam	Adam	Adam	Adam	Adam
Actor learning rate	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-4}$
Critic learning rate	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-4}$
Alpha learning rate	$3 \cdot 10^{-2}$	$3 \cdot 10^{-2}$	N/A	N/A	$1 \cdot 10^{-3}$	N/A
Target entropy	$-\dim(\mathcal{A})$	$-\dim(\mathcal{A})$	N/A	N/A	$-4\dim(\mathcal{A})$	N/A

1004 F EXTRA ABLATION STUDY

1005
1006 We conducted an ablation study on the Humanoid-v3 task to examine the effect of normalizing the
1007 Q-gradient. The results presented in Fig. 13 demonstrate that normalization method consistently
1008 enhance performance returns.

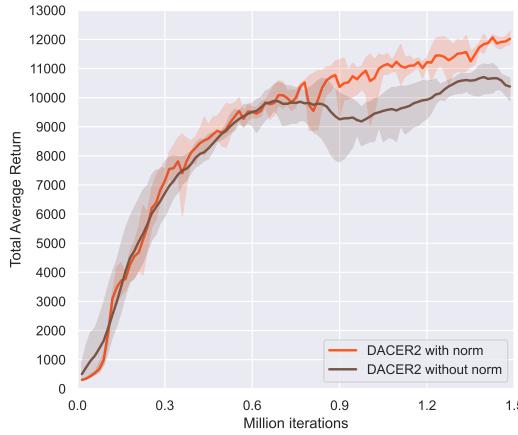


Figure 13: Ablation on the normalization of Q-function.

1026 **G LLM STATEMENT**
10271028 Large Language Models (LLMs) were employed solely for language refinement in this paper. Specif-
1029 ically, we used them to polish grammar, improve clarity, and enhance the academic style of our
1030 writing. The role of LLMs was limited to editing and improving the presentation of the text, without
1031 contributing to the technical content.
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079