
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCED DACER ALGORITHM WITH HIGH DIFFU-
SION EFFICIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to their expressive capacity, diffusion models have shown great promise in
offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator
(DACER) extended this capability to online RL by using the reverse diffusion
process as a policy approximator, achieving state-of-the-art performance. However,
it still suffers from a core trade-off: more diffusion steps ensure high performance
but reduce efficiency, while fewer steps degrade performance. This remains a major
bottleneck for deploying diffusion policies in real-time online RL. To mitigate
this, we propose DACERv2, which leverages a Q-gradient field objective with
respect to action as an auxiliary optimization target to guide the denoising process
at each diffusion step, thereby introducing intermediate supervisory signals that
enhance the efficiency of single-step diffusion. Additionally, we observe that the
independence of the Q-gradient field from the diffusion time step is inconsistent
with the characteristics of the diffusion process. To address this issue, a temporal
weighting mechanism is introduced, allowing the model to effectively eliminate
large-scale noise during the early stages and refine its outputs in the later stages. Ex-
perimental results on OpenAI Gym benchmarks and multimodal tasks demonstrate
that, compared with classical and diffusion-based online RL algorithms, DACERv2
achieves higher performance in most complex control environments with only five
diffusion steps and shows greater multimodality.

1 INTRODUCTION

DACERv2 DACERv2

DACER DACER

DIME DIME

QSM QSM

QVPO
QVPODIPO

DIPO

Figure 1: Efficiency and Performance. The horizontal axis represents the training or inference time
(increasing from right to left), while the vertical axis shows the normalized Total Average Return
(TAR). The training time is the per-step computational cost on OpenAI Gym tasks, excluding the
time spent on environment interaction. The inference time is measured as the latency required for
the policy network to output an action given a single state as input. DACERv2 achieve outstanding
performance.

Energy-based models are well-suited as agent policy functions due to their powerful representational
capailities. Learning a policy to approximate the corresponding energy-based target distribution
allows for modeling complex and multimodal action patterns without relying on restrictive parametric
assumptions, especially in continuous action spaces. This enhanced expressiveness can significantly
improve exploration by enabling the agent to discover and leverage diverse behavioral strategies.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, effectively approximating such an expressive soft policy presents notable challenges. A
key difficulty lies in how to efficiently and accurately sample from the target distribution. While
algorithms such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and Distributional Soft Actor-
Critic (DSAC) (Duan et al., 2021; 2025) aim to approximate the soft-target distribution, they typically
represent the policy as a simple Gaussian, enabling analytical entropy computation. This choice is
computationally efficient but falls short in modeling complex and multimodal behavior. Meanwhile,
due to their strong representational capacity, diffusion models have emerged as a promising policy
class for continuous control, commonly referred to as diffusion policies (Ren et al., 2024; Li et al.,
2024; Lu et al., 2025b).

Existing methods for training diffusion policies can be broadly categorized into two groups: score-
matching and end-to-end policy gradient approaches. In the first group, QVPO (Ding et al., 2024)
proposes using Q-weighted imitation learning samples to improve policy learning. QSM (Psenka
et al., 2023) directly aligns the score functions with the gradients of the learned Q-functions and uses
Langevin dynamics for sampling. DIPO (Yang et al., 2023a) updates the replay buffer using action
gradients and improves the performance of the policy through a diffusion loss. In the second group,
DACER (Wang et al., 2024) directly backward the gradient through the reverse diffusion process and
proposes a Gaussian mixture model (GMM) entropy regulator to balance exploration and exploitation.
DIME (Celik et al., 2025) derives an approximate maximum-entropy lower bound, directly integrating
the maximum-entropy RL framework with the diffusion policy. However, diffusion policies typically
require a large number of diffusion steps to maintain strong performance, which results in low
inference efficiency. Although acceleration techniques such as DPM-Solver (Lu et al., 2022) can
reduce the number of diffusion steps, this often comes at the cost of performance degradation. As a
result, previous methods struggle to escape the dilemma between performance and time-efficiency.

To tackle this issue, we present DACERv2, a highly efficient diffusion-based RL algorithm that
achieves comparable or superior performance with only a few diffusion steps, as shown in Fig. 1.
The key contributions of this paper are the following: 1) We propose a Q-gradient field objective
as an extra intermediate supervisory signal to enhance the efficiency of single-step diffusion. 2)
Since the Q-gradient field is independent of the diffusion time, we propose a temporal weighting
mechanism that takes the current diffusion time step as input. This mechanism aligns with the
requirements of the diffusion denoising process: higher denoising amplitudes during early stages and
lower denoising amplitudes for precise control in later stages. 3) We evaluate the performance of our
method on the OpenAI Gym benchmark (Brockman, 2016). Compared with both diffusion-based
and classical algorithms like DACER (Wang et al., 2024), QVPO (Ding et al., 2024), DIME (Celik
et al., 2025), QSM (Psenka et al., 2023), DIPO (Yang et al., 2023a), DSAC (Duan et al., 2025), PPO
(Schulman et al., 2017), and SAC (Haarnoja et al., 2018), our approach achieved state-of-the-art
(SOTA) performance in most complex control tasks. 4) We evaluate the training and inference
times of all diffusion-based algorithms under identical hardware configurations using the PyTorch
framework. While achieving stronger overall performance, our method reduces training time by
47.0% and 41.7%, and inference time by 55.0% and 60.6%, compared with DIME and DACER,
respectively.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING WITH SOFT POLICY

RL problems are commonly modeled as Markov Decision Processes (MDPs) (Sutton & Barto, 2018;
Li, 2023). An infinite-horizon MDP is defined by a tuple (S,A, P, r, γ), where S is the state space
and A is the action space, both assumed bounded and potentially continuous. P : S ×A 7→ ∆(S)
denotes the transition dynamics, specifying the probability distribution P (· | st, at) over next states,
with ∆(S) representing the set of distributions over S. r : S ×A 7→ R is the reward function, and
γ ∈ [0, 1) is the discount factor. The behavior of agent is characterized by a policy π : S 7→ A, which
defines the process of selecting action a given the state s. To evaluate the value of taking an action a
in a given state s under policy π, the action-value function Qπ(s, a) is introduced, which represents
the expected cumulative discounted reward, defined as follows:

Qπ(s, a) = Eπ

[∞∑
i=0

γir(si, ai) | s0 = s, a0 = a
]
. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A key challenge in online RL is the trade-off between exploration, gathering information for future
gains, and exploitation, maximizing returns based on current knowledge. One compelling strategy
involves learning a policy that aims to approximate a soft policy (Haarnoja et al., 2017; 2018; Ma
et al., 2025; Messaoud et al., 2024). Such target soft policies are typically formulated as a Boltzmann
distribution, where the desired policy distribution is proportional to the exponentiated state-action
value function:

πsoft(a|s) ∝ exp

(
1

α
Q(s, a)

)
. (2)

The target of soft policy is to minimize the per-state KL divergence DKL

(
π(·|s) ∥ exp(Q(s,·)/α)

Z(s)

)
,

where Z(s) is the normalization coefficient. This KL-divergence minimization problem is equivalent
to maximizing a final objective function that balances value maximization and entropy regularization:

J(π) = E(s,a)∼π

[
Q(s, a)

]
+ α · H(π(·|s)). (3)

Diffusion policies are able to model complex policy distributions, but their entropy is analytically
intractable. Fortunately, in methods like DACER (Wang et al., 2024), maximizing the Q-value
objective under specific entropy regularization likewise produces a Boltzmann policy. See Theorem 1
for further theoretical details.

2.2 DIFFUSION MODELS AS EXPRESSIVE POLICY

Diffusion models (Ho et al., 2020; Song et al., 2020b; Wang et al., 2024) conceptualize data generation
as a stochastic process where data samples are iteratively reconstructed via a parameterized reverse-
time stochastic differential equation (SDE). Although both forward and reverse diffusion processes are
theoretically integral to these models, recent work (Chen et al., 2024) highlights that their expressive
power primarily stems from the reverse-time denoising dynamics, rather than the forward-time
noising process. Accordingly, our analysis and modeling efforts concentrate on the reverse diffusion
process.

Formally, the continuous reverse-time SDE that governs this process is defined as follows:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t) dω(t), (4)

where f(x, t) represents the drift term, g(t) denotes the time-dependent diffusion coefficient,
∇x log pt(x) is the score function, and dω(t) is the standard Wiener process. The term ∇x log pt(x),
also known as the score function, plays a central role in guiding the reverse diffusion dynamics. It is
important to note that this equation represents the general form of the reverse-time SDE; the specific
construction of terms such as f(x, t) and g(t) can vary across different diffusion model algorithms.

Therefore, the reverse-time SDE of diffusion policy can be expressed as:

dat =
[
f(at, t)− g(t)2Sθ(s,at, t)

]
dt+ g(t) dω(t), (5)

where Sθ(s,at, t) is a neural network designed to approximate the gradient ∇at
log pt(at|s). Actions

can be sampled from the diffusion policy πθ(a0|s) by solving the following integral:

a0 = aT +

∫ T

0

[
f(aτ , τ)− g(τ)2 Sθ(s,aτ , τ)

]
dτ +

∫ T

0

g(τ) dω(τ), (6)

where aT follows a standard normal distribution N (0, I).

2.3 LANGEVIN DYNAMICS

Langevin dynamics represents a powerful computational framework for simulating particle motion
under the joint influence of deterministic forces and stochastic fluctuations. When coupled with
stochastic gradient descent, this approach gives rise to stochastic gradient Langevin dynamics (SGLD)
(Welling & Teh, 2011) - an efficient sampling algorithm that leverages log-probability gradients
∇x log p(x) to draw samples from probability distributions p(x) through an iterative Markov chain
process:

xt−1 = xt +
δt
2
∇xt

log p(xt) +
√
δtϵ, (7)

where ϵ ∼ N (0, I), δt is the step size. When t range from infinity to one, δt → 0, x0 equals to the
true probability density p(x).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

In this section, we explain how our method approximates the target policy distribution with fewer
diffusion steps. First, we show that ∇at

Q(s,at), derived from Langevin dynamics, can be incorpo-
rated into the unified SDE-based framework for action generation, thereby improving the efficiency
of single-step diffusion. However, when this extra objective function is incorporated, the diffusion
policy only exhibits suboptimal performance. This limitation arises because ∇at

Q(s,at) remains
independent of the diffusion step, whereas the score function is not. Therefore, we introduce a
time-weighted mechanism to better align with the requirements of the diffusion denoising process.
Lastly, we propose a practical algorithm for optimizing diffusion models.

3.1 Q-GRADIENT FIELD GUIDED DENOISING

Using the only reverse process, the objective function of DACER is to maximize the Q-value,
representing an end-to-end optimization approach without direct supervision in the intermediate
diffusion steps. However, within this optimization scheme, the guidance signals at intermediate steps
are implicit, as they are derived solely from the final Q-value through back-propagation, which in
turn necessitates more diffusion steps to produce higher-quality control actions. To address this
issue, we propose the Q-gradient field function as an extra training loss to enhance the efficiency of
single-step diffusion. At the end of Section 2.1, we explain why, when the global policy entropy is
fixed, the optimal policy for maximizing the Q-value theoretically follows a Boltzmann distribution.
Importantly, this conclusion holds for policy families of arbitrary forms and naturally suits the
SDE-based policy families.

From another perspective, Langevin dynamics can be regarded as a special form of an SDE-based
policy, providing an efficient method for sampling actions from Boltzmann distributions (Hinton,
2002):

π(a|s) = e
1
αQ(s,a)

Z(s)
, (8)

where α > 0 is the temperature coefficient, Q(s,a) is the state action value function and Z(s) is
the partition function that normalizes the distribution. The formula derived by taking the partial
derivative of both sides of Eq. (8) with respect to a can be expressed as

∇a log π(a|s) = 1

α
∇aQ(s,a). (9)

Substituting Eq. (9) into Eq. (7), we can obtain the sampling process for π(a|s):

at−1 = at +
δt
2α

∇aQ(s,a) +
√
δtϵ. (10)

In summary, Langevin dynamics can be regarded as a particular solution within the family of SDE-
based policies. This connection motivates the use of ∇aQ(s,a) as an extra learning objective to
guide the training of SDE-based policies, thereby introducing additional supervision signals into the
intermediate diffusion step. Consequently, the efficiency of single-step diffusion can be improved,
enabling comparable or even superior performance to previous algorithms with fewer diffusion steps.

Moreover, in highly unstable environments that exhibit extreme sensitivity to minor action per-
turbations, the Q-gradient estimation can become volatile, potentially hindering the algorithm’s
convergence to the optimal policy (Ding et al., 2024; Ma et al., 2025). When the diffusion process is
restricted to only a few steps, a policy trained solely on the Q-gradient often struggles to converge.
For these reasons, we adopt it only as an auxiliary guidance in policy training.

3.2 TIME-WEIGHTED MECHANISM

In the previous subsection, we propose incorporating the gradient term ∇at
Q(s,at) as an auxiliary

objective when training the SDE-based policy. However, experimental results show that directly
employing this objective yields suboptimal performance, as shown in Fig. 4(b). We attribute this
to the Q-gradient being independent of the diffusion time step, whereas the score function is not.
Such time invariance fails to satisfy the varying denoising requirements across the diffusion process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Specifically, in the later stages of diffusion process, the denoising intensity should naturally decrease
as the action distribution approaches the optimal policy.

To address this issue, we introduce a time-weighted mechanism that modulates the influence of
Q-gradient guidance based on the diffusion time step, allowing for more precise control over the
denoising process. Inspired by the design approach for the step size δt in Eq. (7), we can similarly
design our time-weighted mechanism using the commonly employed exponential decay function
(Welling & Teh, 2011; Teh et al., 2016):

w(t) = exp(c · t+ d), (11)
where t denotes the current diffusion step. The hyperparameters c and d are chosen inspired by the
variance-preserving beta schedule in DDPM (Ho et al., 2020) and depend only on the number of
diffusion steps. The specific setting is presented in Appendix D.

Furthermore, to improve the stability of the training process, we normalize ∇atQ(s,at) by its norm:

∇at
Qnorm(s,at) =

∇at
Q(s,at)

||∇at
Q(s,at)||+ ϵ

, (12)

where ϵ is a small constant to prevent division by zero.

Ultimately, we construct the Q-gradient field objective function to facilitate the training of the
diffusion policy, where πθ(at|s) denotes the action generated using the diffusion policy as defined in
Eq. (6):

Lg(θ) = min
θ

E
s∼B

t∼U(1,T)
at∼πθ(at|s)

[
∥w(t)∇at

Qnorm(s,at)− Sθ(s,at, t)∥22
]
, (13)

where U means uniform distribution, t is the current diffusion step, B represents the replay buffer, and
θ is the network parameter of the diffusion policy. The subscript g represents the objective function
related to the Q-gradient.

3.3 DACERV2: A HIGH EFFICIENCY DIFFUSION RL ALGORITHM

To obtain a practical algorithm, we use a parameterized function approximation for the Q-function
and the diffusion policy. In the critic component, we adopt the double Q-learning strategy (Fujimoto
et al., 2018) to alleviate overestimation bias. Specifically, we maintain two independent Q-function
estimators, denoted as Qϕ1

(s,a) and Qϕ2
(s,a), which are trained to approximate the true action-

value function. To enhance training stability, we introduce two corresponding target networks,
Qϕ̄1

(s,a) and Qϕ̄2
(s,a), which are updated softly from the main networks following the technique

in (Van Hasselt et al., 2016).

The Q-networks are optimized by minimizing the Bellman error. For each network Qϕi
(s,a), the

loss JQ(ϕi) is defined as:

JQ(ϕi)= E
(s,a,r,s′)∼B
a′∼πθ(a0|s)

[((
r(s,a)+γ min

i=1,2
Qϕ̄i

(s′,a′)

)
−Qϕi

(s,a)

)2
]
, (14)

where γ is discount factor, the target is computed as the smaller of the two target Q-values, Qϕ̄1
(s′,a′)

and Qϕ̄2
(s′,a′), to prevent over-optimistic estimates. Furthermore, we incorporate the distributional

value estimation framework from DSAC (Duan et al., 2025) to further mitigate overestimation issues.

In the actor component, we follow the objective function of maximizing the Q value and combine it
with the auxiliary learning objective based on the Q-gradient field proposed in this paper. The final
policy-learning objective is a linear combination:

π = argmin
πθ

Lπ(θ) = Lq(θ) + η · Lg(θ),

s.t. Es∼p(s)[H(π∗(·|s))] = Htarget,
(15)

where η is a hyperparameter, Lq(θ) = Es∼B,a0∼πθ(·|s) [−Qϕ(s,a0)] , p(s) is a distribution over
states. π∗ is the Boltzmann-optimal policy under the global entropy Htarget . We adopt the entropy
regularization method from the original DACER algorithm to control the global policy entropy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL RESULTS

Multimodality is a key metric for evaluating diffusion-based algorithms. Therefore, we first validate
DACERv2 with respect to this metric in the “Multi-goal” environment (Haarnoja et al., 2017), as
illustrated in Fig. 2. We then conducted experiments on eight tasks in OpenAI Gym MuJoCo
(Brockman et al., 2016). These environments represent challenging learning tasks with action spaces
of up to 17 dimensions and observation spaces of up to 376 dimensions. With these experimental
results, we aim to answer three questions:

• Does DACERv2 demonstrate stronger multimodal capabilities?

• How does the inference and training efficiency of DACERv2 compare with existing diffusion-
based RL methods?

• How does DACERv2 compare to previous popular online RL algorithms and existing
diffusion-based online RL algorithms?

Baselines. The baselines encompass two categories of model-free reinforcement learning algorithms.
The first category consists of diffusion-based RL methods, including a range of recent diffusion-policy
online algorithms such as DACER (Wang et al., 2024), QVPO (Ding et al., 2024), DIME (Celik et al.,
2025), DIPO (Yang et al., 2023b), and QSM (Psenka et al., 2023). The second category includes
classic model-free online RL baselines, namely SAC (Haarnoja et al., 2018), PPO (Schulman et al.,
2017), and DSAC (Duan et al., 2025). The experimental hyperparameters are provided in Appendix
D. It is worth noting that the Critic network in DIME employs a two-layer MLP with a hidden
dimension of 2048, consistent with their original paper, whereas the corresponding dimension for
other algorithms is 256.

Evaluation Setups. We implemented our algorithm in PyTorch and evaluated it on eight MuJoCo
tasks using the same metrics as DACER. Experiments were conducted on a system equipped with an
AMD Ryzen Threadripper 3960X 24-core processor and an NVIDIA GeForce RTX 4090 GPU. In
this paper, the total training step size for all experiments was set at 1.5 million, with the results of
all experiments averaged over 5 random seeds. For classic model-free baselines, we cited DACER-
reported results, while all diffusion-based methods were re-evaluated. Furthermore, the training
curves presented in Fig. 3 demonstrate the stability of the training process.

4.1 MULTIMODAL EXPERIMENTS

We evaluate the trained policy in the “Multi-goal” environment by initializing the agent at the
origin and sampling 100 trajectories. We conducte three sets of experiments with configurations
ranging from 4 to 6 symmetrically arranged goal points. As illustrated in Fig. 2, the original DACER
algorithm fails to maintain uniform coverage as the number of target points increases; when six targets
are specified, the algorithm reaches only five target goals. In contrast, our method consistently reaches
all target locations with approximately uniform coverage. These experimental results underscore that
our method achieves superior exploratory capability, enabling it to more effectively capture diverse,
mode-separated policies in multimodal environments.

4.2 EFFICIENCY ANALYSIS

We first define the training time as the per-step computational cost on MuJoCo tasks, excluding the
time spent on environment interaction. The inference time is measured as the latency required for
the policy network to output an action given a single state as input. As illustrated in Table 1, the
inference times of DACER, QVPO, DIME, DIPO, and QSM are 2.54×, 5.71×, 2.22×, 2.54×, and
2.54× longer than our method, respectively. For training time, their costs are 1.71×, 1.97×, 1.89×,
2.00×, and 0.86× relative to our method. Since our method achieves markedly superior performance
compared to QSM, its slight disadvantage in training time is negligible in practice.

These results can be attributed to the use of a Q-gradient field objective as an auxiliary intermediate
supervisory signal, which enhances the efficiency of single-step diffusion and enables our algorithm
to achieve competitive performance with only five diffusion steps.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.
2

0.2

0.2

0.
2

0.2

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.7

0.7
0.7

0.7

0.8

0.8 0.8

0.8

0.9

0.9

0.9

0.9

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.2

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.5

1.5

1.5

1.5

1.6

1.6

1.6

1.
6

1.
7

1.7

1.7

1.
7

1.9

1.9

1.
9

1.9

2.0

2.0 2.0

2.0

2.1

2.1

2.1

2.1

(a) DACERv2 (4 goals)

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.1

0.1

0.1

0.1

0.1

0.
2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.
5

0.5
0.

5

0.5
0.6

0.6

0.7

0.7

0.8

0.8

0.9
0.9

1.0

1.0

1.
01.0

1.0

1.2

1.2

1.2
1.2

1.2

1.3

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.4

1.5

1.5

1.
5

1.5

1.5

1.6

1.6

1.6

1.6 1.6

1.71.7

1.7

1.7

1.7

1.9

1.9

1.9

1.9

1.9

2.0

2.0

2.0

2.0

2.0

2.1

2.1

2.1

2.1

2.1

(b) DACERv2 (5 goals)

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7
0.8

0.8

1.01.01.1 1.1

1.2

1.
2

1.3

1.3

1.4

1.4
1.5 1.5

1.5

1.5

1.5
1.5

1.7 1.7

1.7 1.7

1.7 1.7

1.8
1.8

1.8 1.8

1.8 1.8

1.9 1.9

1.
9

1.
9

1.9

1.9

2.0 2.0

2.0

2.0

2.0

2.0

2.1 2.1

2.1 2.1

2.1

2.1

(c) DACERv2 (6 goals)

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.
2

0.2

0.2

0.
2

0.2

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.7

0.7
0.7

0.7

0.8

0.8 0.8

0.8

0.9

0.9

0.9

0.9

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.2

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.5

1.5

1.5

1.5

1.6

1.6

1.6

1.
6

1.
7

1.7

1.7

1.
7

1.9

1.9

1.
9

1.9

2.0

2.0 2.0

2.0

2.1

2.1

2.1

2.1

(d) DACER (4 goals)

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.1

0.1

0.1

0.1

0.1

0.
2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.
5

0.5
0.

5

0.5
0.6

0.6

0.7

0.7

0.8

0.8

0.9
0.9

1.0

1.0

1.
01.0

1.0

1.2

1.2

1.2
1.2

1.2

1.3

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.4

1.5

1.5

1.
5

1.5

1.5

1.6

1.6

1.6

1.6 1.6

1.71.7

1.7

1.7

1.7

1.9

1.9

1.9

1.9

1.9

2.0

2.0

2.0

2.0

2.0

2.1

2.1

2.1

2.1

2.1

(e) DACER (5 goals)

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7
0.8

0.8

1.01.01.1 1.1

1.2

1.
2

1.3

1.3

1.4

1.4
1.5 1.5

1.5

1.5

1.5
1.5

1.7 1.7

1.7 1.7

1.7 1.7

1.8
1.8

1.8 1.8

1.8 1.8

1.9 1.9

1.
9

1.
9

1.9

1.9

2.0 2.0

2.0

2.0

2.0

2.0

2.1 2.1

2.1 2.1

2.1

2.1

(f) DACER (6 goals)

Figure 2: Multi-goal Task. Trajectories generated by policies learned using our method (top row)
and original DACER (bottom row) are shown, with the x-axis and y-axis representing 2D positions
(states). The agent is initialized at the origin, and the goals are marked as red dots. The level curves
indicate the reward, and reaching within 1 of the endpoint signifies task completion. Results are
shown for 4, 5, and 6 goal configurations from left to right.

Table 1: Efficiency comparison of inference and training time. All values are normalized relative to
DACERv2 (set as 1.00×). Absolute times are also reported. Lower is better.

Algorithms Inference Time Training Time

Normalized Absolute (ms) Normalized Absolute (ms)

DACERv2 (Ours) 1.00× 0.63 1.00× 7.0
DACER 2.54× 1.60 1.71× 12.0
QVPO 5.71× 3.60 1.97× 13.8
DIME 2.22× 1.40 1.89× 13.2
DIPO 2.54× 1.60 2.00× 14.0
QSM 2.54× 1.60 0.86× 6.0

4.3 EXPERIMENTAL RESULTS

All the training curves are shown in Fig. 3 and the detailed results are listed in Table 2. Our
method, DACERv2, achieves superior Total Average Return (TAR) in most complex OpenAI Gym
control tasks. Despite the challenges posed by high-dimensional state and action spaces and complex
dynamics, our method exhibits remarkable stability and efficiency, highlighting its robustness and
adaptability.

Specifically, across challenging environments including Humanoid, Ant, HalfCheetah, Humanoid-
Standup, and Walker2d, our method achieves improvements of 33.1%, 42.7%, 9.8%, 5.9%, and
29.2% over SAC, respectively. When compared against the best-performing diffusion-based online
RL baseline in each environment, it achieves higher scores in Ant, HalfCheetah, HumanoidStandup,
and Walker2d, with respective gains of 4.3%, 4.0%, 5.6%, and 10.3%, while underperforming
DIME on Humanoid. Additionally, we normalize the returns in each task by dividing them by the
highest reward across all algorithms, then average across tasks and rescale to the range of 0–100
for visualization. Under this metric, our method achieves an average score 9.7% higher than the
second-best algorithm on the OpenAI Gym benchmark.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

30000

60000

90000

120000

150000

180000

To
ta

l A
ve

ra
ge

 R
et

ur
n

(a) HumanoidStandup-v4

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

To
ta

l A
ve

ra
ge

 R
et

ur
n

(b) Ant-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

To
ta

l A
ve

ra
ge

 R
et

ur
n

(c) HalfCheetah-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

To
ta

l A
ve

ra
ge

 R
et

ur
n

(d) Walker2d-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To
ta

l A
ve

ra
ge

 R
et

ur
n

(e) Inverted2Pendulum-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

To
ta

l A
ve

ra
ge

 R
et

ur
n

(f) Hopper-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

10000

12000

To
ta

l A
ve

ra
ge

 R
et

ur
n

(g) Humanoid-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

40

20

0

20

40

60

80

100

120

140

160

180

200

To
ta

l A
ve

ra
ge

 R
et

ur
n

(h) Swimmer-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

10

20

30

40

50

60

70

80

90

100

To
ta

l A
ve

ra
ge

 R
et

ur
n

(i) Normalization
DACERv2 DACER QVPO QSM DIPO DIME PPO SAC DSAC

Figure 3: Training curves on benchmarks. The solid lines represent the mean, while the shaded
regions indicate the 95% confidence interval over five runs. For PPO, iterations are defined by the
number of network updates.

Table 2: Total Average Return (TAR). Performance on eight tasks of OpenAI Gym MuJoCo
benchmark. Mean ± Std. over 5 seeds. Bold = best; higher is better. The average score has been
normalized to the range of 0-100.

Algorithm HumanoidStandup Ant Humanoid Walker2d Inverted2Pendulum Hopper HalfCheetah Swimmer Average score

PPO 82807± 8633 6157± 185 6869± 1563 4832± 638 9357± 2 2647± 481 5789± 2201 130± 2 56.69± 19.80

SAC 161413± 1643 6427± 804 9335± 696 6201± 263 9360± 0 2483± 943 16573± 224 140± 14 75.41± 17.64

DSAC 149576± 1795 7086± 261 10829± 243 6424± 147 9360± 0 3660± 533 17025± 157 138± 6 80.18± 12.07

QSM 150692± 1497 4783± 1235 6072± 691 5685± 437 591± 98 2006± 251 11401± 882 46± 1 44.54± 25.05

DIPO 156870± 8270 3449± 149 9353± 356 5066± 365 9355± 2 3813± 241 12267± 2180 55± 2 63.93± 23.00

DIME 78303± 3165 8789± 105 13065± 221 7261± 299 9356± 2 2016± 179 15816± 292 134± 3 75.87± 22.34

DACER 161928± 3804 8040± 128 11791± 238 6674± 169 9354± 2 4062± 181 17488± 216 150± 4 84.98± 11.38

QVPO 129865± 8932 6484± 145 9656± 252 6057± 352 9354± 5 4035± 172 14355± 175 130± 10 67.80± 16.74

DACERv2 (ours) 170956± 8792 9169± 129 12426± 292 8011± 188 9359± 1 4202± 191 18192± 266 172± 6 93.19± 6.35

4.4 ABLATION STUDY

In this section, we conduct ablation study to investigate the impact of the following four aspects on the
performance of the diffusion policy: 1) whether to use the Q-gradient field training objective function;
2) whether to use time-weighted mechanism; 3) different diffusion step size T ; 4) the sensitivity to
the hyperparameter η. The experiments are conducted in the Walker2d-v3 task. Ablation study on the
effect of Q-value normalization is provided in Appendix F.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACERv2 with Q-gradient function
DACERv2 without Q-gradient function

(a) Ablation for the Q-gradient
field training objective function.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACERv2 with time-weighted mechanism
DACERv2 without time-weighted mechanism

(b) Ablation for the
time-weighted mechanism.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

To
ta

l A
ve

ra
ge

 R
et

ur
n

T=2
T=5
T=10

(c) Ablation for the different
diffusion steps.

Figure 4: Ablation experiment curves. (a) The performance of DACERv2 with Q-gradient function
on Walker2d-v3 is far better than without Q-gradient function. (b) Time-weighted mechanism can
further improve the performance of our algorithm. (c) A diffusion step size of 5 provides a balance
between efficiency and performance.

Q-gradient field training objective function. In this ablation study, we fixed the diffusion step size
at 5 to examine the effect of incorporating the Q-gradient field loss function. As shown in Fig. 4(a),
removing this objective caused a substantial drop in performance. This finding highlights the critical
role of the Q-gradient field loss in guiding the diffusion denoising process and demonstrates its
importance as a key component for enhancing overall performance.

Time-weighted mechanism. We conducted an experiment to demonstrate that using time-weighted
mechanism can further improve performance. As shown in Fig. 4(b), directly using ∇aQ(s, a) as the
target value in the Q-gradient field training loss, instead of the w(t)∇aQ(s, a), results in performance
degradation. This is because different timesteps require matching different magnitudes of noise
prediction, which enhances both training stability and final performance.

Diffusion steps. We further investigated the performance of the diffusion policy under varying
numbers of diffusion timesteps T . We plotted training curves for T = 2, 5, and 10, as shown in
Fig. 4(c). The experimental results suggest that increasing the number of diffusion steps does not
necessarily improve performance, while using fewer steps tends to degrade performance.

The sensitivity to the hyperparameter η. To assess the sensitivity of η, we evaluated five settings
(0.1, 0.01, 0.001, 0.012, 0.008) on Humanoid-v3. As reported in Table 3, performance degraded
markedly at η = 0.1 and 0.001, but remained stable at η = 0.012 and 0.008, indicating tenfold
sensitivity. These results suggest that the algorithm is robust to moderate variations in η and thus
does not require extensive hyperparameter tuning.

Table 3: Performance comparison of DACERv2 with different η values on Humanoid-v3.

Algorithm η = 0.01 η = 0.1 η = 0.001 η = 0.012 η = 0.008

DACERv2 12426± 292 11463± 304 11161± 287 12101± 325 12208± 249

5 CONCLUSION

In this paper, we address the critical challenge of balancing performance and time-efficiency in
diffusion-based online RL. By introducing a Q-gradient field objective and a time-dependent weight-
ing scheme, our method enables each denoising step to be guided by the Q-function with adaptive
emphasis over time. This design allows the policy to achieve strong performance with only five
diffusion steps, significantly improving both training and inference speed.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generalization
in offline reinforcement learning. IEEE Robotics and Automation Letters, 2024.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement-residual rl for precise assembly. In 2025 IEEE International Conference on Robotics
and Automation (ICRA), pp. 01–08. IEEE, 2025.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. arXiv
preprint arXiv:2502.02316, 2025.

Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion models
for self-supervised learning. arXiv preprint arXiv:2401.14404, 2024.

Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency policy.
arXiv preprint arXiv:2310.06343, 2023.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. Advances
in Neural Information Processing Systems, 2024.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE
Transactions on Neural Networks and Learning Systems, 33(11):6584–6598, 2021.

Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu, Ya-
Qin Zhang, Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(5):3935–3946, 2025. doi:
10.1109/TPAMI.2025.3537087.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870. PMLR, 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

S Eben Li. Reinforcement Learning for Sequential Decision and Optimal Control. Springer Verlag,
Singapore, 2023.

Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. Advances in Neural
Information Processing Systems, 37:38456–38479, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. Machine Intelligence Research, pp.
1–22, 2025a.

Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner
for decision making? In The Thirteenth International Conference on Learning Representations,
2025b.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic: Efficient online
reinforcement learning for diffusion policy. arXiv preprint arXiv:2502.00361, 2025.

Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
Chawla. S2ac: Energy-based reinforcement learning with stein soft actor critic. arXiv preprint
arXiv:2405.00987, 2024.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching. arXiv preprint arXiv:2312.11752, 2023.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations for
stochastic gradient langevin dynamics. The Journal of Machine Learning Research, 17(1):193–225,
2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, Anusha
Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space
reinforcement learning. arXiv preprint arXiv:2506.15799, 2025.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, and Shengbo Li. Diffusion actor-critic with entropy
regulator. Advances in Neural Information Processing Systems, 2024.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. The Eleventh International Conference on Learning
Representations, 2023.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023a.

Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
generation. Entropy, 25(10):1469, 2023b.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS

Theorem 1. Let S denote the state space and A denote the continuous action space. Suppose p(s)

is a distribution over states, Hglobal
0 denotes a specific entropy value. We define the policy space

ΠHglobal
0

as the set of policy families {π∗(·|s)}s∈S , where each π(·|s) represents a valid probability
distribution over actions. This policy family is required to satisfy a global expected entropy constraint:

Es∼p(s)[H(π∗(·|s))] = Hglobal
0 , (16)

where Hglobal
0 is a given constant.

Within the policy space ΠHglobal
0

, the family of policies {π∗(·|s)}s∈S that maximizes the global
expected action value Es∼p(s)[Ea∼π(a|s)[Q(s, a)] has the property that, for each state s, the optimal
policy π∗(a|s) takes the form of a soft policy:

π∗(a|s) = exp(Q(s, a)/α)∫
a′∈A exp(Q(s, a′)/α)da′

, (17)

where α > 0 is a global temperature parameter, whose value is implicitly determined by a global
expected entropy constraint: Es∼p(s)[H(π∗(·|s))] = Hglobal

0 .

Proof. We seek a family of policies {π(· | s)}s∈S belonging to the constrained space:

ΠHglobal
0

=
{
{π(· | s)}s∈S

∣∣∣ Es∼p(s)

[
H(π(· | s))

]
= Hglobal

0 ,

∫
A
π(a | s) da = 1, ∀s

}
, (18)

which maximises the expected action-value

J
(
{π(· | s)}

)
= Es∼p(s)

[
Ea∼π(·|s)

[
Q(s, a)

]]
=

∫
S
p(s)

∫
A
π(a | s)Q(s, a) da ds. (19)

Then, we introduce a scalar multiplier α for the global expected-entropy constraint and a state-
dependent multiplier η(s) for the normalisation constraint at each s. The Lagrangian reads

L
(
{π(· | s)}, α, {η(s)}

)
=

∫
S

∫
A

[
p(s)π(a | s)Q(s, a)− αp(s)π(a | s) log π(a | s) + η(s)π(a | s)

]
da ds

− αHglobal
0 −

∫
S
η(s) ds.

(20)

Because the decision variables for distinct states couple only through α, we can minimise the
integrand for each fixed s independently:

Ls

(
π(· | s)

)
=

∫
A

[
p(s)π(a | s)Q(s, a)− αp(s)π(a | s) log π(a | s) + η(s)π(a | s)

]
da. (21)

Taking the functional derivative and setting it to zero yields, for almost every a ∈ A, we can obtain

p(s)Q(s, a) − αp(s) log π(a | s) − αp(s) + η(s) = 0. (22)

Assuming p(s) > 0, we divide both sides by p(s) and rearrange:

log π(a | s) =
Q(s, a)

α
− 1 +

η(s)

αp(s)
. (23)

Let η̃(s) = η(s)/p(s). Exponentiating gives the unnormalised form

π(a | s) = exp
(η̃(s)− α

α

)
exp

(
Q(s,a)

α

)
= C(s) exp

(
Q(s,a)

α

)
, (24)

where C(s) is a state-wise normalising constant.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Imposing
∫
A π(a | s) da = 1, we can determine

C(s) =
[∫

A
exp

(
Q(s, a′)/α

)
da′

]−1

. (25)

Therefore, the optimal policy family is the Boltzmann distribution

π∗(a | s) =
exp

(
Q(s, a)/α

)∫
A
exp

(
Q(s, a′)/α

)
da′

∀s ∈ S, a ∈ A. (26)

The scalar α > 0 is the Lagrange multiplier associated with the global entropy constraint and serves
as a common temperature across all states. Its value is obtained implicitly by substituting π∗ back
into

Es∼p(s)

[
H(π∗(· | s))

]
= Hglobal

0 . (27)

Consequently, although the entropy constraint is imposed only on the state-averaged entropy, each
per-state optimal policy still follows a Boltzmann form with the same temperature parameter α.

B RELATED WORK

We review existing works on using the diffusion model as a policy function in combination with RL.

Online RL with Diffusion Policy. Online RL enables agents to refine their policies through real-
time interaction. Yang et al. introduced DIPO (Yang et al., 2023a), which maintains a dedicated
diffusion buffer to store actions and model them using diffusion techniques. Psenka et al. proposed
QSM (Psenka et al., 2023), which aligns policies with ∇aQ via score matching, but is sensitive
to value gradient inaccuracies across the action space. Recently, Ding et al. (Ding et al., 2024)
proposed QVPO, which weights diffusion-sampled actions by Q-values without computing gradients.
However, it uses a fixed ratio of uniform samples to boost the entropy, lacking adaptive control
and later degrading performance. Ma et al. (Ma et al., 2025) proposed SDAC, which uses score
matching over noisy energy-based diffusion. It avoids requiring optimal actions but suffers from
high gradient variance due to poor sampling in high-Q regions. Celik et al. proposed DIME (Celik
et al., 2025), which derives a lower bound on the diffusion policy entropy and integrates it into the
maximum-entropy RL framework. However, directly incorporating an inaccurate entropy estimate
into the policy objective can degrade performance.

Complementary to these methods that train diffusion policies from scratch, a parallel line of work
focuses on the online refinement of pre-trained diffusion policies. DPPO (Ren et al., 2024) formulates
the reverse diffusion process as a secondary MDP and applies on-policy PPO-style optimization,
achieving strong performance. Yuan et al. proposed Policy Decorator (Yuan et al., 2024), which
treats a large base diffusion policy as a black box and learns a bounded residual policy with PPO to
improve performance in a model-agnostic and stable manner. Ankile et al. introduced ResiP (Ankile
et al., 2025), which regards a chunked imitation policy as a high-level planner and trains a closed-loop
residual controller to provide fine-grained corrections for precise assembly. Wagenmaker et al.
proposed DSRL (Wagenmaker et al., 2025), which steers a frozen diffusion policy by running RL in
its latent noise space with a dual-Q architecture, achieving sample-efficient online adaptation without
finetuning the diffusion network weights.

Offline RL with Diffusion Policy. Offline RL focuses on learning optimal policies from suboptimal
datasets, with the core challenge being the out-of-distribution (OOD) problem (Kumar et al., 2020;
Fujimoto et al., 2019). Diffusion models are naturally suited for offline RL due to their ability to model
complex data distributions. Wang et al. proposed Diffusion-QL (Wang et al., 2023), which combines
behavior cloning through a diffusion loss with Q-learning to improve policy learning. However,
Diffusion-QL suffers from slow training and instability in OOD regions. To address the former, Kang
et al. proposed Efficient Diffusion Policy (EDP) (Kang et al., 2023), which speeds up training by
initializing from dataset actions and adopting a one-step sampling strategy. To mitigate OOD issues,
Ada et al. introduced SRDP (Ada et al., 2024), which enhances generalization by integrating state
reconstruction into the diffusion policy. Furthermore, Chen et al. proposed CPQL (Chen et al., 2023),

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

a consistency-based method that improves efficiency via one-step noise-to-action generation during
both training and inference, albeit with some performance trade-offs. In parallel, Hansen-Estruch et
al. proposed IDQL (Hansen-Estruch et al., 2023), which reinterprets IQL as a behaviour-regularised
actor-critic method and uses a diffusion-model among the behaviour cloning policy to extract the
implicit actor. Recently, Park et al. proposed Flow Q-Learning (FQL) (Park et al., 2025), which
leverages an expressive flow-matching policy together with a separately RL-trained one-step actor to
model complex action distributions without backpropagating through iterative generation, achieving
competitive results across large-scale offline and offline-to-online benchmarks.

Diffusion Acceleration. The pursuit of efficient diffusion sampling has yielded several key ad-
vancements. Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020a) first re-envisioned the
reverse process as a deterministic ODE, permitting significant sampling speed-ups. DPM-Solver (Lu
et al., 2022) introduced high-order exponential integrators, achieving high-fidelity generation without
retraining. DPM-Solver++ (Lu et al., 2025a) further adapted this high-order approach for the widely-
used classifier-free guidance regime, stabilizing sampling at large guidance scales. Concurrently,
Consistency Models (Song et al., 2023) explored a distillation-based approach, compressing the
multi-step ODE trajectory into a single “consistency function” that maps noise to data in one or few
steps.

Comparison with DACER. Wang et al. proposed DACER (Wang et al., 2024), which leverages
the reverse diffusion process as a policy approximator and employs a Gaussian Mixture Model
(GMM) to estimate entropy for balancing exploration and exploitation. However, this approach lacks
a theoretical justification for how maximizing the expected Q-value under entropy regularization
inherently fosters multimodal policies when using diffusion models as policy functions. Furthermore,
DACER remains constrained by a critical trade-off: while long diffusion processes ensure high
performance, they severely hinder training efficiency; conversely, reducing steps leads to perfor-
mance degradation. In contrast, our method, DACERv2, resolves this bottleneck by introducing a
Q-gradient field objective, incorporated with a time-weighted mechanism and Q-gradient normaliza-
tion. These innovations enable valid policy approximation with significantly fewer diffusion steps,
thereby improving efficiency while maintaining or even improving both performance and policy
multimodality.

Comparison with QSM. Psenka et al. proposed QSM (Psenka et al., 2023), an algorithm that
aligns diffusion model policies with ∇aQ(s,a) by leveraging their score-based structure. Both
methods leverage Q-gradients for diffusion policy optimization. QSM employs score matching,
whereas DACERv2 performs end-to-end Q-value maximization augmented with a time-weighted
score-matching loss and entropy regularization, resulting in a multi-task objective. DACERv2
additionally stabilizes Q-gradients through normalization and improves efficiency, converging in just
5 diffusion steps compared to QSM’s approximately 20.

C ENVIRONMENTAL DETAILS

MuJoCo (Brockman et al., 2016): This is a high-performance physics simulation platform widely
adopted for robotic reinforcement learning research. The environment features efficient physics
computation, accurate dynamic system modeling, and comprehensive support for articulated robots,
making it an ideal benchmark for RL algorithm development. In this research, we concentrate
on eight tasks: Humanoid, Ant, HalfCheetah, Walker2d, InvertedDoublePendulum (IDP), Hopper,
HumanoidStandup, and Swimmer. The IDP task entails maintaining the balance of a double pendulum
in an inverted state. In contrast, the objective of the other tasks is to maximize the forward velocity
while avoiding falling. All these tasks are realized through the OpenAI Gym interface (Brockman,
2016).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Walker2d-v3

State-action space: S ∈ R17, A ∈ R6.

Objective. Maintain forward velocity as fast as possible while
avoiding falling over.

Initialization. The walker is initialized in a standing position with
slight random noise added to joint positions and velocities.

Termination. The episode ends when the agent falls, the head
touches the ground, or after 1000 steps.

Figure 6: Humanoid-v3

State-action space: S ∈ R376, A ∈ R17.

Objective. Maintain balance and walk or run forward at a high
velocity while avoiding falls.

Initialization. The humanoid starts in an upright position with
slight random perturbations to joint angles and velocities.

Termination. The episode ends when the head height is less than
1.0 meter, the torso tilts excessively, or after 1000 steps.

Figure 7: Ant-v3

State-action space: S ∈ R111, A ∈ R8.

Objective. Navigate forward as quickly as possible using four legs
while maintaining stability.

Initialization. The ant is initialized in a stable, upright position
with random noise applied to its joints.

Termination. The episode ends if the ant falls, flips over, or reaches
the maximum step count of 1000.

Figure 8: Halfcheetah-v3

State-action space: S ∈ R17, A ∈ R6.

Objective. Achieve maximum forward velocity with smooth,
coordinated movements.

Initialization. The agent starts with a slight forward tilt and
randomized joint noise.

Termination. The episode ends after 1000 steps or if the agent’s
head touches the ground.

D EXPERIMENTAL HYPERPARAMETERS

The hyperparameters of all baseline algorithms except the diffusion-based algorithm are shown in
Table 4. Additionally, the parameters for all diffusion-based algorithms, including DACERv2, are
presented in Table 5 and Table 6.

The hyperparameter c, d for time-weighted mechanism is determined by the diffusion step size,
inspired by the variance-preserving beta schedule used in DDPM (Ho et al., 2020). The code of
implementation is as follows:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: Swimmer-v3

State-action space: S ∈ R8, A ∈ R2.

Objective. Propel forward through water-like dynamics using
sinusoidal wave patterns.

Initialization. The swimmer starts in a straight posture with minor
random perturbations.

Termination. The episode ends after 1000 steps, with no explicit
termination for falling.

Figure 10: Humanoid-
Standup

State-action space: S ∈ R348, A ∈ R17.

Objective. Stand up from lying on the ground by applying torques
to the joints, with rewards for upward movement and penalties for
large actions or strong impacts.

Initialization. The humanoid starts lying down, with small random
noise added to joint positions and velocities.

Termination. The episode does not terminate early; it ends after
1000 steps.

Figure 11: Hopper-v3

State-action space: S ∈ R11, A ∈ R3.

Objective. Hop forward as fast as possible by applying torques to
the thigh, leg, and foot joints, while staying upright.

Initialization. The hopper starts standing upright with small
random perturbations in position and velocity.

Termination. The episode ends if the hopper falls (body hits the
ground) or after 1000 steps.

Figure 12: IDP-v3

State-action space: S ∈ R9, A ∈ R1.

Objective. Balance the second pole upright by applying horizontal
forces to the cart, while maximizing time alive and minimizing tip
distance and joint velocities.

Initialization. The cart and poles start near the upright position
with small random noise in position and velocity.

Termination. The episode ends if the tip of the second pole falls
below height 1. Otherwise, it is truncated after 1000 steps.

def vp_alpha_schedule(timesteps: int, b_min=0.1, b_max=10.):
T = timesteps
t = np.arange(1, T + 1)
return np.exp(-b_min / T - 0.5 * (b_max - b_min) * (2 * t - 1) / T ** 2)

Set parameters
timesteps = 5
alphas = vp_alpha_schedule(timesteps)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Reverse the alpha array as in B.alphas[self.agent.num_timesteps - 1 - t]
reversed_alphas = alphas[::-1]
t_vals = np.arange(timesteps)

Fit the exponential form exp(ct + d)
params, _ = curve_fit(exp_fit, t_vals, reversed_alphas)
c, d = params

TABLE 4
BASELINE HYPERPARAMETERS.

Hyperparameters Value
Shared

Replay buffer capacity 1,000,000
Buffer warm-up size 30,000
Batch size 256
Action bound [−1, 1]
Hidden layers in critic network [256, 256, 256]
Hidden layers in actor network [256, 256, 256]
Activation in critic network GeLU
Activation in actor network GeLU
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Actor learning rate 1e−4
Critic learning rate 1e−4
Discount factor (γ) 0.99
Policy update interval 2
Target smoothing coefficient (ρ) 0.005
Reward scale 0.2

Maximum-entropy framework
Learning rate of α 3e−4
Expected entropy (H) H = −dim(A)

Deterministic policy
Exploration noise ϵ ∼ N (0, 0.12)

Off-policy
Replay buffer size 1× 106

Sample batch size 20
On-policy

Sample batch size 2,000
Replay batch size 2,000

TABLE 5
HYPERPARAMETER η USED IN DACERV2.

Task Hopper Ant HalfCheetah Walker2d MultiGoal Hum. S. Humanoid Swimmer IDP

η 1.0 1.0 1.0 1.0 1.0 0.01 0.01 0.01 0.01

E LIMITATION AND FUTURE WORK

In this study, we propose the Q-gradient field objective as an auxiliary training loss to provide more
informative gradient signals for guiding the diffusion policy. However, algorithms such as PPO
(Schulman et al., 2017) and GRPO (Shao et al., 2024) do not explicitly learn a Q-function, making it
challenging to directly integrate the diffusion policy of DACERv2 and its associated loss function
with these methods. This indicates that the generality of our method is currently affected by the
presence of value functions. Future work could explore reformulating the auxiliary objective into a
purely trajectory-based form, thereby enabling integration with methods that rely solely on policy
gradients.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

TABLE 6
DIFFUSION-BASED ALGORITHMS’ HYPERPARAMETERS

Parameter DACERv2 DACER QVPO QSM DIME DIPO
Replay buffer capacity 1e6 1e6 1e6 1e6 1e6 1e6
Buffer warm-up size 3e4 3e4 3e4 3e4 3e4 3e4
Batch size 256 256 256 256 256 256
Discount γ 0.99 0.99 0.99 0.99 0.99 0.99
Target network soft-update rate ρ 0.005 0.005 0.005 0.005 N/A 0.005
Network update times per iteration 1 1 1 1 1 1
Action bound [−1, 1] [−1, 1] [−1, 1] [−1, 1] [−1, 1] [−1, 1]
Reward scale 0.2 0.2 0.2 0.2 0.2 0.2
No. of Actor layers 2 2 2 2 2 2
No. of Actor hidden dims 256 256 256 256 256 256
No. of Critic layers 2 2 2 2 2 2
No. of Critic hidden dims 256 256 256 256 2048 256
Activations in critic network GeLU GeLU Mish ReLU ReLU Mish
Activations in actor network Mish Mish Mish ReLU ReLU Mish
Diffusion steps 5 20 20 20 16 20
Policy delay update 2 2 2 2 2 2
Action gradient steps N/A N/A N/A N/A N/A 20
No. of Gaussian distributions 3 3 N/A N/A N/A N/A
No. of action samples 200 200 N/A N/A N/A N/A
Time-weighted hyperparameter c 0.4 N/A N/A N/A N/A N/A
Time-weighted hyperparameter d -1.8 N/A N/A N/A N/A N/A
Alpha delay update 10,000 10,000 N/A N/A N/A N/A
Noise scale λ 0.1 0.1 N/A N/A N/A N/A
Optimizer Adam Adam Adam Adam Adam Adam
Actor learning rate 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4 3 · 10−4 1 · 10−4

Critic learning rate 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4 3 · 10−4 1 · 10−4

Alpha learning rate 3 · 10−2 3 · 10−2 N/A N/A 1 · 10−3 N/A
Target entropy −dim(A) −dim(A) N/A N/A −4dim(A) N/A

F EXTRA ABLATION STUDY

We conducted an ablation study on the Humanoid-v3 task to examine the effect of normalizing the
Q-gradient. The results presented in Fig. 13 demonstrate that normalization method consistently
enhance performance returns.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER2 with norm
DACER2 without norm

Figure 13: Ablation on the normalization of Q-function.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G LLM STATEMENT

Large Language Models (LLMs) were employed solely for language refinement in this paper. Specif-
ically, we used them to polish grammar, improve clarity, and enhance the academic style of our
writing. The role of LLMs was limited to editing and improving the presentation of the text, without
contributing to the technical content.

20

	Introduction
	Preliminaries
	Reinforcement Learning with Soft Policy
	Diffusion Models as Expressive Policy
	Langevin Dynamics

	Method
	Q-Gradient Field Guided Denoising
	Time-weighted mechanism
	DACERv2: A High Efficiency Diffusion RL Algorithm

	Experimental Results
	Multimodal experiments
	Efficiency Analysis
	Experimental results
	Ablation Study

	Conclusion
	Theoretical analysis
	Related Work
	Environmental Details
	Experimental Hyperparameters
	Limitation and Future Work
	Extra ablation study
	LLM statement

