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ABSTRACT

We propose to pre-stack a U-Net as a way of improving the poly-
phonic music transcription performance of various baseline Convo-
lutional Neural Networks (CNNS). The U-Net, a network architec-
ture based on skip-connections between layers acts as a transforma-
tion network followed by a transcription network. Notably, we do
not introduce any additional loss terms specific to the transforma-
tion network, but instead, jointly train the entire combined model
with the original loss function that was designed for the back-end
transcription network. We argue that this U-Net network transforms
the input signal into a representation that is more effective for tran-
scription, and thus enables the observed improvements in accuracy.
We empirically confirm with several experiments using the Music-
Net dataset, that the proposed configuration consistently improves
the accuracy of transcription networks. This enhancement cannot
be achieved by simply introducing more neurons or more layers to
the baseline CNNs. Moreover, we show that using the proposed ar-
chitecture we can go beyond general music transcription and per-
form transcription in an instrument-specific fashion. By doing so,
the original general transcription performance is also increased.

Index Terms— Automatic Music Transcription, Deep Learning,
Deep Architecture, U-Net

1. INTRODUCTION

Automatic Music Transcription (AMT) is an important and open
problem in Music Information Retrieval. It consists of detecting
which music instrument pitches are present at any particular time
by analyzing the acoustic audio signal. AMT has been used in inter-
active music systems [1] but it remains a challenge especially when
there is limited prior knowledge for constraining the algorithms.

Recently AMT, also referred to as polyphonic music transcrip-
tion, has been treated as a multi-label classification problem with
Deep Neural Networks (DNN) [2–4]. Typically, a DNN is trained
to predict the active notes within a short analysis block of the audio
signal. In most cases, these DNNs are Convolutional Neural Net-
works (CNNs) and operate on log-spaced (magnitude/power) spec-
trograms. The choice of using log-spaced spectrograms as input to
CNNs for music tasks [4] is motivated by the fact that patterns in the
log-spaced frequency domain are shift invariant to pitch changes.
A basic approach to enhancing the accuracy of deep networks is to
make them deeper [5]. However, as we show experimentally, deeper
networks do not always guarantee better performance in AMT.

In this paper, we propose to pre-stack a U-Net in front of existing
neural network architectures to enhance polyphonic music transcrip-
tion performance. The U-Net architecture was initially developed for
medical image segmentation [6], because of its ability to reproduce
tiny details, and the robustness arising from skip connections. We
show empirically that having such an architecture as the first stage
of a transcription network with joint training results in improved per-

formance. We believe that the jointly trained U-Net acts as a trans-
formation network, and enhances the input signal in a way that helps
the training of the following transcription network.

We show the benefit of the proposed architecture through exper-
iments on the MusicNet dataset [7], focusing both on instrument and
instrument-agnostic transcription. For the transcription network, we
investigate neural network architectures that are popular for com-
puter vision tasks, as well as one that has been recently suggested
and shown to work well for music transcription. We empirically ver-
ify that pre-stacking a U-Net in the front always provides enhanced
or comparable performance, regardless of the architecture.

2. RELATED WORK

2.1. Traditional methods

Initial approaches to automatic music transcription were mainly un-
supervised and based on spectral factorization techniques. In these
approaches, the goal is to factorize the magnitude spectra into two
components in such a way that one component is related to the fre-
quency profile of each note, and the other one is related to the activa-
tion in time of each note. Smaragdis et al. [8] used non-negative ma-
trix factorization (NMF) on the magnitude spectrogram. Although
their method had to make some assumptions about the number of
unique notes presented in the analyzed audio segment, it showed ini-
tial promising results for both monophonic and polyphonic music.

Smaragdis et al. [9] proposed the use of Probabilistic Latent
Component Analysis (PLCA) for spectorgram decomposition. This
statistical framework models the spectra as a multi-dimensional dis-
tribution, which is approximated by a mixture of marginal distri-
bution products. These marginal distributions are estimated using a
variant of the Expectation Maximization (EM) algorithm. Smaragdis
et al. [10] modified the standard PLCA model to detect multiple local
shift invariant patterns. According to this shift invariant model, the
marginal distributions are defined in terms of convolutions. Grindaly
et al. [11] extended the PLCA model to multiple polyphonic sources.
A set of training instruments is used to learn a sparse model space
with NMF. This model is then used to learn the distributions of
pitches conditioned on the sources. Benetos et al. [12] extends the
shift-invariant PCLA to support the use of multiple spectral template
per pitch and per instrument. The time varying pitch contribution of
each source is also considered by the proposed model extension.

Rather than using spectrogram factorization, Poliner et al. [13]
proposed a discriminative model for polyphonic piano transcription
in which a Support Vector Machine (SMV) is trained on spectral fea-
tures, and used to classify frame-level notes instances. In addition,
a Hidden Markov Model (HMM) is used to temporally constrain the
SVM outputs. Instead of relying on hand-crafted features, Nam et
al. [14] use Deep Belief Networks (DBM) to learn feature represen-
tations of notes and jointly train classifiers for multiple notes.

Other techniques for AMT rely on multiple-F0 estimation, in-
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Fig. 1. Proposed instrument-agnostic transcription architecture.

stead of spectrogram factorization. Multiple-F0 estimation is not
reliable enough to provide good transcription results so it is often
combined with additional processing stages that model other musi-
cal aspects. Ryynanen et al. [15] proposed a music transcription sys-
tem composed of: multiple-F0 estimation, an acoustic model, and
a musicological model. The acoustic model, takes as input three
features extracted from the multiple-F0 estimates and calculates the
likelihoods of different notes and performs temporal segmentation
of notes. The musicological model estimates the musical key and
controls the transition between notes. The final transcription results
are obtained by searching the best paths through the note models.
Multiple-F0 estimation is also used in the work of Benetos et al. [16],
where it is combined with note onset/offset detection. The input of
the transcription system is the resonator time-frequency image (Zhou
et al. [17]). A pitch salience function is extracted for each frame, and
onset detection is computed through a spectral flux feature. Finally,
a pitch set score function is used for each segment defined by two
onsets to estimate the pitch of the current frame.

2.2. Deep learning-based methods

Recently, AMT techniques have been mostly based on deep neu-
ral networks, for both the acoustic model and the musical model.
The acoustic model consists of neural network operating on a time-
frequency representation and trained to predict the active pitches
within each frame. For the musical model, the HMM is replaced
by a neural network that models temporal dependencies, such as Re-
current Neural Networks (RNNs), or similar architectures. Bittner
et al. [2] proposed a fully convolutional neural network for learn-
ing salience and estimating fundamental frequencies. The network
is trained on a large scale, semi-automatically generated f0 dataset.
In order to better capture harmonic relationships, the authors used a
harmonic constant-Q transform as the input representation. Sigtia et
al. [3] proposed an architecture comprised of an acoustic model, and
a music model for polyphonic piano music transcription. The acous-
tic model is a neural network that estimates pitch probabilities for a
given audio frame. The musical model is an RNN that models tem-
poral dependencies of pitches. The predictions of the two models
are combined using a probabilistic graphical model, and the beam
search algorithm is used to perform inference.

Thickstun et al. [7] proposed a convolutional architecture for
polyphonic music transcription, that extracts features from raw au-
dio rather than using a time-frequency representation as input. A
convolutional layer is used as a learned filter-bank that computes a
spectrogram-like representation. After a pooling layer, a linear clas-
sifier predicts the probabilities of notes active within the considered
audio block. This work also introduced the MusicNet dataset that we
have used for our experiment. More recently, a deep neural network
trained with a loss function that combines onset and frame infor-
mation has achieved state-of-the-art performance in automatic piano
transcription [18]. The U-Net architecture was originally proposed

for image segmentation [6]. There has been some limited work
using this architecture for music information retrieval tasks such as
singing voice separation [19], and audio source separation [20]. To
the best of our knowledge, the usage of a U-Net in AMT has not
been explored especially for multiple instrument transcription.

3. PRE-STACKING ARCHITECTURES

3.1. Instrument-agnostic transcription

The core idea of our method is a two-stage architecture where we
pre-stack a U-Net in front of a typical CNN-based transcription net-
work. We first describe the more general instrument-agnostic case,
and then also propose an instrument-specific architecture. If we de-
note U-Net as fΘ(·) and the transcription network as gΦ(·), then for
a given input x, the proposed architecture computes the label esti-
mates z using the composition of these two functions (See Fig. 1).
Mathematically we write: z = gΦ (fΘ(x)) .

Intuitively, the pre-stacked U-Net fΘ(·) acts as a transformation
network that modifies the input signal into a deep-network-friendly
representation for AMT. Although the architecture can be largely
divided into two components, the training of this architecture re-
mains end-to-end. In other words, we train our model with a single
cross-entropy loss at the output of the transcription back-end net-
work. Specifically the loss is expressed by the following equation:

L =
1

N

N∑
n=1

yn log(ŷn) + (1− yn) log(1− ŷn) , (1)

where yn are the true labels for the n-the sample in each mini-batch
– either one or zero – and ŷn = 1/(1− ezn) – are transformed into
a bound signal from z through a sigmoid. Notice that by doing this
we do not constrain the U-Net’s output which is treated as a latent
variable that is discovered naturally as the training progresses.

It is worth noting that use of a U-Net architecture with skip con-
nections is crucial. Initial empirical investigations revealed severe
performance degradation when removing skip connections, which
effectively makes the pre-stacked network an Auto Encoder. We
omit these results from this paper due to space constraints. Based
on this observation, we argue that this implies that a pathway for
unhindered input data to go through is essential for the prefix U-
Net. We stipulate that the skip-connections act as anchors that pre-
vent the output from drifting too far from the original input, without
requiring any explicit constraint in the optimization. In short, the
prefix U-Net placed in front of a transcription network behaves as
a learned pre-processing step, that transforms the input in such a
way that more meaningful features can be easily extracted by the
transcription network, providing overall better classification perfor-
mance when compared to the sole transcription network. This im-
provement can be observed for different back-end transcription net-
works after pre-stacking them with a U-Net (see Section 5).

3.2. Multi-instrument transcription

The MusicNet dataset used in this work is labelled on an instrument
basis, that is, each note in the ground truth is annotated with the cor-
responding instrument. Several tracks are also recordings of ensem-
ble performances in which multiple instruments play together. We
leverage this additional information to extend music transcription
to instrument-specific transcription. We first identify and separate
the instruments, creating a meta-representation for each instrument
that no longer has instrument specific characteristics. This results
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Fig. 2. Instrument-wise transcription architecture. We apply the U-
Net front-end to create per-instrument meta-representation, which
we then pass on to the same transcription network to obtain per-
instrument labels (see Section 3.2).

in making the task simpler for the deep networks and increases the
variability of data from the point of view of the transcriber.

In more detail, we extend the proposed architecture to perform
instrument-wise transcription, as shown in Fig. 2. We apply the
front-end U-Net to create multiple outputs, each dedicated for a spe-
cific instrument. We then run our transcription (classification) net-
work multiple times, once for each of these outputs to obtain per-
instrument transcription (classification) results. Interestingly, our
formulation is end-to-end differentiable, and optimal intermediate
representations can be found implicitly during training. Therefore, it
is not necessary to provide a supervision signal for how the front-end
U-Net should transform the data for each instrument.

3.3. Network specifics

Here, we summarize the architectures of the back-end networks
considered in our study: 2LR (Eq. (2)) [7], VGG (Eq. (3)) [21],
ResNet18 (Eq. (4)) [22], ResNet34 (Eq. (5)) [22]. We use the
notation #filtersC kernel

stride , MP kernel
stride , AP kernel

stride , #filtersR kernel
stride , and #unitsL,

to respectively define: convolutional, max pooling, average pool,
residual block and, linear layer. The symbol ◦ means function
and composition, and raise to n-th power means concatenating the
considered layer n times.

2LR := 128C 32×1
1×1 ◦

256C 1×32
1×1 ◦

88L (2)

VGG :=
(64C 3×3

1×1 ◦ MP
2×2
2×2

)2 ◦ (128C 3×3
1×1

)2 ◦ MP 2×2
2×2

◦
(256C 3×3

1×1

)4 ◦ MP 2×2
2×2 ◦

(512C 3×3
1×1

)2 ◦ MP 2×2
2×2

◦ 4096L ◦ 4096L ◦ 88L (3)

ResNet18 := 64C 7×7
1×1 ◦

64R 3×3
1×1 ◦

64R 3×3
2×2 ◦

128R 3×3
1×1

◦ 128R 3×3
2×2 ◦

256R 3×3
1×1 ◦

256R 3×3
2×2 ◦

512R 3×3
1×1

◦ 512R 3×3
2×2 ◦ AP

:
: ◦ 88L (4)

ResNet34 := 64C 7×7
1×1 ◦

64R 3×3
1×1 ◦

64R 3×3
2×2 ◦

(128R 3×3
1×1

)3
◦ 128R 3×3

2×2 ◦
(256R 3×3

1×1

)5 ◦ 256R 3×3
2×2 ◦

(512R 3×3
1×1

)2
◦ 512R 3×3

2×2 ◦ AP
:
: ◦ 88L (5)

For U-Net, we apply a standard architecture starting with base 64
channels on the base layer, with a depth of four, where the number
of channels is doubled at every depth. Each layer consists of two
3× 3 convolutions with stride of one. We further utilize transposed
convolutions for upsampling with a stride of two.

4. METHODOLOGY

We experiment with four CNNs for polyphonic music transcription
using the MusicNet dataset [7]. We formulate music transcription
as a multi-label classification problem, where multiple notes can be
active at any particular time. We establish the baseline transcription
performances of the “original” CNNs, and then evaluate the perfor-
mance improvement of pre-stacking with a U-Net.

4.1. Dataset and Input Representation

The MusicNet dataset [7] is a large scale dataset of classical music
specifically designed for AMT. The dataset consists of 330 freely li-
censed recordings (2048 minutes, 1 299 329 labels) of classical mu-
sic with a variety of instruments arranged in small chamber ensem-
bles under various condition of studio and microphone. The dataset
is skewed towards Beethoven (1085 minutes, 736 072 labels) and to
solo piano (1346 minutes, 794 532 labels). The MusicNet labels are
structured according to the format: starting/ending time, instrument,
note, measure, beat, and note value. The labels are retrieved from
digital MIDI scores, collected from various archives, and aligned
to the recordings using techniques of Turetsky and Ellis [23] with
an error rate of 4%. To make our results comparable to Thickstun
et al. [7] we use the same test set as theirs: Bach’s Prelude in D major
for Solo piano, Mozart’s Serenade in E-flat major, and Beethoven’s
String Quartet No.13 in B-flat major.

The dataset is preprocessed by computing the CQT magnitude
spectrogram of each recording. CQT spectrograms are computed
on 7 octaves with 24 bins per octave with a minimum frequency
32.7Hz which yields 168 frequency bins in total. In order to be
comparable with the previous work of Thickstun et al. [4, 7] we
adopt an equivalent setup for input preprocessing, rescaled to our
sampling frequency of 11.025 kHz. Specifically, audio and labels
are re-sampled to 11.025 kHz using an implementation of the band-
limited sinc interpolation method for sampling rate conversion as
described by Smith [24]. The CQT spectrogram is computed with
an hop length of 128 samples (≈ 12ms). Finally, a context window
of 32 frames is used for training and testing the neural networks.

4.2. Training

For adapting the networks to the multi-label classification scenario,
instead of taking the softmax at the output, we compute the sigmoid,
and treat each individual element as a probability value. We use
the cross-entropy loss, and optimize the network parameters with
the Adam algorithm [25]. For all the experiments, the learning rate
is fixed to 1× 10−4 and the batch size is set to 32. In order to
avoid overfitting, the training batch is created by randomly choosing
a track, and, randomly choosing a spectrogram frame (and associ-
ated context window) within the track using a uniform random dis-
tribution. By doing so, we observed no overfitting, thus did not use
a validation split to maximize the number of training samples. All
the models are trained until convergence, which was determined by
observing the performance metric on the training set, and stopping
training when no change is observed. We use the micro average-
precision (µAP ) metric to report classification performance. Each
output class is treated independently as a binary prediction. For all
the possible threshold values n, we compute precision Pn and re-
call Rn. This precision-recall curve is summarized as the weighted
mean:

µAP =
∑
n

Pn(Rn −Rn−1) (6)



Table 1. “Instrument-agnostic” transcription results in terms of
µAP (%). Our proposed setup (+U-Net) performs best in all cases.

2LR VGG Res18 Res34

Orig. 74.21 74.91 75.65 76.08

+U-Net 75.63 75.05 76.40 76.83

Table 2. “Piano”/“non-piano” transcription results in terms of µAP
(%). The proposed architecture with U-Net always outperform the
original architecture. Note that best performance is achieved with
Res18+U-Net which actually is shallower than Res34.

2LR VGG Res18 Res34

Orig.
Piano 72.96 78.60 79.75 78.20
¬ Piano 67.21 68.92 70.57 72.83

Avg. 70.08 73.76 75.16 75.51

+U-Net
Piano 79.01 79.38 80.47 79.83
¬ Piano 70.03 70.66 72.85 72.28

Avg. 74.52 75.02 76.66 76.06

A similar methodology for training, testing, and evaluation was
utilized in Thickstun et al. [7]. As our focus is frame-level transcrip-
tion we do not consider note-level metrics.

5. RESULTS

We first report on the “instrument-agnostic” based transcription. In
this case the instrument labels are not utilized, that is, the tran-
scribed notes are not associated with a particular instrument. We
then analyze the performance of the proposed deep architecture for
instrument-wise music transcription. Due to data imbalances of the
instrument labels, we first discuss transcription results considering
only the “piano” and “non-piano” case, which is roughly balanced..
We then discuss the obtained transcription results using all the in-
struments classes in the imbalanced data scenario.

5.1. Instrument-agnostic transcription

As shown in Table 1, the proposed architecture based on pre-stacking
a U-Net, provides improved accuracy compared to the baseline re-
sults of the original architectures. The performance improvement is
≈ 1% absolute, where 2LR, is the most improved network, and VGG
the least improved network. Importantly, this improvement is archi-
tecture agnostic and consistent over all four configurations. Also
note that, without our method, Res34 performs worse than Res18 –
which hints saturation. Also note that our method applied on Res18
– Res18+U-Net – performs better than Res34, which is shallower.
This shows that simply making the network deep, and therefore more
complex, is not an as effective solution as our proposed approach.

5.2. Instrument-wise transcription

Table 2 reports transcription results for “piano”, and “non-piano”
instruments. As in the instrument-agnostic case in Table 1, the pro-

Table 3. All instrument transcription results in terms of µAP (%).
Best performance is achieved with Res34+U-Net. Note that except
Res18, pre-stacking U-Net always help.

2LR VGG Res18 Res34

Orig.

Piano 67.98 74.60 77.70 80.19
Violin 48.64 44.46 46.80 50.73
Viola 32.53 31.80 36.35 33.72
Cello 32.73 38.33 38.56 38.75
Horn 67.53 64.38 70.38 63.20

Bassoon 71.61 69.91 73.43 72.11
Clarinet 64.79 63.98 67.89 68.53

Avg. 55.12 55.35 58.73 58.18

+U-Net

Piano 78.71 78.42 77.50 79.28
Violin 49.30 50.10 47.30 52.40
Viola 32.73 36.80 37.99 36.11
Cello 37.16 43.37 37.80 40.55
Horn 68.12 68.45 72.10 72.76

Bassoon 69.35 72.94 68.09 66.71
Clarinet 68.09 69.56 67.91 72.63

Avg. 57.85 59.95 58.38 60.06

posed architecture based on U-Net improves classification perfor-
mance for all the considered architectures. The performance im-
provement is large for the shallow models,≈ 5% absolute, and it re-
duces as the model gets deeper, becoming less than 1% absolute for
ResNet34. Interestingly, Res18 with our method – Res18+U-Net
– performs best. Given that Res34 is already very deep, and near-
doubling of the number of layers from Res18 to Res34 provided only
small improvement, it is highly unlikely that even a deeper ResNet
will be able to achieve the same performance as our method.

Table 3 shows transcription results when all instrument labels
are used. Also in this case the proposed architecture based on U-
Net achieved an improvement with respect to the baseline models.
The improvement is more evident when all the instruments are tran-
scribed, and it ranges from≈4% absolute for VGG network, to≈2%
absolute for ResNet34. In case of Res18, comparable performance is
achieved with our method to the original, indicating that our method
does not significantly harm the performance of the original architec-
ture even in the worst case.

6. CONCLUSION

We have proposed pre-stacking a U-Net architecture before differ-
ent transcription networks for improving polyphonic transcription at
the frame level. Our experiments show that the proposed architec-
ture improves transcription performance of the baseline for both the
“instrument-agnostic” and “instrument-specific” scenarios.

We plan to investigate more thoroughly the use of U-Net pre-
stacking for other MIR tasks such as audio source separation and
singing voice separation, with more experiments, additional data
sets, and metrics, including those that relate to statistical signifi-
cance. Applying our approach to the more complex network of [18]
that takes into account both onsets and frames is also an interesting
challenge for future work. Finally, it would be interesting to inves-
tigate if pre-stacking a U-Net architecture can lead to improvements
in tasks beyond MIR such as image classification.
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