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Abstract

Federated Learning (FL) is a distributed machine learning paradigm that enables
learning models from decentralized private datasets, where the labeling effort is
entrusted to the clients. While most existing FL approaches assume high-quality
labels are readily available on users’ devices; in reality, label noise can naturally
occur in FL and follows a non-i.i.d. distribution among clients. Due to the “non-iid-
ness” challenges, existing state-of-the-art centralized approaches exhibit unsatis-
factory performance, while previous FL studies rely on data exchange or repeated
server-side aid to improve model’s performance. Here, we propose FedLN, a frame-
work to deal with label noise across different FL training stages; namely, FL
initialization, and server-side model aggregation. Extensive experiments on various
publicly available vision and audio datasets demonstrate an improvement of 24%
on average compared to state-of-the-art methods for a label noise level of 70%.

1 Introduction

Federated Learning (FL) has been attracting growing attention thanks to its privacy-appealing
characteristics [5]. In FL, the Federated Averaging (FedAvg) algorithm [9] is the “de facto” approach
for the construction of a unified model from clients’ model updates, showcasing great success in
a wide range of tasks in recent years [7, 23, 3]. Nevertheless, a common limitation of existing FL
approaches is the implicit assumption that on-device data are perfectly annotated [19]. In reality,
data samples in FL either cannot be labeled readily or label quality cannot be guaranteed to the same
extent as datasets that are collected and annotated in a centralized environment. Under federated
setting, data annotation can be performed either through user interaction or an automated approach via
programmatic labeling functions, such as those used for keyboard query suggestions [23]. However,
these labeling techniques do not provide guarantees on label correctness and may result in noisy
or incorrect labels being assigned to the data samples. This is also the case for automatic labeling
systems, such as [13] where “weak” labels are constructed, which are inherently noisy. Therefore, in
FL, the presence of mislabeled samples, referred to as noisy labels, can naturally occur, while there is
no straightforward way to perform label correction.

In centralized regimes, the problem of designing robust learning schemes in the presence of label
noise has received noticeable attention recently [16], with various algorithms proposed to train models
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using noisy labeled samples [10, 11, 1]. The majority of these centralized approaches are either based
on filtering noisy samples or mitigating their effect through regularization techniques. However,
due to locality and the non-i.i.d. nature of data in FL, such learning schemes are ineffective under
federated setting. To overcome label noise in FL, authors in [22] utilized the communication of
class-wise data centroids among clients to construct decision boundaries among local data classes to
identify noise labeled instances. However, such learning scheme introduces additional communication
costs and may violate the privacy aspect of FL. Nonetheless, there is no efficient approach to detect
noisy instances in decentralized data, while label correction in FL remains unexplored.

Here, we propose a federated framework, named FedLN (Federated Learning with Label Noise),
to provide simple, yet effective approaches to accurately estimate label noise on a per-client basis,
correct noisy labeled instances, and offer robust learning scheme to learn generalizable models
under the presence of label noise. This way, FedLN mitigates the need of user interaction for high-
quality label acquisition, and is equally useful when automated labeling techniques are used for label
extraction, which are inherently noisy. Our experimentation on diverse public datasets from both
vision and audio domains shows that FedLN with only 30% of labeled data correctly annotated, on
average improves recognition rate by 24% across all datasets compared to the standard FL strategy
(FedAvg). To the best of our knowledge, FedLN is the first FL framework that learns models in a
federated setting for a variety of classification tasks under noisy labels without relying on exchanging
clients’ sensitive information or introducing additional communication costs.

2 Methodology

Problem Formulation: To define a label noise profile, we utilize two variables as defined in [11]:
noise level (nl), quantifying the percentage of mislabeled data in a given dataset, and noise sparsity
(ns), indicating the amount of confusion between classes. Formally in FL setting, we have a set of
M clients, each holding a training set Dm. Subsequently, each client’s dataset, Dm, can be divided
into a correctly labeled set Dm

c = {(xi, y
∗
i )}

Nm
c

i=1 and a noisy labeled set Dm
n = {(xi, yi)}

Nm
n

i=1 , where
Nm = Nm

c +Nm
n is the total number of data samples stored on the mth client and N =

∑M
i=1 N

m

is the total number of samples present during training. Both Dm
c and Dm

n are not known apriori and
the label noise level present in the mth client’s data is given by nm

l =
Nm

c

Nm . We aim to learn a global
unified model G without clients sharing any of their local data (Dm), while minimizing the effect of
noisy label set Dm

n on the training process.

Nearest Neighbor-based Correction (NNC): Learning from embeddings extracted from a self-
supervised pre-trained model can help avoid poor generalization due to noisy labels, as embeddings’
quality remain unaffected by the presence of noisy labels [24]. For this purpose, we utilize a self-
supervised pre-trained model as a feature extractor g (·) to produce embeddings ei for every input
instance xi∈Dm. We can then utilize a k-Nearest Neighbor (kNN) approach to identify and correct
noisy samples, which corresponds to outliers in the embeddings space (i.e., data points belonging
to the same neighborhood with different labels). Specifically, for the neighbourhood of k points
surrounding ei, we assign labels using a majority voting mechanism, with random tie-breaking, as:

yvotei = Φ (g, xi) = argmax

k∑
j=1

{yj ∈ Dk : |sorted {∥g(xi)− g(xl)∥ ,∀xl ∈ D}| < k} , (1)

where yj is the predicted kNN label for embedding vector ej , extracted using the feature extractor
g (·) from an input instance xj , and k is the neighbourhood size of kNN. Afterwards, we perform
the label correction process by utilizing the predicted label (with kNN) as the true label during the
training phase, when a label mismatch between the predicted and current label is detected.

We note that NNC is performed locally on each client during the initialization phase of FL, where
clients are required to hold a pre-trained model only for a single forward-pass. Additionally, NNC
remains unaffected by the level of label noise present at each client, whereas it largely depends on
the quality of the extracted embeddings from a pre-trained model. Recently, several self-supervised
pre-training approaches, such as [12, 14, 15], provide useful embeddings for broad spectrum of tasks.
Further details on NNC can be found in Algorithm 1 of the Appendix.

Noise-aware Federated Averaging (NA-FedAvg): With NA-FedAvg, we aim to tackle the effect
of noisy labels during the server-side aggregation process of naive FedAvg [9]. To this end, we
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Table 1: Performance evaluation of FedLN on different datasets against a range of baselines. Average accuracy over three distinct trials on
test set is reported. Supervised refers to standard FedAvg [9] training process, while LS and Bi-Temp denote the use of Label Smoothing [10]
regularization and Bi-Tempered loss [1], respectively. CL corresponds to the Confidence Learning [11] technique. Federated parameters are set
to R=200, M=30, F=80%, E=1, q=80%, and σ=25%.

Noise (nl) 0.0 0.4 0.7

Sparsity (ns) 0.0 0.0 0.4 0.7 1.0 0.0 0.4 0.7 1.0

CIFAR-10

Centralized 91.52 76.61 76.98 76.91 69.47 58.83 58.33 57.42 45.06

FedAvg

Supervised 78.52 68.77 67.05 67.31 67.92 57.65 56.94 56.81 63.54
LS 73.91 68.63 64.91 64.02 64.68 58.08 56.53 56.21 62.04
Bi-Temp. 75.29 66.18 65.66 66.58 67.71 56.75 57.61 58.39 63.74
CL 73.84 68.96 67.65 68.98 68.03 59.25 60.28 61.21 64.99

FedLN NNC 75.29 73.68 73.64 74.23 71.44 74.76 72.63 64.49 54.59
NA-FedAvg 76.41 69.52 70.73 70.61 71.01 65.34 66.04 68.11 67.92

Fashion
MNIST

Centralized 91.85 83.56 86.76 86.18 78.26 63.87 60.96 61.95 40.32

FedAvg

Supervised 86.43 82.05 83.24 83.35 81.07 58.55 56.06 57.11 59.37
LS 84.86 82.08 82.07 81.88 79.84 59.38 56.24 56.95 55.66
Bi-Temp. 84.61 81.93 81.15 81.84 81.46 57.93 57.35 58.31 59.24
CL 83.91 82.82 83.29 83.76 81.91 59.48 57.97 57.33 60.89

FedLN NNC 80.29 86.81 87.22 87.77 83.13 85.38 84.91 76.88 44.48
NA-FedAvg 86.39 83.59 84.28 84.45 83.02 78.22 78.68 76.17 79.46

Path
MNIST

Centralized 90.65 81.16 80.92 81.02 78.05 58.33 59.82 57.75 47.89

FedAvg

Supervised 87.05 78.82 77.06 76.68 77.03 54.74 52.49 53.22 58.61
LS 84.13 79.62 76.96 74.57 74.9 56.17 52.06 52.31 53.46
Bi-Temp. 83.09 78.03 77.23 77.61 76.67 55.89 55.74 56.15 58.54
CL 84.31 78.97 79.09 77.26 81.02 59.69 55.88 54.29 60.21

FedLN NNC 84.45 82.76 82.97 82.01 78.97 80.13 82.74 78.78 41.53
NA-FedAvg 85.96 80.52 81.06 81.36 78.35 76.69 75.85 79.64 72.84

Speech
Commands

Centralized 96.68 90.33 90.31 90.84 84.84 84.95 83.31 82.65 60.41

FedAvg

Supervised 96.31 81.83 82.53 82.44 80.33 72.34 70.34 70.89 72.39
LS 94.64 91.13 84.77 80.11 79.35 77.06 71.28 68.13 69.71
Bi-Temp. 96.21 82.31 81.35 82.76 82.78 73.27 71.41 72.57 70.98
CL 87.12 85.45 87.97 84.34 85.54 78.34 72.92 70.07 72.81

FedLN NNC 95.79 95.91 95.95 95.97 96.24 96.09 96.11 96.13 46.07
NA-FedAvg 96.07 89.49 90.35 92.72 94.09 79.12 81.91 82.33 80.37

propose to utilize an estimation of client’s noise level to perform a “noise-aware” aggregation, which
considers both the number of samples and the number of noisy labels in the client’s data. We use
a scoring-based method, namely energy score [8], which can directly be applied to the outputs (or
logits) of the neural network to estimate a per-client noise level. Each client applies the energy score
fuction over their dataset in federated round r, where the locally trained model (pθr

m
) is used to

compute logits. We can acquire a scoring set, Sθr
m

, which contains a score for each locally stored
sample. Next, to differentiate between noisy and correctly labeled instances, we utilize a thresholding
mechanism based on the scores obtained from the global aggregated model in the same federated
round r (Gr). The threshold value τν is computed from the νth percentile over the obtained score
set, Sθr

G
. With Sθr

m
and τν computed, we can estimate a per-client noise level by computing the

percentage of mth client’s local instances that are below the obtained τν , as:

nm
l =

∑Nm

i=1 uτν (si)

Nm
(2)

where uτν (·) is a “τ -shifted” Heaviside function, which produces 1 for all inputs above a threshold
τν . Finally, in the “Noise-Aware” FedAvg process, we introduce nm

l in the relative impact of the
mth client on the construction of the global model G. It is important to highlight that even though
NA-FedAvg produces a rough estimation of actual noise level present in clients’ data by computing
a pair of computationally inexpensive scoring sets in a single federated round, it can still be used
effectively as a proxy to identify and exploit ”clean“ clients. Further details on NA-FedAvg can be
found in Algorithm 1 of the Appendix.

3 Experiments

Datasets: We use publicly available datasets from both the vision and audio domains with their
standard training/test splits. Specifically, we use the CIFAR-10 [6], FashionMNIST [20] and
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PathMNIST[21] datasets, where the tasks of interests are object detection, clothes classification,
and pathology reporting, respectively. Likewise, we use SpeechCommands (v2) dataset [18] for
audio-based keyword spotting (12 classes in total). Additionally, we extend our evaluation to a
real-world, human annotated version of CIFAR-10/100 [19] datasets, namely CIFAR-10N/100N,
where label noise presents varied (or biased in some manner) patterns based on users’ preferences.

Models Architectures: We use ResNet-20 [4] for the vision domain, while [17] was utilized for
the considered audio recognition task. These models were chosen due to their relatively compact
model size, which makes them ideal for on-device learning, where devices have medium to low
computational resources. As a feature extractor for NNC, we use off-the-self pretrained models
trained on large-scale datasets in an unsupervised manner. For vision tasks, we use ViT-B/32 from
CLIP [12] and for audio we leverage TRILLsson (v3, EfficientNetv2-B3) [15], which has the same
audio front-end as our audio model. These publicly available models can be downloaded directly on
client devices and we run them once (i.e., forward-pass only) to compute embeddings for client’s
local data.

Experimental Setup: To simulate a federated environment, we use Flower framework [2] with
FedAvg [9] to construct the global model from clients’ local updates. The detailed federated
parameters utilized in our experiments are presented in Table 2 of the Appendix. Furthermore, we fix
ν=75% and k=100, which we determine during our initial exploration. Additionally, we randomly
partitioned the datasets across the available clients in a non-overlapping fashion, after which we
performed label noise injection using a noise matrix (unique among client) based on parameters
nl and ns, similar to [11]. For an accurate comparison between our experiments, we manage any
randomness during data partitioning, label noise injection and training procedures by using a seed
alongside the aforementioned parameters.

Results: We performed experiments on all datasets for a diverse number of noisy profiles, varying
both noise level (nl) and sparsity (ns), and compared FedLN performance with other considered
baselines in Table 1. For a fair comparison, we utilized identical data partitioning and noisy injection
schemes in all related experiments. From Table 1, we observe that FedLN can improve the model’s
performance compared to standard FedAvg across all datasets significantly. In particular, comparing
the rows for nl=70%, we note an increase of 24.82% in accuracy on average using FedLN across
the considered tasks compared to the standard federated model. Observing the baseline results, we
notice that both LS [10] and Bi-Tempered loss [1] performance are inconsistent for a wide range of
noise profiles, while CL [11] is more stable across diverse label noise settings with improvement
not exceeding 4% on average across all tasks. On the contrary, FedLN performance is stable across
majority of noise profiles and provides significant improvement in model’s generalization capability.
We note that NNC provides the largest improvement on model’s performance across distinct noise
profiles, with the exception of the special cases of “class-flipping” on high levels of noise (nl=40/70%
and ns=100%). In such cases, NNC is unable to use the computed embeddings to perform the label
correction process, as the majority vote during kNN label estimation points to the noisy class; thus,
amplifying the label noise. NA-FedAvg performance remains effective across all considered noise
profiles, with no computational overhead and client-side modifications during the FL training process,
which makes it ideal for clients with minimal computational and storage resources.
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Figure 1: Evaluation of FedLN in real-world label noise
patterns from CIFAR-10/100N. Average accuracy over
three distinct trials on test set is reported for R=200/500
for CIFAR-10/100N, respectively. Federated parameters
are set to M=30, E=1, q=80%, and σ=25%.

Next, we evaluated FedLN performance in the re-annotated
versions of the CIFAR-10/100 datasets, namely CIFAR-
10/100N [19], which contain a real-world human anno-
tation error level of approximately 40% (nl=40%); thus
studying FedLN performance with label noise in-the-wild.
We randomly distributed the data across clients; thus
no clear group of “clean” clients is considered in this
case, which makes the learning process even more chal-
lenging. From the results presented in Figure 1, we
note that FedLN retains its effectiveness, while moving
from synthetic to real-world noise patterns. In particu-
lar, model’s recognition rate remains within 2% to the
ones reported in Table 1 for nl=40% for CIFAR10 dataset,
while FedLN is able to improve the recognition rate by 8%
on average compared to the standard FL process.
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4 Conclusions

We propose a robust and effective framework to deal with label noise during learning on-device
models, which operate in distinct phases of the FL process. Despite its simplicity, the model
generalization we achieve is consistently superior to the considered baselines, while an evaluation
of FedLN with in-the-wild label noise data showcases that it is valuable for improving the FL services
provided to respective users.
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Appendix

Algorithm 1 FedLN: Federated learning under Label Noise. We develop two distinct approaches to
deal with label noise in learning models from decentralized data, whereas FedAvg [9] is the base
algorithm and it is to indicate the key contributions of our proposed approaches. In the algorithm,
scalar Rc indicate the activation round for NA-FedAvg algorithm and η is the learning rate.
FedAvg , NNC , NA-FedAvg

1: Server initialization of model G with model weights θG0 , nk
l =0, ∀k ∈ K

2: for each client k ∈ K in parallel do
3: for (xi, yi) ∈ Dk do
4: ỹi ← Φ (g, xi)

5: end for
6: end for
7: for r = 1, . . . , R do
8: Randomly select M clients to participate in round i
9: for each client m ∈M in parallel do

10: θmr ← θGr
11: θmr+1, (Sm

θG , S
m
θm+1 ) ← ClientUpdate(θmr ,r,nm

l )
12: end for

13: if r = Rc then nm
l =

1−
∑Nm

i=0 uτν (Sθm+1)
Nm

end if

14: θGr+1 ←
∑M

m=1
Nm

N θmr+1

15: θGr+1 ←
∑M

m=1 (1− nm
l ) · Nm

N θmr+1

16: end for
17: procedure CLIENTUPDATE(θ, r, nl)
18: for epoch e = 1, 2, . . . , E do
19: for batch b ∈ Dk do
20: θ́ ← θ − η∇θ (LCE (yvote, pθ (y|xb)))

21: θ́ ← θ − η∇θ (LCE (y, pθ (y|xb)))

22: if r = Rc then sb,θ́ ← E
(
xb, pθ́

)
, sb,θ ← E (xb, pθ) end if

23: end for
24: end for
25: return θ́, (Sθ,Sθ́)
26: end procedure

Table 2: Primary Experiment Parameters used during evaluation. Note that we employ uniform
random sampling for the clients’ selection strategy, as other approaches for adequate clients election
are outside the scope of current work.

Name Parameter Range
Number of Clients M 30
Number of Federated Rounds R 1—200
Number of Local Train Steps E 1
Clients’ Participation Rate q 80%
Noise Level nl 0—100%
Noise Sparsity ns 0—100%
Percentage of Noisy Clients F 0—100%
Data Distribution Variance across Clients σ 25%
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