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Abstract
Understanding biological processes, drug devel-
opment, and biotechnological advancements re-
quires a detailed analysis of protein structures and
functions, a task that is inherently complex and
time-consuming in traditional protein research.
To streamline this process, we introduce Prote-
inGPT, a state-of-the-art multimodal large lan-
guage model for proteins, which allows users to
upload protein sequences and/or structures for
comprehensive proteins analysis and responsive
inquiries. ProteinGPT seamlessly integrates pro-
tein sequence and structure encoders with lin-
ear projection layers to ensure precise represen-
tation adaptation. It leverages a large language
model (LLM) to generate accurate and contex-
tually relevant responses. To train ProteinGPT,
we construct a large-scale dataset of 132,092 pro-
teins, each annotated with 20-30 property tags
and 5-10 QA pairs per protein, and optimized
the instruction-tuning process using GPT-4o. Ex-
periments demonstrate that ProteinGPT effec-
tively generates informative responses to protein-
related questions, achieving high performance
on both semantic and lexical metrics. It signifi-
cantly outperforms baseline models and general-
purpose LLMs in understanding and respond-
ing to protein-related queries. Our code and
data are available at https://github.com/
ProteinGPT/ProteinGPT.

1. Introduction
Proteins are fundamental molecular building blocks of life,
playing critical roles in biological processes (Kitadai &
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Maruyama, 2018; Xiao et al., 2025). Understanding their
structure, functions, and interactions is vital for advance-
ments in drug discovery (Teague, 2003), healthcare (Orga-
nization & University, 2007), and biological/medical en-
gineering (Kobsa & Saltzman). Recent breakthroughs in
machine-learning-based protein structure and function pre-
diction (Lin et al., 2023) have significantly accelerated bi-
ological research by reducing the reliance on traditional
labor-intensive laboratory experiments and literature search.

Challenges. As proteins can be represented by strings of
characters, each corresponding to an amino acid from an al-
phabet of 20 letters, recent advancements in Large Language
Models (LLMs) have naturally extended to protein research.
Existing protein LLMs such as ProtST (Xu et al., 2023), Pro-
teinChat (Guo et al., 2023), and ProtChatGPT (Wang et al.,
2024) focus primarily on sequence-based or structure-based
modeling, limiting their ability to generate holistic protein
insights from multiple modalities. For instance, protein
sequences can reveal evolutionary information, functional
sites, and sequence-structure relationships, while protein
structures provide critical insights into spatial arrangement,
structural dynamics, binding sites, and stability. Applying
multimodal LLMs to protein modeling is non-trivial due
to the challenge in aligning diverse modalities, such as tex-
tual descriptions, protein sequences, and protein structures.
Meanwhile, direct end-to-end retraining for protein LLMs
is usually impractical due to extensive requirements for
annotated data.

Our Work. We propose ProteinGPT, a protein LLM that
allows researchers to upload protein sequences and/or struc-
tures (via fasta or PDB files) and ask natural language ques-
tions. ProteinGPT consists of four major components: a
protein sequence encoder, a protein structure encoder, a
projection layer, and an LLM.

The protein sequence encoder is based on the ESM-2 (Evo-
lutionary Scale Modeling 2) (Lin et al., 2023) model variant
esm2_t36_3B_UR50D with 36 transformer layers and
3 billion parameters. Pretrained on UniRef50/D (Suzek
et al., 2015), a comprehensive protein database that clus-
ters sequences with at least 50% sequence identity and
80% coverage, this model ensures sequence diversity and
informativeness in encoding. The protein structure en-
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Figure 1: ProteinGPT Modality Fusion & Alignment Stage: we freeze the encoder blocks and train the linear project
layer to learn how to align protein structure and protein sequence representations with text. In the alignment stage, the input
to the training is only the projected protein representation. No text prompts are incorporated in this stage.

coder, esm_if1_gvp4_t16_142M_UR50, is an inverse
folding model that incorporates a geometric input process-
ing layer paired with a seq2seq transformer (Bahdanau,
2015). Trained on 12 million structures predicted by Al-
phaFold2 (Jumper et al., 2021), the model effectively cap-
tures protein structural information.

To bridge these encoders with the LLM, we introduce a pro-
jection layer that aligns their embeddings with the LLM’s la-
tent space. This enables seamless integration of multimodal
protein representations into the LLM, enabling information
extraction from not only the protein structural and sequen-
tial information but also the rich pretrained knowledge of
the ESM.

To train ProteinGPT for effective modality alignment, we
introduce ProteinQA, a large-scale dataset of over 132,092
protein sequences with structural information and annota-
tions. Unlike previous works that use entire protein an-
notations as prediction targets for instruction-tuning, we
use GPT-4o (OpenAI et al., 2024) to systematically de-
compose proteins’ abstract summary from the RCSB Pro-
tein Data Bank (RCSB PDB) (Burley et al., 2023) into
question-answer (QA) pairs. We then finetune ProteinGPT
on ProteinQA using diverse open-source models, includ-
ing Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al.,
2024) Vicuna (Chiang et al., 2023), and Mistral (Jiang et al.,
2023). The training effectively enhances the model’s ability
to understand user queries and generate concise, contex-
tually relevant answers. Our contributions are as follows:

• Novel Framework. We introduce ProteinGPT, a state-of-
the-art protein LLM that fuses protein sequence and struc-
tural information to enable interactive protein-focused
conversations, significantly enhancing the understanding

and design of proteins;

• Large-scale Dataset. We propose ProteinQA, a large-
scale protein dataset based on RCSB-PDB (Guo et al.,
2023). ProteinQA encompasses 132,092 protein samples,
each annotated with a detailed descriptive abstract, 20-30
property tags, and 5-10 QA pairs. The depth and variety
of these annotations position ProteinQA as a high-quality
instruction tuning corpus;

• Comprehensive Experiments. We conducted extensive
experiments on mainstream open-source and proprietary
LLM backbones under different scenarios. Our empirical
analysis provides guidance for future design of protein
LLMs.

2. Methodology
2.1. Model Architecture

ProteinGPT consists of two frozen pre-trained en-
coders (Figures 1 and 2): an inverse folding model
(esm_if1_gvp4_t16_142M_UR50) for structure en-
coding and a protein language model for sequence encoding
(esm2_t36_3B_UR50D). The embeddings generated by
these models are fed into a linear projection layer to produce
soft prompts for the LLM. The model training comprises
two stages: 1) Sequential and Structural Alignment and 2)
Instruction-tuning.

2.1.1. SEQUENCE AND STRUCTURE ALIGNMENT

In the alignment stage, protein structures are
first fed into the pre-trained structure encoder
esm_if1_gvp4_t16_142M_UR50 which explic-
itly captures the detailed 3D structures and models
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Figure 2: ProteinGPT Instruction Tuning Stage: we utilize the QA pairs and property tags in ProteinQA to tune the
LLM to follow instructions and give concise responses. For instruction alignment, explicit prompts (Questions on the
protein) are included at the beginning of the prompt.

spatial interactions between amino acid residues. Then,
sequences are encoded using the sequence encoder
esm2_t36_3B_UR50D featuring 36 transformer lay-
ers and 3 billion parameters, trained on the Protein
UniRef50/D database to enhance sequence diversity.
This module integrates structural information with im-
plicit structural contact, evolutionary, and biochemical
information that the structure alone does not capture. For
efficient training, both of these modules are frozen. We
utilize a specialized token prompt for protein-text modality
alignment:

Q: < Protein >< Struct >< Seq >
< /Protein >< QuestionPrompts >
A: < Description >

The structural and sequential information is encoded into
the soft prompts and prepended to the question prompt. In
stage 1 training, the question prompt Q is left empty to
prioritize learning the abstract description from the protein
representation.

The description tag is then replaced with the full annotation
from RCSB-PDB (Guo et al., 2023) to train the projection
layer in aligning a protein with its annotation description.

2.1.2. INSTRUCTION-TUNING

In stage 2, the model undergoes instruction tuning using
our curated QA dataset. Unlike previous works that uti-
lize full annotations, we focus on specific QA examples
to facilitate instruction tuning. We augment the abstract
dataset from stage 1 using GPT-4o to generate explicit
QA pairs for this stage. The prompts from stage 1 are
adapted to the LLaMA style (“### Human:’’ . . . and
### Assistant: . . .), with Q replaced by explicit ques-
tions from the QA dataset, such as “how many assemblies

does this protein have.” The model then generates descrip-
tive yet concise answers from the given protein as A.

2.2. Dataset Curation

To ensure the highest quality of training data, we imple-
ment a rigorous validation and data collection process. We
leverage RCSB-PDB dataset (Berman, 2000), which is thor-
oughly vetted by both RCSB-PDB (Berman, 2000) and
PubMed1 for reliable protein information. The dataset is
derived from peer-reviewed PubMed publications, imply-
ing that the dataset content is highly accurate. We select a
large dataset to cover a wide range of proteins and ensures
coverage on out-of-distribution proteins. For modality align-
ment, we construct a large-scale dataset from the RCSB-
PDB database (Berman, 2000) consisting of 132,092 protein
structures, sequences, and abstract descriptions. The raw
dataset of 204,826 proteins is filtered to retain only those
with an abstract description, chain A, and sequences without
non-encodable characters. Each entry in the final dataset
includes the 3D protein structure represented by backbone
atomic coordinates, the sequence string, and a rich protein
annotation, as shown in Figure 2. The detailed statistics of
our dataset are presented in Table 1, highlighting the exten-
sive annotations and comprehensive content available for
each protein.

2.3. Data Augmentation
Previous works often use the entire protein annotation for
instruction tuning (Xu et al., 2023; Guo et al., 2023; Wang
et al., 2024), which may result in the model producing overly
detailed responses with extraneous information not directly
relevant to the user prompt. Therefore, our ProteinGPT
decomposes the rich protein annotations into more specific
QA-pairs for instruction tuning so that user instructions

1https://pubmed.ncbi.nlm.nih.gov/
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can be concisely answered. We do this by generating short
concise answers along with long-form responses to include
our dataset. Concretely, we prompt GPT-4o to generate
both open-ended and close-ended QA pairs with the context
of the abstract to decompose the abstract into atom-level
QA pairs. As seen in Table 1, on average, each protein has
around 40 total QA pairs generated from this process.

3. Results
3.1. Quantitative Evaluation

3.1.1. EXPERIMENTAL SETUP

We evaluate our model using a curated dataset of 3,508
randomly-selected question-answer-protein pairs, covering
160 proteins from the test split. Each protein is associated
with 28-30 questions that were not seen by ProteinGPT dur-
ing training. We benchmark against several baseline mod-
els, including vanilla open-source LLMs (without modality
alignment or instruction tuning) and proprietary models
(GPT 4o/4/3.5, o3/o1-mini, and DeepSeek-R1). To man-
age computational costs, we sample 1,025 questions (35
proteins with 28∼30 questions per protein). For fairness
of comparison, we employ standard metrics to compare
model predictions with the ground truth. These include
1) semantic similarity metrics that measure contextual
meanings: BERTScore (SBERT) (Zhang et al., 2020), Pub-
MedBERT Score (SPub) (Gu et al., 2021), and GPT Score
(SGPT) (OpenAI, 2023); 2) lexical quality metrics that
measure surface-level similarity based on n-gram overlaps:
ROUGE-1/2/L (Ganesan, 2018). For the GPT Score, we
use OpenAI’s text-embedding-3-large as the em-
bedding model.

3.1.2. COMPARISON AMONG PROTEINGPT VARIANTS

Among the 4 variants, ProteinGPTMistral performs the best
in terms of both semantic and lexical metrics. In terms of
BERTScore (Table 3), ProteinGPTMistral achieves 0.829, fol-
lowed by ProteinGPTLLaMA-3 (0.790), ProteinGPTLLaMA-2
(0.764), and ProteinGPTVicuna (0.756). The strong perfor-
mance of ProteinGPTMistral can be attributed to its integra-
tion of sliding window attention (SWA) (Jiang et al., 2023).
Protein sequences are inherently lengthy and complex, often
requiring models to capture intricate dependencies across
extended stretches of amino acid. SWA helps capture local
patterns and dependencies within protein sequences, leading
to a longer effective attention span crucial for tasks like sec-
ondary structure prediction and functional annotation. The
reduced computational load associated with SWA allows
for the processing of longer protein sequences without a
proportional increase in resource consumption. Figure 5
shows the visual comparison among different base LLMs of
ProteinGPT.

3.1.3. BASELINE COMPARISON

We also compare ProteinGPT to three groups of baselines to
demonstrate ProteinGPT’s effectiveness in protein-specific
multimodal tasks: 1) Vanilla Open-source LLMs (Vicuna,
Mistral, LLaMA-3, and LLaMA-2); 2) Proprietary General-
Purpose LLMs (GPT-4o/4/3.5); 3) State-of-the-art mod-
els with Strong Reasoning Capabilities (OpenAI o1/o3-
mini and DeepSeek-R1). For fairness of comparison, we
prepended the protein’s FASTA sequence to the prompt to
provide context for these LLMs. Tables 3 and 5 show model
performance with semantic and lexical scores.

Vanilla open-source LLMs exhibit low semantic perfor-
mance. When providing protein sequences as text input
(Table 3a), the BERTScore (SBERT) range from 0.490
(LLaMA-3) to 0.572 (Vicuna) in terms of precision, in-
dicating a lack of protein-specific pretraining and limited
semantic understanding of protein data. Meanwhile, incor-
porating modality fusion (where additional cues beyond the
raw protein sequence are integrated) leads to modest im-
provements, such as an improvement from 0.572 to 0.582
when using Vicuna as the base model. Model Similarly,
proprietary models such as GPT-4o/4/3.5, OpenAI o1/o3-
mini, and DeepSeek-R1 also exhibit lower semantic and
lexical performance when processing protein sequences as
text inputs. This performance gap is likely due to these
models not being pretrained on domain-specific data.

The results in Table 4 highlight a critical challenge in ap-
plying general-purpose language models to protein-related
queries: standard models, even those with strong reasoning
capabilities like o3-mini and DeepSeek-R1, struggle to in-
terpret protein sequences. o3-mini achieves a marginally
higher Rouge-L score (0.072) than GPT-4o (0.067), but
remains far below ProteinGPTMistral (0.460). DeepSeek-
R1 performs particularly poorly, which suggests that it
struggles to extract meaningful insights from protein se-
quences when they are formatted as text. The sample
answers in Appendix G.3 show that, while models like
DeepSeek-R1 demonstrates strong reasoning capabilities on
general QA tasks, it struggles with domain-specific termi-
nology such as assemblies, interpreting inputs merely
as a long string of amino acids. It tends to
generate verbose, speculative responses, often introduc-
ing uncertainty by stating Maybe the question is
about...–which diminishes its utility for precise scien-
tific queries. As a result, its performance is comparable
to or slightly worse than the modality-aligned version of
ProteinGPT.

The overall comparison can be seen in Figure 3, which
shows that ProteinGPT outperforms both baselines con-
sistently. This demonstrates that our model outperforms
knowledge embedded within LLMs and effectively utilizes
sequence and structure information to answer questions.
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Figure 3: Protein Text LLM takes protein primary sequence as part of the prompt to the model. GPT models are more
powerful than open-source LLMs like LLaMA and Mistral. Given the same protein sequence as input, ProteinGPT utilizes
the information from sequence and structure encoders and yields more accurate responses.

Baseline Comparisons to ProteinGPT We also compare
ProteinGPT to two baselines to demonstrate our contribu-
tions in creating multimodal LLMs that are more capable
than general-purpose LLMs in communicating about pro-
teins. The first baseline is the vanilla LLMs that we trained
our models on, such as Vicuna, Mistral, LLaMA-3, and
LLaMA-2. The second baseline is GPT-4 and GPT-3.5. For
evaluation, we simply pretended the FASTA sequence of
the protein in front of the prompt to give the LLM context
of the protein. Table 2 and Figure 3 provide quantitative and
visual comparison on baseline LLMs with ProteinGPT.

3.1.4. CLOSE-ENDED ACCURACY EXPERIMENT

Although semantic-based evaluations may be useful in gaug-
ing the feasibility of our outputs, to ensure our model is
outputting factually correct information regarding a given
protein, we also conduct a close-ended answer format eval-
uation on ProteinGPT with samples from our test subset of
proteins. We selected 160 proteins for evaluation but only
used QA-pairs that had a factual single-word ground truth
and excluded questions that had open-ended answers (e.g.
”describe this protein”). Examples of such closed-ended
questions are ”yes”/”no” questions or information on the
number of assemblies or polymers in a protein. We then use
GPT-4o to directly judge the outputs of ProteinGPT to the
ground truth in our dataset.

The results can be seen in Figure 6. LLaMA-3 and Mis-
tral are the best-performing backbone models, achieving
around 80% accuracy in answering fact-based closed-ended

questions. Even the weaker models like LLaMA-2 and Vi-
cuna achieve reasonable accuracy above 70%. Therefore,
ProteinGPT not only demonstrates strong capabilities in gen-
erating feasible answers as demonstrated by our semantic
evaluations, but ProteinGPT also provides factually accurate
answers as demonstrated by this accuracy evaluation.

4. Conclusions
We introduce ProteinGPT, a protein LLM that enhances
question-answering capabilities and facilitates protein un-
derstanding with concise, informative responses. Prote-
inGPT fuses structure with sequence modalities and enables
alignments to any base LLMs. Our results demonstrate
ProteinGPT ’s potential for practical applications in protein
understanding and design, highlighting the value of inter-
active protein models as dynamic research tools. Looking
ahead, future enhancements aim to introduce multi-user
support, enabling real-time collaboration and knowledge
sharing in biological research. Additionally, we are develop-
ing user-friendly interfaces and integration with existing lab
workflows, ensuring effortless adoption into bioinformatics
and computational biology pipelines. By bridging Prote-
inGPT with widely used tools, we aim to drive innovation
and collaboration in protein research.
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Per Protein Min Max Mean

# Abstracts tokens 89 728 205.45
# Answer tokens 32 550 98.56

# Open-Ended QA Pair samples 10 26 17.39
# Closed-Ended QA Pair samples 24 29 25.94

Table 1: Statistics for ProteinQA

A. Experiments
A.1. Training

We trained ProteinGPT on 4 base LLM architectures: Vi-
cuna (Chiang et al., 2023), LLaMA-2 (Zhang et al., 2023a),
LLaMA-3 (Dubey et al., 2024), and Mistral (Jiang et al.,
2023). Our training process is divided into two phases:
modality alignment (MA) and instruction tuning (IT). This
approach allows the model to preserve previously acquired
knowledge while effectively handling specific instructions,
such as protein-related queries.

Stage I: Modality Fusion/Alignment (MA). In this stage,
we focus exclusively on training the projection adapter by
freezing both sequence and structure encoders. We set the
maximum text length of abstracts to 384 characters to ac-
commodate the annotation lengths within the RCSB-PDB
dataset. The projection layer is trained over 10 epochs with
a batch size of 1, weight decay of 0.05, and 2048 warm-up
steps. The dataset is divided into a training set (70%) of
105,673 proteins and a testing set (30%) of 26,419 proteins.
We utilize the AdamW optimizer with β1 = 0.9, β2 = 0.98
(Loshchilov & Hutter, 2019), and employ a learning rate
scheduler with a linear warm-up followed by cosine anneal-
ing. We set the initial learning rate to 1×10−4, the minimum
learning rate to 8× 10−5, and the warm-up learning rate to
1× 10−6. Automatic mixed precision (AMP) (Micikevicius
et al., 2018) was used to improve training efficiency.

Stage II: Instruction Tuning (IT). In this stage, the model
is fine-tuned on a protein question-answering task. Training
is conducted for 10 epochs with a batch size of 1, weight
decay of 0.05, and 200 warm-up steps. The QA dataset used
in this phase comprises approximately 3.7 million samples,
with around 35 questions per protein. We apply similar
settings for the AdamW optimizer and AMP, but with a
lower initial learning rate of 1× 10−5, a minimum rate of
1× 10−6, and a warm-up rate of 1× 10−6.
A.2. Inference
In real-world scenarios, there are cases where only protein
sequence or structure information is available. Under such
scenarios, protein folding and protein inverse-folding mod-
els are applied to obtain the missing structure or sequence
information.

For missing or incomplete sequences, we use the

ESM-IF1 inverse folding model to predict absent segments,
generating protein sequences from backbone atom coordi-
nates. This method is effective in filling sequence gaps
where traditional approaches struggle.

For missing structural data, we apply ESMFold to pre-
dict 3D structures of missing regions, generating accurate
3D conformations without relying on multiple sequence
alignments.
A.3. Computational Cost
Our training uses two NVIDIA H100 PCIe GPUs (80GB
vRAM) and two NVIDIA A100 PCIe GPUs (40GB). We
implemented strategies including Automatic mixed preci-
sion (AMP), optimized data loaders, asynchronous data
processing, multi-GPU training. Stage 1 and 2 require ap-
proximately one week and 60 hours, respectively.

ProteinGPT is optimized for fast processing, handling user
protein queries in ∼ 50 seconds and generating 23-token
responses in about 8 seconds. Its computational efficiency
allows deployment on hardware ranging from GPUs like the
NVIDIA T4 with 16 GB memory to standard CPUs.

B. Results
We conducted a series of experiments to assess Prote-
inGPT’s effectiveness both quantitatively and qualitatively.
Moreover, we benchmark the capabilities of state-of-the-art
large language models on protein-related tasks.

B.1. Qualitative Evaluation

Figures 4, 9, 11 show example conversations between hu-
man users and ProteinGPT on Proteins 6O7Q, 5X1Y, and
7RUV, respectively. To ensure unbiased evaluation and
avoid data leakage, all testing was performed on a separate
set of proteins isolated from training. ProteinGPT effec-
tively interpret the semantics of queries and produces accu-
rate, logically consistent responses. These responses include
details about protein functions, such as catalyzing the reduc-
tion of dinitrogen to ammonia, and structures, such as the
structural dependencies on the substrate azide and the prod-
uct ammonia. This demonstrates ProteinGPT’s capabilities
on protein sequence, structure, and function understand-
ing tasks and its potential for enabling rapid exploration of
proteins.

B.2. Ablation Study

Lastly, to better understand our contributions and ensure the
model is learning at each step in the architecture, we perform
an ablation study to demonstrate that the module after each
stage is indeed improving the performance of ProteinGPT.
ProteinGPT is broken down into three modules: vanilla
LLM, modality-aligned LLM, and instruction-tuned LLM.

Vanilla LLM: Table 3 (a) and Table 5 (a) display the seman-
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###	ProteinGPT:

The protein is a viral main protease (Mpro) of 
SARS-CoV-2. The protein is a homodimer with 
each monomer consisting of two domains: the N-
terminal domain (NTD) and the C-terminal 
domain (CTD). The NTD is composed of a central 
beta-sheet flanked by two alpha-helices, while 
the CTD is composed of a central alpha-helix 
flanked by two beta-sheets. The active site is 
located at the interface of the two domains.

###	Human:
Please	describe	the	structure	of	the	protein

#	Protein	Sequence	(to	be	encode	by	ESM-2)
SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVY
CPRHVICTSEDMLNPNYEDLLIRKSNHNFLVQ	…	…	…
QDHVDILGPLSAQTGIAVLDMCASLKELLQNGMNGRTI
LGSALLEDEFTPFDVVRQCSGVTFQ
#	Protein	Structure	Structures	are	
encoded	by	ESM-2’s	inverse	folding	
[GVP-GNN	model]

Structures	come	from:
(a)	RCSB	database	if	found
(b)	Predicted	by	AlphaFold

###	ProteinGPT:
The protein is a viral main protease (Mpro) of 
SARS-CoV-2. The protein is essential for viral 
replication and is a key target for antiviral drug 
development.

###	Human:
Please	describe	the	functionality	of	the	protein.

###	ProteinGPT:
The protein adopts a chymotrypsin-like fold.

###	Human:
What	structural	fold	does	the	protein	adopt?

###	ProteinGPT:
The protein is a viral main protease (Mpro) of 
SARS-CoV-2. The protein is a homodimer with 
each monomer consisting of two domains: the 
N-terminal domain (NTD) and the C-terminal 
domain (CTD). The NTD is composed of a central 
beta-sheet flanked by two alpha-helices, while 
the CTD is composed of a central alpha-helix 
flanked by two beta-sheets. The active site is 
located at the interface of the two domains. The 
protein has 2 intermolecular metallic bonds. The 
protein adopts a chymotrypsin-like fold.

###	Human:
Please	give	a	summary	about	the	protein.

Figure 4: Conversations between humans and ProteinGPT on Protein 6O7Q, where ProteinGPT provides detailed insights
into both sequence (e.g., 60-subunit MoFe proteins) and structural information (e.g., substrate azide and product ammonia).

Scoring Metrics GPT-3.5 GPT-4 GPT-4o P-GPTVicuna P-GPTLlama-2 P-GPTLlama-3 P-GPTMistral o1-mini o3-mini DeepSeek-r1

SBERT

Precision 0.641 0.578 0.596 0.730 0.739 0.779 0.821 0.572 0.597 0.468
Recall 0.701 0.675 0.668 0.788 0.796 0.803 0.839 0.664 0.699 0.635
F1 0.667 0.621 0.628 0.756 0.764 0.790 0.829 0.612 0.641 0.537

SPub

Precision 0.513 0.434 0.440 0.626 0.644 0.706 0.758 0.402 0.450 0.449
Recall 0.667 0.406 0.580 0.751 0.773 0.776 0.816 0.393 0.513 0.307
F1 0.579 0.418 0.499 0.682 0.701 0.739 0.784 0.397 0.477 0.363

SGPT

Precision 0.470 0.391 0.391 0.605 0.606 0.698 0.717 0.387 0.410 0.360
Recall 0.466 0.266 0.363 0.661 0.689 0.713 0.752 0.281 0.396 0.247
F1 0.467 0.316 0.376 0.630 0.644 0.705 0.733 0.325 0.398 0.293

Table 2: Semantic Performance on OpenAI GPT Protein Text LLMs (GPT-3.5, GPT-4, and GPT-4o) and our ProteinGPT
{Vicuna, Llama-2, Llama-3, Mistral} models in terms of BERTScore (SBERT) (Zhang et al., 2020), PubMedBERT Score (SPub) (Gu
et al., 2021), and GPT-4o Score (SGPT) (OpenAI et al., 2024).

tic and lexical scoring using similar metrics for the vanilla
LLM of choice (Vicuna, LLaMA, etc.). This is evaluated
on the same set of 160 proteins and 3508 questions that
we used to evaluate the final model. Also note that at this
stage, no training has been done, the model is the same as
the out-of-the-box LLM.

Modality Aligned (MA) LLM: Following this, Table 3
(b) and Table 5 (b) show that of the LLM after modality
alignment. Evaluated on the same set of proteins, at this
stage, the linear layer has been trained to learn to align and

fuse the structure and sequence modalities to the LLM.

Instruction Tuned (IT) LLM: Lastly, as mentioned pre-
viously, Tables 3 (c) and 5 (c) are for the fully aligned and
instruction-tuned model. At this stage, the model is com-
plete and has been tuned on our GPT-4o curated dataset to
follow instructions concisely.

Figure 7 highlights the differences in performance between
each of these stages. We can observe that consistently, the
instruction-tuned and modality-aligned final model outper-
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Figure 5: ProteinGPT performance with various base LLMs.
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Figure 6: ProteinGPT performance (after instruction-tuning)
on fact-based, closed-ended questions, such as determining
number of polymer entities in a given protein.

forms the modality-only model and vanilla LLMs. This
falls in line with our hypothesis and demonstrates that our 3
stages of training are indeed improving the model’s multi-
modal understanding of proteins. More specifically, the
observation that modality alignment always performs better
than a vanilla LLM demonstrates that through this stage,
the MLLM understands how to digest multi-modal informa-
tion. Similarly, the observation that the instruction-tuned
and modality-aligned ProteinGPT performs better than all
other stages demonstrates that this stage indeed teaches the
model how to properly answer questions related to these
structures and sequences it learned from the previous stage.

C. Limitations
While ProteinGPT demonstrates strong capabilities in pro-
tein sequence and structure understanding, there are areas
that can be improved: 1) Potential for Hallucination. As
with most LLM-based systems, ProteinGPT may occasion-
ally generate responses that are not fully aligned with es-
tablished biological knowledge. However, its integration of
protein-specific encoders helps mitigate this risk by ground-
ing predictions in structured data. Future work can further
refine this by incorporating confidence scores or uncertainty
estimation mechanisms. 2) Verifiability. Currently, Prote-
inGPT does not provide direct citations for its responses,
which may make it challenging to trace specific claims back
to primary sources. We did not include citation data into
the current training set of ProteinGPT due to the scarcity of
protein datasets with reliable, consistent, and fine-grained
citations that link specific claims or answers to appropriate
references. As a result, integrating this data could potentially
lead to inaccurate answers. Techniques such as retrieval aug-
mented generation (RAG) () or explicit literature grounding
for better reliability and trustworthiness. 3) Training Data.
As with any data-driven model, the performance of Prote-
inGPT is influenced by the quality and diversity of the train-
ing data. While we carefully curated a large-scale dataset
of 132,092 proteins with structured annotations, different
processing & alignment strategies, continuous enhancement,
and feedback from biological experts can further optimize
its performance.

As demonstrated with alignment using GPT-4, different
strategies may yield vastly different results.

D. Open Access and Deployment
To maximize accessibility, usability, and reproducibility,
we will open-source both ProteinGPT and the ProteinQA
dataset, allowing researchers to experiment with different
backbone LLMs and protein encoders. ProteinGPT’s flexi-
ble design ensures adaptability to model architectures.
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Figure 7: Performance improves progressively from the vanilla LLM model with protein as text to the modality-aligned
version, and finally to the instruction-tuned variants of ProteinGPT. Each stage of ProteinGPT’s training results in substantial
enhancements in both lexical and semantic performance, showcasing the efficiency of our framework.

E. Additional Experiments
E.1. Case Studies

To avoid data leakage, we reserved 30% of our QA and
abstract dataset for testing, which is around 26,419 proteins.
This ensures that the tests reflect real-world scenarios as
ProteinGPT has never seen these proteins before during
training. We provide ProteinGPT’s Q and A on Protein
7RUV in Figure 11.

F. Comparative Plots
Figures 5 and 10 highlight the performance comparison
across different models, including various versions of Prote-
inGPT, OpenAI’s GPT models, and Mistral models, using
multiple evaluation metrics.

Figure 10 shows the performance of ProteinGPT variants
alongside OpenAI’s GPT and MA models. The key obser-
vations from this figure are:

• ROUGE-1 and ROUGE-L: The ProteinGPT Mistral
model significantly outperforms the other models with
scores of 0.451 and 0.460, respectively. Prote-
inGPT LLaMA-3 and the other GPT variants (GPT-3.5-
turbo, GPT-4-turbo, GPT-4o) have much lower scores,
indicating that the Mistral-based variant is superior in
these metrics.

• ROUGE-LSum: Similar to ROUGE-1 and ROUGE-
L, the ProteinGPT Mistral variant leads with a score
of 0.457, followed closely by ProteinGPT LLaMA-3 at
0.387. Other models show significantly lower scores,
emphasizing the effectiveness of the Mistral variant.

• BERT Score (SBERT): The ProteinGPT Mistral model
also performs best with a score of 0.821, with Prote-
inGPT LLaMA-3 following at 0.779. The GPT models
lag behind, demonstrating that the ProteinGPT variants
are more aligned with human evaluations.

• PubMedBert Score (SPub): Again, ProteinGPT Mistral
achieves the highest score of 0.758, outperforming Pro-
teinGPT LLaMA-3 slightly. The GPT models perform
lower in this biomedical domain-specific metric.

• GPT-4o Score (SGPT): The trend continues with
ProteinGPT Mistral leading at 0.717, while Prote-
inGPT LLaMA-3 scores 0.706, suggesting a close perfor-
mance in this category.

In Figure 5, the performance of ProteinGPT with differ-
ent base large language models (LLMs) is evaluated. The
following findings are noteworthy:

• ROUGE-1 and ROUGE-L: The Mistral variant of Prote-
inGPT outperforms other base models (Vicuna, LLaMA-

12
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Figure 8: Comparison of Different Strategies and Models.

2, and LLaMA-3) in both ROUGE-1 (0.461) and ROUGE-
L (0.460) scores. LLaMA-3 follows, but with slightly
lower performance, while Vicuna and LLaMA-2 have the
lowest scores.

• ROUGE-LSum: The Mistral base again outperforms
others with a score of 0.457, while the LLaMA-3 variant
is close behind at 0.367.

• BERT Score: Mistral shows the best performance
(0.821), with other bases following in descending or-
der: LLaMA-3 (0.779), LLaMA-2 (0.730), and Vicuna
(0.739).

• PubMedBert Score: Mistral continues to outperform
other base models with a score of 0.758, while LLaMA-3
follows at 0.706.

• GPT-4o Score: The Mistral base model scores highest at
0.717, followed by LLaMA-3 at 0.698.

Overall, the findings suggest that the ProteinGPT Mistral
variant consistently outperforms other models across all met-
rics. The Mistral base model proves to be the most effective
for ProteinGPT, indicating that the combination of Mistral
with ProteinGPT architecture is particularly powerful. In
contrast, other base models such as LLaMA-2 and Vicuna,
and the GPT variants, show comparatively lower perfor-
mance, especially in metrics like ROUGE-1, ROUGE-L,

and the PubMedBert Score, which are crucial for natural
language processing tasks in specialized domains such as
biomedical text analysis.
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#	Protein	Sequence	(to	be	encode	by	ESM2)
MNKFKVNISGMTCTGCEKHVESALEKIGAKNIESS
YRRGEAVFELPDDIEVESAIKAIDEANYQAGEIEEVS	
…	…	…	
AVKFGLTVEDLTETLAPYLTMAEGLKLAALTFDKDI
WKLSCCAGLEHHHHHH

#	Protein	Structure	
Structures	are	encoded	by	
ESM2’s	inverse	folding	
[GVP-GNN	model]

Structures	come	from:
(a)	RCSB	database	if	found
(b)	Predicted	by	AlphaFold

### ProteinGPT:
The protein has two assemblies.

###	Human:
How	many	assemblies	does	this	
protein	have?

### ProteinGPT:
Yes, the protein has assemblies.

###	Human:
Does	this	protein	have	assembly?

###	Human:
Does	this	protein	contain	polymer	entities?

### ProteinGPT:

Yes, the protein contains polymer entities.

Figure 9: ProteinGPT conversation on Protein 5X1Y.

ROUGE-1 ROUGE-L ROUGE-LSum BERT_Score PubMedBert_Score GPT-4o_Score0.0
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Figure 10: Comparison of ProteinGPT, OpenAI’s GPT, and Modality-Aligned-only model.
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###	ProteinGPT:

The MoFe protein is a 2.5 MDa protein complex 
that catalyzes the reduction of dinitrogen to 
ammonia. The protein is composed of two 
identical 60-subunit MoFe proteins, each 
containing a central cavity that houses the 
active site. The active site is composed of a P-
cluster, an FeMo-cofactor, and a bridging 
sulfur atom. The P-cluster is a 4Fe-4S cluster 
that is the site of electron transfer from the 
nitrogenase reductase.

###	Human:
Please	provide	a	detailed	description	of	the	
protein.
#	Protein	Sequence	(to	be	encode	by	ESM2)
MTGMSREEVESLIQEVLEVYPEKARKDRNKHLAV
NDPAVTQSKKCIISNKKSQPGLMTIRGCAYAGSKGV
…	…	…
DYSGPYHGFDGFAIFARDMDMTLNNPCWKKLQAP
WEASEGAEKVAASA

#	Protein	Structure	
Structures	are	encoded	by	
ESM2’s	inverse	folding	
[GVP-GNN	model]

Structures	come	from:
(a)	RCSB	database	if	found
(b)	Predicted	by	AlphaFold

###	ProteinGPT:
Yes, the protein contains branched 
entities. The FeMo-cofactor is a 7Fe-9S 
cluster that is the site of nitrogen 
reduction. The FeMo-cofactor is 
composed of a central 4Fe-4S cluster, a 
3Fe-3S cluster, and a 2Fe-2S cluster. The 
3Fe-3S cluster is connected to the 4Fe-
4S cluster by a bridging sulfur atom. The 
2Fe-2S cluster is connected to the 3Fe-
3S cluster by a bridging sulfur atom.

###	Human:
Does	this	protein	contain	branched	entities?

###	ProteinGPT:
The structure of the MoFe protein was 
determined by X-ray crystallography. The 
structure was determined in the 
presence of the substrate azide and the 
product ammonia. The structure was 
determined at 2.5 Å resolution.

###	Human:
What	experimental	methods	were	used	
to	determine	the	structure	of	this	
protein?	Please	choose	from	EM,	
Multiple	methods,	NMR,	Neutron,	X-ray	
and	other

###	ProteinGPT	(continued):
The FeMo-cofactor is a 7Fe-9S cluster 
that is the site of nitrogen reduction. The 
bridging sulfur atom is a ligand to the 
FeMo-cofactor and is the site of nitrogen 
binding.

Figure 11: ProteinGPT’s conversation on Protein 7RUV.

Metric Base (a) Protein Sequence (b) Modality Fusion (c) ProteinGPT
Model SBERT SPub SGPT SBERT SPub SGPT SBERT SPub SGPT

Pre

Vicuna 0.572 0.464 0.396 0.582 0.515 0.446 0.730 0.626 0.605
Llama-2 0.513 0.372 0.362 0.589 0.446 0.414 0.739 0.644 0.606
Llama-3 0.490 0.442 0.369 0.593 0.487 0.446 0.779 0.706 0.698
Mistral 0.525 0.405 0.362 0.513 0.479 0.400 0.821 0.758 0.717

Rec

Vicuna 0.653 0.473 0.310 0.691 0.540 0.334 0.788 0.751 0.661
Llama-2 0.680 0.324 0.214 0.679 0.477 0.308 0.796 0.773 0.689
Llama-3 0.657 0.332 0.210 0.695 0.456 0.309 0.803 0.776 0.713
Mistral 0.624 0.287 0.192 0.623 0.359 0.211 0.839 0.816 0.752

F1

Vicuna 0.608 0.468 0.347 0.629 0.524 0.381 0.756 0.682 0.630
Llama-2 0.582 0.345 0.269 0.628 0.459 0.351 0.764 0.701 0.644
Llama-3 0.560 0.378 0.268 0.638 0.470 0.363 0.790 0.739 0.705
Mistral 0.569 0.335 0.250 0.561 0.409 0.276 0.829 0.784 0.733

Table 3: Semantic Performance of LLM with Protein Sequence as Text Input (left), with Modality Fusion ONLY (middle),
and with ProteinGPT (right). SBERT, SPub, and SGPT stand for BERTScore (Zhang et al., 2020), PubMedBERT-Score (Gu
et al., 2021), and GPT-4o (OpenAI et al., 2024) score, respectively.
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Model R-1 R-2 R-L R-Lsum

GPT-3.5-turbo 0.137 0.010 0.140 0.140
GPT-4-turbo 0.049 0.001 0.049 0.048
GPT-4o 0.068 0.000 0.067 0.068

OpenAI o1-mini 0.041 0.001 0.040 0.040
OpenAI o3-mini 0.072 0.007 0.072 0.073
Deepseek-R1 0.003 0.000 0.003 0.003

ProteinGPTVicuna 0.345 0.007 0.350 0.348
ProteinGPTLlama-2 0.348 0.014 0.347 0.349
ProteinGPTLlama-3 0.366 0.021 0.368 0.367
ProteinGPTMistral 0.461 0.048 0.460 0.457

Table 4: Lexical Performance with ProteinGPT, OpenAI’s GPT/o-series models and DeepSeek R1 model. OpenAI and
DeepSeek’s models are text-based models. Therefore, protein sequences are fed into the model in text format, as part of the
prompt.

Table 5: Lexical Performance of LLM with Protein Sequence as Text Input ONLY (Left), Modality Alignment ONLY
(Middle), and ProteinGPT (Right). R-1, R-2, R-L, R-Lsum stand for ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-Lsum,
respectively.

(a) Protein Sequence (b) Modality Fusion (c) ProteinGPT
Model R-1 R-2 R-L R-Lsum R-1 R-2 R-L R-Lsum R-1 R-2 R-L R-Lsum

Vicuna 0.026 0.034 0.025 0.025 0.104 0.003 0.105 0.104 0.345 0.007 0.350 0.348
Llama-2 0.010 0.001 0.010 0.010 0.063 0.004 0.064 0.064 0.348 0.014 0.347 0.349
Llama-3 0.005 0.000 0.005 0.005 0.090 0.005 0.090 0.090 0.366 0.021 0.368 0.367
Mistral 0.007 0.001 0.007 0.007 0.008 0.002 0.008 0.008 0.461 0.048 0.460 0.457
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G. Case Studies on OpenAI and DeepSeek models
G.1. OpenAI o1-mini Model

Below are OpenAI’s o1-mini responses to questions on protein 6RE5’s property and structure.

I. System Prompt

¡SYSTEM¿ You are an expert in protein domain, please answer the questions given the protein primary sequence and only
give a concise answer to the question. ¡/SYSTEM¿

II. Protein sequence information

>6RE5 1|Chain A[auth 0]|ASA-10: Polytomella F-ATP synthase associated subunit
10|Polytomella sp. Pringsheim 198.80 (37502)

MSYSAYFAKAGFQFPAGLSALVAGIVALNVCTGRPTKGTKEISNAEYNATPIGYLQSPDQHPTAFPKVPGMKDV
HGSPHHHH

III. Question Group 1

1 > Question: How many assemblies does this protein have?
2 > Answer (o1-mini): The assembly state of the protein cannot be determined solely from

the primary amino acid sequence provided.
3

4 > Question: How many entities does this protein have?
5 > Answer (o1-mini): The protein has **two entities**: the main protein sequence and the

His-tag (HHHH).
6

7 > Question: How many heavy atom coordinates records does this protein have?
8 > Answer (o1-mini): The protein has **562** heavy atom coordinates records.
9

10 > Question: How many hydrogen atom coordinates records does this protein have?
11 > Answer (o1-mini): Hydrogen atom coordinates are not available from the primary amino

acid sequence alone.
12

13 > Question: How many model structures deposited for this protein?
14 > Answer (o1-mini): As of October 2023, there are no model structures deposited for

this protein sequence.
15

16 > Question: How many polymer monomers does this protein have?
17 > Answer (o1-mini): The protein consists of **82 amino acid monomers**.
18

19 > Question: How many heavy solvent atom coordinates records does this protein have?
20 > Answer (o1-mini): The number of heavy solvent atom coordinates records cannot be

determined from the primary sequence alone.
21

22 > Question: How many nucleic acid polymer entities (DNA or RNA) does this protein have?
23 > Answer (o1-mini): The protein does not contain any nucleic acid polymer entities (DNA

or RNA).
24

25 > Question: How many intermolecular covalent bonds does this protein have?
26 > Answer (o1-mini): This protein has **zero intermolecular covalent bonds**.
27

28 > Question: How many intermolecular metalic bonds does this protein have?
29 > Answer (o1-mini): Based on the provided sequence, the protein contains four histidine

residues (‘HHHH‘) that are potential sites for intermolecular metal coordination
bonds. Therefore, it can form up to **four intermolecular metal bonds**.

30
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31 > Question: Does this protein contain non-polymer entities?
32 > Answer (o1-mini): No, based on the provided primary sequence, there are no

indications of non-polymer entities.
33

34 > Question: Does this protein contain polymer entities?
35 > Answer (o1-mini): No, the protein does not contain polymer entities.
36

37 > Question: Does this protein contain DNA polymer entities?
38 > Answer (o1-mini): No, the provided protein sequence does not contain DNA polymerase

domains.
39

40 > Question: Does this protein contain RNA polymer entities?
41 > Answer (o1-mini): No, this protein does not contain RNA polymerase domains.
42

43 > Question: Does this protein contain solvent entities?
44 > Answer (o1-mini): Yes, the protein contains residues (such as polar and charged amino

acids) that are likely to interact with the solvent.
45

46 > Question: Does this protein contain branched entities?
47 > Answer (o1-mini): Yes, the protein contains several branched amino acids, including

valine (V), isoleucine (I), and leucine (L).
48

49 > Question: Does this protein have unmodeled polymer monomers?
50 > Answer (o1-mini): Yes, the protein contains a His-tag sequence (HHHH) at the C-

terminus, which may represent unmodeled polymer monomers.
51

52 > Question: Does this protein have hybrid nucleic acid polymer entities?
53 > Answer (o1-mini): No, based on the provided primary amino acid sequence, there is no

indication of hybrid nucleic acid polymer entities.
54

55 > Question: Does this protein have cis-peptide linkages?
56 > Answer (o1-mini): Based solely on the primary sequence, the presence of proline

residues (P) suggests potential sites for cis-peptide linkages. However, without
structural data, it’s not possible to definitively confirm the existence of cis-
peptide bonds in this protein.

III. Question Group 2

1

2 > Question: What is the polymer entity composition for this protein?
3 > Answer (o1-mini): The protein consists of the following amino acids:
4

5 - **Alanine (A):** 10
6 - **Arginine (R):** 1
7 - **Asparagine (N):** 3
8 - **Aspartic acid (D):** 2
9 - **Cysteine (C):** 1

10 - **Glutamine (Q):** 3
11 - **Glutamic acid (E):** 2
12 - **Glycine (G):** 8
13 - **Histidine (H):** 6
14 - **Isoleucine (I):** 3
15 - **Leucine (L):** 4
16 - **Lysine (K):** 5
17 - **Methionine (M):** 2
18 - **Phenylalanine (F):** 4
19 - **Proline (P):** 8
20 - **Serine (S):** 6
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21 - **Threonine (T):** 5
22 - **Tyrosine (Y):** 4
23 - **Valine (V):** 5
24

25 > Question: What is the nucleic acid polymer entity type for this protein?
26 > Answer (o1-mini): The nucleic acid polymer entity type for this protein is **

messenger RNA (mRNA)**.
27

28 > Question: What are the bound nonpolymer components for this protein
29 > Answer (o1-mini): The protein likely binds nickel (\text{Ni}ˆ{2+}) or cobalt (\text{

Co}ˆ{2+}) ions through its polyhistidine (HHHH) tag.
30

31 > Question: What experimental method(s) were used to determine the structure of this
protein?

32 > Answer (o1-mini): Based solely on the provided primary amino acid sequence, the
specific experimental method(s) used to determine the protein’s structure cannot be
identified. Additional information, such as structural database entries or

publication references, is required to ascertain the techniques employed.
33

34 > Question: What is the molecular mass (KDa) of polymer and non-polymer entities (
exclusive of solvent) for this protein?

35 > Answer (o1-mini): The molecular mass of the protein polymer is approximately **8.82
kDa**. There are no significant non-polymer entities associated with this protein.

36

37 > Question: What is the polymer entity type for this protein?
38 > Answer (o1-mini): **Polymer Entity Type:** Polypeptide
39

40 > Question: What are the software programs reported in connection with the production
of this protein?

41 > Answer (o1-mini): There are no specific software programs reported in connection with
the production of this protein based solely on the provided primary sequence.

42

43 > Question: Is this protein determined by experimental or computational methods?
44 > Answer (o1-mini): It cannot be determined solely from the primary sequence.
45

46 > Question: What are the terms characterizing the protein?
47 > Answer (o1-mini): - **Polyhistidine Tag**: Contains a His\_4 tag at the C-terminus (

HHHH).
48 - **Molecular Weight**: Approximately 10.7 kDa.
49 - **Isoelectric Point (pI)**: Around 6.2.
50 - **Amino Acid Composition**: Rich in alanine, glycine, and proline.
51 - **Secondary Structure**: Likely includes alpha helices and coiled regions.
52 - **Potential Functional Motifs**: May contain sites for phosphorylation or binding.
53 - **Solubility**: Predicted to be moderately soluble.
54 - **Expression Tag**: Suitable for affinity purification using nickel columns.
55

56 > Question: When is this protein first published?
57 > Answer (o1-mini): The first publication date of this protein cannot be determined

solely from its primary amino acid sequence. Additional information such as the
protein name, gene identifier, or related literature is required.

G.2. OpenAI o3-mini Model

Below are OpenAI’s o3-mini responses to questions on protein 1GC9’s property and structure.

I. System Prompt

¡SYSTEM¿ You are an expert in protein domain, please answer the questions given the protein primary sequence and only
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give a concise answer to the question. ¡/SYSTEM¿

II. Protein sequence information

>1GC9 1|Chain A|3-ISOPROPYLMALATE DEHYDROGENASE|Thermus thermophilus (300852)

MKVAVLPGDGIGPEVTEAALKVLRALDEAEGLGLAYEVFPFGGAAIDAFGEPFPEPTRKGVEEAEAVLLGSVGG
PKWDGLPRKIRPETGLLSLRKSQDLFANLRPAKVFPGLERLSPLKEEIARGVDVLIVRELTGGIYFGEPRGMSEAE
AWNTERYSKPEVERVARVAFEGARKRRKHVVSVDKANVLEVGEFWRKTVEEVGRGYPDVALEHQYVDAMA
MHLVRSPARFDVVVTGNIFGDILSDLASVLPGSLGLLPSASLGRGTPVFEPVHGSAPDIAGKGIANPTAAILSAAM
MLEHAFGLVELARKVEDAVAKALLETPPPDLGGSAGTEAFTATVLRHLA

III. Question Group 1

1 > Question: How many assemblies does this protein have?
2 > Answer (o3-mini): It forms a single, monomeric assembly.
3

4 > Question: How many entities does this protein have?
5 > Answer (o3-mini): This protein is a single-chain entity.
6

7 > Question: How many heavy atom coordinates records does this protein have?
8 > Answer (o3-mini): There are 0 heavy atom coordinate records, as only the primary

sequence is provided.
9

10 > Question: How many hydrogen atom coordinates records does this protein have?
11 > Answer (o3-mini): This protein’s primary sequence does not include any hydrogen atom

coordinate records, so the answer is 0.
12

13 > Question: How many model structures deposited for this protein?
14 > Answer (o3-mini): There are no deposited model structures for this protein.
15

16 > Question: How many polymer monomers does this protein have?
17 > Answer (o3-mini): The protein consists of 349 amino acid residues.
18

19 > Question: How many heavy solvent atom coordinates records does this protein have?
20 > Answer (o3-mini): 0 heavy solvent atom coordinates records.
21

22 > Question: How many nucleic acid polymer entities (DNA or RNA) does this protein have?
23 > Answer (o3-mini): This protein contains no nucleic acid polymer entities.
24

25 > Question: How many intermolecular covalent bonds does this protein have?
26 > Answer (o3-mini): This protein has no intermolecular covalent bonds.
27

28 > Question: How many intermolecular metalic bonds does this protein have?
29 > Answer (o3-mini): 0
30

31 There is no evidence from the primary sequence indicating the formation of any
intermolecular metallic bonds.

32

33 > Question: Does this protein contain non-polymer entities?
34 > Answer (o3-mini): No. The sequence only represents a polypeptide chain without any

non-polymer entities.
35

36 > Question: Does this protein contain polymer entities?
37 > Answer (o3-mini): No, the protein is a single polypeptide chain composed solely of

amino acids and does not include additional polymer entities.
38

39 > Question: Does this protein contain DNA polymer entities?
40 > Answer (o3-mini): No, this protein does not contain DNA polymer domains.
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41

42 > Question: Does this protein contain RNA polymer entities?
43 > Answer (o3-mini): No, this protein does not seem to contain RNA polymerase domains.

III. Question Group 2

1

2 > Question: Does this protein contain solvent entities?
3 > Answer (o3-mini): No. The sequence lists only the amino acids without any solvent

molecules or other non-protein entities.
4

5 > Question: Does this protein contain branched entities?
6 > Answer (o3-mini): No, this protein is a single linear polypeptide and does not

contain branched entities.
7

8 > Question: Does this protein have unmodeled polymer monomers?
9 > Answer (o3-mini): No, the sequence appears complete with all expected polymer

residues modeled.
10

11 > Question: Does this protein have hybrid nucleic acid polymer entities?
12 > Answer (o3-mini): No, this sequence represents a protein, not a hybrid nucleic acid

polymer entity.
13

14 > Question: Does this protein have cis-peptide linkages?
15 > Answer (o3-mini): Based solely on the primary sequence, there’s no definitive

evidence for cis-peptide bonds. Cis conformations - most often seen in X-Pro
linkages-require structural data to confirm their presence.

16

17 > Question: What is the polymer entity composition for this protein?
18 > Answer (o3-mini): The protein is a single polypeptide chain composed of 346 standard

L-amino acid residues.
19

20 > Question: What is the nucleic acid polymer entity type for this protein?
21 > Answer (o3-mini): This molecule is not a nucleic acid - it is a protein (an amino

acid polymer).
22

23 > Question: What experimental method(s) were used to determine the structure of this
protein?

24 > Answer (o3-mini): No experimental structure determination data is provided; only the
primary sequence is given, so no method (e.g., X-ray crystallography or NMR
spectroscopy) can be inferred.

25

26 > Question: What is the molecular mass (KDa) of polymer and non-polymer entities (
exclusive of solvent) for this protein?

27 > Answer (o3-mini): The 344-residue chain weighs roughly 38 kDa, and there are no non-
polymer entities present.

28

29 > Question: What is the polymer entity type for this protein?
30 > Answer (o3-mini): It is a protein, which is a polypeptide chain.
31

32 > Question: What are the software programs reported in connection with the production
of this protein?

33 > Answer (o3-mini): No software programs were reported in connection with the
production of this protein.

34

35 > Question: Is this protein determined by experimental or computational methods?
36 > Answer (o3-mini): There’s no accompanying annotation indicating experimental

validation, so based solely on the primary sequence it’s unclear whether it was
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determined experimentally or computationally.
37

38 > Question: When is this protein first published?
39 > Answer (o3-mini): The provided sequence does not include publication details, so the

first publication date cannot be determined without additional reference data.

G.3. DeepSeek R1 Model

Below are DeepSeek’s R1 model responses to questions on protein 5XSP’s property and structure.

I. System Prompt

¡SYSTEM¿ You are an expert in protein domain, please answer the questions given the protein primary sequence and only
give a concise answer to the question. ¡/SYSTEM¿

II. Protein sequence information

>5XSP 1|Chains A, B|Phosphodiesterase acting on cyclic dinucleotides|Staphylococcus
aureus (1280)

GSMRTRVRARVISHALKDILAEGDKVIIMGHKRPDLDAIGAAIGVSRFAMMNNLEAYIVLNETDIDPTLRRVMN
EIDKKPELRERFITSDDAWDMMTSKTTVVIVDTHKPELVLDENVLNKANRKVVIDHHRRGESFISNPLLIYMEPY
ASSTAELVTELLEYQPTEQRLTRLESTVMYAGIIVDTRNFTLRTGSRTFDAASYLRAHGADTILTQHFLKDDVDT
YINRSELIRTVKVEDNGIAIAHGSDDKIYHPVTVAQAADELLSLEGIEASYVVARREDNLIGISARSLGSVNVQLT
MEALGGGGHLTNAATQLKGVTVEEAIAQLQQAITEQLSRSEDA

III. Question 1: Does this protein have cis-peptide linkages?

1 <think>
2 Okay, so I need to figure out whether the given protein has any cis-peptide linkages. I

remember that in proteins, peptide bonds can be either cis or trans. The trans
configuration is the most common because it’s more energetically favorable. Cis
peptide bonds are less common but can occur under certain conditions, often when
specific residues are involved.

3

4 Looking at the primary sequence provided, I should check for any residues that are
known to favor cis peptide bonds. The key residues I remember are proline (Pro, P)
and glycine (Gly, G). Proline is particularly known for its ability to adopt the
cis configuration because of its ring structure, which restricts its conformational
flexibility. Glycine, being the smallest amino acid with a lot of flexibility, can
also sometimes be found in cis peptide bonds, though less commonly than proline.

5

6 I’ll scan through the sequence to spot any Pro or Gly residues. Let me go through each
part:

7

8 - The sequence starts with:
9

10 GSMRTRVRARVISHALKDILAEGDKVIIMGHKRPDLDAIGAAIGVSRFAMMNNLEAYIVLNETDIDPTLRRVMNEIDKKPELRERFITSDDAWDMMTSKTTVVIVDTHKPELVL

11 DENVLNKANRKVVIDHHRRGESFISNPLLIYMEPYASSTAELVTELLEYQPTEQRLTRLESTVMYAGIIVDTRNFTLRTGSRTFDAASYLRAHGADTILTQHFLKDDVDTYINR

12 SELIRTVKVEDNGIAIAHGSDDKIYHPVTVAQAADELLSLEGIEASYVVARREDNLIGISARSLGSVNVQLTMEALGGGGHLTNAATQLKGVTVEEAIAQLQQAITEQLSRSEDA

13

14 Looking for Pro (P):
15

16 - I see a Pro at position ... let me count. Starting from the beginning: G, S, M, R, T,
R, V, R, A, R, V, I, S, H, A, L, K, D, I, L, A, E, G, D, K, V, I, I, M, G, H, K, R

22



ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding

, P, D, L, D, A, I, G, A, A, I, G, V, S, R, F, A, M, M, N, N, L, E, A, Y, I, V, L,
N, E, T, D, I, D, P, T, L, R, R, V, M, N, E, I, D, K, K, P, E, L, R, E, R, F, I, T,
S, D, D, A, W, D, M, M, T, S, K, T, T, V, V, I, V, D, T, H, K, P, E, L, V, L, D, E

, N, V, L, N, K, A, N, R, K, V, V, I, D, H, H, R, R, G, E, S, F, I, S, N, P, L, L,
I, Y, M, E, P, Y, A, S, S, T, A, E, L, V, T, E, L, L, E, Y, Q, P, T, E, Q, R, L, T,
R, L, E, S, T, V, M, Y, A, G, I, I, V, D, T, R, N, F, T, L, R, T, G, S, R, T, F, D

, A, A, S, Y, L, R, A, H, G, A, D, T, I, L, T, Q, H, F, L, K, D, D, V, D, T, Y, I,
N, R, S, E, L, I, R, T, V, K, V, E, D, N, G, I, A, I, A, H, G, S, D, D, K, I, Y, H,
P, V, T, V, A, Q, A, A, D, E, L, L, S, L, E, G, I, E, A, S, Y, V, V, A, R, R, E, D

, N, L, I, G, I, S, A, R, S, L, G, S, V, N, V, Q, L, T, M, E, A, L, G, G, G, G, H,
L, T, N, A, A, T, Q, L, K, G, V, T, V, E, E, A, I, A, Q, L, Q, Q, A, I, T, E, Q, L,
S, R, S, E, D, A.

17

18 So, I see several Pro residues. Let me note their positions:
19

20 1. The first Pro is at position 34 (counting from 0 or 1? Let me check: the sequence is
0-based or 1-based. Well, in the sequence given, the 34th character is P. Let’s

assume it’s the 35th residue if starting count from 1.
21

22 Wait, actually, in the sequence provided, the 34th character is P. Let me count from
the start:

23

24 G(1), S(2), M(3), R(4), T(5), R(6), V(7), R(8), A(9), R(10), V(11), I(12), S(13), H(14)
, A(15), L(16), K(17), D(18), I(19), L(20), A(21), E(22), G(23), D(24), K(25), V
(26), I(27), I(28), M(29), G(30), H(31), K(32), R(33), P(34), D(35), L(36), D(37),
A(38), I(39), G(40),

25 A(41), A(42), I(43), G(44), V(45), S(46), R(47), F(48), A(49), M(50), M(51), N(52), N
(53), L(54), E(55), A(56), Y(57), I(58), V(59), L(60), N(61), E(62), T(63), D(64),
I(65), D(66), P(67), T(68), L(69), R(70), R(71), V(72), M(73), N(74), E(75), I(76),
D(77), K(78), K(79), P(80),

26 E(81), L(82), R(83), E(84), R(85), F(86), I(87), T(88), S(89), D(90), D(91), A(92), W
(93), D(94), M(95), M(96), T(97), S(98), K(99), T(100), T(101), V(102), V(103), I
(104), V(105), D(106), T(107), H(108), K(109), P(110), E(111), L(112), V(113), L
(114), D(115), E(116), N(117), V(118), L(119), N(120),

27 K(121), A(122), N(123), R(124), K(125), V(126), V(127), I(128), D(129), H(130), H(131),
R(132), R(133), G(134), E(135), S(136), F(137), I(138), S(139), N(140), P(141), L

(142), L(143), I(144), Y(145), M(146), E(147), P(148), Y(149), A(150), S(151), S
(152), T(153), A(154), E(155), L(156), V(157), T(158), E(159), L(160),

28 L(161), E(162), Y(163), Q(164), P(165), T(166), E(167), Q(168), R(169), L(170), T(171),
R(172), L(173), E(174), S(175), T(176), V(177), M(178), Y(179), A(180), G(181), I

(182), I(183), V(184), D(185), T(186), R(187), N(188), F(189), T(190), L(191), R
(192), T(193), G(194), S(195), R(196), T(197), F(198), D(199), A(200),

29 A(201), S(202), Y(203), L(204), R(205), A(206), H(207), G(208), A(209), D(210), T(211),
I(212), L(213), T(214), Q(215), H(216), F(217), L(218), K(219), D(220), D(221), V

(222), D(223), T(224), Y(225), I(226), N(227), R(228), S(229), E(230), L(231), I
(232), R(233), T(234), V(235), K(236), V(237), E(238), D(239), N(240),

30 G(241), I(242), A(243), I(244), A(245), H(246), G(247), S(248), D(249), D(250), K(251),
I(252), Y(253), H(254), P(255), V(256), T(257), V(258), A(259), Q(260), A(261), A

(262), D(263), E(264), L(265), L(266), S(267), L(268), E(269), G(270), I(271), E
(272), A(273), S(274), Y(275), V(276), V(277), A(278), R(279), R(280),

31 E(281), D(282), N(283), L(284), I(285), G(286), I(287), S(288), A(289), R(290), S(291),
L(292), G(293), S(294), V(295), N(296), V(297), Q(298), L(299), T(300), M(301), E

(302), A(303), L(304), G(305), G(306), G(307), G(308), H(309), L(310), T(311), N
(312), A(313), A(314), T(315), Q(316), L(317), K(318), G(319), V(320),

32 T(321), V(322), E(323), E(324), A(325), I(326), A(327), Q(328), L(329), Q(330), Q(331),
A(332), I(333), T(334), E(335), Q(336), L(337), S(338), R(339), S(340), E(341), D

(342), A(343).
33

34 So, Pro residues are at positions 34, 66, 79, 110, 141, 148, 165, 255.
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35

36 Now, for each Pro, I should check the preceding residue because cis peptide bonds are
between the carbonyl carbon of one residue and the amino nitrogen of the next. So,
the Pro would be the residue after the peptide bond in question.

37

38 Wait, actually, the peptide bond is between the carboxyl of residue n and the amino of
residue n+1. So, if residue n+1 is Pro, then the peptide bond between n and n+1
could be cis.

39

40 So, I need to look for Pro at position n+1, and then check if the preceding residue (n)
is such that a cis bond is favored.

41

42 But wait, the presence of Pro at position n+1 doesn’t necessarily mean the bond is cis.
It’s just that Pro has a higher tendency to be in cis conformation when the

preceding residue allows it. But in most cases, even with Pro, the bond is trans
unless there’s a specific reason for it to be cis, like in tight turns or specific
structural motifs.

43

44 However, without structural data, it’s hard to say definitively, but the presence of
Pro residues increases the likelihood.

45

46 So, in the given sequence, there are multiple Pro residues. For each Pro at position n
+1, the preceding residue is:

47

48 - Pro at 34: the preceding residue is R (Arginine) at 33.
49

50 - Pro at 66: preceding residue is D (Aspartic acid) at 65.
51

52 - Pro at 79: preceding residue is K (Lysine) at 78.
53

54 - Pro at 110: preceding residue is K (Lysine) at 109.
55

56 - Pro at 141: preceding residue is N (Asparagine) at 140.
57

58 - Pro at 148: preceding residue is Y (Tyrosine) at 147.
59

60 - Pro at 165: preceding residue is Q (Glutamine) at 164.
61

62 - Pro at 255: preceding residue is Y (Tyrosine) at 254.
63

64 Now, I need to consider if any of these preceding residues are Gly or Pro, but in this
case, none of them are. However, Pro can sometimes form cis bonds even when the
preceding residue is not Gly or Pro, especially in certain contexts like turns or
loops.

65

66 But without the 3D structure, it’s impossible to know for sure. However, the presence
of multiple Pro residues suggests that there might be cis peptide bonds, but it’s
not a certainty. In the absence of specific structural information, we can’t
definitively say whether any of these Pro residues are in cis configuration.

67

68 Therefore, the answer would be that the protein may have cis-peptide linkages,
especially around Pro residues, but without structural data, it’s not certain.

69 </think>
70

71 The protein may have cis-peptide linkages, particularly around proline residues, but
without structural data, this cannot be definitively confirmed.

III. Question 2: How many hydrogen atom coordinates records does this protein have?
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1 <think>
2 Alright, let me try to figure this out. The question is asking how many hydrogen atom

coordinates records a given protein has. The protein’s primary sequence is provided
, which is a long string of amino acids.

3

4 First, I know that each amino acid in a protein is made up of several atoms. Typically,
an amino acid has a certain number of hydrogen atoms. For example, glycine, the

simplest amino acid, has two hydrogen atoms in its side chain, while others might
have more depending on their structure.

5

6 But wait, when we talk about the coordinates of hydrogen atoms in a protein structure,
it’s a bit different. In X-ray crystallography, which is commonly used to determine
protein structures, hydrogen atoms aren’t usually visible because they don’t

scatter X-rays strongly. So, their positions are often not recorded in the PDB (
Protein Data Bank) files unless under certain conditions, like high-resolution
structures or if they’re part of a specific interaction.

7

8 Looking at the sequence provided, it’s a long sequence, but without knowing the
specific structure or the resolution of the data, it’s hard to say exactly how many
hydrogen coordinates there are. However, generally, most PDB entries don’t include
hydrogen atoms because they’re not resolved. If they are included, it’s usually

because the structure was determined at a very high resolution, and the hydrogens
were either located or modeled in.

9

10 So, considering standard practice, the answer is likely that the protein doesn’t have
any hydrogen atom coordinates recorded because they’re not typically included in
the PDB entries. Unless specified otherwise, most structures don’t have hydrogen
positions listed.

11 </think>
12

13 The protein does not have any hydrogen atom coordinates recorded. Hydrogen atoms are
typically not included in standard PDB files due to their low visibility in X-ray
crystallography.

14

15 Answer: 0

H. Related Works
Protein Representation Learning. Studies in protein representation mainly focus on the four hierarchical structural
levels of proteins, which are critical for their biological roles. Some research (Madani et al., 2023; Notin et al., 2022)
treat protein sequences as a biological language and utilize the Transformer architecture (Vaswani et al., 2017) to model
amino acid interactions and predict sequences using large sequence databases. Other approaches (Lin et al., 2023; Meier
et al., 2021; Rives et al., 2021; Rao et al., 2020; Vig et al., 2020) employ Masked Language Modeling (MLM) to develop
attention mechanisms reflecting protein spatial interaction maps. Structure-oriented methods (Gligorijevi’c et al., 2021;
Jing et al., 2020; Zhang et al., 2023c) encapsulate the functional attributes and spatial data of proteins for tasks like
molecule binding (Jin et al., 2021; Kong et al., 2022), protein interface studies (Mahbub & Bayzid, 2022; R’eau et al.,
2023), and property predictions (Zhang et al., 2022). However, most works rely on single-modal data, which overlooks the
cross-modality interactions among text and protein sequence & structure information.

Large Language Models. Recent advancements in Large Language Models (LLMs) such as GPT-4 (OpenAI, 2023),
LLaMA (Touvron et al., 2023), Mistral Large 2 (Jiang et al., 2023), and Gemini (Team et al., 2023) have established new
benchmarks in natural language processing (NLP), offering enhanced language comprehension and reasoning (Zellers et al.,
2019; Wang et al., 2019; Frohberg & Binder, 2022; Yao et al., 2024; Zhang et al., 2023b). Multimodal LLMs (MLLMs) have
further extended these capabilities beyond text, enabling the processing of natural language task performance on multimodal
data (Shu et al., 2023; Yu et al., 2023; Ning et al., 2023). As proteins can be naturally represented by character strings,
LLMs like ProteinChat (Guo et al., 2023) and ProtChatGPT (Wang et al., 2024) have been developed to effectively analyze
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protein structures and sequences.
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