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Abstract

Recent advances in continual learning (CL) are
mainly confined to a supervised learning set-
ting, which is often impractical. To narrow this
gap, we consider a semi-supervised continual
learning (SSCL) for lifelong language learn-
ing. In this paper, we exploit unlabeled data
under limited supervision in the CL setting and
demonstrate the feasibility of semi-supervised
learning in CL. Specifically, we propose a novel
method, namely Meta-Aug, which employs
meta self-training and consistency regulariza-
tion to learn a sequence of semi-supervised
tasks. We employ prototypical pseudo-labeling
and data augmentation to efficiently learn under
limited supervision without catastrophic forget-
ting. Furthermore, replay-based CL methods
easily overfit to memory samples. We solve this
problem by applying strong textual augmenta-
tion to introduce generalization. Extensive ex-
periments on CL benchmark text classification
datasets from diverse domains show that our
method achieves promising results in SSCL.

1 Introduction

Continual learning (CL), also called lifelong learn-
ing, is a machine learning paradigm that mimics
the human learning process. It aims to ensure the
stability of handling various tasks that have been
learned, while showing its plasticity on the novel
domain via previously acquired knowledge. Recent
advances in CL lack consideration of real-world
scenarios. In real-world scenarios, the availabil-
ity of data is limited, where unlabeled data are
plentiful and acquiring high-quality labels are ex-
pensive. However, semi-supervised continual learn-
ing (SSCL) remains understudied. The difficulty
is that, forgetting or loss of information always
occurs while ingesting a sequence of data, not to
mention that the given information is inherently
limited. To date, there are not many SSCL models
in text classification, or even in NLP.

In this paper, we propose a novel SSCL method
with meta self-training and consistency regular-
ization, namely Meta-Aug. We leverage Model-
Agnostic Meta-Learning (MAML) (Finn et al.,,
2017) framework. We employ inner loop algorithm
to perform task-specific learning on new samples.
In order to preserve prior knowledge, we need to
control the change in parameter space. Given outer
loop algorithm governs inner loop learning process,
we revise the outer loop objective to generalize
all seen samples. Specifically, query instances for
the outer loop are selected from seen samples by
a prototypical network (Snell et al., 2017). We
also use prototypical network for pseudo-labeling
to alleviate prediction error. To effectively use unla-
beled data, we leverage consistency regularization
(Bachman et al., 2014). It aims to reach consis-
tency on model outputs when fed perturbed ver-
sions of the same text. Inspired by FixMatch (Sohn
et al., 2020), we apply two types of textual aug-
mentations, i.e., weak and strong augmentation, to
generate perturbed texts. Furthermore, CL setup
constrains the amount of prior seen samples saved
in memory. As a result, revisiting memory samples
(i.e., experience replay) for knowledge consolida-
tion can easily cause overfitting problem. To solve
this problem, we introduce generalization by ap-
plying strong augmentation on past examples in
meta-objective.

We conduct extensive experiments on CL bench-
mark datasets from Zhang et al. (2015), popular-
ized by de Masson d’ Autume et al. (2019) in life-
long language learning. This collection of datasets
includes news classification, sentiment analysis,
article classification and questions and answers cat-
egorization. Under the limited availability of train-
ing samples of all tasks, we show that Meta-Aug
effectively uses unlabeled examples and provides
more than 50% improvement in accuracy. Meta-
Aug also shows its robustness to catastrophic for-
getting. The average performance gap between our



method and upper bound of CL performance is less
than 4%. It prevents more than 45% forgetting, via
unannotated information. The proposed method
successfully maintains a more than 53% average
accuracy given an extremely limited amount of an-
notated data. Additionally, we report an ablation
study and further analysis to testify the superiority
of our method.
The contributions of this work are four folds:

* To the best of our knowledge, we are the first
paper to address semi-supervised continual
learning via textual augmentations based on
the assumption of consistency regularization.
We show the feasibility of using such an as-
sumption for NLP tasks by textual augmenta-
tions.

* We use strongly-augmented samples to ad-
dress overfitting problem that commonly ex-
isted in CL methods that involves revisiting
prior seen examples .

* We devise a simple but efficient prototypical
pseudo-labeling method to decrease predic-
tion error and improve model performance.

» Extensive experimental results testify the su-
periority of our method as a promising so-
lution to address semi-supervised continual
learning.

2 Related Work

Meta-learning in continual learning. Recently,
meta-learning has been introduced into CL. models,
considering its ability of fast adaptation and knowl-
edge transfer. Recent works employed MAML
(Finn et al., 2017) to improve initial parameters,
such that it can fast adapt to various domains with
few learning samples. Meta-MbPA (Wang et al.,
2020) performed local adaptation with episodic
memory, which used MAML to find a better ini-
tialized state for local adaptation. OML-ER (Holla
et al., 2020) and ANML-ER (Holla et al., 2020)
utilised an online meta-learning model and a neuro-
modulated meta-learning respectively for fast adap-
tation, augmented with sparse experience replay.
Some CL models used Reptile (Nichol et al., 2018)
as their meta-learning algorithms. MER (Riemer
et al., 2019) regularized the objective of experience
replay via a modified Reptile (Nichol et al., 2018)
algorithm and memory replay module. MLLRE

(Obamuyide and Vlachos, 2019) also adopted Rep-
tile to meta updates parameters via augmented train-
ing set. In the field of computer vision, MER-
LIN (Joseph and Balasubramanian, 2020) used pre-
ceding task-specific priors from meta distribution
to replay previous parameters and consolidate the
CL model. MOML (Acar et al., 2021) introduced
quadratic penalty to debias and regularized loss of
a meta model, such that it could bypass the need to
recall prior seen instances. All these methods are
limited to a supervised continual learning setting.

Data augmentation in continual learning. Al-
though the literature on data augmentation is rich,
data augmentation for continual learning is still at
its early stage. IL2A (Zhu et al., 2021) leveraged
a modified version of label mixing based method,
Mixup (Zhang et al., 2018) for continual represen-
tation learning, but IL2A is for images but not for
texts.

Semi-supervised continual learning. Wang et al.
(2021) stated that existing CL strategies are not
suitable for the semi-supervised scenario. They
defined the challenge as catastrophic forgetting
of unlabeled data, in which the underlying distri-
bution of unannotated data can not be effectively
characterized. ORDisCo (Wang et al., 2021) used
a conditional generative adversarial network to ex-
ploit unlabeled data and selectively stabilized pa-
rameters for discriminative learning. ORDisCo is
also for images but not for texts. To date, semi-
supervised continual learning is still regarded as a
challenging but understudied setting.

3 Problem Formulation

We define semi-supervised continual learning by
assuming a sequence of K semi-supervised tasks
{TW, 7@ TUE)}, Foratask 7%, let ¥*¥) =
{(z4, yi)}ij\gf) be a set of N*) labeled instances,
where y is the ground-truth label of input x. Let
U* = {(u;, g)j)}j]‘/ﬁf) be a set of M%) unlabeled
instances, where ¢ is the pseudo-label of unan-
notated input v predicted by model. Note that
M®) >> N&) In general, CL setting has a mem-
ory constraint, B, which refers to the maximum
amount of data allowed to be stored. The goal is to
learn a consistent model fy for all seen tasks.

Class-incremental learning. In this paper, we
consider a popular scenario of continual learning,
i.e., class-incremental learning (CIL), where task



identity information is not provided in inference,
and a single classifier is for all tasks. We leverage
cross-entropy loss Lo g as the classification loss.

4 Approach
4.1 Architecture

The proposed model fy consists of a representation
learning network (RLN), Ay, .., With learnable pa-
rameters @proto, and a prediction network (PN),
9pprea With learnable parameters @preq. It is de-
scribed s fo(2) = g, (hoper, (7). We add 2
single-hidden-layer feed-forward neural network
on top of an encoder to formulate a prototypical net-
work as RLN and use a single linear layer followed
by a softmax as PN.

y consistency N
T regularization !

1

asingle linear layer & . i
softmax PN: Ihprea i
Y ;
T A set of prototypes (::
a single- hidden-layer '
feed-forward NN

Prototypicals Network

" B
encoder (e.g., BERT) | Beection
i prototypical
: T ! pseudo-labeling

textual f
augmentations /

";lll ___________ P

X

Figure 1: The overall architecture of the proposed
method.

4.2 Prototypical Network

The prototypical network can be conceptually di-
vided into two parts: an encoder that maps in-
put texts to N-dimensional representations and a
single-hidden-layer feed-forward neural network
that learns a mapping: RY — R”, where D < N.
We aim to obtain a D-dimensional feature vector,
c € RP, as a prototype for each class.

Prototypes computation and memory sample se-
lection. We split the network training into two
stages: supervised learning and unsupervised learn-
ing. In supervised learning, each prototype is the
mean vector of training examples with the same
label. Then, we select the top Ngelect Samples with
the highest similarity score to the corresponding
prototype and save them in memory. We calculate

the similarity score via the Euclidean distance. In
unsupervised learning, we obtain the top Ngeject
samples for each class from the current pseudo-
labeled training set and memory set based on simi-
larity scores. Then, we leverage the newly-selected
examples to update the prototype for each class.
Note that the label of a selected example may be
its ground-truth label or a pseudo-label. The pro-
totypes are constantly updated. We only keep the
latest set of selected samples in memory, denoted
as M.

Prototypical pseudo-labeling. Typical ap-
proaches for pseudo-labeling in semi-supervised
learning include self-training with the current
model, co-training with a similar model or
applying graph propagation. We consider two
pseudo-labeling strategies, i.e., pseudo-labeling
with model prediction under self-training and
pseudo-labeling via prototypes. However, since
the initialized model is weakly performed, the
prediction errors for self-training can be accu-
mulated in the continual learning process. Thus,
we will use the second strategy, i.e. prototypical
pseudo-labeling. Particularly, it compares the
embedding of v with all up-to-date prototypes.
The label of the prototype with the closest distance
to the embedding of w is its pseudo-label, namely
Uproto- Since prototypes contain more feature
representation information, we apply prototyp-
ical pseudo-labeling for task-specific learning.
Specifically, we expect the model to output
predictions similar to those of the prototypes.
Thereby, we minimise the cross-entropy loss, i.e.,

ECE (f@ (U)a gproto) .

4.3 Consistency Regularization

We apply the assumption in consistency regular-
ization (Bachman et al., 2014) to the output of our
model fy. Consistency regularization is widely ap-
plied for recent state-of-the-art SSL algorithms in
computer vision. It is hinged on the assumption
that the model should produce similar predictions
when fed perturbed versions of the same image.
FixMatch (Sohn et al., 2020) leverages a standard
flip-and-shift as a weak augmentation strategy and
AutoAugment (Cubuk et al., 2019) as a strong aug-
mentation strategy to form two perturbed versions
of an image for semi-supervised learning. Inspired
by FixMatch, we employ two types of textual aug-
mentations, strong and weak, denoted by A(-) and
a(-) respectively, as the perturbed versions for an



Algorithm 1: Meta Training

Input: Initial parameters 6 = ¢proto U @pred,
training set Diyain = X U U, query set ),
memory buffer M, inner-loop learning rate «,
outer-loop learning rate 3, and No. of saved
data per class Nsclect -

Output: Trained parameters 8 and Memory M

1 fori=1,2, ..do

2 Receiving m batches of examples, Dy,..;,,, from
the stream
3 [Inner Loop]
4 if D!, € X then
5 Perform SGD on ¢preq to minimize Eqn.4
6 ‘ Perform prototypes computation.
7 else if D},...,, C U then
8 Perform pseudo-labeling via prototypes.
9 Perform SGD on ¢preq to minimize Eqn.6.
10 end
11 [Memory Sample Selection]
12 Select N nearest examples to each prototype ¢
from Dy, 4;,, U M for each class.
13 Update prototypes via selected examples.
14 Update M with newly selected examples.

15 [Outer Loop]
16 Read ALL examples from M as Q°.

17 Perform Adam update on 6 to minimize Eqn.9
18 if all training data are seen then

19 | Stop Iteration

20 end

21 end

unlabeled text. In particular, we swap words ran-
domly as the weak augmentation. We apply the
combination of swapping word randomly, deleting
word randomly and substituting word by Word-
Net’s synonym, as the strong augmentation.

Let p(y|z) be the predicted class distribution
output for input =. The consistency regularization
loss applied to labeled instances is,

S ple@) —plx); @

(z,y)EX

And for unlabeled instances is,

S p@lAw) - p@la@)]; @

(u,9)eU

where ¢ denotes pseudo-labeling output by model

fo.

4.4 Meta Training

We employ FOMAML (Finn et al., 2017) as our
learning framework, which consists an inner loop
algorithm for task-specific learning and an outer
loop algorithm for decision making on all seen
tasks. Algorithm 1 shows the training steps in
details.

Inner loop. Inner loop algorithm performs task-
specific learning of current task 7(*), where k €
{1, ..., K}. Tt also includes consistency regulariza-
tion with data augmentations. The inner loop loss
for labeled instances is,

(k)
Ei);ner(e) = E(x,y)rv/\’(k) [LCE(fG ($)> y)]

D>

(z,y)ex®

Ip(yla(@)) - p(yl)|

3)

where Lo is a loss function (i.e., cross-entropy
loss in this paper) and 6 = Pproto U Ppred- We
transform Eqn.3 into,
(k)
‘Ci)liner(g) = E(:p,y)rvé\f’(k) [[’CE(fQ(m)v Y)
+ Lop(fola(z)),y)]

The inner loop loss for unlabeled instances,

“

‘Czljfﬂ(rkl)er(g) = E(u,g}pmto)Nu(k) [ECE(fH (u), ﬁgproto)]
+ > |plA®@) - plaw)];
(u,9)eU®)

)
Similarly, we transform Eqn.5 into,

(k) N
ﬁzi/l{‘lner (0) = E(u,gpmto)~u(k> [LCE (f9 (U), yPTOtO)]

+ E o u),g)~um [Loe(fo(A(w)), 9)]
(6)

where 7 is the model prediction of unlabeled data
a(u). In inner loop optimization, MAML performs
SGD on parameters ¢pr.q With learning rate « as,

¢>;k)red = d)pred - aveﬁinner(e) (7)

Outer loop. In outer loop algorithm, we read
all examples from M as query set, (), where M
contains all representative samples from all seen
classes chosen by prototypes. The outer-loop ob-
jective is to have fy (x) = g¢;red(h¢pmm (x)) gen-
eralize well across all seen tasks from a distribution

p(7T). That is, minimizing the expected risk as,

L3a0) = D EiypronLon(fo (@), y)]
T®) ~p(T)
~ E(z,y’)"‘Q [‘CCE(g¢;rLd (h¢proto (1’.))7 y/)]

®

where Lneta is the meta loss and ' denotes the
ground-truth label or pseudo-label of an example



x from memory set M. However, in such a way,
model tend to overfit examples from query set Q.
Therefore, we introduce generalization via strong
augmentation and modify meta objective as

(h¢proto (A(IE)), y/)]

)
We use Adam (Kingma and Ba, 2015) as our outer
loop optimizer with learning rate (3 as,

L3eia(0) = E@y~ellor(gs:,.,

00— VgLl 0') (10)

meta(

[
where §' = ¢prot0 U Qb;red'

4.5 Meta-inference

In inference, we randomly sample m batches of
examples drawn from M and perform inner-loop
optimization on these samples to finetune param-
eters ¢preq. Note that the inner loop algorithm in
meta-inference differs from that in meta-training.
The inner loop loss in test is formulated as

Liter(0) =B yyomlLop(fo(x),y)] (1)

We use SGD as the inner-loop optimizer with a
learning rate of .. Then, we predicts on the test set

using fgr where ¢proto U qu;red.
5 Experiments

5.1 Experimental Setup

Baselines. To date, not many SSCL models are
available for comparisons, especially in text clas-
sification. Hence, we compare our method against
the following baselines.

e Purely supervised continual learning
(PSCL): We train our model on a sequence
of datasets, which only contains a limited
amount of labeled data. Unlabeled examples
are not provided. We consider PSCL as the
lower bound of model performance.

* Semi-supervised multi-task learning (SS-
MTL): We train our model on all datasets
jointly but under semi-supervision. In SSCL
setup, we consider SS-MTL as the upper
bound of CL performance.

Fully supervised continual learning (FSCL):
We train our model on a sequence of datasets
under full supervision. In SSCL setup, we
consider FSCL as the upper bound of SSL
performance

Dataset Orders
(1) Yelp - AGNews — DBpedia — Amazon — Yahoo

(2) DBpedia — Yahoo — AGNews — Amazon — Yelp
(3) Yelp — Yahoo — Amazon — DBpedia — AGNews
(4) AGNews — Yelp — Amazon — Yahoo — DBpedia

Table 1: Input Datasets Orders

Datasets. We use the collection of text classifi-
cation datasets from Zhang et al. (2015)!, includ-
ing AGNews (news classification; 4 classes), Yelp
(sentiment analysis; 5 classes), Amazon (sentiment
analysis; 5 classes), DBpedia (Wikipedia article
classification; 14 classes) and Yahoo (questions
and answers categorization; 10 classes). Follow-
ing prior work, we use the balanced version of
the collection and merge the classes of Yelp and
Amazon. Thus, we have 33 classes in total. In
this paper, we randomly sample /17,500 training
examples and 7,600 test examples from each of the
datasets. Each dataset is seen as a separate semi-
supervised learning task. In our experiments, we
concatenate training sets in four different orderings
as shown in Table 1 and make only one pass over
the training data.

Evaluation metrics. We perform evaluation after
learning all tasks. We consider a sequence of test
sets, in which the orders of test sets are the same
as that of training sets. The evaluation metrics are
the macro-averaged accuracy and forgetting. Let
A(lez be the macro-averaged accuracy of 7*) in
CL, overall accuracy on a sequence of K tasks is:

K
ACC = %ZA(CQ (12)
k=1
Let A%

single
T we define the forgetting on a sequence of K
tasks is

K K
F= Z F(k Z Asmgle - AC%
k=1 k=1

be the accuracy of learning a single task

(13)

where F'(¥) is the forgetting on a single task T*)

Implementation details. Our example encoder
is a pretrained BERTgagg model (Devlin et al.,
2019) (110M parameter size), in which we trun-
cate the input sequence length to 200. We use

"http://goo.gl/TyCnZq



Labeled Data Per Class: 1 Labeled Data Per Class:5 Full Supervision
Order Index
PSCL Ours. SS-MTL | PSCL QOurs. SS-MTL FSCL
(1 9.0 58.7 60.5 9.7 57.3 61.5 63.2
2) 4.4 59.9 60.5 3.7 63.4 62.8 66.3
3) 8.5 58.0 62.3 9.0 60.5 61.8 65.8
4) 6.6 53.5 61.2 7.3 533 62.0 60.5
Average 71+21  57.5+28 61.1 +0.8 | 7.4+2.7 58.6+4.3 62.0+0.6 64.0+2.7

Table 2: Accuracy on four different orderings of five datasets given a limited amount (i.e.,1 and 5) of labeled data.
Note that performance difference of SS-MTL across different orderings is caused by different test sequence.

Order Index | Method Yelp AGNews DBpedia  Amazon Yahoo Average
PSCL 26.6 76.8 88.9 235 63.2 55.8
(L Ours 6.2 17.2 39 2.5 11.3 8.2
SS-MTL 3.1 6.2 0.6 114 -1.2 4.0

Order Index | Method DBpedia Yahoo AGNews  Amazon Yelp Average
PSCL 82.8 58.8 84.9 40.0 429 61.9
(2) Ours 1.0 5.0 5.0 -0.4 0.1 2.1
SS-MTL 1.4 -0.5 4.6 44 4.0 2.8

Order Index | Method Yelp Yahoo Amazon DBpedia AGNews | Average
PSCL 23.6 62.4 21.1 91.0 84.9 56.6
(3) Ours 23 12.8 0.9 3.8 52 5.0
SS-MTL 5.8 1.2 53 0.9 5.4 3.7

Order Index | Method AGNews Yelp Amazon Yahoo DBpedia | Average
PSCL 66.9 36.0 33.1 43.1 92.1 54.2
“) Ours 252 11.7 14.7 -13.0 2.7 8.3
SS-MTL 3.4 5.5 7.3 1.7 -0.2 35

Table 3: Per-task and average forgetting of four different orderings when the amount of labeled samples is 5 per

class.

SGD as our inner loop optimizer with learning
rate, o« = le 3, and Adam (Kingma and Ba, 2015)
as our outer loop optimizer with learning rate,
B = 3e75. The training batch size is 16. We
constrain our memory budgets by storing up to 5
samples per class (i.e., Ngelect = D and B = 165
samples). For a semi-supervised setting, we assign
{1, 5} labeled instance(s) per class, while the rest
are unlabeled data. For textual augmentation, We
use nplug (Ma, 2019)?, a Python package to imple-
ment augmentations. Specifically, we apply Ran-
domAug for swapping word randomly and deleting
word randomly. We apply SynonymAug for substi-
tuting word by WordNet’s synonym. All models
are executed on Linux platform with 8 Nvidia Tesla
A100 GPU and 40 GB of RAM. All experiments
are performed using PyTorch (Paszke et al., 2019).

Zhttps://github.com/makcedward/nlpaug

5.2 Results

We report the performance of all baselines along
with Meta-Aug. We compute the mean and stan-
dard deviation of accuracy across task sequences
in four orderings. We report the average of 3 best
results from 5 trials. Table 2 shows the evaluation
results, where each task has a limited availability
(e.g., 1 or 5) of labeled training examples.

Continual learning ability. In general, multi-
task learning is considered as the upper bound of
CL performance. We compare Meta-Aug to multi-
task learning under semi-supervision, namely SS-
MTL. The average performance gap between our
method and the upper bound is narrow, approxi-
mately 3.5%. Surprisingly, when the availability of
labeled data is 5, our model performance on Order
(2) surpasses SS-MTL by 0.6%. This phenomenon
is rare in CL. It suggests a positive knowledge trans-



Method

Labeled Data Per Class: 1 | Labeled Data Per Class: 5

Ours.
w/o. data augmentation

w/o. prototypical pseudo-labeling

w/o. data augmentation w/o. prototypical pseudo-labeling

57.5+2.8 (+12.6)
50.4+6.6 (+5.5)
51.8+3.1 (+6.9)
449429 (-)

58.6+4.3 (+13.7)
529+4.2 (+8.0)
50.7+4.3 (+5.8)
449+48 (-)

Table 4: Ablation study on main components of Meta-Aug. The value in brackets indicates accuracy improvement.

Strong Aug.
Labeled Data | No Aug. Weak Aug.
(Ours.)
1 Per Class 51.7+3.8 51.6+6.8 57.5+2.8
5 Per Class 53.2+44.1 53.845.0 58.6+4.3

Table 5: Ablation study of meta objective Lneta With
different data augmentation method.

fer occurs. Hence, our method has an outstanding
ability to mitigate forgetting.

Semi-supervised learning ability. We consider
PSCL as the lower bound, where the model is only
provided with a few labeled instances. Compared
to PSCL, our method significantly increases aver-
age accuracy by more than 50.0%. It is worth not-
ing that when there is only one annotated data per
class, our method can still achieve at least 46.9%
improvement in all four orderings. Additionally,
we compare Meta-Aug to an upper bound, in which
all training data are annotated. As shown in Table
2, Meta-Aug can use 0.06% and 0.29% labeled
data to obtain 89.8% and 91.6% full supervision
performance, respectively. As a result, our method
can exploit unlabeled data effectively to compen-
sate for performance degradation due to the limited
availability of labeled data.

Forgetting measurement. Table 3 shows that
our method has an outstanding performance in
terms of ameliorating forgetting. It prevents more
than 45% performance degrading, compared to
PSCL. Surprisingly, the results on Order (2) and (4)
show accuracy improvements on Amazon and Ya-
hoo, respectively. This is uncommon in CL. It sug-
gests that a positive knowledge transfer across di-
verse domains occurs. Arguably, Meta-Aug shows
its robustness to catastrophic forgetting under semi-
supervision. It prevents at most 59.8% forgetting
via unannotated information. The upper bound per-
formance in terms of forgetting mitigation is also
shown as SS-MTL in Table 3. The performance
gap between our method and the upper bound is

less than 4.5%. It can be seen that our method
can exploit unlabeled data effectively to compen-
sate performance degrading caused by sequential
learning.

5.3 Ablation Study

We perform an ablation study to analyze two
main components of our method, i.e., prototypical
pseudo-labeling and data augmentation, in Table
4. (1) prototypical pseudo-labeling: the experi-
mental results validate the advantage of applying
prototypical network for pseudo-labeling, instead
of using model prediction. The model performance
is improved by 5.5% and 8.0%, respectively. (2)
data augmentation: the proposed augmentation
strategy increases accuracy by 6.9% and 5.8% re-
spectively. We further analyze the effect of data
augmentation on meta objective Lmeta. As shown
in Table 5, applying strong augmentation outper-
forms other strategies by at least 5.8%. It implies
that replacing real examples with strong augmented
ones introduces generalization and solves the over-
fitting problem, especially for experience rehearsal.
It can be seen that the two main components have
contributions to address semi-supervised continual
learning.

Accuracy by No. of Unlabels Per Task
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Figure 2: Accuracy by No. of Labeled and Unlabeled
data per class.



5.4 Further Analysis

Considering the accuracy on Order (1) is compara-
tively close to the average result, we use Order (1)
to conduct more evaluations and perform analysis.

Using unlabeled information. Figure 2 visual-
izes our method performance when using various
amounts of unlabeled examples. Obviously, Meta-
Aug achieves better performance when increasing
the number of unlabeled instances. The accuracy
is less than 15% when the number of unlabeled
data is 500 per task. While, our method yields a
more than 57.5% accuracy when the amount of un-
labeled data reaches to 10000 per task. However,
noise injected by self-training might incurs fluctua-
tions in accuracy as the size of unlabeled data set
keeps expanding. Hence, our model performance
depends on the amount of unlabeled data.
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Figure 3: Accuracy vs No. of saved data per class.

Memory efficiency. We plot accuracy as increas-
ing the number of saved instances to each class in
memory (i.e., Ngelect), in Figure 3. The accuracy
improves when the number of saved samples per
class increases. Meta-Aug shows a great tolerance
to extremely limited memory budgets, i.e., 3 or 5
data per class. In particular, Meta-Aug achieves
more than 57% accuracy in the case of saving only
5 instances per class. It verifies memory efficiency
of our method.

6 Conclusion

Recent advances in continual learning are mainly
confined to a supervised learning setting, which is
often impractical. In this paper, we introduce Meta-
Aug, a meta self-training framework with consis-
tency regularization to address semi-supervised
continual learning. Particularly, we use a prototyp-

ical network and data augmentations for pseudo-
labeling and semi-supervised learning, while incor-
porating MAML for efficient continual learning.
The experimental results manifest that our method
has an outstanding ability for semi-supervised con-
tinual learning. We show our method’s perfor-
mance on low-label semi-supervised learning, i.e.,
1 and 5 labeled data per class. We obtain high ac-
curacy with just one annotated data per class. Our
method also achieves sample efficiency in mem-
ory. It can maintain a good performance given
limited memory size. We also conduct a thorough
ablation study of Meta-Aug. We find that most
of our design choices are simple but efficient. Es-
pecially, our prototypical network can serve for
both pseudo-labeling and sample selection. Our
data augmentation strategy provides solutions not
only to semi-supervised learning but also to the
overfitting problem in experience replay.

7 Limitations

Our method works well in a semi-supervised sce-
nario, in which the amount of annotated data is
extremely limited but the amount of unlabeled data
is plentiful. In this paper, the experimental setup
did not consider a zero-shot setting, where the test
set includes novel labels or unseen labels. In the
experiment, we note that our model’s performance
relies on the number of unlabeled data. Its perfor-
mance also relies heavily on pre-trained language
models (e.g. BERT). The impact of different lan-
guage models can be further investigated. In addi-
tion, the meta-learning framework we used, namely
MAML, is a standard framework. The effect of dif-
ferent meta-learning frameworks should be studied.
We leave this investigation to future work. Fur-
thermore, we can extend our setting to other NLP
tasks, language model training, text generation, and
knowledge base enrichment. And, we can evaluate
our model’s performance on different tasks.
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