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Abstract

Recent advances in continual learning (CL) are001
mainly confined to a supervised learning set-002
ting, which is often impractical. To narrow this003
gap, we consider a semi-supervised continual004
learning (SSCL) for lifelong language learn-005
ing. In this paper, we exploit unlabeled data006
under limited supervision in the CL setting and007
demonstrate the feasibility of semi-supervised008
learning in CL. Specifically, we propose a novel009
method, namely Meta-Aug, which employs010
meta self-training and consistency regulariza-011
tion to learn a sequence of semi-supervised012
tasks. We employ prototypical pseudo-labeling013
and data augmentation to efficiently learn under014
limited supervision without catastrophic forget-015
ting. Furthermore, replay-based CL methods016
easily overfit to memory samples. We solve this017
problem by applying strong textual augmenta-018
tion to introduce generalization. Extensive ex-019
periments on CL benchmark text classification020
datasets from diverse domains show that our021
method achieves promising results in SSCL.022

1 Introduction023

Continual learning (CL), also called lifelong learn-024

ing, is a machine learning paradigm that mimics025

the human learning process. It aims to ensure the026

stability of handling various tasks that have been027

learned, while showing its plasticity on the novel028

domain via previously acquired knowledge. Recent029

advances in CL lack consideration of real-world030

scenarios. In real-world scenarios, the availabil-031

ity of data is limited, where unlabeled data are032

plentiful and acquiring high-quality labels are ex-033

pensive. However, semi-supervised continual learn-034

ing (SSCL) remains understudied. The difficulty035

is that, forgetting or loss of information always036

occurs while ingesting a sequence of data, not to037

mention that the given information is inherently038

limited. To date, there are not many SSCL models039

in text classification, or even in NLP.040

In this paper, we propose a novel SSCL method 041

with meta self-training and consistency regular- 042

ization, namely Meta-Aug. We leverage Model- 043

Agnostic Meta-Learning (MAML) (Finn et al., 044

2017) framework. We employ inner loop algorithm 045

to perform task-specific learning on new samples. 046

In order to preserve prior knowledge, we need to 047

control the change in parameter space. Given outer 048

loop algorithm governs inner loop learning process, 049

we revise the outer loop objective to generalize 050

all seen samples. Specifically, query instances for 051

the outer loop are selected from seen samples by 052

a prototypical network (Snell et al., 2017). We 053

also use prototypical network for pseudo-labeling 054

to alleviate prediction error. To effectively use unla- 055

beled data, we leverage consistency regularization 056

(Bachman et al., 2014). It aims to reach consis- 057

tency on model outputs when fed perturbed ver- 058

sions of the same text. Inspired by FixMatch (Sohn 059

et al., 2020), we apply two types of textual aug- 060

mentations, i.e., weak and strong augmentation, to 061

generate perturbed texts. Furthermore, CL setup 062

constrains the amount of prior seen samples saved 063

in memory. As a result, revisiting memory samples 064

(i.e., experience replay) for knowledge consolida- 065

tion can easily cause overfitting problem. To solve 066

this problem, we introduce generalization by ap- 067

plying strong augmentation on past examples in 068

meta-objective. 069

We conduct extensive experiments on CL bench- 070

mark datasets from Zhang et al. (2015), popular- 071

ized by de Masson d’Autume et al. (2019) in life- 072

long language learning. This collection of datasets 073

includes news classification, sentiment analysis, 074

article classification and questions and answers cat- 075

egorization. Under the limited availability of train- 076

ing samples of all tasks, we show that Meta-Aug 077

effectively uses unlabeled examples and provides 078

more than 50% improvement in accuracy. Meta- 079

Aug also shows its robustness to catastrophic for- 080

getting. The average performance gap between our 081
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method and upper bound of CL performance is less082

than 4%. It prevents more than 45% forgetting, via083

unannotated information. The proposed method084

successfully maintains a more than 53% average085

accuracy given an extremely limited amount of an-086

notated data. Additionally, we report an ablation087

study and further analysis to testify the superiority088

of our method.089

The contributions of this work are four folds:090

• To the best of our knowledge, we are the first091

paper to address semi-supervised continual092

learning via textual augmentations based on093

the assumption of consistency regularization.094

We show the feasibility of using such an as-095

sumption for NLP tasks by textual augmenta-096

tions.097

• We use strongly-augmented samples to ad-098

dress overfitting problem that commonly ex-099

isted in CL methods that involves revisiting100

prior seen examples .101

• We devise a simple but efficient prototypical102

pseudo-labeling method to decrease predic-103

tion error and improve model performance.104

• Extensive experimental results testify the su-105

periority of our method as a promising so-106

lution to address semi-supervised continual107

learning.108

2 Related Work109

Meta-learning in continual learning. Recently,110

meta-learning has been introduced into CL models,111

considering its ability of fast adaptation and knowl-112

edge transfer. Recent works employed MAML113

(Finn et al., 2017) to improve initial parameters,114

such that it can fast adapt to various domains with115

few learning samples. Meta-MbPA (Wang et al.,116

2020) performed local adaptation with episodic117

memory, which used MAML to find a better ini-118

tialized state for local adaptation. OML-ER (Holla119

et al., 2020) and ANML-ER (Holla et al., 2020)120

utilised an online meta-learning model and a neuro-121

modulated meta-learning respectively for fast adap-122

tation, augmented with sparse experience replay.123

Some CL models used Reptile (Nichol et al., 2018)124

as their meta-learning algorithms. MER (Riemer125

et al., 2019) regularized the objective of experience126

replay via a modified Reptile (Nichol et al., 2018)127

algorithm and memory replay module. MLLRE128

(Obamuyide and Vlachos, 2019) also adopted Rep- 129

tile to meta updates parameters via augmented train- 130

ing set. In the field of computer vision, MER- 131

LIN (Joseph and Balasubramanian, 2020) used pre- 132

ceding task-specific priors from meta distribution 133

to replay previous parameters and consolidate the 134

CL model. MOML (Acar et al., 2021) introduced 135

quadratic penalty to debias and regularized loss of 136

a meta model, such that it could bypass the need to 137

recall prior seen instances. All these methods are 138

limited to a supervised continual learning setting. 139

Data augmentation in continual learning. Al- 140

though the literature on data augmentation is rich, 141

data augmentation for continual learning is still at 142

its early stage. IL2A (Zhu et al., 2021) leveraged 143

a modified version of label mixing based method, 144

Mixup (Zhang et al., 2018) for continual represen- 145

tation learning, but IL2A is for images but not for 146

texts. 147

Semi-supervised continual learning. Wang et al. 148

(2021) stated that existing CL strategies are not 149

suitable for the semi-supervised scenario. They 150

defined the challenge as catastrophic forgetting 151

of unlabeled data, in which the underlying distri- 152

bution of unannotated data can not be effectively 153

characterized. ORDisCo (Wang et al., 2021) used 154

a conditional generative adversarial network to ex- 155

ploit unlabeled data and selectively stabilized pa- 156

rameters for discriminative learning. ORDisCo is 157

also for images but not for texts. To date, semi- 158

supervised continual learning is still regarded as a 159

challenging but understudied setting. 160

3 Problem Formulation 161

We define semi-supervised continual learning by 162

assuming a sequence of K semi-supervised tasks 163

{T (1), T (2), ..., T (K)}. For a task T (k), letX (k) = 164

{(xi, yi)}N
(k)

i=1 be a set of N (k) labeled instances, 165

where y is the ground-truth label of input x. Let 166

U (k) = {(uj , ŷj)}M
(k)

j=1 be a set of M (k) unlabeled 167

instances, where ŷ is the pseudo-label of unan- 168

notated input u predicted by model. Note that 169

M (k) >> N (k). In general, CL setting has a mem- 170

ory constraint, B, which refers to the maximum 171

amount of data allowed to be stored. The goal is to 172

learn a consistent model fθ for all seen tasks. 173

Class-incremental learning. In this paper, we 174

consider a popular scenario of continual learning, 175

i.e., class-incremental learning (CIL), where task 176
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identity information is not provided in inference,177

and a single classifier is for all tasks. We leverage178

cross-entropy loss LCE as the classification loss.179

4 Approach180

4.1 Architecture181

The proposed model fθ consists of a representation182

learning network (RLN), hϕproto with learnable pa-183

rameters ϕproto, and a prediction network (PN),184

gϕpred
with learnable parameters ϕpred. It is de-185

scribed as fθ(x) = gϕpred
(hϕproto(x)). We add a186

single-hidden-layer feed-forward neural network187

on top of an encoder to formulate a prototypical net-188

work as RLN and use a single linear layer followed189

by a softmax as PN.190

Figure 1: The overall architecture of the proposed
method.

4.2 Prototypical Network191

The prototypical network can be conceptually di-192

vided into two parts: an encoder that maps in-193

put texts to N-dimensional representations and a194

single-hidden-layer feed-forward neural network195

that learns a mapping: RN → RD, where D < N .196

We aim to obtain a D-dimensional feature vector,197

c ∈ RD, as a prototype for each class.198

Prototypes computation and memory sample se-199

lection. We split the network training into two200

stages: supervised learning and unsupervised learn-201

ing. In supervised learning, each prototype is the202

mean vector of training examples with the same203

label. Then, we select the top Nselect samples with204

the highest similarity score to the corresponding205

prototype and save them in memory. We calculate206

the similarity score via the Euclidean distance. In 207

unsupervised learning, we obtain the top Nselect 208

samples for each class from the current pseudo- 209

labeled training set and memory set based on simi- 210

larity scores. Then, we leverage the newly-selected 211

examples to update the prototype for each class. 212

Note that the label of a selected example may be 213

its ground-truth label or a pseudo-label. The pro- 214

totypes are constantly updated. We only keep the 215

latest set of selected samples in memory, denoted 216

asM. 217

Prototypical pseudo-labeling. Typical ap- 218

proaches for pseudo-labeling in semi-supervised 219

learning include self-training with the current 220

model, co-training with a similar model or 221

applying graph propagation. We consider two 222

pseudo-labeling strategies, i.e., pseudo-labeling 223

with model prediction under self-training and 224

pseudo-labeling via prototypes. However, since 225

the initialized model is weakly performed, the 226

prediction errors for self-training can be accu- 227

mulated in the continual learning process. Thus, 228

we will use the second strategy, i.e. prototypical 229

pseudo-labeling. Particularly, it compares the 230

embedding of u with all up-to-date prototypes. 231

The label of the prototype with the closest distance 232

to the embedding of u is its pseudo-label, namely 233

ŷproto. Since prototypes contain more feature 234

representation information, we apply prototyp- 235

ical pseudo-labeling for task-specific learning. 236

Specifically, we expect the model to output 237

predictions similar to those of the prototypes. 238

Thereby, we minimise the cross-entropy loss, i.e., 239

LCE(fθ(u), ŷproto). 240

4.3 Consistency Regularization 241

We apply the assumption in consistency regular- 242

ization (Bachman et al., 2014) to the output of our 243

model fθ. Consistency regularization is widely ap- 244

plied for recent state-of-the-art SSL algorithms in 245

computer vision. It is hinged on the assumption 246

that the model should produce similar predictions 247

when fed perturbed versions of the same image. 248

FixMatch (Sohn et al., 2020) leverages a standard 249

flip-and-shift as a weak augmentation strategy and 250

AutoAugment (Cubuk et al., 2019) as a strong aug- 251

mentation strategy to form two perturbed versions 252

of an image for semi-supervised learning. Inspired 253

by FixMatch, we employ two types of textual aug- 254

mentations, strong and weak, denoted by A(·) and 255

α(·) respectively, as the perturbed versions for an 256
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Algorithm 1: Meta Training
Input: Initial parameters θ = ϕproto ∪ ϕpred,

training set Dtrain = X ∪ U , query set Q,
memory buffer M, inner-loop learning rate α,
outer-loop learning rate β, and No. of saved
data per class Nselect.

Output: Trained parameters θ and Memory M
1 for i = 1, 2, ... do
2 Receiving m batches of examples, Di

train, from
the stream

3 [Inner Loop]
4 if Di

train ⊆ X then
5 Perform SGD on ϕpred to minimize Eqn.4
6 Perform prototypes computation.
7 else if Di

train ⊆ U then
8 Perform pseudo-labeling via prototypes.
9 Perform SGD on ϕpred to minimize Eqn.6.

10 end
11 [Memory Sample Selection]
12 Select Ns nearest examples to each prototype c

from Di
train ∪M for each class.

13 Update prototypes via selected examples.
14 Update M with newly selected examples.
15 [Outer Loop]
16 Read ALL examples from M as Qi.
17 Perform Adam update on θ to minimize Eqn.9
18 if all training data are seen then
19 Stop Iteration
20 end
21 end

unlabeled text. In particular, we swap words ran-257

domly as the weak augmentation. We apply the258

combination of swapping word randomly, deleting259

word randomly and substituting word by Word-260

Net’s synonym, as the strong augmentation.261

Let p(y|x) be the predicted class distribution262

output for input x. The consistency regularization263

loss applied to labeled instances is,264 ∑
(x,y)∈X

∥∥p(y|α(x))− p(y|x)
∥∥2
2

(1)265

And for unlabeled instances is,266 ∑
(u,ŷ)∈U

∥∥p(ŷ|A(u))− p(ŷ|α(u))
∥∥2
2

(2)267

where ŷ denotes pseudo-labeling output by model268

fθ.269

4.4 Meta Training270

We employ FOMAML (Finn et al., 2017) as our271

learning framework, which consists an inner loop272

algorithm for task-specific learning and an outer273

loop algorithm for decision making on all seen274

tasks. Algorithm 1 shows the training steps in275

details.276

277

Inner loop. Inner loop algorithm performs task- 278

specific learning of current task T (k), where k ∈ 279

{1, ...,K}. It also includes consistency regulariza- 280

tion with data augmentations. The inner loop loss 281

for labeled instances is, 282

LX (k)

inner(θ) = E(x,y)∼X (k) [LCE(fθ(x), y)]

+
∑

(x,y)∈X (k)

∥∥p(y|α(x))− p(y|x)
∥∥2
2

(3)

283

where LCE is a loss function (i.e., cross-entropy 284

loss in this paper) and θ = ϕproto ∪ ϕpred. We 285

transform Eqn.3 into, 286

LX (k)

inner(θ) = E(x,y)∼X (k)

[
LCE(fθ(x), y)

+ LCE(fθ(α(x)), y)
] (4) 287

The inner loop loss for unlabeled instances, 288

LU(k)

inner(θ) = E(u,ŷproto)∼U(k) [LCE(fθ(u), ŷproto)]

+
∑

(u,ŷ)∈U(k)

∥∥p(ŷ|A(u))− p(ŷ|α(u))
∥∥2
2

(5)

289

Similarly, we transform Eqn.5 into, 290

LU(k)

inner(θ) = E(u,ŷproto)∼U(k) [LCE(fθ(u), ŷproto)]

+ E(α(u),ŷ)∼U(k) [LCE(fθ(A(u)), ŷ)]
(6)

291

where ŷ is the model prediction of unlabeled data 292

α(u). In inner loop optimization, MAML performs 293

SGD on parameters ϕpred with learning rate α as, 294

ϕ∗
pred = ϕpred − α∇θLinner(θ) (7) 295

Outer loop. In outer loop algorithm, we read 296

all examples fromM as query set, Q, whereM 297

contains all representative samples from all seen 298

classes chosen by prototypes. The outer-loop ob- 299

jective is to have fθ′(x) = gϕ∗
pred

(hϕproto(x)) gen- 300

eralize well across all seen tasks from a distribution 301

p(T ). That is, minimizing the expected risk as, 302

LQ
meta(θ

′) =
∑

T (k)∼p(T )

E(x,y)∼p(T (k))[LCE(fθ′(x), y)]

≈ E(x,y′)∼Q[LCE(gϕ∗
pred

(hϕproto(x)), y
′)]

(8)

303

where Lmeta is the meta loss and y′ denotes the 304

ground-truth label or pseudo-label of an example 305
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x from memory setM. However, in such a way,306

model tend to overfit examples from query set Q.307

Therefore, we introduce generalization via strong308

augmentation and modify meta objective as309

LQ
meta(θ

′) = E(x,y′)∼Q[LCE(gϕ∗
pred

(hϕproto(A(x)), y′)]

(9)310

We use Adam (Kingma and Ba, 2015) as our outer311

loop optimizer with learning rate β as,312

θ ← θ − β∇θ′LQmeta(θ
′) (10)313

where θ′ = ϕproto ∪ ϕ∗
pred.314

4.5 Meta-inference315

In inference, we randomly sample m batches of316

examples drawn fromM and perform inner-loop317

optimization on these samples to finetune param-318

eters ϕpred. Note that the inner loop algorithm in319

meta-inference differs from that in meta-training.320

The inner loop loss in test is formulated as321

LMinner(θ) = E(x,y)∼M[LCE(fθ(x), y)] (11)322

We use SGD as the inner-loop optimizer with a323

learning rate of α. Then, we predicts on the test set324

using fθ′ where ϕproto ∪ ϕ∗
pred.325

5 Experiments326

5.1 Experimental Setup327

Baselines. To date, not many SSCL models are328

available for comparisons, especially in text clas-329

sification. Hence, we compare our method against330

the following baselines.331

• Purely supervised continual learning332

(PSCL): We train our model on a sequence333

of datasets, which only contains a limited334

amount of labeled data. Unlabeled examples335

are not provided. We consider PSCL as the336

lower bound of model performance.337

• Semi-supervised multi-task learning (SS-338

MTL): We train our model on all datasets339

jointly but under semi-supervision. In SSCL340

setup, we consider SS-MTL as the upper341

bound of CL performance.342

• Fully supervised continual learning (FSCL):343

We train our model on a sequence of datasets344

under full supervision. In SSCL setup, we345

consider FSCL as the upper bound of SSL346

performance347

Dataset Orders
(1) Yelp → AGNews → DBpedia → Amazon → Yahoo

(2) DBpedia → Yahoo → AGNews → Amazon → Yelp

(3) Yelp → Yahoo → Amazon → DBpedia → AGNews

(4) AGNews → Yelp → Amazon → Yahoo → DBpedia

Table 1: Input Datasets Orders

Datasets. We use the collection of text classifi- 348

cation datasets from Zhang et al. (2015)1, includ- 349

ing AGNews (news classification; 4 classes), Yelp 350

(sentiment analysis; 5 classes), Amazon (sentiment 351

analysis; 5 classes), DBpedia (Wikipedia article 352

classification; 14 classes) and Yahoo (questions 353

and answers categorization; 10 classes). Follow- 354

ing prior work, we use the balanced version of 355

the collection and merge the classes of Yelp and 356

Amazon. Thus, we have 33 classes in total. In 357

this paper, we randomly sample 11,500 training 358

examples and 7,600 test examples from each of the 359

datasets. Each dataset is seen as a separate semi- 360

supervised learning task. In our experiments, we 361

concatenate training sets in four different orderings 362

as shown in Table 1 and make only one pass over 363

the training data. 364

Evaluation metrics. We perform evaluation after 365

learning all tasks. We consider a sequence of test 366

sets, in which the orders of test sets are the same 367

as that of training sets. The evaluation metrics are 368

the macro-averaged accuracy and forgetting. Let 369

A
(k)
CL be the macro-averaged accuracy of T (k) in 370

CL, overall accuracy on a sequence of K tasks is: 371

ACC =
1

K

K∑
k=1

A
(k)
CL (12) 372

Let A(k)
single be the accuracy of learning a single task 373

T (k), we define the forgetting on a sequence of K 374

tasks is 375

F =
K∑
k=1

F (k) =
K∑
k=1

A
(k)
single −A

(k)
CL (13) 376

where F (k) is the forgetting on a single task T (k). 377

Implementation details. Our example encoder 378

is a pretrained BERTBASE model (Devlin et al., 379

2019) (110M parameter size), in which we trun- 380

cate the input sequence length to 200. We use 381

1http://goo.gl/JyCnZq
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Order Index
Labeled Data Per Class: 1 Labeled Data Per Class:5 Full Supervision

PSCL Ours. SS-MTL PSCL Ours. SS-MTL FSCL

(1) 9.0 58.7 60.5 9.7 57.3 61.5 63.2

(2) 4.4 59.9 60.5 3.7 63.4 62.8 66.3

(3) 8.5 58.0 62.3 9.0 60.5 61.8 65.8

(4) 6.6 53.5 61.2 7.3 53.3 62.0 60.5

Average 7.1±2.1 57.5±2.8 61.1 ±0.8 7.4±2.7 58.6±4.3 62.0±0.6 64.0±2.7

Table 2: Accuracy on four different orderings of five datasets given a limited amount (i.e.,1 and 5) of labeled data.
Note that performance difference of SS-MTL across different orderings is caused by different test sequence.

Order Index Method Yelp AGNews DBpedia Amazon Yahoo Average

(1)

PSCL 26.6 76.8 88.9 23.5 63.2 55.8

Ours 6.2 17.2 3.9 2.5 11.3 8.2

SS-MTL 3.1 6.2 0.6 11.4 -1.2 4.0

Order Index Method DBpedia Yahoo AGNews Amazon Yelp Average

(2)

PSCL 82.8 58.8 84.9 40.0 42.9 61.9

Ours 1.0 5.0 5.0 -0.4 0.1 2.1

SS-MTL 1.4 -0.5 4.6 4.4 4.0 2.8

Order Index Method Yelp Yahoo Amazon DBpedia AGNews Average

(3)

PSCL 23.6 62.4 21.1 91.0 84.9 56.6

Ours 2.3 12.8 0.9 3.8 5.2 5.0

SS-MTL 5.8 1.2 5.3 0.9 5.4 3.7

Order Index Method AGNews Yelp Amazon Yahoo DBpedia Average

(4)

PSCL 66.9 36.0 33.1 43.1 92.1 54.2

Ours 25.2 11.7 14.7 -13.0 2.7 8.3

SS-MTL 3.4 5.5 7.3 1.7 -0.2 3.5

Table 3: Per-task and average forgetting of four different orderings when the amount of labeled samples is 5 per
class.

SGD as our inner loop optimizer with learning382

rate, α = 1e−3, and Adam (Kingma and Ba, 2015)383

as our outer loop optimizer with learning rate,384

β = 3e−5. The training batch size is 16. We385

constrain our memory budgets by storing up to 5386

samples per class (i.e., Nselect = 5 and B = 165387

samples). For a semi-supervised setting, we assign388

{1, 5} labeled instance(s) per class, while the rest389

are unlabeled data. For textual augmentation, We390

use nplug (Ma, 2019)2, a Python package to imple-391

ment augmentations. Specifically, we apply Ran-392

domAug for swapping word randomly and deleting393

word randomly. We apply SynonymAug for substi-394

tuting word by WordNet’s synonym. All models395

are executed on Linux platform with 8 Nvidia Tesla396

A100 GPU and 40 GB of RAM. All experiments397

are performed using PyTorch (Paszke et al., 2019).398

2https://github.com/makcedward/nlpaug

5.2 Results 399

We report the performance of all baselines along 400

with Meta-Aug. We compute the mean and stan- 401

dard deviation of accuracy across task sequences 402

in four orderings. We report the average of 3 best 403

results from 5 trials. Table 2 shows the evaluation 404

results, where each task has a limited availability 405

(e.g., 1 or 5) of labeled training examples. 406

Continual learning ability. In general, multi- 407

task learning is considered as the upper bound of 408

CL performance. We compare Meta-Aug to multi- 409

task learning under semi-supervision, namely SS- 410

MTL. The average performance gap between our 411

method and the upper bound is narrow, approxi- 412

mately 3.5%. Surprisingly, when the availability of 413

labeled data is 5, our model performance on Order 414

(2) surpasses SS-MTL by 0.6%. This phenomenon 415

is rare in CL. It suggests a positive knowledge trans- 416
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Method Labeled Data Per Class: 1 Labeled Data Per Class: 5

Ours. 57.5±2.8 (+12.6) 58.6±4.3 (+13.7)

w/o. data augmentation 50.4±6.6 (+5.5) 52.9±4.2 (+8.0)

w/o. prototypical pseudo-labeling 51.8±3.1 (+6.9) 50.7±4.3 (+5.8)

w/o. data augmentation w/o. prototypical pseudo-labeling 44.9±2.9 (–) 44.9±4.8 (–)

Table 4: Ablation study on main components of Meta-Aug. The value in brackets indicates accuracy improvement.

Labeled Data No Aug. Weak Aug.
Strong Aug.

(Ours.)

1 Per Class 51.7±3.8 51.6±6.8 57.5±2.8

5 Per Class 53.2±4.1 53.8±5.0 58.6±4.3

Table 5: Ablation study of meta objective Lmeta with
different data augmentation method.

fer occurs. Hence, our method has an outstanding417

ability to mitigate forgetting.418

Semi-supervised learning ability. We consider419

PSCL as the lower bound, where the model is only420

provided with a few labeled instances. Compared421

to PSCL, our method significantly increases aver-422

age accuracy by more than 50.0%. It is worth not-423

ing that when there is only one annotated data per424

class, our method can still achieve at least 46.9%425

improvement in all four orderings. Additionally,426

we compare Meta-Aug to an upper bound, in which427

all training data are annotated. As shown in Table428

2, Meta-Aug can use 0.06% and 0.29% labeled429

data to obtain 89.8% and 91.6% full supervision430

performance, respectively. As a result, our method431

can exploit unlabeled data effectively to compen-432

sate for performance degradation due to the limited433

availability of labeled data.434

Forgetting measurement. Table 3 shows that435

our method has an outstanding performance in436

terms of ameliorating forgetting. It prevents more437

than 45% performance degrading, compared to438

PSCL. Surprisingly, the results on Order (2) and (4)439

show accuracy improvements on Amazon and Ya-440

hoo, respectively. This is uncommon in CL. It sug-441

gests that a positive knowledge transfer across di-442

verse domains occurs. Arguably, Meta-Aug shows443

its robustness to catastrophic forgetting under semi-444

supervision. It prevents at most 59.8% forgetting445

via unannotated information. The upper bound per-446

formance in terms of forgetting mitigation is also447

shown as SS-MTL in Table 3. The performance448

gap between our method and the upper bound is449

less than 4.5%. It can be seen that our method 450

can exploit unlabeled data effectively to compen- 451

sate performance degrading caused by sequential 452

learning. 453

5.3 Ablation Study 454

We perform an ablation study to analyze two 455

main components of our method, i.e., prototypical 456

pseudo-labeling and data augmentation, in Table 457

4. (1) prototypical pseudo-labeling: the experi- 458

mental results validate the advantage of applying 459

prototypical network for pseudo-labeling, instead 460

of using model prediction. The model performance 461

is improved by 5.5% and 8.0%, respectively. (2) 462

data augmentation: the proposed augmentation 463

strategy increases accuracy by 6.9% and 5.8% re- 464

spectively. We further analyze the effect of data 465

augmentation on meta objective Lmeta. As shown 466

in Table 5, applying strong augmentation outper- 467

forms other strategies by at least 5.8%. It implies 468

that replacing real examples with strong augmented 469

ones introduces generalization and solves the over- 470

fitting problem, especially for experience rehearsal. 471

It can be seen that the two main components have 472

contributions to address semi-supervised continual 473

learning. 474

Figure 2: Accuracy by No. of Labeled and Unlabeled
data per class.
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5.4 Further Analysis475

Considering the accuracy on Order (1) is compara-476

tively close to the average result, we use Order (1)477

to conduct more evaluations and perform analysis.478

Using unlabeled information. Figure 2 visual-479

izes our method performance when using various480

amounts of unlabeled examples. Obviously, Meta-481

Aug achieves better performance when increasing482

the number of unlabeled instances. The accuracy483

is less than 15% when the number of unlabeled484

data is 500 per task. While, our method yields a485

more than 57.5% accuracy when the amount of un-486

labeled data reaches to 10000 per task. However,487

noise injected by self-training might incurs fluctua-488

tions in accuracy as the size of unlabeled data set489

keeps expanding. Hence, our model performance490

depends on the amount of unlabeled data.491

Figure 3: Accuracy vs No. of saved data per class.

Memory efficiency. We plot accuracy as increas-492

ing the number of saved instances to each class in493

memory (i.e., Nselect), in Figure 3. The accuracy494

improves when the number of saved samples per495

class increases. Meta-Aug shows a great tolerance496

to extremely limited memory budgets, i.e., 3 or 5497

data per class. In particular, Meta-Aug achieves498

more than 57% accuracy in the case of saving only499

5 instances per class. It verifies memory efficiency500

of our method.501

6 Conclusion502

Recent advances in continual learning are mainly503

confined to a supervised learning setting, which is504

often impractical. In this paper, we introduce Meta-505

Aug, a meta self-training framework with consis-506

tency regularization to address semi-supervised507

continual learning. Particularly, we use a prototyp-508

ical network and data augmentations for pseudo- 509

labeling and semi-supervised learning, while incor- 510

porating MAML for efficient continual learning. 511

The experimental results manifest that our method 512

has an outstanding ability for semi-supervised con- 513

tinual learning. We show our method’s perfor- 514

mance on low-label semi-supervised learning, i.e., 515

1 and 5 labeled data per class. We obtain high ac- 516

curacy with just one annotated data per class. Our 517

method also achieves sample efficiency in mem- 518

ory. It can maintain a good performance given 519

limited memory size. We also conduct a thorough 520

ablation study of Meta-Aug. We find that most 521

of our design choices are simple but efficient. Es- 522

pecially, our prototypical network can serve for 523

both pseudo-labeling and sample selection. Our 524

data augmentation strategy provides solutions not 525

only to semi-supervised learning but also to the 526

overfitting problem in experience replay. 527

7 Limitations 528

Our method works well in a semi-supervised sce- 529

nario, in which the amount of annotated data is 530

extremely limited but the amount of unlabeled data 531

is plentiful. In this paper, the experimental setup 532

did not consider a zero-shot setting, where the test 533

set includes novel labels or unseen labels. In the 534

experiment, we note that our model’s performance 535

relies on the number of unlabeled data. Its perfor- 536

mance also relies heavily on pre-trained language 537

models (e.g. BERT). The impact of different lan- 538

guage models can be further investigated. In addi- 539

tion, the meta-learning framework we used, namely 540

MAML, is a standard framework. The effect of dif- 541

ferent meta-learning frameworks should be studied. 542

We leave this investigation to future work. Fur- 543

thermore, we can extend our setting to other NLP 544

tasks, language model training, text generation, and 545

knowledge base enrichment. And, we can evaluate 546

our model’s performance on different tasks. 547
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