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Abstract

In this report, we introduce our solution to the Occu-
pancy and Flow Prediction challenge in the Waymo Open
Dataset Challenges at CVPR 2022. We have developed a
novel hierarchical spatial-temporal network featured with
spatial-temporal encoders, a multi-scale aggregator en-
riched with latent variables, and a recursive hierarchical
3D decoder. We use multiple losses including focal loss and
modified flow trace loss to efficiently guide the training pro-
cess. Our method achieves a Flow-Grounded Occupancy
AUC of 0.8389 and outperforms all the other teams on the
leaderboard.

1. Introduction

Since 2020, the Waymo Open Dataset [6,25] has been
providing the research communities with high-quality data
collected from both LiDAR and camera sensors in real self-
driving scenarios, which have enabled a lot of new excit-
ing research. At CVPR 2022, the Waymo Open Dataset
Challenge introduces a brand new challenge named “Occu-
pancy and Flow Prediction” by expanding original Motion
Datasets [0]. This new form of representation [ |,20] mit-
igates the shortcomings of the existing representation such
as trajectory sets and occupancy. By predicting flow fields
and occupancy jointly, the motion and location probability
of all agents in the scene can be captured simultaneously.
More specifically, given one-second history of agents in a
scene, the algorithm is required to forecast all vehicles’ oc-
cupancy and flow fields in 8 seconds. The evaluation metric
is calculated using Flow-Grounded Occupancy, which mea-
sures the quality of predicted occupancy and flow jointly.
The algorithm that achieves best AUC score with Flow-
Grounded Occupancy wins the challenge.

In this report, we propose a hierarchical spatial-temporal
network named HOPE, composed of spatial-temporal en-
coders, a multi-scale aggregator enriched with latent vari-
ables, and a hierarchical 3D recursive decoder. Our model
takes the past 10 frames’ and the current frame’s as input.

We enrich the history with a set of rasterized agents’ dy-
namic states with the scene’s static information. Multiple
modified losses are used to guide the training convergence.
For better result, we have also utilized Stochastic Weights
Averaging (SWA), test-time augmentation (TTA) and model
ensembling techniques to further refine the predictions.

2. Methods

We divide our model into three parts. The encoder gen-
erates multi-scale features from the spatial-temporal inputs.
The aggregator interacts and fuses the features at different
scales of the encoders. Then, the condensed features are
decoded into temporal-coherently predicted waypoints by a
spatial-temporal decoder. Fig. 1 shows an overview struc-
ture of our model. In this section, we first introduce our
input representation, and then elaborate the structure of our
model.

2.1. Inputs Representation

For a given scene, our input I; = (D, .S) contains both
the dynamic features and the static features. The dynamic
features D; = (O, a;) include the occupancy information
Oy as well as the attributes of an agent a; such as bound-
ing box’s width, height, length, z , velocity x, velocity y,
and speed. Static features S = s; .y include road map
information and each channel represents a different static
element (e.g overall road map, middle line, road edge, traf-
fic light). There are 29 different road features thus N = 28.
We encode past 10 scenes and the current scene for a total
of 11 scenes and we use a rasterized bird-eye-view(BEV)
as the representation. To be specific, the shape of Oy, a;
and S are H x W x 3(for all 3 classes), H x W x 7 and
H x W x 29.

For 2D encoders, the dynamic features are concatenated
along the temporal dimension, followed by the static fea-
tures, denoted as I = (Ds,..11,S5). We merge the occu-
pancy of bicycle and pedestrian classes, thus the channel
of occupancy is 22. For agent attributes, since bounding
box’s width, height and length features are also static, we
merge them across time, thus the channel of agent attributes
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Figure 1. Overall structure of our model. The inputs include the dynamic features (e.g. agents’ occupancy) marked in orange, and the static
features (e.g. map states) marked in blue. For the inputs to the 3d sparse encoder, each cube represents both the dynamic features and the
static features marked in orange and blue respectively. To reduce the computational cost, we only choose either the transformer encoder or

the sparse ST3D encoder to fuse with our CNN encoder.

is 4 x 11 + 3 = 47. With 29 channels of road features 5,
the total input channel is 98.

For 3D encoder, we encode the time as an additional
dimension, as I = I 11 for both the dynamic features
and the static features, which is achieved by duplicating the
static features across the time dimension. We also simplify
both the dynamic features and the static features: for the
dynamic features, only the occupancy information of the 3
classes is encoded; and for the static features, we merge all
road map information into 3 channels: overall road center,
overall road edge, and all other road information (e.g. stop
sign, crosswalk, and speed bump). Thus, each feature is
6 dimensional and the final input shape before sparsify is
HxW xT x6.

2.2. Model Structure
2.2.1 Encoder

We design and combine 3 different encoders for the task:
a 2D CNN encoder, a Transformer-based encoder, and a
spatial-temporal sparse 3D CNN encoder. Then the en-
coded features by different encoders are concatenated and
fused at each scale.

CNN Encoder We use RegNet [23] as our 2D CNN en-
coder. RegNet is a well-designed backbone featured with
high efficiency. In our implementation, we have utilized
RegNetX-32GF. The encoder generates multi-scale features
C1,Cs,Cs,Cy, Cs, where C; denotes the feature of spatial

size 2—}{ X 2—”{ as the input of the aggregator.

SwinTransformer Recently, Transformer-based mod-
els have achieved great success on vision tasks. Specifi-
cally, the SwinTransformer [16, 17] has become one of the
state-of-the-art models on many dense prediction tasks such
as detection and segmentation. The SwinTransformer is an
excellent choice for our task for three reasons: First, the
occupancy flow prediction is also a dense prediction task;
Second, the attention mechanism is widely used in motion
prediction tasks [4,7,21,28] as it matches well with the real-
world driving scenarios, where interactions occur between
agents as well as between agents and roads. Especially, the
window attention mechanism greatly reduces the computa-
tional cost when the attention ranges increase. Third, the
huge amount of data by Waymo Open Dataset provides an
excellent and necessary condition for the SwinTransformer
to converge.

In practice, we use SwinV2-T as one of the encoder net-
works. Similar as the CNN encoder, it also generates multi-
scale features C', Cs, C3, Cy, Cs, thus these features can be
concatenated with the features from other encoders of the
same spatial sizes. Note that we use the ImageNet1K [3]
pretrained model with a window size of 16, and we only
change the patch size from 4 to 2 and leave other hyper pa-
rameters unchanged compared with the original SwinV2-T.
Figure 2 is an overview of the SwinTransformer module in
our task.

Spatial-temporal 3D Encoder To better exploit the
temporal or inter-frame information, we have designed a
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Figure 2. The structure of the SwinTransformer encoder. ‘ST’
stands for Swin Transformer Block. H, W, D,C are the input
height, width, channel and embedding channel, respectively. C'-
Cs are the generated multi-scale features.

spatial-temporal 3D encoder to capture temporal consis-
tency. Since the rasterized input data has high sparsity, we
have used 3D sparse convolutional layer and submanifold
sparse convolutional layer [8] to both accelerate the forward
speed and better capture the input features across the spatial
and temporal dimensions. We construct a 5-stage backbone,
where each stage downsamples the spatial dimensions by
2. For the temporal dimension, it is only downsampled at
stage 2 and 4. The output of each stage is gathered and the
temporal and feature dimensions of each output are merged
as the final feature dimension. Figure 3 shows the detailed
structure of the sparse encoder.

2.2.2 Aggregator

As shown in Fig. 4, the aggregator is composed of a set
of stacked BiFPN layers and a multi-scale latent variable
module, which aggregates the spatial features at different
scales and fuses them with the latent information.

BiFPN Following EfficientDet [20, 26], the multi-scale,
temporal-condensed features are fused and interacted in a
bidirectional manner using BiFPN layers.

Latent Variable Inspired by FIERY [ 1], we model the
inherent stochastic future using latent variables by a con-
ditional variational approach. However, the latent code in
FIERY only models the entire scene, mainly the ego vehi-
cle, which is not enough for our task. To expand it to all
of the agents in the scene, we model the latent variables as
Gaussian distributions in multi-scale bird-eye-view(BEV).
During training, we sample the latent code from the current
distribution at every location and scale, and take the mean
of the distribution during inference. The latent feature maps
(P, with the shape H x W, x C) and the vector (Pgiobal,i
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Figure 3. The structure of the 5-stage 3D encoder. ‘C’ represents
3D sparse convolutional layer that downsamples H and W dimen-
sion, ‘Cr’ represents 3D sparse convolutional layer that downsam-
ples H, W, and T dimension, ‘S’ represents submanifold sparse
convolutional layer (two stacked ‘S’ means two such layers in a
row), and ‘R’ represents reshape operation that merges time di-
mension and feature dimension.

with the shape 1 x 1 x C) are then expanded, concatenated
and fused with the multi-scale features. Also, to enforce the
consistency of the predicted and observed future distribu-
tion, the Kullback-Leibler divergence loss is adopted during
training as described in 2.3

2.2.3 Decoder

Different from image segmentation task which only con-
siders spatial information, the occupancy and flow pre-
diction take both of the spatial and temporal information
into account. Thus, naively applying the decoders from
segmentation task is not the optimal choice. Recently,
spatial-temporal prediction has gained more advancements,
such as in video prediction [22]. Inspired by the previous
work [9-11,24,27], we design a novel hierarchical spatial-
temporal decoder as shown in Fig. 6. Different from the
previous video prediction task, the occupancy and flow pre-
diction has much larger spatial dimension (256x256) and
a longer forecasting time horizon (8 second), which implies
long range dependence in both spatial and temporal domain.
Thus, widely used ConvGRU [1] and ConvLSTM [24] are
not an optimal choice since they have small receptive field
and relatively large computational cost due to their recursive
nature. To enlarge our receptive field without sacrificing the
efficiency, we design stacked dilated 3D convolutional bot-
tleneck structures as shown in Fig. 5. The dilation [2] makes
our receptive field extremely large with almost the same
computational complexity. Also, the grouped bottleneck
structures with skip connections further boost our model’s
speed and efficiency. To incorporate multi-scale features,



the stacked bottlenecks are then combined in a FPN man-
ner as shown in Fig. 6. Since our input multi-scale features
from the aggregator are condensed in temporal domain (i.e
P, Ps, ..., Py), we further adopt transposed 3D convolu-
tions in the bottleneck structures which gradually unroll the
temporal domain.

To incorporate fine-grained features efficiently, we adopt
a single ConvLSTM layer at the top. As shown in Fig. 6, the
ConvLSTM layer takes largest scale output by the aggrega-
tor (i.e P;) as the hidden and the cell states. As a refine-
ment, the ConvLSTM layer recursively takes the temporal-
unrolled coarse output by the 3D-FPN structures as input.
Then, the unrolled features are sent to the shared heads
which are finally decoded as the observed/occluded occu-
pancy (Oy4,) and the flow prediction (Fp,).
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Figure 4. The structure of the aggregator. C1, ..., Cs are the fused
features from 5 different scales. ®,; and ¢giovai,+ are the latent
BEV map and the global latent vector respectively, which are sam-
pled from the predicted distributions at scale s. The latent map are
then concatenated with the BiFPN features as the aggregated out-
put P, ..., Ps.

2.3. Losses

Occupancy Loss Focal loss [15] is adopted to supervise
both the observed and occluded occupancy prediction, as
shown in Eq. 1.
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Figure 5. The structure of the 3D convolutional bottleneck
block(Conv3D-BN). “Conv3D” stands for 3D convolutional layer
and “TConv3D” stands for transpose 3D convolutional layer. The
format of the layer setting follows “kernel size-channels-dilations-
strides-(groups)”, i.e. k-C-d-s-(g). The kernel size, dilations, and
strides are tuples following (T, H, W), where T represents the time
domain, and H, W represent the spatial domain. To match the out-
put shape of transpose conv3d layer, a temporal up-sample layer is
used at the skip connection.
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Figure 6. The structure of the Spatial Temporal Decoder.
“Conv3D-BN” and “TConv3D-BN” stand for the regular and
transposed 3D convolutional bottleneck block respectively.

where O is observed occupancy, O¢ is occluded occu-
pancy, O is the predicted occupancy and O is the ground
truth occupancy at time step ¢.

Flow Loss Similar to Mahjourian et al. [20], we apply
smooth L1 loss for the flow regression. To decouple the
flow prediction and occupancy prediction tasks, the loss is
further weighted by the ground truth occupancy O;.

Traced Loss We implement the traced loss as described
in Mahjourian et al. [20] with some modifications. Instead
of using cross-entropy loss alone, we mix the focal loss and



the cross-entrophy loss to further boost the Flow-Grounded
Occupancy AUC metric. Also, to be consistent with the
Flow-Grounded Occupancy AUC metric, instead of recur-
sively applying the warping process on current occupancy
Oy, we directly warp the ground truth O;_ at the previous
time step with the predicted flow F; , as shown in Eq. 3.
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Then cross entropy loss and focal loss are applied jointly
as the final traced loss, as shown in Eq. 4
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where H is the cross entropy loss.

Probabilistic Loss Following FIERY [11], we use
Kullback-Leibler divergence to enforce the consistency be-
tween the predicted future distributions and the observed
future distributions. Different from FIERY, we average the
KL-divergence loss over every pixel and scale, as shown in
Eq. 5 and Egq. 6.
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where N is number of scales, sy, ; is the n-th output feature
map, Yi+1, -, Ye+7 are ground truth occupancy and flows.
In our experiment, we set equal weight to each scale, i.e
As = 1.
We use the weighted sum of all losses as the final loss:

L= /\occcocc + Aﬂowﬁﬂow + )\lracedﬂtraced + /\probﬁprob (7)

3. Experiments
3.1. Experiment Settings

We generate the rasterize input within a 120m x 120m
region at a resolution of 0.156m/pixel, thus the input spatial
size is 768 x 768. To match the output resolution with the
evaluation range, the mutliscale feature maps are cropped
with a 2/3 ratio to keep the 80m x 80m region before the
decoder. We use AdamW optimizer [|9] and cosine anneal-
ing policy [18] with an initial learning rate of 2.5 x 1074,
The weight decay is set to 0.01. We set the loss coefficient
Aoce = 9500, Aiow = 1, Atracea = 500 and Aprop = 1. For
the occupancy loss, weights between the observed and oc-
cluded occupancy are equal, i.e )\bo = A = 1. For the

traced loss, weights between the cross entropy and the focal
loss are equal, i.e Aee = Af = 1.

Model Variations and Ensembling We train two model
variants: HOPE-Swin and HOPE-3D. HOPE-Swin fuses
RegNet and SwinV2 encoder while HOPE-3D fuses Reg-
Net and Sparse encoder. Both models are trained on the
training and validation datasets. HOPE-Swin and HOPE-
3D are trained for 4 and 2 epochs respectively.

For both models, we use Stochastic Weights Averaging
(SWA) [12, 13] to further enhance the training. We train
each model for one additional epoch using decreased learn-
ing rate and greedily average the weights.

3.2. Test-Time Augmentation and Model Ensem-
bling

We also boost predictions through Test-Time Augmen-
tation (TTA) [5, 4], by rotating the raster inputs by =, and
ensembling by taking the weighted average with the original
predictions. Note that we only apply TTA on flow predic-
tions, keeping occupancy predictions as the original. The
weight of the TTA prediction is 0.25. The effectiveness of
TTA is shown in Tab. 2.

After the TTA, we ensemble the output of the two model
variants by taking a weighted averaging as the final result.

4. Results
4.1. Performance on the Test Set

The final results on the official Occupancy and Flow Pre-
diction challenge leaderboard are shown in Tab. 1. Based on
the primary metric, Flow-Grounded Occupancy AUC, we
outperform all the other teams. Fig. 7 shows the visualiza-
tion of some of our predictions.

4.2. Ablation Studies

To verify the effectiveness of our approach, we have con-
ducted a number of ablation studies as shown in Fig. 2.

Losses We replace the losses in our baseline model with
the focal loss and the traced loss. The Flow-Grounded Oc-
cupancy AUC and Flow-Grounded Occupancy soft-IoU are
boosted dramatically by replacing the cross-entropy loss
with the focal loss [15], at some decrease of the Observed
soft-IoU metric. Moreover, adding traced loss [20] fur-
ther boosts Flow-Grounded Occupancy AUC and Flow-
Grounded Occupancy soft-IoU by a large margin.

Additional Input As described in 2.1, besides the sim-
ple rasterized occupancy O,, we further enrich the dynamic
features D; = (O, a;) by rasterizing the agents’ attribute
a(i.e bounding box’s width, height, length, z, velocity x,
velocity y and speed). Also, we expand the static feature
S from a single one-hot layer to 28 layers, which includes
lanes’ and traffic states’ information. By adding additional



Models Observed Occupancy | Occluded Occupancy | Flow | Flow-Grounded Occupancy
AUC Soft IoU AUC Soft IoU EPE AUC Soft IoU
HorizonOccFlowPrediction(Ours) | 0.8033 0.2349 0.1650 0.0169 3.6717 | 0.8389 0.6328
Look Around 0.8014 0.2336 0.1386 0.0285 2.6191 | 0.8246 0.5488
Temporal Query - Stable 0.7565 0.3934 0.1707 0.0404 3.3075 | 0.7784 0.4654
STrajNet 0.7514 0.4818 0.1610 0.0183 3.5867 | 0.7772 0.5551
VectorFlow 0.7548 0.4884 0.1736 0.0448 3.5827 | 0.7669 0.5298

Table 1. Top five submissions of the Occupancy and Flow Prediction challenge. For each team, only the best submission is kept. The
results are evaluated on the test set. The Flow-Grounded Occupancy AUC (marked in grey) is used as primary metric.

focal traced enriched latent ST +swin  +ST3D TTA Flow-Grounded | Observed Occupancy | Flow
loss loss inputs var. decoder encoder encoder AUC  Soft-IoU | AUC Soft-IoU EPE
0.7492  0.4905 | 0.7193 0.4403 4.4692

v 0.7693  0.5109 | 0.7133 0.1924 4.2966
4 4 0.7739  0.5344 | 0.6792 0.1503 4.7153
4 4 4 0.7862  0.5511 | 0.7053 0.1610 4.3068
v 4 4 v/ 0.7850  0.5523 | 0.7065 0.1655 4.3146
v 4 4 4 4 0.7956  0.5580 | 0.7231 0.1466 4.1320
4 4 4 4 4 4 0.7972  0.5627 | 0.7258 0.1619 4.0951
v 4 4 4 4 4 0.7983  0.5647 | 0.7262 0.1611 4.0433
v 4 4 v/ 4 4 v 108023 05788 | 0.7262 0.1611 3.9840

Table 2. The detailed ablation study. All the experiments are conducted on a 1/10 training set for 5 epochs and evaluated on the all validation
set with the scenario IDs provided by WOD. The rasterized inputs are fixed at a range of 80mx80m. The metrics are evaluated under our
customized environment, which is slightly different from the online evaluation server. For WOD2022 challenge, the “Flow-Grounded

AUC” (marked in grey) is used as primary metric.

information, we observed significant improvements among
all metrics.

Probabilistic Modeling Adding multi-scale latent vari-
able slightly improves the Flow-Grounded Occupancy soft-
IoU, Observed AUC, and Observed soft-IoU with the cost
of a slight drop in Flow-Grounded Occupancy AUC.

Spatial Temporal Decoder Instead of predicting all 8
waypoints at the same time, we add a spatial temporal de-
coder and predict 8 future states recursively as described
in 2.2.3. We have observed significant improvements in all
metrics, showing the effectiveness of decoupling the spatial
and temporal information when decoding.

Extra Encoder To further enhance our encoded features,
we have designed two variant models: One by adding Swin-
Transformer encoder 2.2.1 and the other by adding ST3D
encoder 2.2.1. We can observe in Tab. 2 that fusing both
encoders outperforms the single CNN encoder. Moreover,
we can further benefit from the two variants of the model
by using model ensemble technique.

5. Conclusion

In this report, we have shown our method for the occu-
pancy flow prediction with a hierarchical spatial-temporal
model named HOPE. This model is composed of multi-

ple spatial-temporal encoders, a multi-scale latent code en-
riched aggregator, and a hierarchical 3D recursive decoder.
In addition, we have redesigned multiple losses, including
the focal loss and the flow trace loss. For further enhance-
ments, we have adopted various ensemble techniques, i.e
stochastic weights averaging and test time augmentation.
Thanks to all these innovations, HOPE achieved the top ac-
curacy in term of the Flow-Grounded Occupancy AUC for
the “Occupancy and Flow Prediction” in the Waymo Open
Dataset Challenges 2022.
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