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Abstract

Weighting problems in treatment effect estimation can be solved by minimising an
appropriate probability distance. Choosing which distance to minimise, however,
can be challenging as it depends on the unknown data generating process. An
alternative is to instead choose a distance that depends on a suitable representation
of covariates. In this work, we give errors that quantify the bias added to a weighting
estimator when using a representation, giving clear objectives to minimise when
learning the representation and generalising a large body of previous work on
deconfounding, prognostic, balancing and propensity scores. We further outline a
method minimising such objectives, and show promising numerical results on two
semi-synthetic datasets.

1 Introduction

Estimating the causal effect of a treatment variable on an outcome of study is a fundamental task in
multiple fields such as epidemiology [1], medicine [2], public policy [3] or economics [4]. Some
challenges include removing the influence of confounders [5] or generalising a treatment effect
estimated on a randomised control trial (RCT) to a target observational population [6, 7]. Both
problems can be solved with weighting [8, 7] : we reweight an original distribution to target a causal
effect of interest. A set of methods relies on minimising a probability distance between the weighted
distribution and a reference one, however we do not know which distance to minimise as it depends
on a model for the outcome, which we do not have access to [9].

In this paper, we choose a distance that depends on an adequate representation, that is a (potentially
multivariate) mapping of covariates to another manifold, which we learn from data. Our main
contributions are : 1) we show that a “deconfounding error” quantifies the added bias on the weighting
estimator when using a distance on the representation and should be minimised for this purpose, 2)
we deduce a “balancing score error” that does not depend on the unknown outcome information and
measures how much representations are not balancing scores [10] while giving guarantees on the bias,
adding flexibility compared to assuming well-specified balancing (or propensity) scores as does a
significant portion of the literature [10, 11] ; 3) we outline a method inspired from RieszNet [12] that
learns such representations from data and apply it to a popular dataset in treatment effect estimation.

2 Background

2.1 Notations

Let X denote pre-treatment covariates, A denote the treatment variable and Y denote the outcome.
We assume that the values of A belong to a finite (and potentially binary) space A. We assume we
have access to i.i.d. data {(Xi, Ai, Yi)}. For a ∈ A, we note Y (a) the potential outcome wrt a, that
is the outcome that a subject receives if they were to receive treatment a. Further, in transportability,
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we have an other binary variable S such that S = 1 denotes membership in the RCT population, i.e.
(Y (1), Y (0)) ⊥⊥ A|S = 1, and we do not have access to A, Y when S = 0.

2.2 Framework

Let P be a source distribution, Q a target distribution. We assume that P,Q have densities p, q,
respectively, and that we have access to (not necessarily disjoint) samples P from P and Q from Q.
We note ER[f(Z)] be the expectation of f(Z) under a function f when Z follows the distribution
R. We call weight function or weights any non-negative function w(x) of covariates such that
EP [w(X)] = 1. Any weight function w induces a distribution Pw with density w(x)p(x), where we
say that is P reweighted by w(X), with EPw

[f(X)] = EP [w(X)f(X)] for any function f . Let m(x)
be a function of interest which we call the outcome model. We assume there exists an observed
random variable Ỹ , which we call the pseudo-outcome, with m(x) = EP [Ỹ |X = x]. We are
interested in the target estimand EQ[m(X)]. However, we do not have access to either the outcome
model or the target estimand. On the other hand, for any weight function w(x), 1

|P|
∑

i∈P w(Xi)Ỹi

is an unbiased estimator of EPw
[m(X)]. All of this motivates our problem statement.

Problem 1 (General weighting problem) Find a weight function w(X) such that

EPw [m(X)] = EQ[m(X)]

where m(x) = EP [Ỹ |X = x].

This generalises many weighting problems in treatment effect estimation (details in Supplement 6 ;
some related work on importance weighting is in Supplement 7). In ATT (average treatment effect
on the treated) estimation [8], we focus on estimating E[Y (0)|A = 1] : the source distribution is
P (X|A = 0), the target one is P (X|A = 1), the outcome model is E[Y (0)|X = x], the pseudo-
outcome is Y . In ATE estimation, we estimate E[Y (a)] for each a ∈ A [13], the source distribution
is P (X|A = a), the target one is the marginal P (X), the outcome model is E[Y (a)|X = x], the
pseudo-outcome is Y . In transportability [6, 7], we are interested in the average treatment effect
E[Y (1) − Y (0)|S = 0] on a target population S = 0 where A, Y are accessible only for the RCT
population (S = 1) : the source distribution is the RCT population P (X|S = 1), the target one is
the target population P (X|S = 0), the outcome model is CATE(x) = E[Y (1)− Y (0)|X = x], the
pseudo-outcome is AY

P (A=1) −
(1−A)Y
P (A=0) . We make the following important assumption.

Assumption 1 (Absolute continuity) Q is absolutely continuous wrt P , i.e. for any x such that
q(x) > 0, we have p(x) > 0.

This assumption is equivalent to overlap in ATT/ATE estimation [14] and support inclusion [7] in
transportability. It ensures that the inverse probability weight function (also called Riesz representer
[15, 16]) w∗(x) = q(x)/p(x) is well-defined. Here we more simply refer to it as the true weights.
Such weights w∗ are uniquely defined by Q = Pw∗ or, equivalently, for any function f [8],

EPw∗ [f(X)] = EQ[f(X)].

In particular, this holds for f = m, solving our general weighting problem. In practice, we
unfortunately do not have access to the true weights w∗ and need to either estimate them or more
generally find another way to obtain a solution weight function.

2.3 Common methods in weighting

In ATT/ATE estimation and transportability, w∗ is proportional to the inverse of one of the propensity
scores p(A = a|X = x) [17, 8] or P (S = 1|X = x) [18, 19, 20, 21]. Thus, an inverse probability
weighting estimator ŵ of w∗ is obtained by fitting a model for the indicated propensity score and
inverting it, leading to potentially outsize errors due to misspecification [22, 23]. An alternative used
in the automatic debiased machine learning (AutoDML) literature is to minimise the mean squared
error between w∗ and ŵ, which can actually be estimated without exactly knowing the true weights
w∗ [16, 12, 24]. Another family of methods [25, 26, 27, 28, 29, 30, 31, 32] relies on imposing that
weights w verify balance in some moments r, i.e. EPw

[r(X)] = EQ[r(X)]. Then one minimises
some dispersion measure of weights under these constraints. However, balancing r does not guarantee

2



balancing the unknown m [13] and the solution might not be feasible if r has too many moments
[9]. A related family of methods finds parameterised weights or propensity scores that approximately
induce balance in moments r through a generalised method of moments [33, 27].

Finally, another family of methods [34, 23, 8, 14] aims at finding weights w minimising |Bias(w;m)|
where we refer to Bias(w;m) = EPw

[m(X)]− EQ[m(X)] as the “bias” of weights w, measuring
how short they fall of solving Problem 1. It is usually assumed that m belongs to a class of functions
M which leads to the bound

|Bias(w;m)| ≤ IPMM(Pw(X), Q(X)) := sup
m̄∈M

|EPw [m̄(X)]− EQ[m̄(X)]|

where the RHS is an integral probability metric (IPM) [35] on the class M and generally corresponds
to a known generic probability discrepancy, for example the Wasserstein distance when M is the set
of Lipschitz functions or the maximal mean discrepancy (MMD) wrt kernel k when M is the RKHS
of k. Thus, adding some regularisation to take variance from finite samples into account [13], we
obtain a solution w by solving the problem

min
w

IPMM(Pw(X), Q(X))2 + σ2 · ||w||2L2(P ) (1)

for a chosen σ2 > 0 [14]. A key challenge is that as we do not know the outcome model m, we do
not know the model class M, thus an adequate probability discrepancy to minimise. In practice, one
resorts to trying a specific discrepancy, thus making an implicit assumption on the function space M
which can then be inadequate wrt the outcome model m at stake. Thus, a direction in the literature is
to find a data-driven tailored function class M [23, 9].

2.4 Choosing a distance via a representation

Many methods minimise a probability discrepancy measure or more generally find weights that only
depend on covariates x via a representation (vector-valued function) ϕ(x) that is selected by the
method [10, 36, 37, 23, 38, 39, 40, 41].There are several motivations to do so. First, some function
classes implicitly define a representation, such as the kernel feature spaces k(., x) for the RKHS
of kernel k [23]. In turn, every representation defines a function class. Further, a low-dimensional
representation can mitigate undesirable effects of high dimensions in causal inference [42, 43] or
probability distances [44, 45, 46] and improve efficiency by selecting essential covariate information
wrt the DGP, generalising motivations behind variable selection [47, 7].

The question then becomes how to obtain suitable representations ϕ(x). It is generally well-known
that weighting on the true outcome model [9], the propensity score [10] or a representation predicting
either [36, 10, 48, 40] is a sensible choice as these representations preserve unconfoundedness.
However, we do not have access to these true models or representations predicting them. Methods
based on sufficient dimension reduction attempt at finding a representation under the constraint that it
predicts either model [49, 50, 51, 52, 53], while others extract representations from a learnt model
for the outcome, the treatment or the RCT indicator [36, 54, 55, 40, 18, 19]. However, to the best of
our knowledge, there are no guarantees on the bias when the posited model is misspecified, while
they are critical as one does not have access to either model in general. In particular, classification-
based learning of propensity scores does not optimise for covariate balance but for prediction of the
treatment or the RCT indicator, while (near-)deterministic prediction of either will violate (strict [56])
overlap, leading to poor matching or weighting performance in practice [11].

3 Representation learning with approximate deconfounding scores

3.1 From a bias decomposition to the deconfounding error

Replacing X with ϕ(X) in a discrepancy measure might lead us to lose important information useful
for weighting, such as unconfoundedness. Thus one might wonder which representations lead to “not
too much” loss of information. On one extreme case, we know that true representations ϕ(X) like
balancing scores and prognostic scores perfectly preserve unconfoundedness. In the other extreme,
a probability distance wrt a constant ϕ(X) will always be zero, while the bias will take any value :
all information has been lost. In the following, we outline our main contribution : we characterise
representations that lead to “acceptable” loss of information, and do so thanks to a “deconfounding
error”. We start with the following decomposition.
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Theorem 1 For any function f(x), representation ϕ(x) and distribution R(X), let fR
ϕ (φ) :=

ER[f(X)|ϕ(X) = φ]. In the absence of an explicit distribution in the superscript, we take the source
distribution P , or in other words, fϕ(φ) := fP

ϕ (φ). The bias can be decomposed as

∀w, ϕ, Bias(w;m) = Bias(w, ϕ;m) + CE(w, ϕ;m) + DE(ϕ;m)

where

Bias(w, ϕ;m) := EPw
[mϕ(ϕ(X))]− EQ[mϕ(ϕ(X))],

CE(w, ϕ;m) := EP [(m(X)−mϕ(ϕ(X))) · (w(X)− wϕ(ϕ(X)))],

DE(ϕ;m) := −EP [(m(X)−mϕ(ϕ(X))) · (w∗(X)− w∗
ϕ(ϕ(X)))] = −CE(w∗, ϕ;m).

where w∗(x) = q(x)
p(x) are the true weights and, in addition, wϕ(ϕ(x)) = pw(ϕ(x))

p(ϕ(x)) where r(ϕ(x))

denotes the density of the marginal R(ϕ(X)).

All proofs are in Supplement 9. We now explain the signification of each of these three terms.
As mϕ(ϕ(x)) = E[Ỹ |ϕ(X) = ϕ(x)], the term Bias(w, ϕ;m) represents the bias of w wrt the
representation ϕ, in the sense that it would be the bias if we replaced X with ϕ(X) in the
equality of Problem 1. This is also the term that is bounded by some integral probability met-
ric IPMG(Pw(ϕ(X)), Q(ϕ(X))), where mϕ belongs to some class G, which is precisely the
sort of probability distance we would like to minimise. For example, when m ∈ M, then
mϕ ∈ G = ϕ(M) := {φ → E[m̄(X)|ϕ(X) = φ], m̄ ∈ M}. Then the weights resulting
from optimisation of the IPM will depend only on the representation ϕ(x).

Theorem 2 For any ϕ with values in a space Φ and class of functions G on Φ, the solution w̃(x) to
the problem minw IPMG(Pw(ϕ(X)), Q(ϕ(X)))2 + σ2 · ||w||2L2(P ) is a function of ϕ(x).

Now we refer to the second and third terms as “errors” to indicate that they are additional biases
from this “bias” wrt ϕ. The second term CE(w, ϕ;m) is equal to zero when m(x) or w(x) depends
on ϕ(x), which is why we call this term “conservation error", as ϕ(x) “conserves” the essential
information of m(x) and/or ϕ(x). However, this term is actually not of concern : as the solution
weights w̃ to the problem in Theorem 2 will depend on ϕ(x), we will obtain CE(w̃, ϕ;m) = 0.

Thus, the only added bias to weights depending on ϕ(x) compared to the bias wrt ϕ is the third term,
DE(ϕ;m), which we call the “deconfounding error”. Indeed, for ATE estimation, it is the difference
in estimating E[Y (a)] between adjusting on ϕ(X) and adjusting on X [57], measuring how much
ϕ(X) preserves unconfoundedness. We now use this term to generalise common notions of “scores”.

3.2 Deconfounding scores

We note that DE(ϕ;m) = 0 (a property we call deconfounding) in three important cases : 1) m(x)
is a function of ϕ(x), where we call ϕ(x) a generalised prognostic score. 2) w∗(x) is a function of
ϕ(x), where we call ϕ(x) a generalised balancing score, 3) DE(ϕ;m) = 0 without ϕ necessarily
being a generalised prognostic or balancing score, where we call ϕ(x) a generalised deconfounding
score. The following result connects these notions to previous literature.

Theorem 3 In ATT/ATE estimation, a) balancing scores are equivalent to generalised balancing
scores [10]. In ATE estimation, b) deconfounding scores [57] are equivalent to generalised decon-
founding scores, c) prognostic scores [36] are generalised prognostic scores, and the converse is
true if ∀a ∈ A, Y (a) ⊥⊥ X |ma(X). In transportability [58], d) heterogeneity sets are generalised
prognostic scores while sampling and separating sets are generalised deconfounding scores.

Thus, these “generalised” scores extend existing notions of prognostic, balancing and deconfounding
scores from the literature to the more general framework from Problem 1 and connect them to the
deconfounding error, refining our understanding of why these scores are well-suited for weighting.1
Hence, for the remainder of the paper, we omit the “generalised” adjective from all notions of scores.

1Note that propensity scores are special cases of balancing scores [10]
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3.3 Approximate deconfounding scores

Importantly, a representation ϕ need not be a perfect deconfounding score, as we can allow a certain
amount of deconfounding error to obtain a small bias.

Definition 1 Let ϵ ≥ 0. ϕ is called an ϵ-approximate deconfounding score if |DE(ϕ;m)| ≤ ϵ.

Corollary 3.1 Let ϵ ≥ 0, ϕ be an ϵ-approximate deconfounding score, w be weights depending on ϕ.
Then, |Bias(w;m)− Bias(w, ϕ;m)| ≤ ϵ.

As a consequence, if we find a representation such that its deconfounding error DE(ϕ;m) is small,
and then we manage to find solution weights w̃ depending on ϕ (which is guaranteed if we minimise
the objective in Theorem 2) with a small Bias(w̃, ϕ;m), then Bias(w̃;m) will also be small, providing
an approximate solution to Problem 1. Thus, the notion of ϵ-approximate scores allows us some
flexibility in specifying ϕ, and DE(ϕ;m) measures the degree of misspecification of ϕ, in the sense of
how much “relevant information for weighting” we lose. Thus we now aim at finding an approximate
deconfounding score ϕ.

3.4 The balancing score error

In our setting, we do not have access to the outcome model m. It is further common to assume
the absence of any information about pseudo-outcomes Ỹ during the weighting step [59], making
any estimation of m impossible. Thus, we isolate the impact of ϕ not being a balancing score on
DE(ϕ;m) from the outcome model m. To do so, we define the balancing score error (BSE) of ϕ,
BSE(ϕ) := RMSEP (w

∗(X), w∗
ϕ(ϕ(X))) where RMSEP (A,B) := ||A−B||L2(P ), and note that it

can help bound the deconfounding error, thus the bias, as DE(ϕ;m) ≤ ||m||L2(P ) · BSE(ϕ). This
gives a further bound on the bias.

Corollary 3.2 Let m be an outcome model, M such that2 ||m||L2(P ) ≤ M . Then for any function
class M such that m ∈ M, any representation ϕ, any weights w depending on ϕ(x),

|Bias(w;m)| ≤ IPMϕ(M)(Pw(ϕ(X)), Q(ϕ(X))) +M · BSE(ϕ).

Thus, the balancing score error is significant as it measures how much ϕ is not a balancing score
while giving guarantees on the deconfounding error, thus the bias. Unlike the IPM, it provides a
bound that does not require knowledge on the the outcome model m. This gives a clear objective to
minimise when we aim at learning representations. Notably, models for propensity scores can be
learnt by optimising for it instead of prediction of the treatment or the selection indicator [11].

3.5 Using the balancing score error to learn representations

A key bottleneck remains for the balancing score error : we do not have access to the true weights
w∗(X) or their projection w∗

ϕ(ϕ(X)). A workaround consists in first removing the projection by
using the definition of a conditional expectation, as for any function g on the image space of ϕ,

BSE(ϕ) ≤ RMSEP (w
∗(X), g(ϕ(X))).

In particular, for a given ϵ > 0, if there exists any function g on the image space of ϕ such that
RMSEP (w

∗(X), g(Φ(X))) < ϵ/M with the M from Corollary 3.2, then ϕ is an ϵ-approximate
deconfounding score. This gives us more flexibility than working the true projection of w∗, and
motivates finding an g (and ϕ) minimising the RHS. However we still do not have access to w∗ there
either. The next result taken from the AutoDML literature helps us remove w∗ from the minimisation.

Lemma 1 (AutoDML loss [16, 12, 24]) For any function v, RMSEP (w
∗(X), v(X))2 is equal to

LP,Q(v) up to an additive constant wrt v, where LP,Q(v) := EP [v(X)2]− 2 · EQ[v(X)].

In particular, LP,Q(v) can be estimated in finite samples for any known v. This motivates an
approach to learn a representation ϕ : one can posit a parameterised representation ϕ(x; θϕ) be-
longing to some space Φ and a scalar parameterised function g(.; θg) on the Φ space, and minimise

2M can be 1 when Ỹ is binary, or ||Ỹ ||L2(P ) from Jensen’s inequality
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LP,Q(g(ϕ(.; θϕ); θg)) wrt θϕ, θg. Notably, due to the compositionality of neural networks, we use
a modified version of the Riesz representer component of RieszNet [12] where a pre-specified,
potentially low-dimensional hidden layer is later used as the representation ϕ [60]. More gen-
erally, as a second weighting step, ϕ is then plugged into a generic integral probability metric
IPMG(Pw(ϕ(X)), Q(ϕ(X))) and solution weights w̃ are obtained by solving the problem in Theo-
rem 2 with this IPM.

We note that a potential alternative method for learning ϕ consists in plugging-in a flexible density
ratio estimator v(X) of w∗ [61] and again learning a parameterised model g(ϕ(.; θϕ); θg) for v, with
a representation module ϕ, as BSE(ϕ) ≤ RMSEP (w

∗(X), v(X)) + RMSEP (v(X), vϕ(ϕ(X))). In
practice we observed better performance with the AutoDML loss. We give an application of this loss
to selecting between two representations in Supplement 8.

3.6 Extension to simultaneous weightings

In ATE estimation, one aims at estimating all µ(a) := E[Y (a)] for all a ∈ A simultaneously. This
can be done [62] by finding a function f(a) minimising the error EA[(µ(A)−f(A))2] over functions
f defined by f(a) = E[wa(X)E[Y |X,A = a] | A = a] where wa(X) is a weight function. This is a
special case of minimising a joint squared bias

Bias2PΛ,QΛ,pΛ
(wΛ;mΛ) := EpΛ(α)[Bias2Pα,Qα(wα;mα)]

where α belongs to a set Λ endowed with a probability distribution pΛ(α), hΛ := (hα)α∈Λ for any h,
and for each α ∈ Λ, BiasPα,Qα(wα;mα) is the bias for Problem 1 with source distribution Pα, target
distribution Qα, weight function wα, outcome model mα. Notably, for ATE estimation, Λ = A,
each α is a treatment value a ∈ A, and for each a ∈ A, P a(X) = P (X|a), Qa(X) = P (X),
ma(x) = E[Y |A = a,X = x]. Single-weighting problems like ATT estimation and transportability
can still be encompassed by this simultaneous weightings framework by taking a unit set Λ.

One can wonder if we can learn a family of representations ϕΛ := (ϕα)α∈Λ where each representation
ϕα is suitable for its corresponding weighting problem. Assuming that each the L2(P

α)-norm of
each mα is below M , it follows from Corollary 3.2 that for any ϕΛ,

1

2
· Bias2PΛ,QΛ(wΛ;mΛ) ≤ EpΛ(α)

[
IPM2

ϕα(Mα;Pα)(P
α
wα(ϕα(X)), Qα(ϕα(X)))

]
+M2 · BSE2

PΛ,QΛ,pΛ
(ϕΛ).

where BSE2
PΛ,QΛ,pΛ

(ϕΛ) := EpΛ(α)[BSE2
Pα,Qα(ϕα)] is a joint squared balancing score error,

that can be thought as a weighted average of the individual problems’ balancing score errors
BSEPα,Qα(ϕα). Consequently, the approach to learn representations described in Section 3.5 can be
immediately extended by averaging individual AutoDML losses, and minimising the average. This
will be equivalent to solving each problem separately if parameters on each problem are variationally
independent, however some structure can be shared, e.g. by having a common representation ϕα = ϕ.

4 Numerical results

We now evaluate our method and alternatives on the News dataset [63] for ATE estimation and a
Traumatic Brain Injury (TBI) dataset [7] for transportability.

For the specific IPM, we focus on the energy distance, which is the MMD for the kernel k(x, x′) =
−||x − x′||2; minimising Equation 1 with this distance is known as energy balancing [13]. We
evaluate energy balancing with original covariates (“Energy”) as in [13], a representation learned
according to our approach (“Ours + Energy”), PCA (“PCA + Energy”), the propensity score model
vector ((p̂(a|x))a∈A for ATE estimation, (p̂(s|x))s=0,1 for transportability) learnt with a gradient
boosting classifier (“PS + Energy”), representations from a layer of a neural network model of such
propensity score models as in [60] (“NSM + Energy”).

We also check IPW with the same propensity scores (“IPW”), entropy balancing with first-order
moments (“Entropy”), the weights at the head of the RieszNet (“RieszNet Head”), and uniform
weights (“Unweighted”). Weights from “IPW” and “RieszNet Head” were normalised to prevent
outsize errors, while those from other methods were already normalised by design.
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On energy balancing methods, we take σ = 0 as in [13]. All representations are 10-dimensional,
and in our method (“Ours + Energy”), we use a common representation ϕ for all treatment arms.
The neural network first has a 200-unit layer, a 10-unit layer corresponding to the representation, a
second 200-unit layer, and finally the scalar head. Adam [64] was used to optimise the loss with early
stopping with a patience of 3 epochs. We average results over 50 random seeds for News and 100 for
TBI. We show standard errors after “±.” As a metric, we consider the joint bias (JB),√√√√∑

α∈Λ

pΛ(α)

(∑
i∈Pα wα(xi)ỹi

|Pα|
−

∑
i∈Qα mα(xi)

|Qα|

)2

,

which is the square-root of the joint squared bias where we have replaced the target estimand with a
finite-sample estimator of it where we average the known outcome models over Qα. We also look at
computational time in seconds to evaluate the speed of algorithms.

Table 1: Joint Bias and time in seconds on the News and TBI Datasets

Joint Bias Time (s)
Dataset News TBI News TBI

Ours + Energy 0.078±0.009 4.97±0.35 29.7±1.2 0.844±0.028
NSM + Energy 0.076±0.007 5.77±0.52 24.0±0.3 0.988±0.027
PS + Energy 0.118±0.009 14.33±1.11 53.1±0.1 0.970±0.007
PCA + Energy 0.229±0.016 13.72±1.14 14.8±0.1 1.044±0.009
Energy 0.292±0.019 14.01±1.11 645.4±0.5 0.896±0.009
Entropy 0.221±0.020 7.63±0.60 3366.1±62.8 0.241±0.005
IPW 0.280±0.018 2.28±0.18 40.8±0.1 0.254±0.000
RieszNet Head 0.746±0.122 59.91±2.49 3.2±0.5 0.222±0.002
Unweighted 0.611±0.053 7.67±0.15 0.34±0.03 0.050±0.000

Results on the joint bias are shown in Table 1. Our neural network-based representation ranks in
the top 2 of methods for both datasets and outperforms most other representations as well as the
head of the neural network, which shows the benefit of both our representation and plugging it into
a distance instead of taking the neural network head as solution weights. Further, looking at the
computational time, energy balancing with the original covariates is particularly long on the News
dataset, while using a lower-dimensional representation makes it faster, notably more so than gradient
boosting-based IPW. Despite neural network training, weighting with our representation only takes
twice as long as with PCA, and is faster than with gradient boosting propensity score models. On the
TBI dataset, our method is also faster than other representation-based methods.

5 Conclusion

We have shown the importance of a specific quantity in learning representations for weighting, the
deconfounding error. From it, we have redefined classical notions of balancing, prognostic and
deconfounding scores, and introduced an approximate version of deconfounding scores. We have also
defined the balancing score error (BSE) that measures how far a representation is from a balancing
score while bounding the deconfounding error, and does not depend on outcome information. We
have outlined a method to minimise it, and first experimental results suggest that representations
obtained from the method might help improve performance and speed computations for common
optimisation-based weighting approaches. We note two key challenges for future work : 1) the errors
depend on quantities we do not have access to, 2) learning a representation will also induce a new
function class that we still have to characterise, e.g. based on an original posited class.
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Appendices

6 Details on problems in causal inference

Under the assumptions of no interference and consistency, A = a implies Y = Y (a), which can writ-
ten as Y =

∑
a∈A 1{A=a}Y (a) or, more compactly, Y = Y (A). Further, under unconfoundedness

and overlap we have that E[Y (a)|X] = E[Y |A = a,X], helping identify causal effects of interest
which we detail below.

In ATT estimation [8], we are interested in the effect of a binary treatment on the population receiving
it, that is E[Y (1) − Y (0)|A = 1]. Thanks to consistency and no interference, E[Y (1)|A = 1] is
accessible as the average of outcomes on the treated distribution, so the challenging part is estimating
E[Y (0)|A = 1]. The weighting approach is then to reweight the control distribution, on which
Y (0) = Y , that is to find a function w(x) such that E[Y (0)|A = 1] = E[w(X)Y |A = 0] ≈

1
{i:Ai=0}

∑
i:Ai=0 w(Xi)Yi.

In average potential outcome estimation [13], for a fixed a ∈ A, we are interested in the marginal
effect of the potential outcome wrt a, that is E[Y (a)]. The weighting approach is then to reweight
the distribution of the population for which A = a, implying Y (a) = Y , i.e. find a function wa(x)
such that E[Y (a)] = E[wa(X)Y |A = a] ≈ 1

{i:Ai=a}
∑

i:Ai=a wa(Xi)Yi. We note that the closely
related goal of ATE estimation, that is when A is binary and we want E[Y (1) − Y (0)], can be
solved by average potential outcome estimation for both a = 1 and a = 0 separately. With some
abuse of notation, we use the two names of average potential outcome estimation and ATE estimation
interchangeably.

In transportability [7], A is binary again and we have an other binary variable S such that S = 1
denotes membership in the RCT population, that is (Y (1), Y (0)) ⊥⊥ A|S = 1. We do not have
access to A, Y for the target, non-RCT population S = 0, but we are still interested in the treatment
effect on the target population E[Y (1)− Y (0)|S = 0]. Under the transportability assumption, that is
Y (1)− Y (0) ⊥⊥ S|X [7, 6], the conditional average treatment effect is identical between RCT and
non-RCT populations, i.e. for any x, CATE(x) := E[Y (1)−Y (0)|X = x] is equal to both E[Y (1)−
Y (0)|X = x, S = 1] and E[Y (1)− Y (0)|X = x, S = 0]. In addition, the CATE is identified on the
RCT population as CATE(x) = E[ AY

P (A=1) −
(1−A)Y
P (A=0) |X = x, S = 1]. Then, the weighting approach

is to reweight the distribution of the RCT population, i.e. find a function w(x) such that E[Y (1)−
Y (0)|S = 0] = E[w(X) · CATE(X)|S = 1] ≈ 1

|{i:Si=1}|
∑

i:Si=1 w(Xi)
(

AiYi

P (A=1) −
(1−Ai)Y
P (A=0)

)
.

7 Related work : importance weighting

Outside causal inference, the framework in Problem 1 is also close to importance weighting [65],
where we want to estimate and minimise EP [w

∗(X)l(X; θ)] = EQ[l(X; θ)] wrt θ ∈ Θ, where
this time l(x; θ) is a known parameterised loss function. Classically, solution weights w̃(x) are
first estimated with general techniques like kernel mean matching [66] (i.e. Equation 1 with an
RKHS and σ = 0), or techniques that are more domain-specific i.e. to label shift [67]. Then the
focus shifts to minimising EP [w̃(x)l(x, θ)] wrt θ to solve the task under scrutiny [68]. Examples of
tasks include domain adaptation [69], subpopulation shift [70], imitation learning [71], off-policy
reinforcement learning [72, 73], variational inference [74], or adversarial robustness [75]. We note
that any technique from Section 2.3, including propensity score estimation that is generally a form of
density ratio estimation [61], as well as our method, could be applied to the weight estimation part of
importance weighting.

8 Representation selection

Further, to select between two representations ϕ1 and ϕ2, one can choose the representation with
the lowest BSE. This is equivalent to compare ming1 LP,Q(g1(ϕ1(.)) and ming2 LP,Q(g2(ϕ2(.)),
where each minimisation is taken over all functions. These are inaccessible, but we can instead
perform each minimisation under a rich parameterised class of functions. Particularly, this would help
select between two fitted propensity score models and we expect that the one with the best prediction
performance might not necessarily be selected.
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Further, we note that the AutoDML loss makes us lose the ability of evaluating how approximately
deconfounding is one representation, instead of comparing different representations. Flexible density
ratio estimators could be plugged into the balancing score error, especially as both the true weights
and their expectation conditional on the representation are density ratios from Assumption 1 and
Theorem 1.

9 Proof of results

9.1 Proof of Theorem 1

Let w be weights and ϕ be a representation. From the tower property, for any distribution R and
function f ,

ER[f
R
ϕ (ϕ(X))] = ER[f(X)].

Thus, we note that the bias can be decomposed as
Bias(w;m) = Bias(w, ϕ;m) + CE(w, ϕ;m) + DE(ϕ;m)

where
Bias(w, ϕ;m) := EPw [mϕ(ϕ(X))]− EQ[mϕ(ϕ(X))],

CE(w, ϕ;m) := EPw [m
Pw

ϕ (ϕ(X))−mϕ(ϕ(X))],

DE(ϕ;m) := EQ[mϕ(ϕ(X))−mQ
ϕ (ϕ(X))] = −CE(w∗, ϕ;m).

Thus the proof relies in showing that for any w,

EPw
[mPw

ϕ (ϕ(X))−mϕ(ϕ(X))] = EP [(m(X)−mϕ(ϕ(X))) · (w(X)− wϕ(ϕ(X)))]

and wϕ(ϕ(x)) =
pw(ϕ(x))
p(ϕ(x)) . For any x, x′ and w,

pw(x|ϕ(x′)) =
pw(x, ϕ(x

′))

pw(ϕ(x′))
= 1{ϕ(x)=ϕ(x′)}

pw(x)

pw(ϕ(x′))
,

thus for any x and w,
wϕ(ϕ(x)) = EP [w(X)|ϕ(X) = ϕ(x)]

=

∫
w(x′)p(x′|ϕ(x))dx′

=

∫
w(x′) · 1{ϕ(x)=ϕ(x′)}

p(x′)

pw(ϕ(x))
dx′

=

∫
1{ϕ(x)=ϕ(x′)}w(x

′)p(x′)dx′

p(ϕ(x))

=

∫
1{ϕ(x)=ϕ(x′)}pw(x

′)dx′

p(ϕ(x))

=
pw(ϕ(x))

p(ϕ(x))
.

Thus, for any x, x′ such that ϕ(x) = ϕ(x′) and w,

pw(x
′|ϕ(x))

p(x′|ϕ(x))
=

pw(x′)/pw(ϕ(x))

p(x′)/p(ϕ(x))
=

pw(x′)/p(x′)

pw(ϕ(x))/p(ϕ(x))
=

w(x′)

wϕ(ϕ(x))
.

As a consequence,

mPw

ϕ (ϕ(X)) = EPw
[m(X)|ϕ(X)]

= EP

[pw(X|ϕ(X))

p(X|ϕ(X))
m(X)|ϕ(X)

]
= EP

[ w(X)

wϕ(ϕ(X))
m(X)

∣∣ϕ(X)
]
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and

EPw [m
Pw

ϕ (ϕ(X))−mϕ(ϕ(X))] = EPw

[
EP

[( w(X)

wϕ(ϕ(X))
− 1

)
m(X)

∣∣∣ϕ(X)
]]

= EP

[
w(X)EP

[( w(X)

wϕ(ϕ(X))
− 1

)
m(X)

∣∣∣ϕ(X)
]]

= EP

[
wϕ(ϕ(X)) · EP

[( w(X)

wϕ(ϕ(X))
− 1

)
m(X)

∣∣∣ϕ(X)
]]

from the tower property

= EP

[
EP

[
wϕ(ϕ(X)) ·

( w(X)

wϕ(ϕ(X))
− 1

)
m(X)

∣∣∣ϕ(X)
]]

= EP

[
EP

[(
w(X)− wϕ(ϕ(X))

)
m(X)

∣∣∣ϕ(X)
]]

= EP

[(
w(X)− wϕ(ϕ(X))

)
m(X)

∣∣∣] from the tower property.

Further, from the tower property, this RHS is actually zero for any m depending on ϕ(x), in particular
mϕ(ϕ(x)). Thus,

EPw
[mPw

ϕ (ϕ(X))−mϕ(ϕ(X))] = EP

[(
w(X)− wϕ(ϕ(X))

)
·
(
m(X)−mϕ(ϕ(X))

)]
which concludes the proof.

9.2 Proof of Theorem 2

First, for any function g ∈ G, we have∣∣∣EPw
[(g ◦ ϕ)(X)]− EQ[(g ◦ ϕ)(X)]

∣∣∣ = ∣∣∣EPw
[g(ϕ(X))]− EQ[g(ϕ(X))]

∣∣∣
=

∣∣∣Eφ∼Pw(ϕ(X))[g(φ)]− Eφ∼Q(ϕ(X))[g(φ)]
∣∣∣.

Taking the supremum over g ∈ G, we have

IPMM(Pw(X), Q(X)) = IPMG(Pw(ϕ(X)), Q(ϕ(X)))

where M = {x → (g ◦ ϕ)(x), g ∈ G}. Note that this also justifies the claim that Bias(w, ϕ;m) is
bounded by IPMG(Pw(ϕ(X)), Q(ϕ(X))). Thus, we are solving

min
w

IPMM(Pw(X), Q(X))2 + σ2 · ||w||2L2(P ).

From Bruns-Smith et al. (2022) [14] (Section 3.2 then Theorem 4.3), the solution w̃ depends affinely
on a function m̃ in M : there exists s1, s2 ∈ R such that w̃(x) = s1 + s2m̃(x). In particular, as
m̃(x) depends on ϕ(x) then so does w̃(x).

9.3 Proof of Theorem 3

First, let’s note two useful properties :

• For any distribution R and random variable Z,

ER[ER[Z|X] | ϕ(X) = ϕ(x)] = ER[Z|ϕ(X) = ϕ(x)]. (S2)

• For any distribution R and function f ,(
∃g, f(x) = g(ϕ(x))

)
⇔ f(x) = ER[f(X) | ϕ(X) = ϕ(x)]. (S3)

Proof of a), ATT case :
ϕ is a balancing score
⇔ ∃g, e(x) = g(ϕ(x)) from Rosenbaum and Rubin (1983) [10]
⇔ ∃g, w∗(x) = g(ϕ(x)) as w∗(x) is a bijective function of e(x)
⇔ ϕ(x) is a generalised balancing score.
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Proof of a), ATE case : we fix a ∈ A and work with the following definition of a balancing score for
non-binary treatments : 1{A=a} ⊥⊥ X|ϕ(X). Indeed, as the problem is arm-specific, the definitions of
generalised deconfounding, balancing and prognostic scores are arm-specific a priori. An extension
to an alternative definition A ⊥⊥ X|ϕ(X) is straightforward by replacing a fixed a ∈ A with ∀a ∈ A
at the start of each of the following statements involving a. Then,

ϕ is a balancing score
⇔ p(a|x) = p(a|ϕ(x))
⇔ p(a|x) = E[p(a|X)|ϕ(X) = ϕ(x)] using S2 with Z = 1{A=a}

⇔ ∃ga, p(a|x) = ga(ϕ(x)) from S3
⇔ ∃ga, w∗

a(x) = ga(ϕ(x)) where w∗
a(x) is the true weights and is a bijective function of p(a|x)

⇔ ϕ(x) is a generalised balancing score.

Proof of b) : we slightly change the definition of deconfounding scores [57] to ∀a ∈
A, E[E[Y |ϕ(X), A = a]] = E[Y (a)], where the representation ϕ is now shared across treatment
arms, in the spirit of D’Amour and Franks (2021)[57]. To this aim, it is sufficient to show that, in Prob-
lem 1 applied to estimation of E[Y (a)], DE(ϕ;m) = E[E[Y |ϕ(X), A = a]]−E[Y (a)]. From the orig-
inal definition of DE(ϕ;m) in the proof of Theorem 1, this simplifies to E

[
E[ma(X)|ϕ(X), a]

]
=

E[E[Y |ϕ(X), A = a]]. This is true, as

E
[
E[ma(X)|ϕ(X), a]

]
= E

[
E
[
E[Y |X,A = a]

∣∣∣ϕ(X), a
]]

= E
[
E[Y |ϕ(X), A = a]

]
from S2 applied to R = P (.|A = a) and Z = Y,

which concludes the proof.

Proof of c) : again, a ∈ A is fixed. Assume ϕ(x) is a prognostic score for Y (a), that is Y (a) ⊥⊥
X|ϕ(X). Then,

ma(x) := E[Y (a)|x]
= E[Y (a)|x, ϕ(x)]
= E[Y (a)|ϕ(x)] by application of the definition of a prognostic score,

so ma(x) is a function ϕ(x), making the latter a generalised prognostic score.

Now assume that ma(X) itself is a prognostic score, that is Y (a) ⊥⊥ X|ma(X). Then, p(Y (a)|x) =
p(Y (a)|ma(x)). Let ϕ(X) be a generalised prognostic score. Then, there exists a function ga such
that ma(x) = ga(ϕ(x)). In particular, as p(Y (a)|x) is already a function of ma(x), it is also a
function of ϕ(x). So there exists a function ha such that p(Y (a)|x) = ha(ϕ(x)). In particular,
by application of S3, p(Y (a)|x) = E[p(Y (a)|X)|ϕ(X) = ϕ(x)] and by application of S2 to
Z = 1{Y (a)}, p(Y (a)|x) = p(Y (a)|ϕ(x)). Thus, ϕ(x) is a prognostic score.

Proof of d) : let XI be covariates selected according to indices I and X−I be their complement.

If xI is a heterogeneity set, i.e. Y (1)− Y (0) ⊥⊥ (S,X−I)|XI then
m(x) = CATE(x)

= E[Y (1)− Y (0)|x]
= E[Y (1)− Y (0)|x−I , xI ]

= E[Y (1)− Y (0)|xI ] by definition of a heterogeneity set
so m(x) is a function of xI , making the latter a generalised prognostic score.

If xI is a separating set, that is Y (1)− Y (0) ⊥⊥ S|XI , then, noting e(Z) := P (S = 1|Z), from the
law of total covariance,

Cov(m(X), e(X)|XI) = Cov(Y (1)− Y (0), S|XI)− E[Cov(Y (1)− Y (0), S|X)|XI ]

= 0 (S4)
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as the second term of the sum is zero by the transportability assumption (see Section 6), and the first
term is also zero as XI is a separating set. Then, noting ϕ(x) = xI

DE(xI) := −E
[(

m(X)−mϕ(XI)
)
·
(
w∗(X)− w∗

ϕ(XI)
)∣∣∣S = 1

]
:= −E

[
w∗(X) ·

(
m(X)−mϕ(XI)

)
·
(
1−

w∗
ϕ(XI)

w∗(X)

)∣∣∣S = 1
]

where
w∗

ϕ(xI)

w∗(x)
=

1− e(xI)

1− e(x)

e(x)

e(xI)

= −E
[(

m(X)−mϕ(XI)
)
·
(
1− 1− e(XI)

1− e(X)

e(X)

e(XI)

)∣∣∣S = 0
]

as w∗(X) is the likelihood ratio from P (X|S = 1) to P (X|S = 0)

= E
[(m(X)−mϕ(XI)

)
·
(
e(X)− e(XI)

)
(1− e(X)) · e(XI)

∣∣∣S = 0
]

= E
[(m(X)−mϕ(XI)

)
·
(
e(X)− e(XI)

)
P (S = 0) · e(XI)

]
as

P (S = 0)

1− e(x)
is the likelihood ratio from P (X|S = 0) to P (X)

= E
[
E
[(m(X)−mϕ(XI)

)
·
(
e(X)− e(XI)

)
P (S = 0) · e(XI)

]∣∣∣XI

]
from the tower property

= E
[E[(m(X)−mϕ(XI)) · (e(X)− e(XI)) | XI ]

P (S = 0) · e(XI)

]
= E

[Cov(m(X), e(X)|XI)

P (S = 0) · e(XI)

]
= 0 from S4.

So xI is a generalised deconfounding score. As sampling sets are also separating sets, the proof is
concluded.

9.4 Proof of Corollary 3.1

As w depends on ϕ, CE(w, ϕ;m) = 0 so Bias(w;m) − Bias(w, ϕ;m) = DE(ϕ;m). As ϵ-
approximate deconfounding scores verify |DE(ϕ;m)| ≤ ϵ, the proof is concluded.

9.5 Proof of Corollary 3.2

As we have seen in the proof of Theorem 1, DE(ϕ;m) = E
[
m(X) ·

(
w∗(X) − w∗

ϕ(ϕ(X))
)]

so
the Cauchy-Schwarz inequality gives the bound |DE(ϕ;m)| ≤ ||m||L2(P ) · BSE(ϕ). Thus, from
Theorem 1, for any w depending on ϕ,

|Bias(w;m)| ≤
∣∣∣EPw [mϕ(ϕ(X))]− EQ[mϕ(ϕ(X))]

∣∣∣+ |DE(ϕ;m)| where m ∈ M so mϕ ∈ ϕ(M)

≤ IPMϕ(M)(Pw(ϕ(X)), Q(ϕ(X))) + |DE(ϕ;m)|
≤ IPMϕ(M)(Pw(ϕ(X)), Q(ϕ(X))) + ||m||L2(P ) · BSE(ϕ)| from the bound above

≤ IPMϕ(M)(Pw(ϕ(X)), Q(ϕ(X))) +M · BSE(ϕ)| by assumption over M.
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9.6 Proof of Lemma 1

For any function v,

RMSEP (w
∗(X), v(X))2 = EP [(v(X)− w∗(X))2]

= EP [v(X)2]− 2EP [w
∗(X)v(X)] + EP [w

∗(X)2]

= EP [v(X)2]− 2EQ[v(X)] + EP [w
∗(X)2]

as by definition of w∗, so for any f , EP [w
∗(X)f(X)] = EQ[f(X)], concluding the proof.
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