Under review as a conference paper at ICLR 2026

TwO-STAGE COVERAGE EXPANSION FOR
CROSS-DOMAIN OFFLINE REINFORCEMENT LEARNING
VIA SCORE-BASED GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-domain reinforcement learning (RL) aims to transfer knowledge from a
source domain to a target domain with different dynamics, but existing approaches
often directly reuse source transitions, which can lead to severe distributional
mismatch and performance degradation when the domain gap is large or target data
is scarce. We propose Two-stage Coverage Expansion (TCE), a dual score-based
generative framework that first expands state coverage through a mixture-based
state score network and then aligns transitions with target-domain dynamics using
a target-transition score network. This two-stage design broadens the effective
support of the target dataset while mitigating harmful distributional shift, enabling
more improved policy learning under limited target data. Extensive experiments on
diverse cross-domain benchmarks demonstrate that TCE consistently outperforms
state-of-the-art cross-domain RL baselines, achieving substantial gains even under
large domain gaps and extremely small target datasets.

1 INTRODUCTION

Cross-domain reinforcement learning (cross-domain RL) fundamentally aims to adapt or transfer
a learned policy from a source domain to a target domain with potentially different environment
dynamics. This problem setting frequently arises in real-world applications such as controlling het-
erogeneous robots, simulation-to-real autonomous driving, and medical decision making (Gottesman
et al.l 2018} |Yurtsever et al., 2020). To address such cross-domain scenarios, various RL-based
methods have been proposed (Eysenbach et al., 2020; [Kim et al., [2020). However, most existing
methods assume that online interaction with either the source or target domain is feasible, thereby
allowing the data collection during training. In practice, this assumption rarely holds. In many realistic
cross-domain applications, online interaction is severely restricted due to cost and safety concerns,
and in some cases, it is entirely infeasible (Levine et al.,[2020). Consequently, cross-domain offline
RL, where only pre-collected datasets from both domains are available, has become an important
research direction for enabling cost-efficient learning without online interaction (Liu et al.| [2022).

Early studies on cross-domain offline RL mainly focused on selecting source-domain data similar
to the target domain or applying mutual-information-based filtering (Poole et al.,|2019; |Guo et al.|
2022), implicitly assuming that sufficient target data is available (Xu et al.,[2023; Lyu et al.| 2024a).
When the target dataset is abundant, however, single-domain offline RL algorithms such as CQL
(Kumar et al., [2020), IQL (Kostrikov et al.,[2022), and ReBRAC (Wu et al., 2019) already perform
strongly, often making additional source data unnecessary or even harmful. More recent work has
therefore explored settings where the amount of target data is extremely limited (Wen et al.| 2024;
Lyu et al.} 2025). Nevertheless, we find that when the domain gap between the source and target is
large, simply incorporating source transitions can still introduce severe distributional mismatch and
may degrade performance rather than improve it.

To address these challenges, we propose Two-stage Coverage Expansion (TCE), a dual score-based
generative framework with stochastic differential equations (SDEs) that, rather than merely selecting
source data, constructs a mixture distribution with target-like transitions to broaden target coverage
and reduce distributional mismatch, supported by concrete theoretical analysis. TCE consists of 1) a
mixture-based state score network trained on a controllable mixture of source and target states to
appropriately broaden the target state space, and 2) a target-transition score network trained only on
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target transitions to produce state transitions consistent with target dynamics. At inference time, TCE
performs two-stage sampling: first drawing diverse states from the state score network using the SDE
sampler, and then generating target-like next states from the transition score network conditioned on
the sampled states. Using auxiliary models and Z-score—based filtering, TCE constructs a high-quality
augmented dataset that increases target-domain transition coverage while minimizing distributional
mismatch. This principled two-stage design is, to our knowledge, the first cross-domain offline RL
approach to jointly control state coverage expansion and align transitions with target dynamics. Across
diverse cross-domain environments, TCE shows substantial performance gains over state-of-the-art
cross-domain offline RL baselines.

2 RELATED WORKS

Cross-Domain Reinforcement Learning. Early cross-domain RL methods rely on online data
collection and focus on domain-invariant representations or adversarial domain alignment to facilitate
transfer (Eysenbach et al.| 2020; [Yu et al., 2021)). Cross-domain imitation learning extends this by
leveraging demonstrations across domains to generalize behavior without explicit rewards (Kim et al.|
2020; [Fickinger et al., 2022} [Choi et al.,2023)). Approaches for domain adaptive imitation learning
target robustness against environmental dynamics variations (Chae et al.l [2022)). However, many
assume at least some level of online interaction or sufficient target data (Xu et al., 2023} [Lyu et al.}
20244), which limits their use in purely offline settings. Offline cross-domain RL methods address
this constraint (Wen et al.| [2024; [Lyu et al.} 2025)) but face challenges when the domain gap is large
and target data is limited. In addition, a recent study has explored generating target-aligned source
data in order to mitigate the domain gap (Le Pham Van et al., [2025)).

Offline Reinforcement Learning. Offline RL algorithms such as Implicit Q-Learning (IQL)
(Kostrikov et al., [2022) and Conservative Q-Learning (CQL) (Kumar et al.l 2020) have demon-
strated strong single-domain performance on static datasets like D4RL (Fu et al.| 2020). Nonetheless,
handling multi-domain data and domain shifts remains challenging (Liu et al., [2022; 2024)). Filtering
strategies leveraging mutual information (Poole et al., 2019} |Guo et al.,[2022) and behavior regular-
ization (Wu et al.| 2019)) are used to mitigate distributional shifts, but cross-domain offline learning
with limited target data is under-explored. Some studies have proposed selectively incorporating
source data similar to the target domain to alleviate this challenge (Wen et al., 2024} Lyu et al., [2025)),
but when the domain gap is large or selection is suboptimal, these methods may fail to improve or
even hinder policy learning. Recently, diffusion-based techniques have shown promise by providing
effective data augmentation and model learning strategies in offline RL, further improving policy
performance on limited datasets (Li et al.,[2024} |Luo et al.| 2025)). In addition, Transformer-based
methods that perform offline learning over a distribution of tasks to enable generalization have also
been investigated (Wang et al.| 2024).

Score-Based Models and Diffusion Processes. Two principal approaches to score-based generative
modeling have independently advanced high-quality sample generation: denoising score matching,
which estimates gradients of data log-density at multiple noise scales (Song & Ermonl [2019)), and
diffusion models, which progressively corrupt and then denoise data through a series of intermediate
steps (Ho et al.,|2020). The stochastic differential equations (SDEs) framework provides a unifying
view, generalizing both approaches and enabling principled continuous-time sampling procedures
(Song et al.| |2020). Our method leverages this SDEs formalism to jointly train label-conditioned
score models over states and transitions, combined with outlier filtering, facilitating reliable and
domain-aligned data generation in cross-domain offline RL.

3 BACKGROUND
3.1 MARKOV DECISION PROCESS AND CROSS-DOMAIN OFFLINE SETUP

We define a Markov Decision Process (MDP) as M = (S, A, Puq,7,7), where S is the state space,
A the action space, P4 the transition dynamics, r the reward function, and ~ the discount factor.
In the cross-domain setting, we assume access to a source domain Mg, = (S, A, Py, R,7) and a
target domain M., = (S, A, Prar, R,y), which share the same state and action spaces as well as the
reward function but differ in their transition dynamics, i.e., Ps,c # Piar. In the cross-domain offline
setting, the agent cannot interact with either domain and must rely solely on pre-collected transitions
(8¢, as, 14, Se1), Where s; € S denotes the state, a; € A the action, r; = R(s¢, a;) the reward, and
St+1 ~ P(:|s¢, at) the next state with P = P, or P = P;,,. We denote the datasets collected
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from the source and target domains as Dy, and Dy,,, respectively, under the practical constraint that
|Dtar| < | Dsre|, making direct policy learning on the target domain challenging.

3.2 SCORE-BASED GENERATIVE MODELS WITH SDES

Generative models aim to learn the data distribution pg,, () and generate realistic samples, with
representative approaches including Generative Adversarial Networks (GANs) (Goodfellow et al.}
2014), Variational Auto-Encoders (VAEs) (Kingma & Welling,2013)), and diffusion models (Ho et al.,
2020). Among these, score-based generative models with SDEs (Song et al.,|2020) offer a continuous-
time formulation of diffusion, support flexible noise scheduling, and enable efficient sampling and
likelihood computation via the probability-flow ODE. While conditioning is optional, we explicitly
include a condition ¢ so that generation is guided by c. Given a clean sample 2° conditioned on c, we
perturb it with Gaussian noise 27 = z° + o(7)z, where z ~ N(0, 1), 7 € [0, 1] is the continuous
noise level, and o (7) is noise scale. A score network gg(x, 7 | ¢) is then trained to approximate the
conditional score V, log p,(x | ¢) via denoising score matching:

Lecore(8) = B oo o A lan(a™,7 | ) + 2/0(D)]13] (M
where \(7) is a time-dependent weight. At sampling time, starting from 2! ~ A (0, (1)), samples
are generated by solving the discretized reverse SDE using the Predictor—Corrector sampler with
discretized noise levels 7% (1 = 75 > ... > 70 = 0):

a" = at 4 [f@f ) = g(7F)Pae (2", T | )] ATE + g(Th)VATREE, €h ~ N(0,1), (2)

where f and g denote the drift and diffusion coefficients of the forward SDE and A7k = 7+F—1 — 7F
is the step size. In this work, we additionally apply a Langevin corrector (Song & Ermonl [2019)
after each predictor step to further refine sample quality. The implementation details of A(7), f(x, 7),
g(7), the step size, and the Langevin corrector are provided in Appendix

4 METHODOLOGY

4.1 MOTIVATION
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Figure 1: (a) t-SNE visualization of state transitions (s;, s¢+1) from the source data, target data,
and NN-source. The NN-source set is constructed by selecting source samples nearest to the target
data, and all datasets are randomly subsampled to have equal size for comparison. (b) Performance
comparison of IQL convergence across different datasets: target-only, target with NN-source data,
target with the entire source data, and our proposed TCE. Here, 'TCE (OG)’ denotes a variant of the
proposed TCE framework that relies solely on generated samples and does not use any source data.

Most existing cross-domain offline RL methods address the scarcity of target data by reusing source-
domain transitions that are closest to the target data under some distance metric (Wen et al.| [2024;
Lyu et al.| 2025). Although the definition of distance varies, these methods share the assumption that
nearby source data always improves target-domain learning. We show that this assumption can harm
performance when the domain gap is large. Fig. [[(a) shows a t-SNE visualization of state transitions
(8¢, 8t+1) in the MuJoCo Ant environment, where the source data are collected from an agent with a
different morphology from the target. The visualization indicates that the two domains have little
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overlap, revealing a significant domain gap. To examine the effect of reusing source data in this
setting, we select the subset of source transitions that are nearest neighbors to the target transitions
(NN-source in Fig. [[(a)) and train policies with IQL under three datasets: target-only, target plus
NN-source, and target plus all source data. As shown in Fig.[I{b), both NN-selected and full-source
augmentation result in worse performance than target-only training, suggesting that naive source
reuse can hinder learning when the domain gap is large.

To address this issue, we introduce Two-stage Coverage Expansion (TCE) as described in Section [T}
a two-stage score-based data augmentation approach that leverages source data to expand target
state coverage and generate transitions aligned with target dynamics, thereby reducing distributional
mismatch. Fig. [I(b) further shows that augmenting the target data with transitions generated by
TCE yields markedly better performance. In contrast to directly reusing source data, either through
nearest-neighbor selection or by using the full source dataset, TCE expands the state space with
its mixture-based generator and generates target-consistent transitions with the target-transition
generator, resulting in improved policy learning. Although limited target data can still cause some
overfitting, the generated transitions remain closer to the target domain than direct source reuse,
contributing to the observed gains. The next section presents the algorithmic details of TCE.

4.2 TwO-STAGE COVERAGE EXPANSION VIA SCORE-BASED GENERATIVE MODELING

To address the limitation identified in the motivation, we propose TCE, which does not simply filter
source data but instead expands state coverage by generating target like transitions. Before introducing
the full algorithmic details of TCE, we first establish its necessity from a gap bound perspective. To
this end, for a given MDP M and policy 7, let p7((s,a) := (1 — ) >io o V' Prm(s | se,a)w(a | s¢)
be the discounted occupancy measure, and let VT (s;) = E,r [>2,2,7'r(si,a)] be the value
function. Our objective is to maximize the average return 7 (m) = E 7 [r(s, a)] using both Dy,
and Dy,.. Let P, denote the source transition, and let IADm,. be an approximate target transition used

for coverage expansion. We define their mixture as Prix = APse + (1 — \) Py With the mixture
coefficient A € [0, 1] and denote by *mix’ the induced MDP. Under this construction, the following
gap bound holds, where the theorem is adapted from |Xu et al.| (2023)).

Theorem 1. Let 1., (7) and nmix (7) denote the expected returns of a policy w in the target domain
and in the proposed mixture domain, respectively. Then the performance gap between the two domains
can be bounded from the perspectives of transition dynamics and value functions as follows.

Gap bound (transition dynamics).

2 rIIlaX A
i) — an (1) < 77255 (B [Drv (Boe | Ba)] + (1= N By [Drv(Pr | Pra)])-

3)
where Drv (P || Q) denotes the total variation distance between P and Q).

Gap bound (value discrepancy).

Nmix (T) = Near(7) < (1 j ) (A ]E/)"Mmix |:|]Epsrc [V./(T/ltar(sl)] —Ep,, [V/Clm,(sl)] ”

+ (1= NEy, (B, Vi ()] - Eru [V )]]])
“4)

Proof) Proof of Theorem|T]is provided in Appendix [H]

From Theorem 1, the performance gap bound in the mixture MDP can be reduced in two ways: (1) by
reducing the discrepancy Drv (P, ||, Prar) through selecting source samples that are close to the

target distribution, as in existing distance based approaches, and (2) by reducing DTV(PW, I, Pear)

via learning a target transition estimator that closely approximates P;,, and then decreasing A to

tighten the overall gap bound. In this work, we consider both directions. To address the second

direction, we introduce the TCE method, which generates target-like transitions for mixture states

constructed from both source and target data. Following the score-based generative modeling frame-
mix

work in equation we first train a mixture-based state score network gz"'™* that expands state coverage
over a controllable mixture of source and target states, and a target-transition score network 5" that
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generates transitions consistent with target-domain dynamics. The joint training objective for both
score networks is defined as:

i 2 2
ET-, StNDschDtar[A(T)Hqémx(‘s:’ T ‘ y(St)) + ﬁHQ] +ET» (5L73L+1)NDLar|:/\(T)”q(gran(‘g;—h T | St) + ﬁ“21|7

mixture-based state score network loss target-transition score network loss

5
where z ~ N(0,1), s] = a(7)s: + o(7)z, and y(s;) is a binary label indicating whether s, comes
from source data D, (y = 1) or target data Dy,, (y = 0). Since the source and target domains share
the same state space, the mixture-based state score network is trained on both datasets to broaden
state coverage by conditioning on y(s;). While the label is deterministic during training, it is later
treated as a continuous control parameter during sampling, allowing interpolation between the two
domains and fine-grained adjustment of state-space coverage. The target-transition score network is
trained solely on Dy,; to model next states that follow target-domain transition dynamics, enabling the
construction of transitions for newly generated states that remain consistent with the target domain.

After training, we expand state—transition coverage using a two-stage sampling procedure based on
the reverse SDE in equation [2| During sampling, we first draw a label parameter § ~ Unif(0, Ymax),
where ymax € (0, 1] is the label bound that specifies the maximum state-space coverage toward the
source domain. Larger values of g result in broader state-space coverage by generating samples closer
to the source dataset distribution, whereas smaller values bias generation toward the target dataset
distribution, thereby reducing potential overfitting of the transition model trained on limited data.

Stage 1 (State Sampling): starting from Gaussian noise s ~A\(0, I), we integrate the reverse SDE
backward from k£ = K to 0 using the mixture-based score network conditioned on §:

S = st (5, 78) — g2 (s, 7 | )] AT+ g(PVATREE, €~ N(0,T), (©)

where f and g denote the drift and diffusion coefficients in equation After all steps, s” is taken as
the generated state §;.

Stage 2 (Transition Sampling): conditioned on the generated state §;, we obtain its next state 541
by solving the same reverse SDE using the target-transition score network:

S = st [F(5 7R - g2 (s R | 0 | AT 4 g(FIWVATRER, €F ~ N0, 1), (7)

again integrating from k = K to 0 to yield 8;,1 = s°. The resulting pair (3, §;, 1) forms a synthetic
transition that expands the support of target-domain transitions while remaining consistent with
target dynamics, thus mitigating distributional mismatch. This allows us to build a large set of target-
aligned transitions that improve policy learning under scarce target data. While this paper focuses on
challenging cross-domain tasks with continuous state spaces and adopts conditional score networks
for transition generation, this step can be seamlessly extended to image-based states by replacing the
conditional model with an inpainting-based sampling mechanism (Lugmayr et al2022), enabling
vision-based control tasks without modifying the overall TCE framework.

4.3 TRANSITION FILTERING

During sampling, we obtain N state transitions x := (8, §t11), which may include unrealistic
samples due to modeling errors. To prevent such outliers from degrading policy learning, we apply
Z-score filtering (Chandola et al.|[2009), a simple and effective method that retains = only if

Tq — Hd
0d

< Zth, Vdv (8)

where 14 and o4 are empirical statistics of the generated dataset and zy, is the Z-score threshold.
This step discards extreme samples while avoiding excessive bias toward the target distribution. After
filtering, we construct full transitions from the remaining synthetic state transitions for performing
offline RL. To this end, we train two auxiliary models using the target dataset D;,;: an inverse
dynamics model Inv,, trained to predict the action given a state pair (s, s¢+1), and a reward model
R, trained to estimate the reward directly from (s, s;+1). Although rewards in many environments
depend on actions, we follow [Tian et al.| (2024)) and use only state pairs to predict rewards, since
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Algorithm 1 TCE Framework
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actions inferred by the inverse model can be noisy. For each generated transition (8;, 8¢11), we
then recover a; = Invy (8¢, $441) and 7, = Ry (8¢, §141), yielding the complete synthetic transition
(8¢, ag, T't, S¢+1). Motivated by Theorem we collect all such transitions and augment both the source
and target datasets to construct the mixture dataset.

4.4 DATASET CONFIGURATION AND OFFLINE POLICY LEARNING

To make the training setup consistent with Theorem [I] we construct a mixture dataset in which
source transitions and TCE generated transitions appear in the ratio A : (1 — X). To further reduce the
gap bound introduced by source data , we use only source transitions that are sufficiently close to
the target data, and for simplicity we adopt an efficient nearest neighbor (NN) distance instead of
more complex distance estimators. To do this, for each (s, a, s’) € Dge, we define the NN distance
dNN(s,a,8") = ming, a5l €Dy ||[5; @, 8] = [Star, Gtar, Sta) || and compute the A-quantile
threshold d nn, and select source transitions as

D£"0N7)\ = {(8704 5/) S Dsrc : dNN(Sy a, S/) S d)HNN}- (9)

In parallel, we generate (1 — A)|Dgye| transitions with TCE, denoted Dég ) and obtain the mixed
training dataset D). := DXNA U DY with |DX. | = [Dael-

mix src mix

For offline RL, we adopt Implicit Q-Learning (IQL) for fair comparison with prior work, although
any standard offline RL method could be applied. To further stabilize training, we incorporate a KL
regularization term following prior offline RL study (Lyu et al., [2025)), which penalizes deviation
from the target-domain behavior policy. The resulting policy objective is

Lo = LI 4 BEop,, [ Dxc (7 (]s) [ 7([5))], (10)

where training samples are drawn from Dy, U Dr/}ﬁx, ELQL is the standard IQL policy loss, Dk,
denotes the Kullback-Leibler (KL) divergence, 7, is the empirical behavior policy of the target
dataset, and 8 > 0 controls the strength of the regularization. For implementation, we consider
two variants: TCE (OG), which uses only generated samples without any source data (A = 0), and
TCE (NN), which uses the mixture dataset with 0 < A < 1. This separation allows us to clearly
determine whether incorporating source data is beneficial or not. The overall framework of TCE is
illustrated in Fig.[2] and the full procedure is summarized in Algorithm [I] Further implementation

details, including loss formulations and training configurations, are provided in Appendix

5 EXPERIMENTS

In this section, we evaluate the proposed TCE across diverse cross-domain setups and compare it
with recent cross-domain offline RL algorithms. We also conduct ablation studies to analyze the
contribution of each component and examine the sensitivity to key hyperparameters. All reported
results are averaged over 5 random seeds with mean and standard deviation.

5.1 EXPERIMENTAL SETUP

We evaluate on cross-domain setups from MuJoCo continuous-control tasks (Todorov et al.| 2012)) as
proposed by [Lyu et al.|(2025)). The source and target domains share the same agent type (HalfCheetah,
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Src. Tgt. ‘ IQL* DARA BOSA SRPO IGDF OTDF ‘ TCE(OG) TCE(NN)
half-m m 30.0+£1.6  26.6+3.3 19.3£3.5 41.3+£04 41.6£0.5 39.1£2.3 44.1+0.2 43.8£0.2
half-m m-e 31.8%+1.1 32.04+0.7 33.6+1.1 30.74+0.8 29.6+2.2 35.64+0.7 43.8+0.1 43.7+£0.1
half-m e 8.5+1.0 9.3£1.6 7.9£0.8 8.6+0.9 10.0+0.8 10.7£1.2 82.840.1 85.0+1.2

half-m-r m 30.8+4.4  35.6+0.7 35.0+4.6 32.0+1.4 28.0+2.0 40.0£1.2 44.0+£0.2 43.6£0.2
half-m-r m-e 129422  16.944.1 19.9+55 12.4£1.6 12.0£3.7 34.4+0.7 44.2+0.3 43.7+£0.1
half-m-r e 59+£1.7 3.7+2.7 24+19 6.2+1.4 53+£23 8.2+2.7 84.4+4 77.940.2
half-m-e m 41.5£0.1  40.3+£12 41.3£0.3 41.3+£04 40.9+£0.4 41.4£0.3 44.2+0.1 43.7+£0.1
half-m-e m-e 25.8+2.0  30.6+2.8 32.14+0.8 27.240.8 26.2+1.8 35.1+0.6 43.84+0.1 43.9+0.5

half-m-e e 7.8£1.3 8.3+1.3 9.1£0.8 7.8£0.9 7.5£0.9 9.8£1.0 85.1+0.8 82.6+0.2
hopp-m m 13.5+0.2 13.5+04 13.2+0.3 13.4+£0.1 13.4+0.2 11.0£0.9 39.1+0.2 8.0+2.3
hopp-m m-e 13.4£0.1 13.6+0.2 11.2+4.6 13.3+0.2 13.3+0.4 12.6+0.8 29.1+0.1 11.0£0.3
hopp-m e 13.5+0.2 13.6+0.3 13.3+0.4 13.6+0.2 13.940.1 10.7+4.7 99.8+0.1 10.4+0.1
hopp-m-r m 10.8£1.1 10.2+£1.0 1.2£0.0 10.7+1.6 12.0+4.4 8.7+2.8 49.5+0.1 10.7£0.1
hopp-m-r m-e 11.6+1.6 10.4£0.9 1.3£0.2 10.4£1.2 8.24+2.8 9.7£2.7 17.41+0.3 8.3+22
hopp-m-r e 9.8+0.5 9.0+0.3 1.3£0.1 10.4+1.4 11.4£1.5 10.7+2.4 99.7+0.1 32.0£6.7

hopp-m-e  m 12.6+14  13.0+0.5 15.7£7.2 14.0£2.3 12.7+0.8 79+£3.2 39.9+0.1 144+19
hopp-m-e m-e 14.1£1.3 13.840.6 12.0+£1.4 13.5+0.3 13.3£1.2 9.6£3.5 13.840.5 8.4+4.8

hopp-m-e e 13.84+0.5 12.3+1.8 10.5+5.0 14.7+£2.3 12.840.9 5.9+4.0 99.6+£0.1 12.7+0.2
walk-m m 23.0+4.7  23.3433 6.2+29 24.7+1.7 27.5+9.5 50.5+5.8 44.240.2 38.1+2.1
walk-m m-e 21.5+8.6 222476 72429 18.7£7.3 20.7£5.9 44.31+23.8 37.8+7.0 18.6+2.8
walk-m e 20.3+2.8 17.3+£3.4 15.8+8.7 21.1+7.2 15.8+4.5 553483 80.1+5.5 86.3+7.3
walk-m-r m 11.3+3.0  10.9+4.6 5.4£4.0 10.4£4.8 13.4£7.2 37.445.1 43.5+3.7 37.4£0.1
walk-m-r m-e 7.0£1.5 45+1.1 4.0£2.2 49+1.7 6.9+2.2 33.8+6.9 34.6+9.3 23.8+3.7
walk-m-r e 6.3£0.9 45+1.1 3.8+3.4 5.5+£0.9 55422 41.5+£6.8 74.8+04 5094175
walk-m-e m 24.1+£7.4  31.7+6.6 18.7+6.5 29.9+4.7 27.5+2.3 49.9+4.6 41.3+1.2 42.0+£0.1
walk-m-e m-e 27.0+£55 233455 11.1£0.9 229438 25.3+6.4 40.5+11.0 32.945.1 27.344.1

walk-m-e e 224433 252457 9.9+3.9 18.7+£5.7 24.7+2.4 45.7+£6.9 75.9+7.5 84.4+2.9
ant-m m 38.7+3.8  41.3%+1.8 18.2+1.9 40.6£2.1 40.9+1.7 39.4+1.7 41.8+0.7 41.3£0.3
ant-m m-e | 47.0+£5.1 433420 453£7.0 472443 44.4£1.7 58.3+8.9 73.8£1.9 71.1+£2.5
ant-m e 36.2+3.5  485+42 7224105 422499 41.4+42 85.4+4.4 93.6£1.3 95.6+1.1

ant-m-r m 382429 389427 20.2+3.7 38.3+19 39.7£1.2 41.2+0.9 41.2+0.6 40.7+£0.1
ant-m-r m-e 38.1+£3.5 334455 152+1.6 35.0+5.7 373124 50.8+4.5 74.3£1.6 72.7+4.1
ant-m-r e 24.1+£19 245426 16.0£1.7 22.74+3.0 23.6+1.4 67.2+7.5 91.9+0.3 81.0+2.1
ant-m-e m 329451 40.2+1.5 28.1+5.6 359425 36.1+4.4 39.94+2.9 41.5+0.1 37.6+0.1
ant-m-e m-e 357439  36.54+8.7 14.8+159 2454157  30.7£10.8 65.7+4.5 72.1£55 72.5+4.3
ant-m-e e 36.1+£85  34.6+5.8 53.9+5.0 384494 35.2+6.6 86.4+2.2 93.9+£1.3 94.3+1.6

Total Score ‘ 798.0 816.8 646.3 803.1 808.7 1274.3 ‘ 2093.5 1639.4

Table 1: Performance comparison on 36 morphology-shift tasks. Abbrev.: half=HalfCheetah,
hopp=Hopper, walk=Walker2d, ant=Ant; m=medium, m-r=medium-replay, e=expert, m-
e=medium-expert. Src./Tgt. denote source/target domain, respectively. Results are reported as
mean =+ standard deviation over 5 seeds, with the best result in each row shown in bold, and the
second best result is underlined.

Hopper, Walker2d, Ant) but differ in morphology, kinematics, or gravity parameters, creating large
domain gaps. In the offline setting, each domain uses pre-collected datasets of varying quality from
the D4RL benchmark (Fu et al.,|2020), widely used for offline RL. This setup uses different dataset
qualities for the source and target domains, creating a more challenging setup. For the target domain,
we consider 3 datasets: expert, obtained from a fully converged expert policy, medium, obtained from
a partially trained policy, and medium-expert, a mixture of medium and expert data. For the source
domain, we use 3 datasets: medium, medium-replay, obtained from the replay buffer during medium-
policy training; and medium-expert. This setup yields 36 cross-domain tasks for each morphology,
kinematics, and gravity shifts setup. The source dataset contains roughly 1M—2M transitions, whereas
the target dataset is restricted to 5k transitions, reflecting the difficulty of collecting target-domain
data. All results are reported as normalized returns, where 0 corresponds to a random policy and 100
to an expert policy. Further details of the environmental setup are provided in Appendix [C]

5.2 PERFORMANCE COMPARISON

For performance comparison, we evaluate TCE against a comprehensive set of cross-domain offline
RL baselines: IQL* (Kostrikov et al., [2022)), which trains IQL on the union of source and target
data; DARA (Liu et al.,|2022), which employs domain-adversarial classifiers to mitigate dynamics
mismatch; BOSA (Liu et al.} 2024)), which constrains the policy to the support of the dataset; SRPO
(Xue et al., 2023), which regularizes policy learning by matching stationary distributions; IGDF
(Wen et al., [2024), which filters source transitions using contrastive representation learning; and
OTDF (Lyu et al.l 2025)), which performs source filtering based on optimal transport distances. For
the baseline methods, we report results directly from (Lyu et al., [2025)), which implemented each
algorithm with hyperparameter tuning. For TCE, we consider TCE(OG) and TCE(NN). For TCE(NN),
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Src. Tgt. | IQL* DARA BOSA SRPO IGDF OTDF | TCE(OG) TCE(NN)
half-m m 123£1.2 10.6£1.2 83+12 16.8+£4.2 23.6+5.7 40.2£0.0 41.94+0.9 41.4£0.1
half-m m-e 10.8£1.9 12.9+2.8 8.7+£13 10.3£2.7 9.8+2.4 10.1£4.0 39.7+£1.1 40.5+0.5
half-m e 12.6+1.7 12.1+1.0 10.8£1.7 12.240.9 12.8+0.7 8.7£2.0 11.91+4.6 7.5£1.1
half-m-r m 10.0+5.4 11.5+4.9 7.5£3.1 10.2+3.7 11.6+£4.6 37.8+2.1 41.8+0.5 40.2£0.9
half-m-r m-e 6.5+3.1 9.24+4.7 6.6£1.7 9.5+1.8 8.6+2.3 9.7+2.0 40.8+1.4 33.6+64
half-m-r e 13.6£1.4 14.8+£2.0 10.4£4.9 14.84£2.2 139422 72+£14 15.2+6.4 2.940.1
half-m-e m 21.8£6.5 259+7.4 30.0+4.3 17.2£33 21.9+6.5 30.7£9.6 42.0+0.2 41.1£0.5
half-m-e m-e 7.6£1.4 9.5+4.2 6.8£2.9 9.6+2.4 8.9+33 10.9£4.2 41.210.6 35.8+1.8
half-m-e e 9.1+£2.4 10.4+£1.3 49432 11.2+1.0 10.7£1.4 3.2+0.6 9.5+7.4 7.5£1.6
hopp-m m 58.7£8.4 43.9+15.2 12.3£6.6 65.4£1.5 65.3+1.4 65.6£1.9 66.8+£0.5 66.3+0.2
hopp-m m-e 68.5£124  554£16.9 15.6£10.8 4394308  51.1+18.5  55.4425.1 72.1+4.1 67.3+£2.9
hopp-m e 79.9+355  83.7£19.6 14.8+5.5 53.1+£39.8  87.4£254  35.0%19.4 91.5+6.3 78.2£17.6
hopp-m-r m 36.0+0.1 39.447.2 32426 36.1£0.2 359424 355£12.2 65.1+£0.9 66.21+0.2
hopp-m-r m-e 36.1+0.1 34.1£3.6 44428 36.0+0.1 36.1£0.1 47.5£14.6 72.0+£3.7 63.9+£14.3
hopp-m-r e 36.0+0.1 36.1£0.2 3.7+£25 36.1+0.1 36.1£0.3 49.94£30.5 96.8+2.4 85.14£2.5
hopp-m-e m 66.0£0.5 61.1£4.0 35.0+20.1 64.6£2.6 65.2+£1.5 65.3+2.4 66.60.6 66.2+0.2
hopp-m-e m-e 45.1£15.7  61.9+169 13.9+4.9 547£170  629£15.6  38.6£15.9 76.0£2.0 72.7£3.1
hopp-m-e e 4494198 8424211 12.0+4.3 57.6+40.6  52.84£39.7  29.9+11.3 89.2+8.4 89.7+4.2
walk-m m 343+9.8 3524225 143£11.2 39.0+6.7 41.9£11.2  49.6+18.0 60.4£1.9 54.14£2.1
walk-m m-e 30.2+12.5  51.9+11.5 13.6+£7.7 38.6+6.5 423£19.3  435+164 | 46.2£12.1 19.8+1.3
walk-m e 5644182  40.7£14.4 153425 57.3+122  604+£17.5  46.7+13.6 59.3+4.2 334£15
walk-m-r m 11.5£7.1 12.5+43 1.9£2.1 14.3+£3.1 222452 49.74£9.7 50.2+3.7 45.1£45
walk-m-r m-e 9.7£3.8 11.24£5.0 4.643.0 42451 7.6+4.9 55.9+17.1 37.1£11.8 21.3+55
walk-m-r e 7.7£4.8 7.4+2.4 3.6£1.5 13.2£8.5 7.5£2.1 51.9+£7.9 53.0£7.9 23.1£29
walk-m-e m 41.8£8.8 38.1+£14.4 214483 36.9+4.3 41.2£13.0 44.6£6.0 55.2+2.5 54.9432
walk-m-e m-e 22.248.7 23.6+8.1 15.9+4.1 23.24+7.9 28.1+4.0 16.5+7.2 31.2+4.8 24.7+3.8
walk-m-e e 26.3£10.4 36.0+£9.2 18.5£3.6 40.9£9.6 46.2+19.4 42.449.1 47.1+18.1 25.2+6.1
ant-m m 50.0£5.6 42.3£7.6 20.9+2.6 50.5£6.7 54.5+£13 55.4£0.0 532+£19 47.5£1.9
ant-m m-e 57.84+7.2 54.1£3.8 31.7£7.0 54.9+1.3 54.5+4.6 60.7£3.6 61.4£2.0 64.21+9.5
ant-m e 59.6£18.5 5424113 45.4+8.6 455493 49.4+14.6 90.4+4.8 92.742.8 93.8+3.4
ant-m-r m 43.7£4.6 42.0+£5.4 19.0£1.8 453+£5.1 41.4£5.0 52.8+44 54.6+1.4 51.0+3.2
ant-m-r m-e 36.5+£59 36.0+6.7 19.1£1.6 36.2+6.6 37.2+4.7 542452 61.6+2.4 61.7+£5.4
ant-m-r e 244448 22.1+£0.4 19.5+0.8 27.1£3.7 243+2.8 74.7£10.5 92.0+£2.4 94.2+0.2
ant-m-e m 49.544.1 44.7+4.3 19.0£8.0 41.348.1 41.8+£8.8 50.2+4.3 55.6t1.4 55.1£3.7
ant-m-e m-e 37.2+2.0 33.3+7.0 6.4£2.5 38.24+8.0 41.54+4.9 48.8+2.7 59.1+34 62.1+0.2
ant-m-e e 18.7£8.1 17.84£23.6 14.54£9.0 352+£155 1444229  78.4+122 94.2+3.2 90.3+1.3
Total Score ‘ 1193.0 1219.8 5135 1195.7 1271.0 1547.6 ‘ 2044.2 1828.1

Table 2: Performance comparison in cross-domain offline RL under kinematic shifts.

we use the best A over 0.1 < A < 0.9. All other hyperparameters are chosen via hyperparameter
search, and TCEs are trained for the same number of steps as the baselines. More experimental details
are provided in Appendix[C] and we also present the results for morphology and kinematic shifts in
the main text and provide the results for gravity shifts in Appendix [D.I}

Morphology Shifts. Table[T|summarizes the results under morphology shifts. TCE methods achieve
the highest average performance on 31 of 36 tasks, significantly outperforming all baselines. The
performance gain is most pronounced when the target dataset is of high quality, such as expert,
where most baselines fail to learn effectively due to the narrow state distribution and large domain gap.
By combining controllable state coverage expansion with target-aligned transition generation, our
method mitigates distributional shift and enables effective policy learning even in these challenging
settings. In addition, morphology shift typically induces a large domain gap between source and
target. In such cases, TCE(OGQG) is usually clearly superior, and TCE(NN) attains its best results when
the mixing weight A is as small as 0.1. As a result, the performance gap between TCE(OG) and
TCE(NN) is generally small, and in some settings even a slight use of source data hurts performance,
indicating that under large domain gaps source-only methods perform much worse than TCE(OG)
and that using only generated samples can be more effective than mixing in source data.

Kinematic Shifts & Gravity Shifts. Table[2]reports the results for kinematic shifts. Although these
shifts involve milder changes in dynamics compared to morphology shifts, TCE methods still achieve
the highest average return across nearly all tasks. Kinematic shift has a smaller domain gap than
morphology shift. In some environments TCE(NN) slightly outperforms TCE(OG), but in most cases
it still lags behind, consistent with the morphology results. In contrast, the gravity shift results in
Table [D.T]of Appendix [D.T|reflect an even smaller domain gap. In this regime, TCE(OG) degrades
substantially, whereas TCE(NN), which mixes source data, clearly surpasses both TCE(OG) and
other baselines. This shows that when the domain gap is small and target data are limited, exploiting
source data is beneficial, and TCE methods still remain stronger than the baselines.
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Figure 3: Coverage and sample reliability with respect to yy,ax in Ant morphology shifts. (a.1) t-SNE
visualization of state datasets and (a.2) the corresponding coverage curve. (b.1) NN-distance between
generated states Dlo’n/\ and true states in Dy, U Dg,c. (b.2) Transition KL divergence(normalized)
and (b.3) reward error between models trained on limited and sufficient target data.

5.3 COVERAGE AND SAMPLE RELIABILITY ANALYSIS

To better understand how the proposed method enhances coverage, improves sample reliability,
and leverages Z-score filtering, Fig. [3[a) shows a t-SNE visualization of the source, target, and
TCE-generated data together with the corresponding coverage curve as a function of 9,4, While
Fig.3[b) compares the errors of generated and Z-score-filtered outlier samples with respect to states,
transitions, and rewards as ymax varies. In terms of coverage, as ymax increases, the generated
states smoothly interpolate between the two domains: when y,.x = 0, the samples closely match
the target distribution, whereas larger values yield samples resembling the source distribution,
thereby broadening coverage as intended. In contrast, for sample reliability, increasing ymax can hurt
generalization given the limited target data. In Fig.[3[b), the state error is the discrepancy between
generated states and true states from the source and target datasets, while the transition KL divergence
and reward error compare models trained on limited versus abundant target data. The results show
that increasing ymax does not substantially increase the state error, so the generated states themselves
remain reliable; however, once ymax > 0.2, both transition and reward errors rise sharply, which
degrades generalization. We therefore regard generated transitions as trustworthy up to ymax = 0.2.
The figure also reports the errors of samples rejected by Z-score filtering, which are much larger across
Ymax confirming that the proposed filtering effectively removes low-quality samples. Appendix [F
provides additional reliability analyses in other environments.

5.4 ABLATION STUDY
In this section, we analyze the contribution of each component through component-wise evaluation
and study the effect of key hyperparameters, namely the label bound y,,.x and the Z-score threshold

zth- Additional analysis of computational complexity and further ablations on the denoising step K
are provided in Appendices[E]and[G]

Component Evaluation We ablate five configurations in increasing methodological completeness.

Table 3: Component evaluation on morphology To evaluate the contribution of each component,

shifts: Average normalized return over 36 tasks ~ We consider six configurations with increasing
methodological completeness. TCE(OT) adopts
Setting Average Scores  the optimal-transport distance of
TCE(OG) 58.2+23.8 for source selection; TCE(OG) w/o Filter-
TCE(NN) 45.5+27.5 ing removes the Z-score filtering step; TCE(OG)
TCE(OT) 48.21+26.1 w/o Policy Reg. omits the policy regularization
TCE(OG) w/o Policy Reg. 55.8+26.8 term; Simple Augmentation augments state tran-
TCE(OG) w/o Filtering 56.7+27.5 sitions using only 0.5M target-domain transi-
Simple Aug. 45.9422.6 tions; Target+Source(whole) trains IQL on the
Target+Source(whole) 21.3£12.1 naive union of source and target data (equiva-
Target Only 41.44+21.2 lent to IQL* in Table[T); and Target Only trains

IQLusing only 5k target-domain samples. . Ta-
ble 3] reports the average normalized return over 36 morphology-shift tasks. TCE(OG) achieves
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Figure 4: Hyperparameter analysis on (a) Ant-morphology and (b) Hopper-kinematics tasks: (a) effect
of label bound y,ax, (b) effect of Z-score threshold z;y

the highest normalized return, showing that its components are crucial and work synergistically. In
particular, TCE(OG) significantly outperforms both Simple Augmentation (which uses only target
data) and Target+Source, demonstrating that our approach effectively expands state coverage while
minimizing distributional mismatch, leading to improved policy performance. In addition, TCE(OT)
achieves slightly higher scores than TCE(NN) but still falls short of TCE(OG), indicating that TCE-
based sample generation is considerably more important than source selection alone. The results of
TCE(OG) w/o Policy Reg. further show that removing policy regularization degrades performance,
although the proposed method remains effective.

Label Bound y,,,x: The hyperparameter y,,,, controls how strongly the mixture-based score
network gj"™* shifts state generation toward the source dataset, thereby determining the overall
state-space coverage. As shown in Fig. ff[(a) and consistent with the sampling analysis in Fig. 3]
coverage increases monotonically with y,,,x, but excessively large values such as ¥,,x = 0.5 produce
states that deviate too far from the target distribution. This leads to larger transition-model errors,
as observed in the KL-divergence analysis, and ultimately degrades policy performance. We find
that y,a.x = 0.2 achieves the best trade-off, expanding coverage enough to improve policy learning
while maintaining transition fidelity. Conversely, very small values such as ymax = 0.1 or the Simple
Augmentation setting without coverage expansion yield lower returns, underscoring the importance
of controlled coverage expansion for the effectiveness of TCE.

Z-score Threshold zi,: The Z-score filtering parameter 2}, determines which samples are retained
by discarding those whose Z-score exceeds 2y, i.€., samples more than 2y}, standard deviations away
from the mean. Fig. Ekb) shows that z;, = 3 consistently achieves the best performance. When zyy, is
too low, for example 2.5 or 2.75, many samples far from the mean are removed, reducing diversity
and diminishing the benefit of state coverage expansion. In contrast, values larger than 3 behave
almost like no filtering, allowing unrealistic outliers to remain. Setting z;;, = 3 provides a balanced
trade-off, filtering implausible samples while preserving enough diversity to improve policy learning.

6 LIMITATIONS

While TCE consistently outperforms strong baselines, it has two main limitations. First, because TCE
trains two score networks and performs two-stage sampling, it introduces additional computational
overhead compared to methods that simply reuse or filter source data. As analyzed in Appendix [E|
this overhead amounts to only a few extra hours in our setup, which is acceptable in the offline RL
setting where the primary goal is to learn a high-quality policy without distributional shift rather than
minimize training time. Second, TCE involves a few hyperparameters, such as the label bound and
Z-score threshold, which control coverage and filtering. In practice, we find that performance is not
highly sensitive to these parameters: moderate values consistently balance coverage and accuracy,
and coverage expansion almost always improves performance, making TCE relatively easy to tune.

7 CONCLUSION

We presented TCE, a two-stage score-based framework that first expands target state coverage
through mixture-conditioned sampling and then generates transitions aligned with target dynamics
using a target-only score model, followed by conservative filtering. This design directly addresses
distributional mismatch in cross-domain offline RL and enables effective policy learning with limited
target data and no online interaction. Experiments on diverse MuJoCo domain shifts show that TCE
consistently improves performance over prior methods, and ablations confirm the importance of
both coverage expansion and target-aligned transition generation. These findings highlight TCE as a
simple and practical solution for cross-domain offline RL.

10
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ETHICS STATEMENT

This work proposes TCE for cross-domain offline reinforcement learning and focuses on improving
methodology rather than real-world deployment. We do not identify any negative ethical concerns or
potential negative social impacts associated with this research. The study does not involve human
participants or personally identifiable data, and thus poses no safety or privacy risks.

REPRODUCIBILITY STATEMENT

We made significant efforts to ensure the reproducibility of our results. All datasets used in our
experiments are publicly available, and a detailed description is provided in Appendix Our
method is described in detail in Section[#.2]and Appendix with hyperparameter settings reported
in Appendix [C.3] All experiments are run with multiple random seeds, and we report mean and
standard deviation for all results.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we utilize LLMs solely to refine the manuscript, focusing on typographical corrections
and improving readability. We did not use LLMs for research-related tasks such as idea formulation,
methodological design, or result interpretation. All scientific contributions, experiments, and analyses
were conducted entirely by the authors.

B DETAILED IMPLEMENTATION AND ALGORITHM OF TCE

This section summarizes core components of our proposed TCE method: Subsection [B.T| defines
the score-based training loss and reverse-time sampling with Langevin corrector. Subsection
details the joint training of dual score networks, two-stage sampling, Z-score filtering, and synthetic
transition labeling using inverse dynamics and reward models. Subsection [B.3] provides network
architecture and configuration details supporting the overall implementation.

B.1 DETAILS OF SCORE-BASED GENERATIVE MODEL WITH SDES

Our generative framework is built upon score-based models formulated through Stochastic Differential
Equations (SDEs). We first define the noise schedule that governs the forward diffusion process. A
clean data sample ¥ is perturbed over a continuous time variable 7 € [0, 1] into a noisy sample
2" = 2% 4+ o(7)z, where z ~ N(0, I) and the noise scale o(7) is given by:

1
o(t) =+/1—exp(—B(1)), where B(T) = aminT + i(amax — Omin )T (B.1)

Here, apin and ayyax control the minimum and maximum rates of noise injection, respectively. This
quadratic schedule allows for a smooth, gradual increase in noise, which is beneficial for model
training and sample quality. In all our experiments, we fix these values at ayyiy, = 0.1 and ayax = 20.

Training Objective of Generative Model: The core training objective is to learn a score network,
qo(z, 7 | c), that estimates the gradient of the log-density of the noisy data, V- log p(z” | ¢). The
network is optimized via the denoising score matching loss:

2
z
qgo(z™, 7| )+ ——

ﬁscore(g) = ET,('JvaC) [A(T) U(T)

] . 2~N(0,]) (B.2)

2

where the weighting function is chosen as A(7) = o(7)2.

Data Sampling: At inference time, samples are generated by solving the corresponding reverse-
time SDE. We discretize the continuous time 7 into a sequence of steps 1 = 75 > ... > 70 =0,
where K is the denoising steps which fixed to K = 500 for all environments in this work. In its
general discretized form, each reverse step is:

A =R [f@ ) = (Pt T ] ATt g(rF)VATEEE, €F ~ N0, D). B.3)

In our implementation, we adopt the Variance Exploding (VE) SDE formulation, where the drift
coefficient satisfies f(x,7) = 0., making the forward process purely noise-driven and thus sim-
plifying sampling. The diffusion coefficient is defined as g(7) = y/d(02)/dr. For generation, we
use Predictor—Corrector (PC) sampling, where the predictor integrates the reverse SDE and the
corrector performs Langevin refinement, improving robustness to step size and noise levels and
yielding higher-quality samples.

(predictor step:) ="~ = 2% — g(7%)2gy(z®, 7% | ) ATF + g(7F)V ATE £F (B.4)
After each predictor step, we apply a Langevin corrector step to refine sample quality:
(corrector step:) aF 1« 2P+ T)kqg(xkfl,kal | c) + Vankek, ¢k~ N(0,1) (B.5)

where 1" is an adaptive step size that depends on the signal-to-noise ratio at step k. In all our
experiments, the corrector step is applied once after each predictor step. Once PC sampling is
completed, we take the sample obtained at the final time 7° = 0, ¥ as the final sample.
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B.2 DETAILED IMPLEMENTATION OF TCE

We implement the proposed Two-stage Coverage Expansion (TCE) by jointly training two conditional
score networks over noisy states and transitions.

Training Objective of Score Networks in TCE: The training objective for the two conditional

score model ¢j** and ¢ is defined as the sum of two denoising score matching losses based on

equation
2
2]

2

@™ (7.7 | y(se)) +

L(0) =Er gD D0 [A(r) ﬁ

tran

r z
a5 " (St41,7 | 8¢) + ﬁ ) (B.6)

+ ET,(St»St+l)NDtar lA(T)
2

where z ~ N (0, 1), and s] = s;+0(7)z denotes the noisy state at noise level 7. Here, y(s;) € {0,1}
is a binary domain label indicating whether s; is from the source or target domain.

We train an inverse dynamics model Inv,, and a reward model 2y, on the target domain dataset Dy,
using the combined mean squared error loss:

»Cinv (d)) = E(St ,at 7St+1)NDtar

Inverse dynamics loss Reward prediction loss

Rw(stastﬂ) —Tt||§o

Invw(3t7 St+1) - at”% + ]E(Styrt,st+1)NDtar

(B.7)

Data Generation through TCE: The two-stage coverage expansion utilize the two score model at
each stage; ¢5*™* for sampling high-coverage states between source and target domain, and ¢§"*" for
sampling their corresponding next states on target domain.

Stage 1 (State Sampling): Starting from sX ~ N(0, I), we iteratively apply PC sampling according
to Appendix

(predictor step:) s ! = s + [—g(7%)2qg™(sF, 7" | )] ATF + g(r*)V AT (B.8)
(corrector step:) sy« sFh 4+ R (sy T TR 9) + /2nR¢E (B.9)

Here, § ~ Unif (0, ymax) controls the mixture ratio. We take the sample obtained at the final time
70 =0, s = 8; as the final generated state samples.

Stage 2 (Transition Sampling): Starting from s/ ; ~ N(0, I) and conditioned on the generated state
§;, we iteratively apply PC sampling according to Appendix B.1]

(predictor step:) sf;f =spy+ [—9(T) 25 (kg T | 80)] ATF + g(7F)V ATRE (B.10)
(corrector step:) sii < sy + 0 gy (siid, TF ] &) + v 2nR¢E (B.11)

We take the sample obtained at the final time 70 = 0, s?, | = 8,1 as the final generated next state
samples. Finally we get coverage expanded state transition samples (8¢, §¢.+1).

After the two-stage coverage expansion data sampling, we apply Z-score filtering to remove extreme
(8¢, $t41) outliers according to Section by discarding the indices of them where the statistics of
each dimensions exceed zy,. To label the filtered transitions (8;, §;+1) with corresponding actions
and rewards, we then generate labels (G;,7;) = (Invy, (8¢, $¢41), Ry (8¢, $141)) for each synthetic
state pair using the Invy, and R, models. Finally we get the fully labeled dataset Dy, of tuples
(8¢, g, 7, 8¢41)-

IQL Training with D,.,: For offline policy learning stage, we employ IQL (Kostrikov et al.,[2022)
trained on the aggregated dataset Dgen, U Ds,,. For notational simplicity in the loss definitions that
follow, we denote a generic transition from this combined set as (s, at, 7, S¢11), irrespective of its
origin from Dge,, or Dyy,. The network parameters for the Value function and Q-function are denoted
by ¢ (with ¢’ for the target network and o~ for the stop gradient), and policy network parameters
are denoted by w. The value function V, is then trained using expectile regression:

Ly (9) = E(s, 00)~DyenuDiar | L3 (Qyr (51, a1) — Vip(s¢)) ], (B.12)
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where L]V (u) = |rv — 1[u < 0]| u? is the asymmetric Ly loss, 1(-) is the indicator function, and
Tv € (0,1) controls the degree of conservatism, which is fixed to 7 = 0.7 for all environments in
this work. In addition, the Q-function ), is updated via a standard TD error minimization:

2
L£0(9) = E(sp i~ DaentDu | (71 F 1V (5101) = Qplsia)’] . (B13)

Finally, the policy 7, is trained by maximizing an advantage-weighted log-likelihood, augmented
with a behavior-regularization term:

Lr(w) :E(s,,at)NDgenqu{exp(ﬁAdv Adv(ss, ar)) log '/Tw(atlst)}
o Breg Eaynyn | Dt (o (31) [ ma(130)) ] (B.14)

where Adv (s, ar) = Qu(s¢,a:) — Vi,(s¢) is the advantage, weighted by a temperature parameter
Badv, Which is fixed to Saqy = 3 in all environments in this work. The term 7, is the empirical
behavior policy cloned from Dy,, using a CVAE, and S is the hyperparameter controlling the
strength of the KL-divergence penalty. The target Q-network ¢’ is updated via an exponential moving
average of .
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B.3 NETWORK ARCHITECTURE AND CONFIGURATIONS

We employ four core neural network architectures to model state scores, transition scores, inverse
dynamics, and reward estimation. These networks are designed with modular subcomponents to
promote parameter sharing and maintain architectural consistency.

Mixture-based state score network(qg‘ix) estimates the score of perturbed states conditioned on
diffusion time and a mixture label. The input consists of concatenated state s;, time embedding
via TimeMLP 7, and label embedding via LabeIMLP y. These inputs pass through an initial dense
layer, followed by four residual blocks composed of dense layers with SiLU activations and skip
connections, culminating in a linear projection back to R%, where d, is the state dimension. This
architecture facilitates expanding the coverage of target states by modulating the label input during
the sampling process.

Target-transition score network(gj"™") predicts the score of perturbed next states s;1, conditioned on
the current state s; and diffusion time 7. Inputs s;1, the time embedding TimeMLP(7), and state
embedding StateMLP(s;) are concatenated and processed identically via a dense layer, four residual
SiLU blocks with skip connections, and a final linear projection to R% . This ensures the generated
transitions align closely with the target domain dynamics.

Inverse dynamics model(Inv,,) maps concatenated state pairs [s, s;11] to the action space R%. The
network starts with a dense projection layer, followed by three residual MLP blocks each comprising
layer normalization, dense layers with SiLU activations, and stochastic depth via DropPath. A final
linear layer outputs the action vector.

Reward model(R,;) shares the architectural backbone with the inverse dynamics model, regressing
scalar reward values from state pairs [s¢, s¢11]. It utilizes the same input projection and residual
blocks but concludes with a single-unit linear output for the reward prediction.

Table[B.T]organizes these architectures by listing inputs, layer compositions, and output specifications.
To reduce redundancy, reusable modules such as TimeMLP, LabeIMLP, StateMLP, and residual
blocks are summarized separately in Table [B.2] Details of environment-specific state and action
dimensions (d and d,) are provided in Appendix

Network Layers

Mixture-based state score network (qg“ix) Input: state s;, time 7, label y
Concat[s;, TimeMLP(7), LabeIMLP(y)]

Dense(256)
Residual block (Dense(256, SiLU), skip) x4
Dense(d,)

Target-transition score network (g§™") Input: next state s, time 7, state sy
Concat[s;41, TimeMLP(7), StateMLP(s;)]
Dense(256)
Residual block (Dense(256, SiLU), skip) x4
Dense(dy)

Inverse dynamics model (Invy,) Input: state s;, next state sy
Dense(256)
RB-ResMLP %3
Dense(d,,)

Reward model (R;) Input: state s;, next state s;1
Dense(256)
RB-ResMLP x3
Dense(1)

Table B.1: Architectural specifications of the networks. Notation: ds denotes the state dimension
and d, denotes the action dimension. Layer notation uses “Layer(Dim, Activate)”’: Dim is the output
width (number of units), and Activate is the activation function; if Activate is omitted, the layer is a
linear projection. “Block x K means the preceding block is repeated K times.
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Component  Definition

TimeMLP Dense(1,128), SiLU; Dense(128,128), SiLU
LabeIMLP Dense(1,128), SiLU; Dense(128,128), SiLU
StateMLP Dense(d,,128), SiLU; Dense(128,128), SiLU
RB-ResMLP Dense(256,256), SiLU; Residual connection

Table B.2: Definitions of reusable components.

C DETAILED EXPERIMENTAL SETUP

This section outlines the experimental setup in detail. It first summarizes the baselines used for
comparison in section [C.1] then describes the environment and offline dataset configurations and
domain shifts considered in section[C.2} and finally presents the hyperparameter choices for model
training and algorithm parameters in section|C.3]

C.1 BASELINES EXPLANATION

This section summarizes the baseline algorithms used for comparison with TCE approach.

IQL (Kostrikov et al.|2022) is a widely used offline RL method that learns policies strictly within the
support of the dataset, avoiding extrapolation to out-of-distribution samples. While stable, this design
makes it difficult to learn meaningful policies when only limited target-domain data is available. The
variant IQL* leverages both source and target datasets to stabilize training and expand state coverage.
Official Code: https://github.com/ikostrikov/implicit_qg_learning.

DARA (Liu et al., [2022) mitigates the effect of dynamics mismatch by training domain classifiers
on state-action-next-state and state-action pairs to quantify domain discrepancy. This discrepancy is
used to adjust source rewards, encouraging source data to better align with target dynamics. For this
method, we follow the implementation provided in|Lyu et al.[(2025).

BOSA (Liu et al.||2024) introduces supported value estimation to constrain critic updates to plausible
transitions under target dynamics. The actor updates only consider supported actions, preventing
exploitation of unsupported out-of-distribution transitions. For this method, we follow the implemen-
tation provided in |Lyu et al.| (2025).

SRPO (Xue et al.| [2023)) constrains the learned policy distribution to remain close to the target
state distribution by incorporating a KL divergence budget, inducing a reward shaping term via a
domain discriminator to enforce consistency with target dynamics. For this method, we follow the
implementation provided in|Lyu et al.|(2025).

IGDF (Wen et al.| 2024) learns cross-domain contrastive representations that distinguish source from
target transitions. The resulting scores filter source data during critic training to ensure only reliable
source transitions contribute. Official Code: https://github.com/BattleWen/IGDF.

OTDF (Lyu et al.| [2025)) applies optimal transport to align source and target transitions by computing
deviation scores and selectively weighting source samples. The policy update also integrates CVAE-
based support regularization to ensure the learned policy remains consistent with the target action
space. Official Code: https://github.com/dmksjf1/0TDF.

C.2 ENVIRONMENTAL SETUP

This section details the experimental environments used to evaluate our approach. We adopt the
cross-domain continuous control setup, including environments, dataset compositions, and domain
shift configurations, proposed by |Lyu et al.|(2025). The benchmark is based on MuJoCo environments
(Todorov et al.,2012)) and features four agent types: HalfCheetah, Hopper, Walker2d, and Ant.

Offline Datasets: The offline datasets consist of pre-collected data from both source and target
domains, primarily drawn from the D4RL benchmark (Fu et al.,2020) and supplemented by the
aforementioned setup.
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Source domain data comprises three quality levels: medium, medium-replay, and medium-expert.
The medium dataset contains 1M samples generated by a partially trained SAC policy. The
medium-replay dataset includes all samples in the SAC replay buffer up to the point of medium
performance (approx. 0.2M to 0.4M samples), thus mixing low- to medium-quality experiences.
Finally, the medium-expert datasets combine 50% expert and 50% suboptimal data, with total sizes
ranging from 1M to 2M transitions.

Target domain is designed to assess policy adaptation under significant distributional shifts. Three
types of dynamics changes are introduced to the MuJoCo agents: Morphology shift(modifying the
agent’s physical structure), Kinematic shift(restricting joint rotations to simulate malfunctions),
and Gravity Shift(altering gravitational acceleration). To reflect realistic data scarcity, the target
datasets are limited to a small number of samples (typically under 5K per dataset) and are provided
across medium, medium-expert, and expert quality levels. Table@] summarizes the dataset sizes
by domain and quality.

Source Domain Target Domain :  Morphology  Kinematic  Gravity

medium M medium 5K 5K 5K
HalfCheetah medium-replay  0.2M medium-expert 5K 5K 5K
medium-expert 2M expert 5K 5K 5K
medium 1M medium 5K 5K 5K

Hopper medium-replay 0.4M medium-expert 43K 5K 4.3K
medium-expert 2M expert 5K 5K 5K
medium M medium 5K 5K 5K

Walker2d medium-replay 0.3M medium-expert 3.5K 44K 4.8K
medium-expert 2M expert 5K 5K 5K
medium 1M medium 5K 5K 5K

Ant medium-replay 0.3M medium-expert 5K 5K 3.1K
medium-expert 2M expert 5K 5K 5K

Table C.1: Dataset sizes by domain and data quality

Evaluation Metric: All results are presented as normalized scores to fairly compare across envi-
ronments with varying return scales:

J—Jr

NS =
Je — Jr

x 100,

where J is the return of the evaluated policy, and J,. and J, represent returns from random and expert
policies in the target domain, respectively. Reference scores proposed by [Lyu et al.|(2025) for each
agent and target domain scenario are shown in Table [C.2}

Agent Type Domain Shifts  Reference min score J,. Reference max score J,
HalfCheetah ~ Morphology -280.18 9713.59
HalfCheetah ~ Kinematic -280.18 7065.03
HalfCheetah  Gravity -280.18 9509.15
Hopper Morphology -26.34 3152.75
Hopper Kinematic -26.34 2842.73
Hopper Gravity -26.34 32343
Walker2d Morphology 10.8 4398.43
Walker2d Kinematic 10.8 3257.51
Walker2d Gravity 10.8 5154.71
Ant Morphology -325.6 5722.01
Ant Kinematic -325.6 5122.57
Ant Gravity -325.6 4317.07

Table C.2: Reference minimum score J,, and maximum score .J, by agent and domain shifts
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Agent Type | State Dimension(d ) Action Dimension(d, )

HalfCheetah 17 6
Hopper 11 3
Walker2d 17 6
Ant 111 8

Table C.3: state dimension(d,) and action dimension(d,,) of each agent.

Domain Shifts: To simulate realistic but significant distributional differences between source
and target domains, we apply three primary types of domain shifts in the MuJoCo environments:
Morphology, Kinematics, and Gravity. These shifts directly impact the agent’s control dynamics and
pose challenges to policy generalization.

Morphology shift involves structural modifications to the agent’s body by editing MuJoCo XML
files to change limb sizes and dimensions of body parts. These changes alter movement capabilities
without fundamentally breaking agent functionality. For example, in HalfCheetah, the thigh lengths
are significantly reduced, requiring the agent to adapt its gait to control shorter limbs efficiently. In
Hopper, the head size is increased from 0.05 to 0.125, representing a 60% expansion in torso diameter.
In Walker2d, the right leg is elongated by increasing the lengths of the thigh, leg, and foot segments
through geometry modifications to their endpoints. In Ant, the sizes of the front ankle capsules are
reduced, resulting in smaller front feet compared to the default configuration. These alterations create
physical domain gaps that affect locomotion efficiency and balance.

Kinematic shift emulates impairments or restrictions in joint mobility by significantly narrowing the
allowed range of joint rotations. This effectively simulates partial joint failure or stiffened joints in
the target domain. Specifically, in HalfCheetah, the back thigh joint’s rotational freedom is drastically
reduced by approximately 99%. For Hopper, the head and foot joint ranges are contracted by roughly
99% and 60%, respectively. In Walker2d, the right foot joint experiences a 71% decrease in allowable
rotation, while for Ant, the hip joints of the front legs are tightened by 43%. These modifications
limit the agents’ maneuverability and adaptability in the altered domain.

Gravity shift reduces the gravitational force magnitude acting on the agents by halving the gravity
parameter in the target domain compared to the source. The source domain uses standard Earth
gravity of -9.81 m/s?, while the target domain gravity is set to -4.905 m/s?, exactly half. This results in
a lighter environment where decreased downward force alters the agents’ balance, contact dynamics,
and locomotion. Such a change demands the learned policies adapt to modified physical interactions
and energy requirements.

All these domain shifts are implemented through precise modifications in the MuJoCo XML configu-
ration files following the framework of [Lyu et al.| (2025)), enabling a comprehensive evaluation of
cross-domain offline reinforcement learning under varied and challenging environment changes.

HalfCheetah morphology shift : shortened thigh capsules

<geom fromto="0 0 0 -0.0001 @ -0.0001" name="bthigh" size="0.046" type="
capsule”/>

<body name="bshin"” pos="-0.0001 0 -0.0001">

<geom fromto="0 0 @ 0.0001 @ 0.0001" name="fthigh"” size="0.046" type="
capsule”/>

<body name="fshin"” pos="0.0001 0 0.0001">

Hopper morphology shift : reduced torso size

<geom friction="0.9" fromto="0 © 1.45 @ @ 1.05" name="torso_geom" size="
0.125" type="capsule"/>

Walker2d morphology shift : shortened thigh, elongated leg

<body name="thigh" pos="0 @ 1.05">
<joint axis="0 -1 ©@" name="thigh_joint"” pos="0 @ 1.05" range="-150 0"
type="hinge"/>
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<geom friction="0.9" fromto="0 @ 1.05 @ @ 1.045" name="thigh_geom"” size
="0.05" type="capsule"/>
<body name="leg" pos="0 @ 0.35">
<joint axis="0 -1 @" name="leg_joint” pos="0 @ 1.045" range="-150 0"
type="hinge"/>
<geom friction="0.9" fromto="0 @ 1.045 @ @ ©.3" name="leg_geom” size=
"0.04" type="capsule"/>
<body name="foot"” pos="0.2 @0 0">
<joint axis="0 -1 0" name="foot_joint” pos="0 @ 0.3" range="-45 45"
type="hinge"/>
<geom friction="0.9" fromto="-0.0 @ 0.3 0.2 @ 0.3" name="foot_geom”
size="0.06" type="capsule”"/>
</body>
</body>
</body>

Ant morphology shift : smaller front ankle capsules

<geom fromto="0.0 0.0 0.0 0.1 0.1 0.0" name="left_ankle_geom” size="0.08"
type="capsule”"/>
<geom fromto="0.0 0.0 0.0 -0.1 0.1 0.0" name="right_ankle_geom” size="
0.08" type="capsule”"/>

HalfCheetah kinematic shift : restricted back thigh joint

<joint axis="0 1 0" damping="6" name="bthigh” pos="0 0 0" range="-.0052
.0105" stiffness="240" type="hinge"/>

Hopper kinematic shift : narrowed head and foot joints

<joint axis="@ -1 @" name="thigh_joint"” pos="0 @ 1.05" range="-0.15 0"
type="hinge"/>

<joint axis="@ -1 @" name="foot_joint” pos="0 0 @.1" range="-18 18" type=
"hinge"/>

Walker2d kinematic shift : constrained foot joint

<joint axis="0 -1 0" name="foot_joint” pos="0 @ 0.1" range="-0.45 0.45"
type="hinge"/>

Ant kinematic shift : limited hip joints

<joint axis="0 @ 1" name="hip_1" pos="0.0 0.0 0.0" range="-0.3 0.3" type=
"hinge"/>

<joint axis="0 @ 1" name="hip_2" pos="0.0 0.0 0.0" range="-0.3 0.3" type=
"hinge"/>

Gravity shift : half of the original gravity scale

<option gravity="0 @ -4.905" timestep="0.01"/>
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C.3 HYPERPARAMETER SETUP

We summarize the hyperparameters related to model training, data generation, and reinforcement
learning in Table[C.4} and algorithm-specific hyperparameters in Table [C.3]

For the HalfCheetah morphology shifts, setting the maximum label bound 4, to 0.1 yields better
performance, while in other environments it is fixed at 0.2. The Z-score filtering threshold z;y, is set
to a more stringent value of 2.5 for Walker2d morphology shifts with transfer to a medium-expert
target dataset and for Walker2d kinematic shifts, whereas z;;, = 3.0 is used for other environments.
The policy regularization coefficient 5, is increased to 2.0 for Walker2d morphology shifts in
medium-replay-to-medium-expert and medium-expert-to-medium-expert settings, with a value
of 0.001 adopted for other environments. For TCE(NN), the mixture coefficient A is set to 0.9 in
HalfCheetah gravity shifts, and 0.1 for other environments.

Name Value
Learning rate for g™, qp" le-4
Optimizer for g™, g5"*" Adam
Batch size for qglix, qgfan 128
Training epochs for g, 10K
Model Training epochs for gp*>" 5K
training Learning rate for Inv,, R, le-3
Shared Optimizer for Inv,, Ry, Adam
Hyper- Batch size for Inv,, Ry, 128
parameters Training epochs for Inv;,, Ry, 1K
Noise schedule cyin 0.1
Noise schedule oy ax 20
Sampling | Denoising steps K 0.5K
Learning rate for Actor, Critic 3e-4
RL Optimizer for Actor, Critic Adam
training Batch size for target sample 128
Batch size for generated sample 128
Training steps M

Table C.4: Shared hyperparameters

Name Value
0.1 for HalfCheetah-morph
Ymax 0.2 for other environments
2o 2.5 for Walker2d-morph {m, m-r, m-¢}-to-m-e

Hyperparameter 3.0 for other environments
Setup 2.0 for Walker2d-morph {m-r, m-e}-to-m-e
Breg 0.5 for Walker2d-kinematic
0.001 for other environments
0.9 for HalfCheetah-gravity
0.1 for other environments

A

Table C.5: Algorithm-specific hyperparameters. The -morph suffix denotes morphology shifts. Dataset
abbreviations are as follows: m for medium, m-r for medium-replay, and m-e for medium-expert.
The notation {A, B}-to-C denotes transfer from a source dataset of quality A or B to a target dataset
of quality C.
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D ADDTIONAL PERFORMANCE COMPARISON

In Section[D.I] we present performance comparisons in gravity shift environments not covered in
the main paper. Section [D.2] evaluates TCE under larger domain gaps using high-gravity settings
from the ODRL benchmark (Lyu et all, 2024b). Section [D.3] reports comparative results against

Meta-DT (Wang et al [2024)) and recently proposed DmC (Le Pham Van et al., 2025) method.

D.1 GRAVITY SHIFT

Table[D.T]reports the results for gravity shifts. While all TCE approaches outperform baselines across
most tasks, TCE(NN) achieves the highest average returns. TCE(OG) shows lower performance in
HalfCheetah tasks, likely due to the very low quality of target data, which hinders reliable transition
learning. Instead, TCE(NN) adopts a higher mixing ratio (A = 0.9) for HalfCheetah gravity shifts to
better balance generated and target samples, thereby improving scores in these challenging domains.
Despite minor tuning, TCE(NN) and TCE(OG) both exhibit strong results, confirming their robust
effectiveness for gravity shift adaptation.

Src. Tgt. | IQL* DARA BOSA SRPO IGDF OTDF | TCE(OG) TCE(NN)
half-m m 39.6+3.3 41.2+3.9 38.9+4.0 36.9+4.5 36.6£5.5 40.7£7.7 15.9£0.8 39.6+1.3
half-m m-e 39.6+3.7 40.742.8 40.4£3.0 40.7£2.3 38.7+£6.2 28.6+£3.2 5.54+0.6 41.8+3.3
half-m e 42.443.8 39.8+4.4 40.5+3.9 39.4+£1.6 39.6+£4.6 36.1£5.3 11.6£2.63 44.7+2.3
half-m-r m 20.1£5.0 17.6£6.2 20.0+£4.9 17.54£5.2 14.442.2 21.5+6.5 52+£13 18.2+0.3
half-m-r m-e 17.2£1.6 20.2£5.2 16.7+4.2 16.3£1.7 10.0£2.5 14.7£4.1 5.6£1.0 19.8£1.3
half-m-r e 20.7+£5.5 22.4+£1.7 15.4£4.2 23.1+4.0 15.3+3.7 11.4£1.9 21.8£1.6 16.7£2.4
half-m-e m 38.6+£6.0 37.8£3.3 41.8£5.1 42.5+2.3 37.7£73 39.5+35 9.14+0.3 41.1£2.1
half-m-e m-e 39.6£3.0 39.4+4.4 38.7£2.7 43.3+2.7 40.7£3.2 324455 10.4+£0.7 42.940.3
half-m-e e 43.440.9 45.3£1.3 39.942.7 43.3£3.0 41.1+4.1 26.5£9.1 42.540.12 44.940.2
hopp-m m 11.2+1.1 17.3£3.8 152433 12.4+1.0 15.3+35 324480 58.7+4.5 53.6+1.3
hopp-m m-e 14.7+£3.6 15.4+£25 21.149.3 142+1.8 15.1£3.6 242+43.6 51.6+6.3 42.0+4.8
hopp-m e 12.5+1.6 19.3£10.5 12.7+£1.7 11.84+0.9 14.4+0.8 33.7+7.8 38.9+10.8 375423
hopp-m-r m 13.942.9 10.7£4.3 33£19 14.0£2.6 153+44 31.1£134 61.8+4.2 529+£1.1
hopp-m-r m-e 13.3£6.3 12.5£5.6 4.6+1.7 144442 15.4£5.5 24.2+46.1 41.9410.4 46.5+5.1
hopp-m-r e 11.0£2.6 14.3£6.0 3.240.8 16.4£5.0 16.1+4.0 31.0£9.8 39.5+8.1 34.1£3.0
hopp-m-e m 19.1£6.6 18.5+12.3 15.94£5.9 19.7£8.5 223454 26.4£10.1 54.7+5.1 49.84+4.2
hopp-m-e m-e 16.8+2.7 16.0£6.1 17.3£2.5 15.84£3.3 16.6+7.7 28.3£6.7 45.2+8.9 443423
hopp-m-e e 20.9+4.1 23.9+14.8 23.2+7.9 21.4+1.9 26.0+£9.2 44.91+10.6 36.8+5.8 32.3+53

walk-m m 28.1+12.9 2844137 38.0%112 21.4+£7.0 22.1+£8.4 36.6+£2.3 38.3£5.1 40.4+6.5
walk-m m-e 35.7+4.7 30.749.7 40.9+7.2 34.049.9 35.4+9.1 44.8+7.5 21.843.7 41.9£5.5

walk-m e 37.3+8.0 36.0+7.0 41.31+8.6 39.54+3.8  36.2413.6 44.04+4.0 26.7+4.5 47.8+7.3
walk-m-r m 14.6+£2.5 14.1£6.1 7.6£5.8 17.9+3.8 11.61+4.6 32.7+7.0 38.9+6.2 37.0+7.1
walk-m-r m-e 153£1.9 15.9+£5.8 48458 153445 13.9+6.5 31.6+6.1 18.8+£3.3 17.5+4.3
walk-m-r e 15.8+7.2 15.7£4.5 7.1£4.6 13.7£8.1 152453 31.3£5.3 31.3+9.6 45.0+5.7

walk-m-e m 39.9+13.1  41.6%13.0 323472 46.4+3.5 33.8+3.1 30.2£9.8 36.3+3.6 46.242.1
walk-m-e m-e 49.1+6.9 45.849.4 40.1£4.5 36.4+3.4 447429 53.3+£7.1 47.3£6.5 50.1£7.6

walk-m-e e 40.4£11.9 56.4£3.5 43.7+4.4 45.8+8.0 453+104 61.1+3.4 26.7£2.9 43.848.3
ant-m m 10.2+£1.8 9.4£0.9 124+£2.0 11.7£1.0 11.3£1.3 45.1£12.4 52.1£2.4 58.3+3.5
ant-m m-e 9.4£1.2 10.0+0.9 11.6£1.3 10.2+£1.2 94£1.4 33.9+54 42.7+4.7 36.9+4.8
ant-m e 10.2+0.3 9.8+0.6 11.8+£0.4 9.5+0.6 9.7£1.6 33.249.0 52.6+6.5 46.2£13.1
ant-m-r m 18.9+£2.6 21.7£2.1 13.9+£15 18.7£1.7 19.6£1.0 29.6£10.7 55.5+3.2 51.3+£3.7
ant-m-r m-e 19.1£3.0 18.342.1 15.942.7 18.7£1.8 20.3+£1.6 25.442.1 40.14+4.5 36.1+£8.9
ant-m-r e 18.54+0.9 20.0+1.3 145+1.7 19.942.1 18.8+2.1 24.54+2.8 53.2+4.9 53.1£33
ant-m-e m 9.8+2.4 8.1£1.8 8.1+3.0 8.4+2.1 8.9+1.5 18.6+11.9 54.4+1.6 52.0£2.1
ant-m-e m-e 9.0+0.8 6.4+14 6.2+1.5 6.1+3.5 72429 34.0+94 44.7+4.5 353124
ant-m-e e 9.1+2.6 10.442.9 42+39 8.8+1.0 9.2+1.5 232429 52.9+4.1 444431
Total Score | 825.0 851.0 763.2 825.5 803.6 1160.7 | 1291 1486.0

Table D.1: Performance comparison under gravity shifts. Abbrev.: half=HalfCheetah, hopp=Hopper,
walk=Walker2d, ant=Ant; m=medium, m-r=medium-replay, e=expert, m-e=medium-expert.
“Src./Tgt.” denote source/target dataset qualities of the two domains. Numbers are mean=std over 5
seeds from normalized scores; best per row in bold, tcbsecond best in underbar.
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D.2 GRAVITY SHIFT UNDER ODRL BENCHMARK

To evaluate our method under an extreme domain gap, we conduct additional experiments on the
Ant task from ODRL [2024b), where gravity is increased by a factor of 5 (from standard
—9.81 m/s? to —49.05 m/s?). We compare TCE(OG) against IQL* and OTDF under identical
settings, maintaining the hyperparameters ymax = 0.2 and z, = 3. As shown in Table[D.2] TCE(OG)
demonstrates substantially superior performance over the baselines. This result reinforces our main
claim that TCE is highly robust even in environments with severe dynamic shifts.

Src. Tet | IQL* OTDF | TCE(OG)
ant-m m 31.940.2  34.540.2 70.84+0.5
ant-m e 31.3+0.3 38.2+3.1 86.9+0.8
ant-m-r m 18.6+£0.2 24.8+0.4 44.3+1.6
ant-m-r e 18.6+0.1 23.1£1.2 70.9+£5.5
ant-m-e m 30.1£0.0 35.0+0.9 70.1+£1.2
ant-m-e e 31.6+0.1 33.7+£1.1 82.5+0.4
Total Score |  162.1 1893 | 4255

Table D.2: Performance comparison on gravity-shift(5.0) tasks.
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D.3 ADDITIONAL PERFORMANCE COMPARISON UNDER KINEMATIC SHIFTS

In this section, we compare our two TCE variants, TCE (OG) and TCE (NN), against two additional
baselines: Meta-DT* (Wang et all [2024)), which performs offline meta-learning with a Decision
Transformer architecture on offline data collected from multiple tasks to improve task generalization,
and DmC (Le Pham Van et al ,[2025)), which selects source transitions that are closest to the target
data and uses diffusion to generate additional source-like transitions around them. Since Meta-DT
is not originally designed for a cross-domain setup, we follow the IQL protocol and train it on a
union of source and target data, and refer to this variant as Meta-DT*. These comparisons clarify
how the cross-domain offline RL setting considered in this work differs from the conventional meta
offline setup and how our approach differs from existing methods that explicitly generate source-like
transitions.

Sre. Tet. | IQL* Meta-DT* OTDF DmC | TCE(OG)  TCE(NN)
half-m m 123412 134+£34 402400  385+14 | 419409  41440.1
half-m me | 10.8+1.9 8.540.6 10.1440 191410 | 397411  405%05
half-m e 12.641.7 5.020.1 8.742.0 13.1+0.8 11.9+46 7.541.1

halfmr  m 10.0£54 5.540.7 37.842.1 195+1.8 | 41.8+£0.5  40.240.9
half-mr  m-e | 6.543.1 75411 9.742.0 114421 | 40.8+14  33.6L64
half-mr e 13.641.4 6.442.8 72414 156429 | 152464 2.940.1

half-m-e  m 21.846.5 47402 30.74£9.6 384414 | 420202  41.1+05
half-m-e  m-e | 7.6414 77432 109442 241446 | 412406  358+18
half-m-e e 9.142.4 2.840.2 32406 13.4+2.0 95474 75+16

hopp-m m 587184 50202 656L19  69.8L2.3 | 668L05 663102
hopp-m m-e | 685+124 49402 5544251  782+5.1 | 72.0E41  67.3+£29
hopp-m e 7994355 52402 3504194 5984218 | 915163  78.2+17.6
hopp-m-r  m 36.0E0.1 36402  355+122 648424 | 651409  66.2-£0.2
hopp-mr mee | 361201  363+£0.1 47.5+£146 697475 | 720E37  63.9+143
hopp-m-r e 36.0£0.1  37.6+£0.1 4994305 69.9+18.0 | 96.8+24  85.1+25
hoppm-e m 66.040.5 35404 653424  69.6+13 | 66.640.6 662202
hopp-m-e m-e | 4514157 85423 3864159 755496 | 760420 727431
hopp-m-e e 4494198 64402 2994113 6451242 | 89.2+84  89.7+4.2

walk-m m 34.3+9.8 5.0£0.3 49.6+18.0 63.2+4.2 60.4£1.9 54.1+2.1
walk-m m-e 30.2+12.5 15.7£2.0 43.5+16.4 53.5+7.0 46.2£12.1 19.8+1.3

walk-m e 56.4+18.2 10.0£0.9 46.7£13.6  70.5+12.0 59.3£4.2 334415
walk-m-r m 11.5+7.1 34+1.0 49.7+9.7 52.9+8.4 50.24+3.7 45.1£4.5
walk-m-r m-e 9.7+3.8 14.6£0.1 55.9+17.1 36.4+5.4 37.1+11.8 21.3+55
walk-m-r e 7.7+£4.8 8.9+1.0 51.9+£7.9 44.4+£85 53.0£7.9 23.1+£29

walk-m-e m 41.8+8.8 8.5+0.8 44.6+6.0 59.4+6.8 55.242.5 549432
walk-m-e m-e 222487 10.2+8.7 16.5+£7.2 53.2+7.3 31.24+4.8 24.7+3.8

walk-m-e e 26.34+10.4 57426 42.449.1 69.21+7.0 47.1+18.1 25.246.1
ant-m m 50.0£5.6 13.9+0.7 55.4+0.0 62.1+0.6 532419 47.54+1.9
ant-m m-e 57.84+7.2 14.840.3 60.743.6 68.9+1.0 61.442.0 64.249.5
ant-m e 59.6£18.5 14.94+0.1 90.4+4.8 92.1£3.5 92.742.8 93.8+3.4
ant-m-r m 43.7£4.6 22.340.2 52.84+4.4 61.91+0.5 54.6+1.4 51.043.2
ant-m-r m-e 36.5+£5.9 21.0+£0.1 542452 58.8+3.6 61.6+2.4 61.7+£5.4
ant-m-r e 24.4+4.8 26.84+2.2 74.7+10.5 43.84+2.6 92.0+24 94.240.2
ant-m-e m 49.5+4.1 13.5+0.1 50.2+4.3 60.6+1.3 55.6+1.4 55.1£3.7
ant-m-e m-e 37.242.0 13.640.1 48.84+2.7 60.443.7 59.1+3.4 62.14+0.2
ant-m-e e 18.74£8.1 18.1£1.2 78.4+12.2 76.0+£4.1 94.2+3.2 90.3+1.3
Total Score \ 1193.0 446.2 1547.6 1902.2 \ 2044.2 1828.1

Table D.3: Performance comparison of TCE with DmC and Meta-DT* under kinematic shifts

TCE still achieves substantially better performance than the additional baselines. Compared with
Meta-DT, a representative meta offline RL method, the difference in objective is fundamental. Meta
offline RL is designed to improve task generalization from offline data collected in multiple tasks,
whereas cross-domain offline RL explicitly aims to enable transfer between two environments with
different domains. Concretely, when Meta-DT* is trained on the offline data from both the source
and target, it simply learns the source task from the source data and the target task from the target
data. Note that to ensure a fair offline comparison, Meta-DT was evaluated in a zero-shot manner
without any online interaction with the target domain. Under this constraint, it does not selectively
identify and exploit source samples that are particularly useful for the target task. As a result, when
the domain gap is large as in our cross-domain setting, meta offline RL methods such as Meta-DT*
provide little benefit for learning the target policy and can even underperform IQL*, which directly
uses both datasets to optimize the target policy.
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DmC, on the other hand, is almost the opposite of our motivation, since it generates additional source-
like transition samples. Although DmC can outperform TCE in a few environments, TCE consistently
achieves better performance in most cases. Because cross-domain RL is ultimately concerned with
learning a high-quality target policy, generating target-like transitions is more desirable, and Theorem
1 shows that such transitions reduce the domain gap more effectively. This explains why TCE tends
to yield higher returns even when only a small amount of target data is available. There exist settings
such as the gravity shift case where learning primarily from the source domain is more beneficial
than exploiting the limited target data, in which methods like DmC can perform competitively or
even better. Nevertheless, as observed empirically, TCE outperforms DmC on the majority of tasks.

E COMPUTATIONAL COMPLEXITY COMPARISONS

We compare the runtime and GPU memory usage of IQL* (Kostrikov et al.} [2022), OTDF (Lyu et al.}
[2025)), and our proposed TCE on morphology shift (medium-to-expert) tasks. All experiments were

conducted on a server equipped with AMD EPYC 7513 32-Core CPUs and eight NVIDIA RTX 3090
GPUs running Ubuntu 20.04. Across all methods, the offline RL policy training phase is identical,
requiring approximately three hours. OTDF incorporates an additional data selection step that takes
roughly 18 minutes. In contrast, TCE involves training the score networks, which requires about two
hours, followed by a transition sampling phase of approximately 10—12 minutes. These runtime costs
are consistent across different agent types, remaining comparable even for the Ant task, which incurs
only a marginal increase despite its larger state dimension. throughout the process, TCE maintains
a GPU memory footprint of approximately 2 GB. As shown in Table [E.I] while TCE introduces
modest additional computation for score modeling, this cost is justified by the critical role of coverage
expansion in achieving superior cross-domain offline RL performance in practice.

Model Training  Data Sampling  Offline RL ~GPU Memory

IQL* — — 3h —
OTDF - 18 min 3h -

TCE (HalfCheetah) 1h 55m 10m 3h 2 GB
TCE (Hopper) 1h 55m 10m 3h 2 GB
TCE (Walker2d) 1h 55m 10m 3h 2 GB
TCE (Ant) 2h 5m 12m 3h 15m 2 GB

Table E.1: Comprehensive runtime and memory usage comparison for all methods in the morphology
shift (medium-to-expert) setting.
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F SAMPLE RELIABILITY ANALYSIS ON ADDITIONAL ENVIRONMENTS

To further demonstrate the generality and reliability of our method, we conduct sample reliability
analysis on Hopper and Walker2d environments, which are not covered in the main paper, using the

medium-to-expert setting.

Hopper Fig.[FIfa) shows that outlier and training samples have similar NN-distance distributions,
with minimal separation. In Fig. [FI(b), transition KL divergence increases moderately as max grows
up to 0.2, but then rises sharply at higher y,,,.x values; throughout, outlier samples consistently exhibit
greater KL than generated samples. Fig. [F.I|c) shows reward errors for outlier samples are always
higher and increase rapidly for larger ¥ ax.
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Figure F.1: Sample reliability with respect to ymax in Hopper morphology shifts. (a) NN-distance be-
tween generated states Dé and true states in Dy, U Dg;e. (b) Transition KL divergence(normalized)
and (c) reward error between models trained on limited and sufficient target data.

Walker2d Fig.@ka) shows that for small y,,.x there is minimal difference in NN-distance between
outlier and training samples, whereas their separation becomes pronounced as y,ax increases. In
Fig.[F2|b), the transition KL divergence grows steadily with increasing ymax, and outlier samples
consistently exhibit much higher KL than training samples. Fig. [F2Jc) further shows that reward
prediction errors for outlier samples are always larger and grow rapidly at higher yy,.x. There-
fore, choosing an appropriate y,,,x and applying Z-score filtering are important to improve dataset
reliability and downstream learning stability.
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Figure F.2: Sample reliability with respect to Y ax in Walker2d morphology shifts. (a) NN-distance be-
tween generated states ’Dgen and true states in Dy, U Dg;e. (b) Transition KL divergence(normalized)
and (b) reward error between models trained on limited and sufficient target data.

27



Under review as a conference paper at ICLR 2026

G ADDITIONAL ABLATION STUDY

This section presents additional ablation studies not covered in the main text. Section[G.T]analyzes the
sensitivity to the denoising step K, and Section[G.2]compares TCE against a baseline that augments
source state pairs with inverse target actions.

G.1 ABLATION STUDY ON DENOISING STEP K

We examine the sensitivity of TCE to the denoising step hyperparameter /', which determines
the discretization granularity of the reverse process. Table [G.] presents the results of TCE(OG)
on the Ant morphology-shift environment across K € {100,200, 500}, using K = 500 as the
default configuration. While K = 500 generally yields the highest average scores, the performance
differences across varying K values are minimal and mostly fall within the standard deviation
ranges. This result demonstrates that TCE is not highly sensitive to the choice of K, ensuring robust
performance without the need for precise hyperparameter tuning.

Src. Tgt. | K=100 K=200 K=500

ant-m m 42.2+1.8 42.0+0.28  41.840.7
ant-m-e m-e 72.5+£2.3 74.1+0.50 73.8+1.9
ant-m-e e 91.940.1 02.842.8 93.6+1.3
ant-m-r m 40.7+1.2 40.84+0.71 41.2+0.6
ant-m-r m-e 73.01+2.8 72.24+3.1 74.31+1.6
ant-m-r e 90.8+1.6 91.3+3.8 91.940.3
ant-m-e = m 41.440.9 41.240.6 41.5+0.1
ant-m-e m-e 71.5+3.1 71.1£1.6 72.1+5.5
ant-m-e e 93.71+0.5 94.0+1.1 93.9+1.3

Total Score | 617.7 619.5 624.1

Table G.1: Performance of TCE(OG) on Ant morphology-shift tasks at different & values. Abbrev.:
m=medium, m-r=medium-replay, e=expert, m-e=medium-expert. Src./Tgt. denote source/target
domain, respectively. Results are mean =+ standard deviation over 5 seeds, with the best result in each
row shown in bold.

28



Under review as a conference paper at ICLR 2026

G.2 SOURCE STATE PAIR WITH INVERSE TARGET ACTION

To assess TCE under significant domain gaps, we compare against a baseline named IQL*(SwT)
(Source state pairs with Target-inverse actions). In this setting, we train an inverse dynamics model
on the target dataset Dy, and use it to label the actions for source transitions (s¢, $t41) € Dy This
creates a synthetic dataset that replaces Dy for training IQL*. As shown in Table [G.2] IQL*(SwT)
yields comparable performance for medium-quality targets but rapidly degrades as target data
becomes more expert due to increased extrapolation error and transition mismatch. TCE, by contrast,
consistently outperforms this baseline by expanding state coverage and generating transitions aligned
with the target dynamics.

Stc. Tet. | OTDF  IQL*SwT) | TCE(OG)  TCE(NN)
half-m m 391423 41.1405 | 441402 438402
half-m m-e | 356407 246423 | 43.8+0.1 43.7+0.1
half-m e 107412 33413 82.840.1  85.0+1.2

half-m-r m 40.0+1.2 38.0+1.5 44.040.2 43.640.2
half-m-r m-e 34.4+0.7 129+1.5 44.2+0.3 43.7+0.1
half-m-r e 8.2+2.7 2.7+0.1 84.4+4 77.940.2
half-m-e m 41.440.3 41.1+0.2 44.240.1 43.7+0.1
half-m-e m-e 35.1+0.6 21.0+2.2 43.8+0.1 43.9+0.5
half-m-e e 9.8 +.0 3.0+2.3 85.14+0.8 82.6+0.2
hopp-m m 11.04+0.9 9.9+0.1 39.14+0.2 8.0+2.3
hopp-m m-e 12.6+0.8 8.71+0.1 29.11+0.1 11.0£0.3

hopp-m e 10.7£4.7 8.240.1 99.8+0.1 10.4+0.1
hopp-m-r m 8.74+2.8 104+£1.8 49.5+0.1 10.7+£0.1
hopp-m-r m-e 9.7+2.7 8.2+1.0 17.4+0.3 8.3+2.2
hopp-m-r e 10.74+2.4 8.3+0.5 99.740.1 32.0+6.7
hopp-m-e  m 7.9+32 12.0+0.8 39.9+0.1 14.44+1.9
hopp-m-e  m-e 9.61+3.5 9.240.6 13.8+£0.5 8.444.8
hopp-m-e e 5.9+4.0 8.31+0.5 99.640.1 12.740.2
Total Score |  341.1 270.9 | 1004.3 623.8

Table G.2: Performance comparison on 18 morphology-shift tasks. Abbrev.: half=HalfCheetah,
hopp=Hopper; m=medium, m-r=medium-replay, e=expert, m-e=medium-expert. Src./Tgt. denote
source/target domain, respectively. Results are reported as mean =+ standard deviation over 5 seeds,
with the best result in each row shown in bold, second best performance shown in underbar.
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H PROOF OF THEOREMI]

This section presents the full proof of Theorem [T} We briefly restate the gap bounds between the
mixture and target MDPs for completeness.

Theorem(Restatement). Let oy (1) and nuix (7) denote the expected returns of a policy 7 in the
target MDP M, and mixture MDP M iy, respectively. Suppose

Prix(+]s,a) = APsc(+]5,a) + (1 — /\)ﬁm,.(~\s, a), A€ 0,1].

For any policy w, Then the performance gap between the two domains can be bounded from the
perspectives of transition dynamics and value functions as follows.

Gap bound (transition dynamics).

2 T'max D
(1) = e (1) < (72255 (VB 101 (Pael | Pas)] + (1= Ny [Drv(Pael|Pra)])

(H.15)

Gap bound (value discrepancy).

(1) — (1) < 75 (B, (B Vi, (9] = i (VR ()]

1—v
+(1=NEg, [[Ea, Vi )] - Eru, Vi, 6)]]]).
(H.16)

Proof. The proofs below utilize the telescoping identity (see Lemma C.1 in (2023))) and are
presented in detail for both gap characterizations.

Gap bound (transition dynamics) To simplify notation, Ppix, Psrc, and Pi,y denote Pix (- | s, a),
Pyc(- | s,a), and Piar (- | s, a) respectively. Similarly, p7 . denotes pZ, (s, a), and VT, represents
V(8.

tar

Tanix (1) — e () = %E,ﬂ, / P Vi ds' — / Ptath’;rds’] (Lemma C.1)
— B |

= LEPIMX / (Prnix - Ptar) Vtgrdslj|

]
<LE [ |p. P|‘V7T|d'
~1—x Prmix mix — Ltar| | Viar|aS
’yrmax
§ WEF)E‘” |:/ |Pmix - Ptar|d8/:|
29r
= ()2 B (D1 (Pl [ Pa)]
27 T'max R
BRI [D1v((APue + (1= A) Pran)| | P
27T max R
S WEPIMX [DTV(/\PSFCHPtar) =+ DTV((I — /\)Ptar||Ptar):|
297 max )
= oy (B Drv(PaclPad)] + (1= VB, [Drv(Pral [P
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Gap bound(value discrepancy)
i ™
Nmix () — Nyar () = ﬁEpg,ix(s,a) [/ Puix (s[5, a)Viy,. (") ds'
S/
_/ Piar(s'|s,a) VT, (s)ds' (Lemma C.1)

s/

g T T
= T B [P [V (8)] = B, [Vis,, (5]

Y ™
= 2B, [Br Vi, (9]~ B [V, ()]

< T2 B, (1Bl VE (5] = B Vi, (1]

Y ’
= ——FE,= ’)\]E
T PPk [ Pure [V, (5)]

+ (U= VB, Vi ()] = B Vi (]|

(1

N PEAL VR ()] = Er, Ve, ()

(U= VB Vi (5] = B [V D)

| /\

T [)\|]EP§N Vit (8D = Ep, Vi (5D
(1

T+ (1= V[Ep [V ()] - En. [vxzmxs')]@

2 (B, BRIV ()]~ Ba VR, ()]

mix

- NEp,  [[Ep Ve, ()] — En [V (5)] |])
O

The derived gap bound highlights two distinct avenues for reducing the performance discrepancy. The
term involving Drvy ( Py || Prar) suggests that the gap is tightened when source transitions align well
with the target dynamics, while the term involving Dy (Ptar||Ptar) indicates that minimizing the
generative error is crucial. Moreover, the mixture coefficient A controls the trade-off between these
two terms, enabling us to attenuate the influence of mismatched source dynamics while leveraging
accurate target-like generations to tighten the overall gap bound.

31



	Introduction
	Related Works
	Background
	Markov Decision Process and Cross-Domain Offline Setup
	Score-based Generative Models with SDEs

	Methodology
	Motivation
	Two-Stage Coverage Expansion via Score-Based Generative Modeling
	Transition Filtering
	Dataset Configuration and Offline Policy Learning

	Experiments
	Experimental Setup
	Performance Comparison
	Coverage and Sample Reliability Analysis
	Ablation Study

	Limitations
	Conclusion
	The Use of Large Language Models
	Detailed Implementation and Algorithm of TCE
	Details of Score-based Generative Model with SDEs
	Detailed Implementation of TCE
	Network Architecture and Configurations

	Detailed Experimental Setup
	Baselines Explanation
	Environmental Setup
	Hyperparameter Setup

	Addtional Performance Comparison
	Gravity Shift
	Gravity Shift under ODRL Benchmark
	Additional Performance Comparison under Kinematic Shifts

	Computational Complexity Comparisons
	Sample Reliability Analysis on Additional Environments
	Additional Ablation study
	Ablation Study on Denoising Step K
	Source State Pair With Inverse Target Action

	Proof of Theorem 1

