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Zero-Shot Image Enhancement with Renovated
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Abstract. In this research, we tackle image enhancement task both in
the traditional and Zero-Shot learning scheme with renovated Laplacian
pyramid. Recent image enhancement fields experience power of Zero-
Shot learning, estimating output from information of an input image
itself without additional ground truth data, aiming for avoiding collec-
tion of training dataset and domain shift. As requiring ”zero” training
data, introducing effective visual prior is particularly important in Zero-
Shot image enhancement. Previous studies mainly focus on designing
task specific loss function to capture its internal physical process. On
the other, though incorporating signal processing methods into enhance-
ment model is efficaciously performed in supervised learning, is less com-
mon in Zero-Shot learning. Aiming for further improvement and adding
promising leaps to Zero-Shot learning, this research proposes to incorpo-
rate Laplacian pyramid to network process. First, Multiscale Laplacian
Enhancement (MLE) is formulated, simply enhancing an input image in
the hierarchical Laplacian pyramid representation, resulting in detail en-
hancement, image sharpening, and contrast improvement depending on
its hyper parameters. By combining MLE and introducing visual prior
specific to underwater images, Zero-Shot underwater image enhancement
model with only seven convolutional layers is proposed. Without prior
training and any training data, proposed model attains comparative per-
formance compared with previous state-of-the-art models.

Keywords: Zero-Shot Learning, Underwater Image Enhancement, Lapla-
cian Pyramid, Image Restoration

1 Introduction

Image enhancement is essential in measuring physical environment and pro-
gressively has been improved with deep learning. Previous deep learning mod-
els mainly focus on supervised approaches by mapping degraded images to
clear images employing large scale image dataset in various image enhancement
fields [25, 26, 39]. However, constructing real large scale image pairs requires
tremendous costs, as well as obtaining massive clear images is inherently diffi-
cult [25] or sometimes impossible in fields like underwater image processing [27].
Alternatively employed artificial dataset based on physical model or generative
adversarial network (GAN) [19,28,40] suffers from domain shift, as artificial im-
ages are less informative and may be apart from real images, resulting in limited
capability of deep learning compared with other image processing tasks [3, 25].
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Fig. 1. Example outputs of proposed MLE. Just enhancing an image in Laplacian
pyramid representation, contrast improvement (left), detail enhancement (middle), and
underwater image enhancement (right) is performed in the same MLE scheme.

As requiring ”zero” training data, Zero-Shot image enhancement has been
getting a lot of attention and promising results are shown in denoising [24],
super-resolution [11], dehazing [25], back-lit image restoration [44], and under-
water image enhancement [22]. Note that Zero-Shot image enhancement recov-
ers images only from information of an input image itself, different from typical
term in general classification task [25]. As no ground truth is available, con-
structing task specific loss function is especially important in Zero-Shot image
enhancement. Currently, loss function is mainly introduced to reflect effective
prior or bias of underlying phenomena or some specific task, followed by getting
feedback from parameterized latent physical model or knowledge of the target
task [14, 25, 38]. To be specific, based on the widely used atmospheric scatter
model [30, 31], efficient and clear output is obtained in dehazing task [25] with
loss function reflecting internal physical process composed of global atmospheric
light, transmission map, and statistical property, Dark Channel Prior [18]. In
back-lit image restoration, luminance is adjusted with loss of parameterized s-
curve function after being mapped to YIQ color space [44]. In underwater image
enhancement, Zero-Shot learning based model on the Koschmieder’s physical
model is first proposed in [22]. Loss function for modifying the inherent prop-
erty of an image like smoothness or color balance is also effective [8, 38].

On the other, though supervised deep learning models have improved by in-
corporating traditional signal processing methods such as discrete wavelet trans-
form, whitening and coloring transform, and Laplacian pyramid, less exists in
Zero-Shot learning. In order to further accelerate Zero-Shot image enhancement,
this research proposes to incorporate traditional Laplacian pyramid [7] to net-
work process. First, Multiscale Laplacian Enhancement (denoted as MLE) is
formulated, which simply convolves and enhances images in multiscale Lapla-
cian pyramid representation, depending on three hyper parameters, kernel size
K and standard deviation σ of Gaussian kernel for constructing Laplacian pyra-
mid, and pyramid level L. Compared to simple convolution, enlarged receptive
field which operates to an image is naturally formulated in MLE. By employing
unsharp masking filter in MLE scheme, impacts of detail enhancement, image
sharpening, and contrast improvement are experimentally shown (Figure 1), de-
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pending on its hyper parameters. Though the effectiveness of MLE is observed,
hyper parameter tuning of MLE is practically inconvenience. Accordingly, Zero-
Shot Attention Network with Multiscale Laplacian Enhancement (denoted as
ZA-MLE) is proposed to integrate several enhanced results of MLE. ZA-MLE
consists of only seven convolutional layers and process for enhancing multiscale
features of an image, implemented with element wise product and addition of
a contrast improved result of MLE and a sharpened result of MLE (denoted as
Zero-Shot Attention). Also, we introduce ”prior” specific to underwater image
enhancement for selecting MLE. Namely, we experimentally found that the top
component of Laplacian pyramid of a degraded underwater image (2nd column
of Figure 2) contains less original signal information, thus just removing the top
component tends to extract original, high frequency signal (3rd column of Fig-
ure 2). Despite requiring no training data and prior training, proposed ZA-MLE
mainly achieves comparative performance compared to other latest supervised
models in underwater image enhancement. Also compared to previous Zero-Shot
learning based model [22], our ZA-MLE advantageously works fast thanks to its
simple structure, as well as quantitative scores improve. Our main contributions
are summarized as follows: 1. Formulation of MLE simply convolving and en-
hancing an image in multiscale Laplacian pyramid representation. Depending on
hyper parameters, effects of detail enhancement, image sharpening, and contrast
improvement are shown. 2. Propose of ZA-MLE. To the best of our knowledge,
ZA-MLE is first proposed Zero-Shot learning based underwater image enhance-
ment model combining traditional signal processing method, Laplacian pyramid
and unsharp masking filter. Though working in Zero-Shot manner, proposed
ZA-MLE achieves favorable performance compared to latest models. 3. Propose
of elaborated loss function for Zero-Shot learning. Gradient domain loss as well
as color correction loss and reconstruction loss are combined.

2 Related Work

2.1 Traditional Signal Processing Method and Deep Learning

In this section, we state the relationship between conventional signal processing
methods and deep learning. Rapid advancement of deep learning is accelerated
by construction of large scale dataset and sophisticated very deep network ar-
chitecture [17]. More recently, deep learning architecture has further developed
by incorporating traditional signal processing methods. To be specific, discrete
wavelet transform is employed to preserve fine structure of an input, by pass-
ing high frequency components extracted in the encoder part to the decoder
part [13,43]. In underwater image enhancement, white balance, histogram equal-
ization, and gamma correction are combined to mitigate domain shift between
training data and test data [27]. In style transfer, content features are projected
to style features with whitening and coloring transform [12]. To the best of our
knowledge, these hybrid deep learning models are basically limited to supervised
learning and integrating Zero-Shot underwater image enhancement especially
with Laplacian pyramid is first proposed in this research.
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Fig. 2. Input image (1st column), the top Laplacian pyramid component of the image
(2nd column), and result of subtraction of the top component from the original input
(3rd column). We experimentally found that the top Laplacian pyramid component of
a degraded underwater image dominates noise signal, and just removing the component
tends to extract original signal. The 3rd column is multiplied by ten for visualization.

2.2 Laplacian Pyramid and Image Restoration

Multiscale feature of an image is valuable and efficiently extracted with Laplacian
pyramid [4, 7]. Laplacian pyramid hierarchically presents an image as a sum of
band-pass images depending on resolution or frequency, practically obtained
by subtracting adjacent elements of Gaussian pyramid constructed from the
original image [7, 33]. An image of high frequency features as edge or contour
mainly present in low pyramid levels, while low frequency features like color is
decomposed in high pyramid levels [33]. Laplacian pyramid is employed in loss
function [5, 41] or is combined with network architecture [20] to reflect various
image features in supervised learning.

3 Multiscale Laplacian Enhancement for Image
Manipulation

3.1 Formulation of Multiscale Laplacian Enhancement

We formulate Multiscale Laplacian Enhancement, denoted as MLE. MLE simply,
yet efficiently enhances multiscale features of an image in Laplacian pyramid
domain, owing to its hierarchical image representation reflecting frequency or
resolution. The detailed derivation is found in the supplementary material.

Let an input image be I(x), where x is the position of the image. An input
image is first divided into Laplacian pyramid representation and each pyramid
elements are simply filtered followed by the reconstruction phase, formulated as:

MLE [I(x)] =

N−1∑
i=0

{
U i [Li [I(x)] ∗ Filter]

}
+ UN [RN ∗ Filter]

where pyramid level N , a convolution Filter, and up-sampling operator U
should be set beforehand. Here, Li(x) means the i-th level of Laplacian com-
ponent obtained by subtracting adjacent elements of Gaussian pyramid con-
structed from the original image [7,33], defined as Li [I(x)] := (D ◦G)

i
[I(x)]−
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Fig. 3. Elements of Laplacian pyramid constructed from an original image (1st row),
MLE-733 (2nd row), and MLE-799 (3rd row). From left to right, results of pyramid
level N = 1, 3, 5, 6, 7 are shown. MLE-733 more enhances high frequency signal like
edge or texture in lower pyramid levels, while MLE-799 more enhances low frequency
signal like color in higher pyramid levels. Results are multiplied by ten for visualization.

G ◦ (D ◦G)
i
[I(x)]. Above G and D mean low-pass Gaussian filter and down-

sampling operator by a factor of 2, respectively. RN is the top component (low-
est resolution) of the Laplacian pyramid. Each Laplacian components are up-
sampled to the original resolution of the input after filtering.

Compared with normal convolution, image size to which filters operate is
different from MLE. To be specific, while MLE filters various resolution of an
image of each Laplacian pyramid components, normal convolution operates only
in the same size of the input, expressed as follows:

I(x) ∗ Filter =

N−1∑
i=0

{
U i [Li [I(x)]] ∗ Filter

}
+ UN [RN ] ∗ Filter

The above equation is directly obtained using linearity of convolution and Lapla-
cian pyramid representation of the input. Enlarged effective filter size is practi-
cally useful in extracting image features [10], which is naturally formulated in
MLE. With the simple idea and implementation of MLE, multiscale features of
an input image is efficiently enhanced.

3.2 Internal Results of Multiscale Laplacian Enhancement

MLE is simply defined to filter an image in Laplacian pyramid domain, resulting
in efficient enhancement of overall multiscale features of an image with naturally
formulated enlarged receptive field. Here, MLE depends on three hyper param-
eters, pyramid level N , kernel size K, standard deviation σ of Gaussian kernel,
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Table 1. Sharpness [15] and RMS contrast [34] of PIPAL [21] and DIV2K [1] dataset.

Dataset Metric MLE-133 MLE-333 MLE-599 MLE-799 UNSHARP RAW

PIPAL [21] RMS contrast 0.102 0.113 0.108 0.112 0.094 0.075
Sharpness 2.961 2.799 2.692 2.615 2.768 1.063

DIV2K [1] RMS contrast 0.085 0.094 0.091 0.098 0.079 0.069
Sharpness 2.171 2.084 1.963 1.914 1.989 0.723

denoted as MLE-NKσ in order. In order to examine the effectiveness of MLE,
we use basic unsharp masking filter for MLE, traditionally employed in image

sharpening task [36], denoted as: Filterunsharp :=
(−1 −1 −1
−1 9 −1
−1 −1 −1

)
. Selecting other

sophisticated filters is our future work. Throughout numerical experiment, bicu-
bic up-sampling is employed.

First, to comprehend the behavior of MLE scheme, the enhanced results of
each Laplacian pyramid levels of an image are shown in Figure 3. The first row
shows elements of an original image, while the second and the third row show
results of MLE-733 and MLE-799, respectively. Results of N = 1, 3, 5, 6, 7 are
respectively shown from left to right. Each figures are multiplied by ten for
visualization. Compared with the first row, various image features, contour cap-
tured in low pyramid levels and slightly appeared color signal in high pyramid
levels, are efficiently enhanced. Also comparing the 2nd and 3rd row, each ele-
ments employing K = 3, σ = 3 (2nd row), preserve high frequency signal thus
clearly sharpened, while results of K = 9, σ = 9 (3rd row), relatively cut off
high frequency signal, emphasize color information more (4th column). Lapla-
cian components of an original image (1st row) is dark and hardly be seen.

3.3 Comparison with Unsharp Masking Filter

Next, we proceed to comparison with conventional unsharp masking filter gen-
erally employed in image sharpening [36]. Qualitative and quantitative results of
unsharp masking filter are respectively shown in the 4th column of Figure 4 and
Table 1. We utilize reference images from PIPAL dataset [21] and high resolu-
tion images from DIV2K dataset [1], mainly employed in image restoration task.
2nd and 3rd column of Figure 4 respectively present results of MLE-133 and
MLE-799, while 1st column presents original input images, denoted as RAW.
Detail enhancement or edge emphasis is performed with MLE-133, while sharp-
ness slightly improved with unsharp masking filter (1st row of Figure 4). Note
that filtering is performed totally twice in MLE-133. Compared with MLE-799,
3rd column, characteristically vivid, contrast enhanced results are obtained. As
image features of higher pyramid levels are also enhanced, the overall sharp-
ening effect of MLE-799 is weaker than MLE-133. For quantitative evaluation,
Sharpness [15] and RMS contrast [34] are evaluated. Sharpness is the strength of
vertical and horizontal gradient after Sobel filtering, and RMS contrast means
the standard deviation of luminance intensities. In quantitative results from Ta-
ble 1, all metrics are improved with MLE and unsharp masking filter from the
original image. Sharpness is the highest in MLE-133 and decreased with higher
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Fig. 4. Comparison with MLE and unsharp masking filter. 1st column shows input
images, 2nd and 3rd column shows results of MLE-133 and MLE-799, respectively. 4th
column shows results of unsharp masking filter. Image sharpening or detail enhance-
ment is performed in MLE-133, while contrast improvement is performed in MLE-799.

pyramid level, as Sharpness measures image gradient and relatively higher in
MLE-133 emphasizing only high frequency features. MLE-333 gets the highest
score for RMS contrast in PIPAL dataset [21], while MLE-799 is the 1st in
DIV2K dataset [1]. As RMS contrast measures dispersion of luminance of an
image, MLE-799, also enhancing higher pyramid components, got higher scores.
Image sharpening, detail enhancement, and contrast improvement are performed
in the same MLE scheme depending on its hyper parameters.

3.4 Ablation Study of MLE

In this section, results of different parameter settings of MLE, namely, pyramid
level N , kernel size K, and standard deviation σ of Gaussian kernel for con-
structing Laplacian pyramid are evaluated. Results of different pyramid levels
are shown in Figure 5. Input image (4th column) is enhanced with MLE-133
(1st column), MLE-333 (2nd column), and MLE-733 (3rd column). As we con-
firmed in the 2nd and 3rd columns of Figure 4 and Table 1, high frequency signal
like configuration or edge of banked up rock is sharpened with MLE-333, while
contrast is improved with MLE-733. The number of filtering as well as resolu-
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Fig. 5. Results of different pyramid levels of MLE. From left to right, images of MLE-
133, MLE-333, MLE-733, and an input image are shown, respectively.

Fig. 6. Comparison with unsharp masking filter (3rd column). Input blurred underwa-
ter images (1st column) are enhanced with MLE-833 (2nd column).

tion of pyramid components to which filters operate changes in accordance with
pyramid levels, resulting in enhancement of various image features of an image.

As for K and σ of Gaussian kernel, the lower K and σ are, the smaller
the effect of blurriness of filtering, as a consequence, wide range of frequency
band tends to preserve also in higher pyramid levels, thus is strongly enhanced.
Qualitative results are found in the supplementary material. Also refer to the
2nd and 3rd rows of Figure 3. The degree of enhancement basically depends on
contrast or sharpness of an original input as well as hyper parameters of MLE.
As for clear land images, we experimentally observe that K = 9, σ = 9 are
usually optimal setting for contrast improvement, and K = 3, σ = 3, N = 1 for
image sharpening or detail enhancement. Practically, hyper parameters of MLE
needs to be selected depending on objective task or input sharpness.

3.5 Application of MLE to Underwater Images

We proceed to application of MLE to underwater images. As many underwater
images suffer from lowering of contrast or blurriness, MLE favorably sharpens
severely degraded underwater images. Compared to results of unsharp masking
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Fig. 7. Overall processing flow of ZA-MLE (left), Zero-Shot Attention Network (mid-
dle), and Zero-Shot Attention Module (right). 1: An input is first processed with differ-
ent parameter settings of MLE, resulting in XH from MLE-753 and XL from MLE-331.
Note that the top pyramid component of XL is removed to enhance high frequency
signal. XMID is calculated with XMID := XH ∗XL+XL. 2: Input XL, XH , and XMID

into Zero-Shot Attention Network, aiming for enhancing multiscale feature of an input
in Zero-Shot manner. 3: Output is obtained after training of 300 epochs. Different from
elaborated learning strategy [39], we stop training in 300 epochs and fixed.

filter shown in Figure 6, severely degraded underwater images (1st column) are
prominently recovered with MLE-833 (2nd column), though traditional unsharp
masking not (3rd column). Qualitative behavior of MLE is similar both in un-
derwater and land images, though underwater images are usually low contrast
and blurred. While effectiveness of MLE is also observed in underwater images,
halo sometimes appears in some MLE results like 2nd row of Figure 4 or 1st
row of Figure 6, depending on image sharpeness and hyper parameters of MLE,
caused by linearity of filter [33]. In this research, we set widely utilized linear
unsharp masking filter to confirm effectiveness of MLE, and incorporating edge
preserving, more sophisticated filter to MLE is our future work.

4 Zero-Shot Attention Network with Multiscale
Laplacian Enhancement (ZA-MLE)

As we discuss in previous sections, results of MLE depend on input image sharp-
ness or hyper parameters, which is practically troublesome. For the convenience
in practical application, we propose simple, yet efficient Zero-Shot image en-
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hancement scheme combined with MLE and elaborated loss function for under-
water image enhancement without training data and prior training.

4.1 Process of ZA-MLE

Overall processing flow of Zero-Shot Attention Network with Multiscale Lapla-
cian Enhancement (denoted as ZA-MLE) is shown in Figure 7. Input image is
first processed with different parameter settings of MLE, resulting in XH and
XL, followed by Zero-Shot Attention Network. In MLE part, XH is designed to
improve contrast of an input underwater image and MLE-753 is experimentally
selected. As for XL, MLE-331 is experimentally set for extracting high frequency
signal of an image like edge or configuration. Note that the top pyramid com-
ponent, low frequency signal, of MLE-331 is removed in reconstructing XL to
enhance high frequency signal of an original input, inspired by the insight shown
in Figure 2. Here, XMID := XL ∗XH +XL is employed as an input of ZA-MLE.
After obtaining XH and XL, inspired by [37], element wise product and addi-
tion follow, which is designed to sharpen a contrast improved XH with attention
of sharpened XL to integrate enhanced results of MLE, denoted as Zero-Shot
Attention. After Zero-Shot Attention, XH is added followed by layers of one con-
volution, Leaky ReLU activation, one convolution, and Tanh activation (right
in Figure 7). The number of channels are increased from three to six in the first
convolution, and decreased from six to three in the second convolution. XL are
finally added to enhance low frequency features. This procedure is denoted as
Zero-Shot Attention module. After three Zero-Shot Attention modules, Refine-
ment Module consisting of one convolution and Leaky ReLU activation layers
follows. Then, XH and XL are finally added to incorporate multiscale features of
an image, denoted as Last Module. As each Zero-Shot Attention module contains
only two convolutional layers, proposed ZA-MLE totally includes seven convolu-
tional layers. With the power of proposed MLE, simply implemented ZA-MLE
enables efficient image enhancement of challenging real underwater images.

4.2 Loss Function

The loss function for training ZA-MLE consists of three terms, reconstruction
loss lrec, derivation loss lderiv, and color loss lcol, defined as follows:

Loss = αlrec + βlderiv + λlcol

lrec := ∥Xout −XH∥1
lderiv := ∥

(
∂2
x (Xout)− ∂2

x (XL)
)
+

(
∂2
y (Xout)− ∂2

y (XL)
)
∥1

lcol := ∥Rout −Gout∥1 + ∥Bout −Gout|∥1

where ∂2
x and ∂2

y respectively compute 2nd order horizontal and vertical gradi-
ents. Rout, Gout, and Bout respectively mean R, G, B channels of Xout.

The reconstruction loss lrec works as regularization term and defined as l1
distance between model output Xout and XH , in order to get output similar to
XH to incorporate MLE. Note that reconstruction loss lrec in this research is
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Table 2. Results of UIQM and UCIQE. Proposed ZA-MLE without training data and
prior training achieves comparative results compared with other latest supervised and
Zero-Shot learning based models. Scores of ZA-MLE show the average of three trials.

Dataset ZA-MLE UWCNN [26] Water-Net [27] U-Transformer [35] All-in-One [29] Koschmieder [22]

Challenging-60 [27] UIQM 2.754 2.386 2.609 2.724 2.679 2.402
UCIQE 4.986 3.203 4.554 4.231 4.690 4.170

Original UIQM 2.989 2.558 3.031 2.664 2.900 1.946
UCIQE 5.424 4.127 6.057 5.313 2.998 5.392

different from [38] which employs an original input image Xin instead of XH , to
get output similar to Xin. The derivation loss lderiv is l1 distance between Xout

and XL in gradient domain [9] designed to reflect gradient information of XL

and inhibit noise. For correction of color distortion of underwater images, based
on the gray world assumption, white balance is performed to enforce each RGB
channels to have the same values as in land images [6, 38]. Modified from the
original gray world assumption, proposed color correction loss lcol is implemented
to enforce R and B channels to have similar values to G channel of Xout, as G
channel of an underwater image is less susceptible to underwater conditions [2].

Input image processed with MLE is passed through Zero-Shot Attention
Network and the network is trained based on the above loss function employing
XL and XH . Note that XL and XH are obtained from an input image itself thus
requiring no training data. We experimentally observe that visually pleasing
result is obtained around 200 to 300 epochs as in following section.

5 Experiment

5.1 Experimental Setting

In this section, we evaluate the performance of our ZA-MLE for underwater im-
age enhancement. We first initialized network parameters of ZA-MLE with [16],
and used Adam optimizer [23] with the learning rate 0.001. Unlike previous
elaborated learning strategy [39], we stop training at 300 epochs, experimentally
selected, and fixed throughout the experiment. ZA-MLE works as Zero-Shot
manner, trained per an input image without additional data or prior training.
For practical application, prior training is recommended for more speed up. As
discussed in previous section, hyper parameters of MLE, pyramid level, kernel
size, and standard deviation, are respectively set as MLE-753 for XH and MLE-
331 for XL in order. XMID, defined as XMID = XL ∗ XH + XL, is employed
for the input. As for real underwater image dataset, Challenging-60 (4th to 6th
column of Figure 8) [27] and the Original dataset containing notably deterio-
rated 77 images taken in Okinawa, Japan (1st to 3rd column of Figure 8), are
employed for the evaluation. In evaluating recovered results, generally utilized
non-reference metric, UIQM [32] and UCIQE [42] designed to reflect human per-
ception, are computed as existing no ground truth for real images. Coefficients of
loss functions, α, β, and λ are respectively set to 1.0, 1.0, and 0.1. We implement
our model with PyTorch and GeForce RTX 2080 Ti GPU.
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Fig. 8. Recovered results of underwater image enhancement models. 1st row: input
raw images. 2nd row: results of ZA-MLE. 3rd row: results of UWCNN [26]. 4th row:
results of Koschmieder [22]. 5th row: results of Water-Net [27]. 6th row: row: results of
U-Transformer [35]. 7th row: results of All-in-One [29].
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5.2 Results and Discussions of ZA-MLE

We compare our ZA-MLE with state-of-the-art underwater image enhancement
methods. Currently, as Zero-Shot learning based model is rare [22], available
supervised models are also compared. First row of Figure 8 shows input raw
underwater images, and the second row shows results of proposed ZA-MLE. 4th
row shows results of Zero-Shot model, denoted as Koschmieder [22]. The rest
row show results of supervised models, 3rd row: UWCNN [26], 5th row: Water-
Net [27], 6th row: U-Transformer [35], and 7th row: All-in-One [29].

In UIQM [32] and UCIQE [42] scores of Table 2, our ZA-MLE achieves fa-
vorable performance, getting first rank in the Challenging-60 dataset [27] and
second rank in the Original dataset, compared with other supervised models
which require training data or prior training. In quantitative results of Figure 8,
ZA-MLE (2nd row) basically corrects blueish (1st and 2nd column) and even
yellowish (6th column) color cast, as well as visibility of blurred underwater
images (3rd to 5th column) improves. Among previous methods, CNN based
Water-Net combining white balance, histogram equalization, and gamma cor-
rection [27] (5th row), qualitatively and quantitatively recovers well. Owing to
conducting white balance to an input image, this network recovers also a yellow-
ish image (6th column), yet not sufficiently sharpens deteriorated images and
somewhat blurred. By contrast, our ZA-MLE sharpens blurred images thanks
to proposed MLE and Zero-Shot Attention. Results of U-Transformer [35] (6th
row), Vision Transformer based model, are relatively well, but fail to recover
yellowish image (6th column) and sometimes adds grid artifacts (5th column).
UWCNN [26] and All-in-One [29] hardly improve visibility. Supervised models
often suffer from domain shift between training data and test data caused by
complex real underwater environment, still a challenging issue [3].

Next, comparison with results of the Koschmieder [22] (4th row of Figure 8)
are shown. Currently, to the best of our knowledge, Zero-Shot learning based
underwater image enhancement model does not exist except [22]. Code and pa-
rameter setting is directly employed provided by the authors, setting epoch size
to 10000. In terms of UIQM and UCIQE in Table 2, proposed ZA-MLE performs
better than Koschmieder [22] in both dataset. In quantitative comparison, [22]
corrects blueish and yellowish underwater images based on the Koschmieder’s
physical model, yet also outputs a little over enhanced results (1st, 2nd, and 3rd
column of Figure 8). Specifically, color distortion is sometimes observed as in
the 2nd column. As [22] mainly corrects color cast based on the Koschmieder’s
model, recovered results of severely degraded underwater images are not very
good, which do not likely to obey the Koschmieder’s model.

Our ZA-MLE is different from [22] in that incorporating traditional signal
processing method, Laplacian pyramid and unsharp masking filter. In terms
of calculation time, owing to its simple structure, ZA-MLE, trained with 300
epochs, costs about 2 seconds, while Koschmieder, trained with 10000 epochs,
costs about 5 minutes to process 256 × 256 images, 150 times faster than
Koschmieder. Time analysis is conducted with NVIDIA 2080Ti GPU and In-
tel Core i9-9900K CPU.
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Table 3. UIQM and UCIQE scores calculated from different loss functions and dataset.

Loss Dataset Challenging-60 Original

lrec UIQM/UCIQE 2.749/4.946 2.957/5.273
lrec + lderiv UIQM/UCIQE 2.770/4.987 3.029/5.442
ALL UIQM/UCIQE 2.772/4.967 3.030/5.394

Table 4. Comparison of UIQM and UCIQE scores of two color loss functions. Average
scores of 10 trials are shown.

Loss Dataset Challenging-60 Original

Propose UIQM/UCIQE 2.748/4.978 2.987/5.361
Gray-world [6] UIQM/UCIQE 2.748/4.961 2.987/5.350

5.3 Ablation Study of Loss Function

Ablation study of the loss function combining three terms is shown in Table 3.
UIQM and UCIQE scores of the loss function employing lrec, lrec + lderiv, and
all terms are compared. In terms of UIQM, weighting contrast or sharpness
more, all terms contribute in all dataset. As for UCIQE, weighting chroma or
saturation of an image, while lderiv improves the score, color loss lcol a little
decreases UCIQE in both datasets. lcol is designed to balance color channels of
underwater images, making R and B channels close to G channel. Decreased
UCIQE especially in the Original dataset might be caused by decreased chroma
of an output, as Original dataset more includes greenish underwater images.

Proposed lcol is modified from the original gray world assumption [6], which
enforces all channels to be the same, and UIQM and UCIQE scores are shown in
Table 4. Proposed lcol slightly improves the scores of UCIQE. We observe that
lcol also contributes to learning stability and adopted.

6 Conclusion

This research proposes a simple, yet efficient Zero-Shot image enhancement
scheme incorporating traditional signal processing method, Laplacian pyramid.
First, MLE just convolving and enhancing images in multiscale Laplacian pyra-
mid representation is formulated. Combined with basic unsharp masking filter
in MLE scheme, the effects of image sharpening, detail enhancement, and con-
trast improvement are shown depending on its hyper parameters. Combining
MLE to network process, ZA-MLE is also proposed to enhance underwater im-
ages trained with the elaborated loss function. To the best of our knowledge,
Zero-Shot learning based underwater image enhancement model incorporating
Laplacian pyramid is first proposed in this research. By reflecting visual prior
specific to underwater images, simply implemented ZA-MLE achieves compara-
tive performance compared to other latest deep learning models.
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