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Figure 1: TimeWalker. Given a set of unstructured data from the Internet or photo collection across years, we
build a personalized neural parametric morphable model, TimeWalker, towards replicating a life-long 3D head
avatar of a person. With the TimeWalker, we can control and animate one’s avatar in terms of shape, expression,
viewpoint, and appearance across his/her different age periods. In this Figure, We show Leonardo Dicaprio’s
life-long avatar reconstructed and animated by our proposed model. More results are presented on the project
page: https://timewalker2024.github.io/timewalker.github.io/

ABSTRACT

We present TimeWalker, a novel framework that models realistic, full-scale 3D
head avatars of a person on lifelong scale. Unlike current human head avatar
pipelines that capture a person’s identity only at the momentary level (i.e., instant
photography, or short videos), TimeWalker constructs a person’s comprehensive
identity from unstructured data collection over his/her various life stages, offering
a paradigm to achieve full reconstruction and animation of that person at different
moments of life. At the heart of TimeWalker’s success is a novel neural parametric
model that learns personalized representation with the disentanglement of shape, ex-
pression, and appearance across ages. Central to our methodology are the concepts
of two aspects: (1) We track back to the principle of modeling a person’s identity
in an additive combination of his/her average head representation in the canonical
space, and moment-specific head attribute representations driven from a set of neu-
ral head basis. To learn the set of head basis that could represent the comprehensive
head variations of the target person in a compact manner, we propose a Dynamic
Neural Basis-Blending Module (Dynamo). It dynamically adjusts the number and
blend weights of neural head bases, according to both shared and specific traits
of the target person over ages. (2) We introduce Dynamic 2D Gaussian Splatting
(DNA-2DGS), an extension of Gaussian splatting representation, to model head
motion deformations like facial expressions without losing the realism of rendering
and reconstruction of full head. DNA-2DGS includes a set of controllable 2D
oriented planar Gaussian disks that utilize the priors from a parametric morphable
face model, and move/rotate with the change of expression. Through extensive
experimental evaluations, we show TimeWalker’s ability to reconstruct and animate
avatars across decoupled dimensions with realistic rendering effects, demonstrating
a way to achieve personalized “time traveling” in a breeze.
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1 INTRODUCTION

“As we grow older, our life stories become our identity. This ongoing narrative of the self is
constructed from the past and anticipated future.” – James E. Birren, Psychologist, 1996.

What forms a person’s identity? In the realm of Computer Graphics and Vision, researchers have
traditionally considered an individual’s shape as invariant, assuming it to represent the person’s
identity. This assumption has driven significant advancements in human faces and head modeling
over the decades. From classic 3DMMs (3D morphable models) Blanz & Vetter (1999) and its follow-
up line of work Li et al. (2017); Paysan et al. (2009), to current advanced neural representations for
head modeling Yenamandra et al. (2021); Giebenhain et al. (2023); Qian et al. (2023); Hong et al.
(2022), 3D head avatars become increasingly lifelike, serving as momentary replicas of humans.

However, sociology and psychology provide a different perspective to answer the question of identity
formation – the fields emphasis the idea that a person’s identity is shaped by a continuous process
influenced by various lifestages and experiences of self over time, rather than a single moment in
time. Since the 1960s, sociologists and psychologists (e.g.,Waterman (1982); Kroger (2007)) have
recognized the intrinsic value of lifelong construction of self-identity, and have developed several
cornerstone theories upon this basis.

Motivated by the critical identity formation gap, in this work, we aim to explore a paradigm of
modeling 3D head avatars on a person’s lifelong scale. This new problem definition introduces three
major challenges to head avatar modeling: (1) Long-horizon Identity Consistency Preserving.
The life-long modeling breaks the long-lasting assumption of the shape invariant of a person. As
the musculoskeletal structure changes with age growth, a person’s facial/head shape could change
significantly over his/her different lifestages. Besides, aesthetic transformation and unique life experi-
ences also stimulate significant physical changes like facial texture features, hairstyle, accessories,
and motion behavior of a person, compounding the difficulties of learning effective representation to
preserve identity. (2) Limited Data Quantity and Quality for Each Lifestage. In prior research,
specific momentary data is required with either “standard inputs” (i.e., high-quality front-view images
for 3D-aware head generation/editing Rai et al. (2024)), or sufficient geometric cues (i.e.,multi-view
capture systems Pan et al. (2024); Cheng et al. (2023); Kirschstein et al. (2023b); Wuu et al. (2022);
Yang et al. (2020); Yu et al. (2020), depth sensors Livingstone & Russo (2018); Cosker et al. (2011),
or short video sequences Zielonka et al. (2023); Gafni et al. (2021) for 3D/4D head avatar reconstruc-
tion). In contrast, it is infeasible to capture lifelong data of a person with sufficient geometric cues,
or a unified frontal camera view for each lifestage. Oftentimes, one’s lifetime is recorded through
unstructured image collection, with extremely uneven data volume and viewpoints over different
moments. Such data poses a significant challenge to high-fidelity 3D head avatar modeling in both
appearance-realistic and geometry-plausible aspects. (3) Explicit-controlled Animation in Full
Scales. Aside from lifelike reconstruction, a lifelong avatar is also expected to be controllable in
terms of expression, shape, viewpoint, headpose, and appearance across a person’s different age
periods. Fueled by the disentangled space of parametric morphable head models like FLAME Li et al.
(2017) and the expressiveness of neural field representation Mildenhall et al. (2020); Müller et al.
(2022), previous arts of 3D head avatar animation Zheng et al. (2022a); Gafni et al. (2021); Zheng
et al. (2022b); Zielonka et al. (2023); Qian et al. (2023); Kabadayi et al. (2023) could support head
animation at different scales with vivid details. However, none of these methods could manipulate
moments of life. How to learn a personalized disentangled space from highly unstructured data, that
enables full-scale control without losing realism is yet unknown.

We present TimeWalker – a baseline solution that tackles the above challenges for lifelong head
avatar modeling. To get invariant identity representation, and overcome the limited data issues, we
track back to the principle of the classic 3DMMs, where a specific 3D mesh can be approximated by
a mean template with shape/expression’s main modes of variation in an additive combination manner.
Analogously, TimeWalker models a person’s each lifestage by the additive combination of a shared
representation in canonical space, and a set of neural head basis. The former serves as the invariant,
i.e.,average head representation, of the person’s identity across different ages. The latter encodes the
main modes of variation of moment-specific head attributes via a Dynamic Neural Basis-Blending
Module (Dynamo). The personalized space parameterized by these two components could provide
both geometric and appearance priors to life moments with rare data. To achieve full-scale control
while ensuring realism, we introduce Dynamic 2D Gaussian Splatting (DNA-2DGS) upon the additive
combination framework. Specifically, we tailor Gaussian splatting representation to store the color,
density, and correspondence of the heads via defining a set of Gaussian surfels in canonical space, and
deforming them subsequently. To make the surfels animatable, we utilize two guidances to deform
the surfels – the deformation fields driven from the neural head basis, and motion warping fields
rooted from FLAME expression coefficients. In this way, the surfels could be animated properly

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

without losing geometric realism caused by FLAME’s fixed topology, or explicit control problems
caused by implicit neural head basis representation. With the above designs, TimeWalker can learn
a well-disentangled personalized neural space (Fig. 1) only from one’s lifelong unstructured image
collection.

To enable modeling heads on the lifelong scale, a substantial dataset of the same individual at
different time points is necessary. However, this requirement is challenging to fulfill with current
open-source datasets since they neglect the lifelong human concept. Thus, we construct TimeWalker-
1.0, a large-scale head dataset comprising 40 celebrities’ lifelong image collection sourced from
various Internet data. It contains over 2.7 million individual frames, with each identity consisting
of 15K − 260K frames and diverse age and head pose distributions. In experiments, we show the
ability of TimeWalker to reconstruct and animate avatars across decoupled dimensions with realistic
rendering effects. Then, we demonstrate the superior rendering and geometry reconstruction quality
by comparing our models to state-of-the-art momentary 3D head models. We also demonstrate the
effectiveness of our designs with extensive ablation studies. Finally, we show the potential benefits of
our model to downstream applications in 3D Editing.

2 RELATED WORKS

Personalized Head Avatars. 3DMM Blanz & Vetter (1999), as the foundational work in 3D human
head modeling, constructs a generic head space via the linear combination of a mean template mesh
and low-dimensional linear subspaces of shape and expression from PCA. Subsequent research
extends 3DMM to personalized head mesh modeling. For instance, Chaudhuri et al. (2020) predicts
personalized corrections on a 3DMM prior to obtain user-specific expression blendshapes and
dynamic albedo maps. Zhu et al. (2023) learns personalized face details via multi-view image fusion
from virtually rendered multi-view input images. Recent advancements have extended focus to
creating animatable personal head avatars with realistic rendering. Methods like NerFace Gafni et al.
(2021) and IM Avatar Zheng et al. (2022a) leverage FLAME Li et al. (2017) expression coefficients
to drive neural scene representation networks, implicitly representing head avatars from monocular
video inputs. INSTA Zielonka et al. (2023) enhances training speed and enables avatar control
through a mesh-based warping field. GaussianAvatars Qian et al. (2023) and FlashAvatar Xiang et al.
(2024) associate Gaussian points with a 3D parametric model and generate personalized head avatars
through expression parameters as the condition to Gaussian offset. By harnessing the formidable
generative prior, DreamBooth Ruiz et al. (2023) and Lora Hu et al. (2021) customize diffusion models
from multiple images of a particular subject to produce personalized outcomes. However, these
approaches are limited to static 2D results, lacking 3D consistency and animation capabilities. Other
works like DiffusionAvatars Kirschstein et al. (2023a) and GANAvatar Kabadayi et al. (2023) utilize
generative models to create personalized head avatars. The former fine-tunes ControlNet Zhang et al.
(2023a) with NPHM Giebenhain et al. (2023) features. The later distill EG3D Chan et al. (2022) to
single appearance. While these pipelines excel in constructing personalized head avatars, they focus
on momentary representations, and none address the challenge of representing personalized spaces
over a lifelong scale. Our pipeline takes a step in this direction with a foundational solution, enabling
the construction of a lifelong replica. A comparison between TimeWalker and the representative
methods mentioned above is shown in Tab. 1.

Lifelong
Replicas

Animation Mesh
Reconstruction

High-Fidelity
RenderingExpression Shape

Gaussian Surfels Dai et al. (2024) ✕ ✕ ✕ ✓ ✓
INSTA Zielonka et al. (2023) ✕ ✓ ✓ ✓ ✓

FlashAvatar Xiang et al. (2024) ✕ ✓ ✕ ✕ ✓
GANAvatar Kabadayi et al. (2023) ✕ ✓ ✕ ✕ ✓

TimeWalker (ours) ✓ ✓ ✓ ✓ ✓

Table 1: TimeWalker enables preserving iden-
tity consistency in the long-horizon time spectrum
(Lifelong Replica), with explicit-controlled anima-
tion at full scale (Animation-Expression/Shape). It
also supports surface reconstruction and produces
dynamic mesh efficiently under sparse view obser-
vations for each life stage (Mesh Reconstruction),
without losing rendering realism (High-Fidelity
Rendering). Better zoom in for details.

Neural Representation for Static Reconstruction.
In contrast to traditional explicit reconstruction meth-
ods like meshes, point cloud and voxel grids, neu-
ral representation models, such as NeRF Mildenhall
et al. (2021), show promise with high-fidelity ren-
dering Barron et al. (2022), efficient training Müller
et al. (2022); Yu et al. (2021a), and mobile deploy-
ment Chen et al. (2023). These models leverage dif-
ferentiable rendering to refine parameters and mini-
mize overfitting. Recent enhancements introduce ex-
plicit structures to boost rendering performance and
training efficiency: InstantNGP Müller et al. (2022)
adopts a multi-resolution hashgrid to streamline scene
feature storage and expedite training. 3DGS Kerbl
et al. (2023) uses explicit Gaussian Splatting for rendering, achieving fast inference rates (>100FPS)
without network reliance. Gaussian Surfels Dai et al. (2024), an evolution of 3DGS, refines Gaussian
kernels for depth inconsistency problems rooted in 3DGS, results in high-quality mesh reconstruction
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Figure 2: Method Overview. TimeWalker constructs a lifelong scale 3D avatar from unstructured photo
collections spanning years, maintaining realism and animation fidelity. The model is rooted in the principle of
linear combination space, and innovated into an interpretable, scalable, and steerable neural personalized feature
space with two key components: Dynamic Neural Basis-Blending Module (Dynamo) and Dynamic 2D Gaussian
Splatting (DNA-2DGS). Concretely, Gaussian Surfels initialized in canonical space using the FLAME template
represent an individual’s average head. Neural Head Basis deformations model moment-specific representations,
while DNA-2DGS applies motion warping fields driven by FLAME parameters to capture expressions and
movements, generating multi-dimensional head avatars (i.e.,moment-motion in deform space).

and realistic rendering, especially under sparse view conditions. Our work extends this representation
to dynamic human head modeling, enabling effective dynamic avatar animation.

Age Progressing Modeling. Research on simulating aging effects has been prominent in recent
decades. Methods like RFA Wang et al. (2016) and IAAP Kemelmacher-Shlizerman et al. (2014)
have led the way in creating average faces and transferring texture differences between age groups to
model aging. GAN-based approaches like S2GAN, and Face Aging GAN,He et al. (2019); Wang
et al. (2018) generate subtle texture variations across different ages. Acknowledging the importance
of shape and texture in age modeling, various techniques Lanitis et al. (2002); Suo et al. (2009;
2012); Yang et al. (2016) have emerged to address both simultaneously. Innovative diffusion-based
text-to-video pipelines such as DreamMachine, Kling, and Gen3 AI; Kli (2024); Gen (2024) have
showcased the ability to model age progression via hallucinating human-aging videos from textual
cues, yielding impressive outcomes. However, these generative methods struggle to achieve explicit
and comprehensive head animation (e.g., expressions and shape variations), and face challenges in
maintaining robust 3D consistency, limiting their functionality in creating personalized spaces.

3 TIMEWALKER

Our work targets to comprehensively construct a 3D head avatar of a person on a lifelong scale, as
opposed to current trends Zielonka et al. (2023); Kabadayi et al. (2023); Qian et al. (2023); Zheng
et al. (2022a); Xiang et al. (2024); Zheng et al. (2022b) that reconstruct and animate a person at
the momentary level. This new setting introduces further puzzles to head avatar modeling – how
to faithfully capture both shared and specific traits of the target person over different ages, while
keeping the flexibility of animation in full scales (i.e., facial expression, face shape)?

The primary challenge in constructing a lifelong head avatar lies in embedding the lifestage dimension
during modeling. Changes to the head across different lifestages —such as variations in appearance,
facial shape, and even accessories—are difficult to explicitly define. Moreover, these variations
must be disentangled from other dimensions to allow for decoupled animation. This challenge is
compounded by the often limited quality and quantity of data available for each lifestage, further
complicating accurate modeling across a lifetime.

To address the challenges, we introduce a novel neural parametric model (see Fig. 2) that captures
an average representation of a person’s identity in canonical space, and extends to moment-specific
head attributes through a set of Neural Head Bases. In Sec 3.1, we first introduce a preliminary
2D Gaussian representation Dai et al. (2024), which forms the foundational layer of our pipeline,
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ensuring high-fidelity rendering and dense meshing for the base frame, even with limited camera views
across lifestages. In Sec. 3.2, we detail how the Personalized Neural Parametric Model constructs a
personalized neural feature space via a Linear Combination Space formulation. The model leverages
a Linear Combination Space formulation to handle the complexities introduced by different lifestages
through the Neural Head Basis, while maintaining a shared canonical representation. Moving forward,
we explore the geometric representation behind the Personalized Neural Parametric Model in Sec. 3.3–
how our DNA-2DGS, a dynamic extension of 2DGS, fosters rendering and drives the dense mesh
with different motion signals. In Sec. 3.4, we introduce training process designs, and discuss how we
build a lifelong personalized space with disentangled control along different dimensions in Sec. 3.5.

3.1 PRELIMINARIES

Extended from Gaussian Splatting Kerbl et al. (2023), Gaussian Surfels (2DGS) reduces one dimen-
sion and transforms the Gaussian ellipsoids into Gaussian ellipses. Specifically, a scene is depicted
by a set of unconstructed Gaussian kernels with attribute {xi, ri, si, σi, Ci}i∈P , where i is the index
of each Gaussian kernel, and xi ∈ R3, ri ∈ R4, si ∈ R3, σi ∈ R and Ci ∈ Rk respectively denotes
the center position/rotation/opacity/spherical harmonic coefficients of each Gaussian’s kernel. 2D
Gaussian could be obtained by flatten the 3D Gaussian’s rotation on z-axis (i.e.,si = [sxi , s

y
i , 0]

⊤).

Given Gaussian distribution modeled as G (x;xi,Σi) = exp
{
−0.5 (x− xi)

⊤
Σi

−1 (x− xi)
}
,

where Σi is the covariance matrix that can be unfolded as R(ri)SiS
⊤
i R(ri)

⊤, with a scaling matrix
S and a rotation matrix R(ri). Σi defines how the Gaussian surfel is stretched or compressed
along different axes. Under the 2D Gaussian framework, the covariance matrix can be formed as
Σi = R(ri)Diag

[
(sxi )

2
, (syi )

2
, 0
]
R(ri)

⊤. The Diag[·] indicates a diagonal matrix. Practically, by

blending all Gaussian kernels in the scene with depth-ordered rasterization, the color C̃, the normal
value Ñ , and the depth value D̃ of a pixel can be obtained by

C̃ =

n∑
i=0

Tiαici, Ñ =
1

1− Tn+1

n∑
i=0

TiαiRi [:, 2], D̃ =
1

1− Tn+1

n∑
i=0

Tiαidi (u), (1)

where αi represents alpha-blending weight, and 1/(1− Tn+1) is a normalization scale for blending
weight Tiαi, which is calculated with Ti =

∏i−1
j=0 (1 − αj). di (u) represents the adjusted depth

value of the center of the Gaussian kernel. For the equation of normal, with the degenerated 2D
ellipse, the normal direction of a Gaussian kernel can be directly extracted as ni = R(ri)[:, 2]. Based
on the above formula, Gaussian Surfels are surface-conforming primitives that project directly onto
the image plane, ensuring precise local depth and normal blending processes. In contrast, 3DGS uses
volumetric Gaussians, which can blur depth boundaries and reduce precision, especially in areas with
complex or discontinuous surfaces. Consequently, Gaussian Surfels exhibits remarkable performance
even in sparse view settings, a crucial requirement for our intricate pipeline.1

In this work, we represent human head upon Gaussian Surfels, taking full advantage of its excellent
reconstruction performance without sacrificing the realism of the rendering. Notably, 2DGS, built for
static reconstruction, would encounter a significant challenge in generating dynamic mesh sequences,
due to the time-consuming nature of post Poisson Meshing procedure Kazhdan & Hoppe (2013).
Thus, we devise a Defer Warping strategy upon the representation (i.e., DNA-2DGS in the framework)
to surmount this limitation. The specifics are thoroughly outlined in Sec. 3.3.

3.2 PERSONALIZED NEURAL PARAMETRIC MODEL

3.2.1 NEURAL LINEAR COMBINATION SPACE

In the quest to pioneer lifelong personalized animation spaces, our primary objective is to enable
precise and controlled animation of individuals on a comprehensive scale. Leveraging linear com-
bination proves to be an optimal strategy in this context, as it offers flexibility and universality in
constructing compact representations through the combination of base vectors that encapsulate core
variations. It provides the theoretical foundation for constructing a wide range of shapes, textures, and
expressions even from limited data. Additionally, it simplifies optimization and computation, ensuring
consistent and predictable results. This concept traces its origins to traditional 3D Head Morphable

1More theoretical details about Gaussian Surfels and qualitative as well as quantitative comparison of mesh
reconstruction between 3DGS and 2DGS can be referred to Dai et al. (2024).
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Models, where a head is modeled by linearly combining expression and shape parameters with their
corresponding basis functions: M(α, β, γ) =

(
S̄ +

∑Ns

i=1 αisi, T̄ +
∑Nt

i=1 βiti, Ē +
∑Ne

i=1 γiei

)
2

Building upon this foundation, we extend the concept to a neural linear combination space, integrating
multiple animation dimensions in an additive, learnable, and scalable manner, as formulated in Eq 4.
Particularly, as illustrated in Fig 2, to characterize the average head representation of individuals,
we initialize a set of Gaussian Surfels in canonical space based on FLAME template. With linear
addition of the deformation value produced from Neural Head Basis (detailed in Sec 3.2.2), the
canonical Gaussian Surfels could be deformed from the average representation to a specific lifestage
(i.e., moment-specific representation in the Figure). This process facilitates the modeling of a neutral
head at any life moment, and moreover, within our framework, this is achieved without the need for
direct supervision. Sequentially, to enable motion-based modeling (e.g., expression changes) and
dynamic avatar animation, we further utilize motion warping fields rooted from FLAME parameters
(Sec 3.3.1), to drive the moment-motion modeling. Along with the analysis-by-synthesis training
process (Sec 3.4), these designs allow us to create multi-dimensional realistic head avatars in a breeze.

3.2.2 NEURAL HEAD BASIS

With the assumption that any lifestage of one person can be linearly blended from his/her several
key characteristic variations across lifestages, we now introduce how to capture and learn these
variations within the linear neural feature space from the design of the Neural Head Basis, and how
to obtain a compact set of the bases from our Dynamo module. Suppose the number of head basis
is N , for a point xc picked from the canonical space, its feature at a specific lifestage could be
formed as a linear combination of N neural head basis H: f(xc) =

∑N
i=1 ωiHi(xc), where ωi is the

learnable blending weight for each neural head basis. To store the features compactly, we utilize
multi-resolution Hashgrid Müller et al. (2022); Kirschstein et al. (2023b), a hashmap-based cubic
structure that enables the learnable features stored in a condensed form. When querying features
for xc, the hashgrid looks up nearby features at various scales J , and cubic linear interpolation
is applied to determine the final feature corresponding to the location. Thus, for each Hi, it is
constructed by Hi = C-LinearInterp ({ hi

j}Jj=1).

Dynamic Neural Basis-Blending Module (Dynamo). How to set the number of head basis? One
intuitive way would be – assigning a fixed amount that is equivalent to the number of appearances
in the character’s data, with each basis independently learning the character’s features for a specific
lifestage. For instance, to build a comprehensive personal space for Leonardo, encompassing ten
distinct lifestages, we could initiate ten individual neural bases. Each of these bases is specifically
tasked with mastering the intricacies of a single lifestage. However, this idea is inefficient and
redundant in the feature space, as a person’s appearance evolves over their lifetime, their core
characteristics that define their identity remain fundamentally consistent. Even with temporary
alterations like heavy makeup or accessories, we can still recognize individuals by their underlying
features. Besides, we expect the feature space could be interpretable, scalable, and controllable. Thus,
our goal for the neural basis is to capture these deeper characteristics rather than solely memorizing
superficial appearances. To this end, we introduce Dynamo to dynamically adjust the number of
bases during the learning process of blending weight and hashgrids. We begin by initializing a set of
learnable blending weights {ω}Ni=1 and grids H, which align with the number of lifestages of the
target person. Throughout the learning process, if {Indicator(ωk

i < κ) = 1} consistently reveals
that a hashgrid’s weight falls below lower a preset threshold κ across modeling multiple lifestages k
at an iteration Q with sampled iteration interval q, this signals that this grid is not effectively learning
meaningful features. In response, we deactivate that hashgrid. By the end of the training process,
this pruning strategy ensures that each remaining Neural Head Basis is efficiently capturing core,
identity-defining features across lifestages. Additionally, it reduces memory requirements for storing
these features, leading to a more efficient and scalable representation.

Residual Embedding. Using Dynamo outlined above, we obtain a collection of feature embeddings
that compactly capture the subject’s moment-specific attribute. As global compensation for each
lifestage, we introduce a set of residual embedding lres, which are concatenated with the blended
features f(xc). The concatenated features are then forwarded into a MLPdeform to derive position x,
rotation r, scale s, and opacity σ deformations of the Gaussian kernel, as well as another feature vector

2Where M(α, β, γ) is the full model (shape, texture, expression), S̄, T̄ , Ē are the mean shape, texture, and
expression, si, ti, ei are the basis vectors, αi, βi, γi are the corresponding coefficients, and Ns, Nt, Ne are the
number of components for shape, texture, and expression, respectively. Please refer to the original paper for
more details Blanz & Vetter (1999); Li et al. (2017).
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which is subsequently passed through a MLPcolor to generate the SH coefficients C deformation:

δx, δr, δs, δσ, fdeform(xc) = MLPdeform(f(xc), lres); δC = MLPcolor(fdeform(xc)). (2)

The network learns the deformations δ of Gaussian attributes, which are then additively combined
with the Gaussian average in canonical space. It yields the character’s moment-specific features:

[xd, rd, sd, σd,Cd] = [xc, rc, sc, σc,Cc] + [δx, δr, δs, δσ, δC]. (3)

The whole combination process can be summarized below:

[(x, r, s, σ)d,Cd] = [(x, r, s, σ)c,Cc]︸ ︷︷ ︸
Mean Representation

+ [MLPd(

N∑
i=1

ωiHi(xc), lr),MLPc(MLPd(

N∑
i=1

ωiHi(xc), lr))]︸ ︷︷ ︸
Neural Linear Additive Deformation

.

(4)

3.3 DYNAMIC 2D GAUSSIAN SPLATTINGS (DNA-2DGS)

The question now is – given a motion target/reference, how can we effectively drive the moment-
specific representation to capture motion dynamics with precision, controllability and realism?
This requires further deformation of the Gaussian Surfels to reflect various motion-related changes
like expressions or shapes. Thus, we introduce DNA-2DGS, which tackles the problem from both
rendering (the upper area of Fig 3) and meshing (the lower area of Fig 3) aspects.

3.3.1 DYNAMIC GAUSSIAN RENDERING

Static

Moment-SpecificAverage Representation

Dynamic

Lifestage
Animation

Expression 
Animation

Moment+Motion

Expression 
Animation

Poisson
Meshing

Gaussian Surfels

Mesh Vertices

Dynamic Gaussian Rendering

Dynamic Gaussian Meshing

How Gaussian Surfels deformed

Figure 3: Dynamic Gaussian Rendering
& Meshing. For the former, Gaussian
Surfels are firstly animated with lifestage
and expression respectively, followed by
rasterization to produce high-fidelity re-
sults. For the latter, after deformed with
lifestage, the Poisson Meshing process is
used to obtain a dense mesh. Then, ex-
pression animation is performed on the
mesh vertices. Better zoom in for details.

To realize animation, one intuitive strategy is to incorporate
an additional MLP-based warping field. In our experimental
setup, we implemented this component as a naive dynamic
version of Gaussian Surfels 3. While this method shows
proficiency in handling deformations induced by various ex-
pressions, it falls short in capturing the entire range of human
head motions, particularly around eyes. Moreover, disentan-
gling the animation of appearance and expression remains
challenging when both components of the warping field are
designed similarly. In contrast, we integrate motion warp-
ing fields inspired by INSTA Zielonka et al. (2023). During
the preprocessing, we acquire a tracked mesh Mdef through
FLAME fitting and a mean template M canon defined within
a canonical space, both sharing identical topology. Unlike
INSTA which utilizes the warping field to inversely project
points from deformed space back to canonical space, we
define a deformation gradient F ∈ R4×4 in the form of a
transformation matrix. This matrix projects Gaussian Surfels
xd from the moment-specific static space to the dynamic motion space. Concretely, for each Gaussian
Surfel xd, we employ a nearest triangle search algorithm to compute F = Ldef · Λ−1 · L−1

canon,
where Lcanon and Ldef is Frenet coordinate system frames, and Λ is a diagonal matrix that takes
scaling factor into account.4 With computed F Gaussian Surfels are further deformed x

′

d = F · xd,
guided towards specific movements. This process enables translation of expression/shape signals
into animated outputs. The double-deformed Gaussian surfels are then rasterized to produce final
renderings.

3.3.2 DYNAMIC GAUSSIAN MESHING

Current Gaussian Surfels Dai et al. (2024) enables high-quality surface reconstructions after training
via Gaussian point cutting and Poisson Mshing Kazhdan & Hoppe (2013), using extracted data from
rendering results. However, this method is primarily suited for static settings, limiting its applica-
bility to dynamic head avatars. Additionally, the time-intensive nature of Poisson reconstruction
process makes it impractical for mesh sequence reconstruction. To address these challenges, we

3Please refer to the results of Gaussian-Surfel++ in Appendix A.5.2.
4Please refer to INSTA Zielonka et al. (2023) for more theoretical details.
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introduce Defer-Warping, an adapted Gaussian surface reconstruction strategy tailored specifically for
dynamic head reconstruction. Specifically, unlike standard rendering & meshing processes that apply
deformations before meshing, we delay the motion animation after the Poisson meshing process of
moment-specific representation. This allows us to render results under moment-specific conditions
customized to every single lifestage, effectively eliminating motion-induced artifacts (such as artifacts
on mouth regions caused by talking) and generating appearance-specific static meshes. After Poisson
meshing of the static result, the delayed motion animation generates dynamic mesh sequences by di-
rectly manipulating the vertices of reconstructed mesh. This process faithfully captures motion-driven
deformations. Refer to Appendix A.5.3 for a detailed comparison of mesh generation.

3.4 TRAINING

We apply the end-to-end training manner that enables the simultaneous optimization of the explicit
Gaussian surfels, multiple hashgrid, feature latent, and implicit deform MLP & color MLP. Before
formal training, we introduce a warm-up phase where we suspend the optimization of the Neural Head
Basis. This step aims to guide the Gaussian surfels in canonical space towards a mean representation
(Detailed in A.3 of Appendix). For the Gaussian Splatting, we follow the densify and pruning
strategies of 3DGS to adaptively adjust the number of Gaussians. To guide the optimization of the
whole system, our total loss Ltotal consists of three parts: (1) Image Level Supervision. Similar
to 3DGS Kerbl et al. (2023), This term includes photometric L1 loss Lrgb and ssim loss Lssim.
An additional perceptual loss Llpips Johnson et al. (2016) with AlexNet encoder Krizhevsky et al.
(2012) is included to improve the rendering quality. (2) Geometry Level Supervision. Inspired
by INSTA Zielonka et al. (2023), we include Ldepth to enforce a better Gaussian geometry based
on FLAME tracked mesh. Specifically, we apply L1 loss between the predicted depth from Eq. 1
and GT depth rasterized from FLAME mesh, with respect to a specific face region segmented by a
ready-to-use face parsing model Yu et al. (2021b). Following Guassian Surfels Dai et al. (2024), we
apply both Lnormal and Lconsist.. The former acts as a prior-based supervision to improve the training
stability, and the latter enforces consistency between the rendered depth D̃ and rendered normal Ñ :

Lnormal = 0.04 · (1− Ñ · N̂) + 0.005 · L1(∇Ñ,0),Lconsist. = 1− Ñ ·N(V (D̃)), (5)

where N̂ denotes the normal map from a pretrained monocular model from Eftekhar et al. (2021)
and ∇Ñ represents the gradient of the rendered normal. (3) Regulation. To ensure that the Gaussian
attributes do not deviate significantly from their mean representation, we employ a L1 regulation to
the deformation of the Gaussian attributes [δx, δr, δs, δσ, δC] and penalize large deformation. The
total loss function can be constructed as:
Ltotal = λrLrgb + λsLssim + λlLlpips︸ ︷︷ ︸

Image Level Supervision

+λdLdepth + λnLnormal + λcLconsist.︸ ︷︷ ︸
Geometry Level Supervision

+λregLdeform︸ ︷︷ ︸
Regulation

(6)

where λr denotes dynamic weight based on a face parsing mask. Note that, for the warm-up phase, as
we only optimize the attributes of Gaussian kernel, we do not include regulation terms. For the formal
training phase, all loss terms are employed. Refer to Appendix Tab. 3 for details of hyperparameters.

3.5 BUILDING A LIFE LONG PERSONALIZED SPACE

How does TimeWalker construct a lifelong personalized space? The Gaussian Surfels in canonical
space that characterize the individual average representation, are additively combined with moment-
specific head attribute representations driven from a set of Neural Head Basis to span a moment-
specific head avatar. For each moment-specific head avatar, we further warp the Gaussian Surfels via
expression or shape signals to get the motion-specific head performing. By separating the moment-
specific deformation from the motion-specific warping, we are able to decouple the driving of the
head in multiple dimensions - lifestage, expression, shape, novel view, and etc, - constructing a
comprehensive, steerable personalized space. Please refer to Sec. A.2 in Appendix for details.

What are the core benefits of learned space? Despite being trained on a restricted5 dataset, our
model demonstrates: (1) the ability to generate a comprehensive personalized space with full-scale
animation (Fig. 1), steerable reenactment (Sec 4.1), and high-fidelity outcomes (Sec. A.2). (2)
In contrast to alternative generative or animatable avatar techniques, our approach offers superior
disentanglement of properties and ensures consistency across animated dimensions in terms of both
appearance (Sec. A.5.2) and geometry (Sec. A.5.3). (3) With faithful consistency, our method could
potentially improve the quality of downstream tasks (Sec. A.6).
5The restricted here refer to the limited data quantity and quality for each lifestage. For example, the side-profile
data is very sparse/limited.
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Cross-lifestage Reenactment Cross-identity Reenactment

Source Target Source Target

Figure 4: Reenactment. We demonstrate the cross-lifestage reenactment (self-reenacment) with TimeWalker-1.0
and cross-identity reenactment with RenderMe-360 Pan et al. (2024), in Leonardo personalized space.

Table 2: Ablation study. Pink indicates the best and orange indicates the second.
Loss Term Dynamo Module

Item w/o Llpips w/o Lgeometry w/o Ldeform w/o Dynamo w/ 1 hashgrid w/ all hashgrid Ours
PSNR↑ 26.56 27.25 24.79 21.69 24.84 26.86 27.20
SSIM↑ 0.916 0.943 0.886 0.767 0.890 0.938 0.941
LPIPS↓ 0.18 0.080 0.165 0.197 0.119 0.078 0.077

4 EXPERIMENTS

Please refer to Appendix for comparisons with SOTAs( A.5.2), personalized space visualization( A.5.1)
and mesh comparison( A.5.3). In main paper, we unfold our method with reenactments and ablations.

4.1 DATASETS

To fully evaluate our pipeline, we construct a large-scale head dataset, TimeWalker-1.0, featuring
lifelong photo collections of 40 celebrities. The data volume ranges from 15K to 260K per celebrity,
capturing diverse variations across life stages. For details and statistics of the dataset, as well as
comparisons with other datasets, refer to Appendix A.4. We also evaluate on INSTA Zielonka et al.
(2023), Nersemble Kirschstein et al. (2023b), and RenderMe-360 Pan et al. (2024) for further
comparison and cross-identity reenactment.

4.2 REENACTMENT

Fig. 4 shows expression animation with two types of reenactments. The cross-lifestage reenactment
on the left showcases how head avatars from different lifestages can consistently perform the same
expression, animated from a source avatar belonging to a different time period. The cross-identity
reenactment on the right shows Leonardo in different lifestages are driven by unseen novel expression
from RenderMe-360 Pan et al. (2024). The rendering result shows that multiple head avatars generated
by the same personal space from TimeWalker are able to extrapolate novel expressions.

4.3 ABLATION STUDIES

To validate the effectiveness of our method components, we conduct several ablation experiments
in terms of our Dynamo design and loss terms. All the ablation experiments are conducted on 3
individuals with respective 9, 10 and 13 lifestages. We keep other settings unchanged except the
ablation term. The results are demonstrated in Tab.2.

Loss Term. We evaluate the effectiveness of each loss-term design, including Llpips, Lgeometry and
Ldeform. As shown in Tab. 2, the performance significantly drops without Llpips or Ldeform, and Lgeometry
does not contribute to the rendering result. This is consistent with the ablation experiments in Dai et al.
(2024), as the geometry-based loss mainly contributes to the high quality mesh reconstruction rather
than the realism of avatar rendering. In Fig. 13 we also visualize the mesh without Lgeometry. As shown
in Fig. 5, (a) including Llpips during training helps reduce smoothness in high frequency parts like
hair and beard. (b) Lgeometry does not contribute to rendering result, but aids in mesh reconstruction.
(c) Training without Ldeform results in strip-shaped Gaussian ellipses or even generation failed.
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All(a) w/o lpips Loss (c) w/o deform Reg. (d) w/o Dynamo (e) w/ 1 hashgrid(b) w/o geo. Loss (f) w/ all hashgrid

Figure 5: Ablation Study. Experiments with different loss setting are showed in (a− c), while ablation with
Dynamo and hashgrid are visualized in (d− f). All represents our final model. Better zoom in for details.

Unseen Part: Tongue

Target

Exaggerated expression

Source TargetSource

Figure 6: Limitations. Our method fails to model unseen parts like tongue during animation, and performs
moderate expressions when driven by exaggerated expressions. (Source from Renderme-360 Pan et al. (2024)
and NerSemble Kirschstein et al. (2023b))

Dynamo. We conduct ablation experiments on Dynamo in the Neural Head Basis, a key contribution
that enables our pipeline to preserve the moment-specific attributes of individuals. Two protocols
are used: (1) removing Dynamo and replacing it with the position xc of each Gaussian surfels; (2)
predefining and fixing the number of hashgrids (either one or matching the number of life stages).
The quantitative result in Tab. 2 shows the necessity of Dynamo with multiple hashgrids, as reducing
the hashgrid number or removing Dynamo leads to performance dropout. Interestingly, our pipeline
with adaptive hashgrid number performs slightly better than the setting with all hashgrid, which
demonstrates effectiveness of our hashgrid adaptation strategy. Fig. 5 also shows that, without
Dynamo, the model tends to preserve moment-specific attributes in the learnable latent, leading to
artifacts surrounding the head avatar ((d) in Figure). Models trained with only one hashgrid cannot
provide enough details on head surface and have obvious artifacts around the eyes ((e)), while those
trained with adequate hashgrids perform similarly to our pipeline but require larger model sizes ((f)).

5 DISCUSSION
Limitations. There are two main limitations of our pipeline. First, due to the underlying FLAME
base, our personalized avatar fails to capture exaggerated expressions and model unseen parts like
the tongue during the animation, resulting in noticeable artifacts around the mouth area (Fig. 6).
Second, due to data constraints, our study only provides a preliminary exploration toward lifelong
perspective, rather than encompassing the entire life span from infancy to elderly. We aspire for our
research to establish a baseline in this field, inspiring more effective approaches towards achieving
comprehensive lifelong personalized space construction. A promising future direction is to leverage
the prior knowledge of head structures from pre-trained generative models.

Conclusion. In this work, we present TimeWalker, a baseline solution for constructing personalized
spaces that maintain long-term identity consistency while enabling explicit, full-scale animation
control. Rooted in the additive combination principles of classic 3DMM, our approach innovates
through a neural feature-based design with two key components: a Dynamic Neural Basis-Blending
model to represent the head variations in a compact manner and a Dynamic 2D Gaussian Splatting
module to construct dynamic dense head mesh. Our method makes it possible to create personalized
spaces that evolve faithfully over a lifetime.
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A APPENDIX

This appendix aims to enhance the discussion presented in our main paper, and demonstrate more
details as supplementary. Firstly, we introduce additional related works as background supplementary
in Sec. A.1. Then, we provide more details about the construction of a lifelong personalized space
in Sec. A.2. We delve into the specifics of our implementation and training process in Sec. A.3.
Following that, in Sec. A.4, we elaborate on the creation of our dataset, TimeWalker-1.0, detailing its
construction, statistics, and a comparative analysis with existing datasets. Subsequently, in Sec. A.5,
we present additional experiments, such as results in personalized spaces, comparisons with state-of-
the-art techniques concerning 2D rendering and 3D mesh outputs, and more individual visualization.
We showcase the outcomes of our downstream application, 3D editing, in Sec. A.6. Lastly, we
summarize the broader impact of our work in Sec. A.7.

A.1 ADDITIONAL RELATED WORK

Since our approach constructs the 3D personalized space from in-the-wild unstructured photos, we
also discuss related developments in the research field of general 3D reconstruction from unstructured
photos.

3D Reconstruction from Unstructured Photo. Reconstruction from Internet photo collections has
been a long-standing topic in computer vision and computer graphics. Thought-provoking research
such as Photo Tourism Snavely et al. (2006), Skeletal Sets Snavely et al. (2008), and Building
Rome in a Day Agarwal et al. (2009) show great potential for applying structure from motion (SfM)
algorithms on unstructured photo collections. Upon these pioneer works, multi-view stereo (MVS)
algorithms Curless et al. (2010); Schönberger et al. (2016) and appearance modeling Kim et al. (2016)
are proposed to improve the reconstruction quality. More recently, several works Martin-Brualla
et al. (2021); Sun et al. (2022) model the scene by grafting these ideas into the neural radiance
fields Mildenhall et al. (2020). There are also a series of great works focused on reconstructing heads
or heads from Internet photos. For example, in Kemelmacher-Shlizerman (2013), the author holds
the premise of deriving a 3D head shape basis directly from a large amount of Internet collection,
and proposes to reconstruct an arbitrary 3D head from a single view image based on the shape basis.
The subsequent work such as Kemelmacher-Shlizerman & Seitz (2011) focuses on recovering the
head from personal photo collections, and Liang et al. (2016) aims to recover the personalized head.
Still and all, not much attention has been paid to reconstructing human heads on a lifelong scale. The
most related work to our project is PersonNeRF ( Weng et al. (2023)), which is driven from NeRF-
W Martin-Brualla et al. (2021) to model personalize space for the human body across several years’
data. However, this method assumes a person’s body shape is roughly identical across years, which
limits its scalability to lifelong settings. Beyond that, human head modeling is more challenging than
body in terms of high-fidelity details and fine-grained capturing like subtle expression.

A.2 BUILDING A LIFE LONG PERSONALIZED SPACE

In Sec. 3.5 of the main paper, we introduce our approach for constructing a personalized space with
full-scale animation in a disentangled manner. In this section, we further elaborate on how we realize
the animation of each dimension within this personalized space.

Lifestage. During training, our pipeline learns different blending weights {ω}Ni=1 for data in different
lifestages. After training, we can adjust these weights to drive the lifestage in a disentangled manner.
Fig. 10 illustrates the appearance diversity of individuals as they progress through different lifestages.
This demonstrates the effectiveness of our pipeline in capturing a person’s identity across different
moments in their life.

Expression. To achieve expression and shape changes of the character while maintaining a consistent
appearance, we use a motion warping field inspired by INSTA Zielonka et al. (2023). By manipulating
expression parameters, we can update both the tracked mesh and the transformation matrix that maps
from canonical space to deformation space. This enables us to achieve the desired expression-based
warping.

Shape. As the FLAME mesh can be driven by expression and shape parameters in a disentangled
manner, our head avatar can also be animated by shape with the same approach as expression.

Novel view. The Gaussian Splatting, as a type of 3D representation, can be rendered with arbitrary
camera pose.
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A.3 IMPLEMENTATION DETAILS

We apply the end-to-end training manner with Gaussian Surfels as our basis representation. Instead
of SfM Schönberger & Frahm (2016) based initializing in 3DGS Kerbl et al. (2023) and Gaussian
Surfels Dai et al. (2024), we leverage the FLAME template and initialize the Gaussian kernel on
its surface, with one Gaussian kernel on the center of each triangle face. The initialization of other
attributes follows the original 3DGS implementation. All the components, including Neural Head
Basis, Residual embedding, and deformation networks, join to start the end-to-end formal training for
30000 iterations. Please refer to Tab. 3 for detailed hyperparameters of TimeWalker setting during
the training process. We follow Wu et al. (2023a) and apply the same initial learning rate and rate
scheduler for all network components and Gaussian attributes. We use a single NVIDIA A100 GPU
to train the model, and it costs 3 ∼ 4 hours on average for the whole training process.

Warm Up. Prior to formal training, we incorporate a warm-up phase wherein we utilize a person’s
data across all his/her lifestages to individually optimize this set of Gaussian kernels, without including
the Neural Head Basis module to learn moment-specific features. In this way, the Gaussian kernels
in canonical space are solely optimized to accommodate multiple lifestages, approaching a mean
representation. This approach offers the benefit of enabling the Gaussian kernels to promptly learn
the mean head of a person in long-horizon time periods, thereby significantly expediting subsequent
training convergence. Following the warm-up phase, we commence optimizing the neural head base
while simultaneously fine-tuning the Gaussian Surfels to enhance the mean head representation. This
optimization process ensures that both the neural head base and the Gaussian Surfels continually
improve and refine the overall representation. The warmup phase lasts for 5000 iterations before the
formal training, with applying all loss items except deform regulation.

Table 3: Hyperparameters during training process.

Type Parameter Value

Hashgrid Müller et al. (2022)

Number of levels 16
Hash table size 218

Number of features per entry 8
Coarsest resolution 16
Finest resolution 2048

Dynamo(Sec. 3.2.2)
Perset threshold κ 0.0001
Start iterations Q 10000
Iteration interval q 10000

Weight of loss(Eq. 6)

RGB loss(mouth&eye region) λr 40.0
RGB loss(otherwise) λr 1.0

SSIM loss λs 1.0
LPIPS loss λl 1.0
Depth loss λd 1.25

Normal loss λn 1.0
Consistency loss λc 1.0

Regulation λreg 0.01

A.4 TIMEWALKER-1.0

When modeling a lifelong head avatar, existing open-source datasets are limited by a lack of life-
stage variations and insufficient data scale, please refer to A.4.3 for the details. To fill this data
requirement, we construct a large-scale and high-resolution head dataset of the same individual at
different lifestages. In the following section, we will first introduce the construction pipeline of
our TimeWalker-1.0 in A.4.1. Then we demonstrate the comprehensiveness of it in lifelong head
modeling through Statistics Analysis ( A.4.2) and Comparison with Other Datasets ( A.4.3).

A.4.1 TIMEWALKER-1.0 CONSTRUCTION

The data collection process involves the following steps. Initially, we query high-quality videos from
YouTube with resolutions greater than 1080P using predefined search prompts to gather a variety
of person-specific videos that exhibit diversity in content and appearance. Additionally, for movie
stars, we collect their movie sources as supplementary data. Subsequently, an automated video
pre-processing pipeline is developed to extract headshots. This involves the detection and cropping
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Table 4: Dataset comparison. We compare TimeWawlker-1.0 with face datasets from “Lifestage”, “Identity”,
“Age”, “Expression”, “Frame Count”, “Ethnicity”, and “Accessory”.

Realism Diversity
Dataset Resolution Lifestage ID Age Expression Frame Count Ethnicity Accessory

FFHQ Karras et al. (2019) 1024×1024 ✕ - - ✕ 70k ✓ ✓
CACD Chen et al. (2014) <512×512 ✓ 2k 16-62 ✓ 163k - -
HRIP Liang et al. (2016) 414×464 ✓ 4 - ✓ 4k ✕ ✕

INSTA Zielonka et al. (2023) 512×512 ✕ 12 - ✓ <54k ✕ ✕
RenderMe-360 Pan et al. (2024) 2448×2048 ✕ 500 8-80 ✓ >243M ✓ ✓

TimeWalker-1.0 1024×1024 ✓ 40 20-80 ✓ 2.7M ✓ ✓

of human faces from the raw videos, achieved by leveraging a pretrained face recognition model to
isolate frames featuring the target individual. Following this step, aesthetic assessment models such
as HPSv2 Wu et al. (2023b) and LIQE Zhang et al. (2023b) are employed to sift out low-quality head
photos from the pool of selected images. Ultimately, the filtered output undergoes a manual review
by human evaluators to ensure that the retained headshots meet the requisite quality standards.

A.4.2 STATISTICS

TimeWalker-1.0 consists of 40 celebrities’ lifelong photo collections, with each celebrity containing
diverse variations over different lifestages(e.g., shape, headpose, expression, and appearance). The
data volume ranges from 15K to 260K for each celebrity.

We delve into an in-depth exploration of the data distribution within the dataset. (1) Attributes: The
statistical analysis of the overarching human-centric attributes is delineated in Figure 7, showcasing a
broad spectrum of attribute distribution following a long-tail pattern. (2) Brightness: The brightness
is calculated by averaging the pixels and then converting them to “perceived brightness” Bezryadin
et al. (2007). The lower variance of brightness indicates a more similar luminance within the video
clip. We analyze the brightness variance from two perspectives: the video level and the celebrity
level, where the video level calculates the inter-video brightness variance of the whole dataset while
the celebrity level assesses the brightness variance of all the videos belonging to the same celebrity.
As depicted in Fig. 8, the collected dataset shows relatively flat changes over inter-video brightness
variance, and possesses more diverse lighting changes in each life-long ID. While comparing the
inter-video brightness variance with the conventional testbed INSTA dataset for single appearance
reconstruction, our dataset embraces more challenges with larger diversity and wider spectrum. (3)
Age, Gender, and Headpose: As shown in Fig. 9, we demonstrate the age distribution of the
TimeWalker-1.0, which indicates our dataset has a balanced age distribution without being biased
towards certain age group. Moreover, the dataset includes celebrities of multiple ethnicities (Brown,
Yellow, White, and Black). The headpose distribution graph in Figure 9 underscores the diverse range
of captured head poses, ideal for the reconstruction of 3D head avatar.

A.4.3 COMPARISON WITH OTHER DATASETS

We also compare our TimeWalker-1.0 with other datasets to show its superiority. As shown in Tab. 4.
The previous dataset either concentrates on 2D head photo generation without 3D supervision, such
as FFHQ Karras et al. (2019), or records videos of a specific life-stage where the shape varies are not
disputed, such as RenderMe-360 Pan et al. (2024) and INSTA Zielonka et al. (2023). In addition, early
datasets like CACD Chen et al. (2014) and HRIP Liang et al. (2016) collect cross-age celebrity data
for face recognition and rough head shape modeling. Their data scale and image resolution severely
limit them from being implemented for life-long head avatars. Therefore, our TimeWalker-1.0 dataset,
stands out in life-stage avatar modeling for its high image resolution, large-scale, wide age range,
diverse ethnicity, and most importantly across life-stage data groups.

A.5 EXPERIMENTS

A.5.1 PERSONALIZED SPACE VISUALIZATION

Lifestage. Fig. 10 demonstrates several individuals with their different lifestages. In part (a) it shows
the model’s ability to walk through long age period of a person without losing rendering realism,
and to represent multiple appearances with diverse skin color. We own this to our powerful Neural
Head Basis module which is capable of learning intrinsic features as well as appearance deformation.
The disentangled design of neural deformation field and motion warping field enables changing the
lifestage but keeping other dimensions like shape, pose and expression unchanged. In part (b), we
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Figure 7: Statistics: Attributes. The attribute statistics of TimeWalker-1.0 reveal a wide spectrum of attribute
distribution characterized by a long-tail pattern.

37 58 79

98 119 134

Figure 8: Statistics: Brightness Variance. The left part represents the inter-video brightness variance of the
dataset, while the right part shows the luminance condition across the whole videos of the same celebrity. The
right part illustrates that our dataset enjoys more diverse lighting changes than the INSTA Zielonka et al. (2023)
dataset.

Figure 9: Statistics: Age, Ethnicity, and Headpose. The selected videos showcase a diverse range of ages,
ethnicities, and headposes. We divide the headpose into 12 clusters with each covering an angle range of 15◦
and we calculate the ratio of each cluster to the total number of headposes as shown in the right figure.
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Age periods

(a) Rendering results along the axis of different age periods in Hugh Jackman’s (Upper)/Matt Damon’s (Down) personalized space, with fixed expression, camera view, and headpose   

(b) Rendering results of Michelle Yeoh (Upper)/ Jackie Chan (Down) under different age periods 

Figure 10: Personalized Space: Lifestage. We demonstrate multiple individuals and their replicas in different
lifestages. (a) We adjust the value in Dynamo to animate the lifestages of individuals, but keep other animation
values unchanged. (b) We show the lifestages of more individuals with another ethnicity.

showcase the model’s capacity to delineate lifestages within a personalized space across different
ethnicities and genders.

A.5.2 COMPARISONS WITH STATE-OF-THE-ARTS

Baseline. We compare our method with state-of-the-art animatable head avatar generation methods
and also neural rendering methods, extending from Tab. 1. INSTA Zielonka et al. (2023) stands out for
its ability to generate high-quality head avatars rapidly, leveraging a multi-resolution hashgrid defined
in canonical space to store learned features. For ray points in deformed space, INSTA identifies the
nearest triangles of the FLAME tracked mesh and computes the transformation matrix between the
tracked mesh and the template mesh. Subsequently, the points are warped back to canonical space,
enabling the animation of the avatar using FLAME expression parameters by updating the tracked
mesh. To the best of our knowledge, existing state-of-the-art methods for animatable head avatars do
not focus on animating the head across diverse time periods. Therefore, in our experiments, we extend
the INSTA method to INSTA++, enabling it to capture multiple lifestages within a single model.
Concretely, we introduce a per-lifestage learnable latent code as a supplementary condition to the
density MLP, enabling the storage of lifestage-specific latent information. FlashAvatar Xiang et al.
(2024) integrates the Gaussian representation with a 3D parametric model by initializing Gaussian
points on a 2D UV texture map attached to the mesh surface. It employs a small MLP network
conditioned on the Gaussian canonical position and expression code to learn the Gaussian offset,
thereby enabling motion driven by facial expressions. Gaussian-Surfels Dai et al. (2024) aims
to solve the inherent normal and depth ambiguity of 3DGS by cutting one dimension of gaussian
ellipsoid, and can reconstruct the dense mesh without losing the realism of static scene rendering.
After training, a Poisson mesh with post-process is applied to extract the dense mesh. Notably,
although Gaussian Surfels was not specifically designed for animatable head avatars, we include
it in our comparison since TimeWalker has adapted the Gaussian Surfels representation for mesh
reconstruction, making it a relevant baseline for our evaluation. We further extend the Gaussian-
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Flash
Avatar(1)  

GT               

INSTA
(1) 

 INSTA++(1)

Figure 11: Qualitative comparison with SOTA with #Protocol-1(1 vs 1). All methods, including both ours
and the baselines, involve training a single model for each individual, encompassing various lifestages.

surfels to Gaussian-Surfels++, a dynamic version to handle motion driven by expression changes.
Specifically, we heuristically introduce an MLP-based warping field with expression parameters as
conditions, to learn the non-rigid motion in terms of Gaussian attribute shifts.

Evaluation Protocol. We select five representative identities from our TimeWalker-1.0 dataset,
each comprising 8-13 lifestages with 8000-20000 frames in total(500-3000 frames for each lifestage).
To ensure a balanced evaluation, we address the uneven frame distribution among appearances by
allocating the last 10% of frames (capped at 150 frames) from each appearance as the test set and the
remaining frames as the training set. This results in evaluating each identity with approximately 800-
1300 frames. To further validate the robustness of our method, we conduct an additional experiment
on the open-source INSTA dataset, which features 9 subjects with diverse appearances. In our setup,
we treat different individuals as distinct appearances of the same person, thereby covering all 9
subjects with a single model. We conduct experiments with two protocals – In 1) #Protocol-1 (1 vs 1
Comparison) We train a separate model for each identity, encompassing multiple lifestages. This
protocol evaluates the performance of INSTA, INSTA++, and FlashAvatar. In 2) #Protocol-2 (1 vs
N Comparison) Our model maintains the same pipeline setup as #Protocol-1, but for the baseline
models (INSTA, FlashAvatar, Gaussian Surfels, and Gaussian Surfels++), we train one model for
each lifestage, allowing multiple models for one identity. This allows us to compare the results of
our pipeline using a single model against the baseline using multiple models. For evaluation metrics,
we utilize three paired-image metrics to assess the quality of individual generated frames: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) and Learned Perceptual Image Patch
Similarity (LPIPS). The mean value of each metric is calculated across the test set.

Results. Quantitatively, as shown in Tab. 5 and Tab. 6, our method achieves the best results in
the #Protocol-1, and best or second best results in the #Protocol-2 on both our TimeWalker-1.0
dataset and opensource INSTA dataset. Based on the results presented in Tab. 5, our method
significantly outperforms other baselines in both protocols when assessed using TimeWalker-1.0.
Although INSTA++ shows considerable enhancements post multi-lifestage adaptation, there remains
a noticeable gap compared to our approach, underscoring the necessity of meticulously designing our
pipeline for creating high-fidelity lifestage replicas. In the 1 vs N Comparison, our results remain
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Flash
Avatar(n)  
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Figure 12: Qualitative comparison with SOTA with #Protocol-2(1 vs N). In this setting, our method trains one
model for one individual across multiple lifestages, while the baselines train multiple models for one individual,
i.e., one model for each lifestage.

competitive, with lower LPIPS values. Similar trends are observed in Tab. 6, where our method
surpasses all baselines in #Protocol-1 and delivers competitive outcomes in #Protocol-2. Notably,
most pipelines exhibit superior performance in the publicly available INSTA dataset, but they exhibit
lower performance in our TimeWalker-1.0 dataset. This disparity can be attributed to the distinct
characteristics of the two datasets. The INSTA dataset is curated in a controlled lab environment
with consistent lighting conditions, pre-defined head motions, and expressions. In contrast, the data
in TimeWalker-1.0 is gathered from real-world scenarios, introducing greater variability in lighting,
appearance, accessories, etc. This increased diversity poses significant challenges for constructing
personalized spaces.

In Fig. 11, it can be observed that methods like INSTA Zielonka et al. (2023) and FlashAvatar Xiang
et al. (2024) struggle to handle appearance variations, resulting in disruptions and blurry outcomes.
Even the multi-lifestage extended INSTA++ produces unsatisfactory results with artifacts noticeable
in high-frequency areas such as the eyes. Conversely, our method produces rendering outcomes with
reduced blurriness and artifacts, showcasing the effectiveness of the pipeline. In #Protocol-2, as
indicated Fig. 12, our method showcases the ability to adapt to varying appearances despite being
trained with unstructured data. This adaptability enables our method to effectively manage appearance
changes of different shapes, yielding competitive outcomes comparable to models trained on singular
appearances.

We further compare our method with GANAvatar Kabadayi et al. (2023), a generative head avatar
model, to reveal whether the current generative model paradigm is capable of modeling personalized
space in the lifelong scale. GANAvatar Kabadayi et al. (2023) utilizes a two-stage training scheme for
3D head avatar, where it firstly leverages a 3D-aware generative model for personalized appearance
reconstruction by training on corresponding 2D images. Then a mapping module driven by 3DMM
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facial expression parameters is employed for achieving facial expression control on the personalized
generative model. As shown in Tab. 7, our method achieves superior quantitative results compared
to GANAvatar Kabadayi et al. (2023) on both #Protocol-1 and #Protocol-2, while demonstrating a
similar performance trend on the INSTA and TimeWalker-1.0 datasets as the aforementioned baselines.
The visual comparisons presented in Fig. 14 indicate that, in the 1 vs N Comparison, GANAvatar
struggles with illumination and texture details (e.g., the eyebrows). In the 1 vs 1 Comparison,
GANAvatar performs even worse, as it is a personalized generative model that can not effectively
manage life-stage appearance variations. As illustrated in block (a) of Fig. 15, the model trained on
celebrity life-stage data fails to generate a consistent identity as the 1 vs N Comparison. Additionally,
we find that the expression mapping module tends to overfit to specific appearances, as depicted in
Fig. 15 block (b). Therefore, single appearance-based methods, like GANAvatar, are not suitable for
life-stage head avatar modeling.

Table 5: Quantitative Evaluation on TimeWalker-1.0. We evaluate our method with two different protocols.
The Upper table demonstrates #Protocol-1 (1 vs 1 Comparison), while the Lower table shows #Protocol-2 (1 vs
N Comparison). Pink indicates the best and orange indicates the second.

Protocol Method PSNR↑ SSIM↑ LPIPS↓

1 vs 1 Comparison
INSTA Zielonka et al. (2023) 20.68 0.697 0.299

INSTA++ 26.39 0.879 0.139
Flash Avatar Xiang et al. (2024) 22.14 0.771 0.267

Ours 27.28 0.949 0.071

1 vs N Comparison

Gaussian Surfels Dai et al. (2024) 26.98 0.950 0.141
Gaussian Surfels++ 27.61 0.948 0.134

INSTA Zielonka et al. (2023) 25.47 0.86 0.170
Flash Avatar Xiang et al. (2024) 24.9 0.848 0.165

Ours 27.28 0.949 0.071

Table 6: Quantitative Evaluation on INSTA Data. We evaluate our method with two different protocols. The
Upper table demonstrates #Protocol-1 (1 vs 1 Comparison), while the Lower table shows #Protocol-2 (1 vs N
Comparison). Pink indicates the best and orange indicates the second.

Protocol Method PSNR↑ SSIM↑ LPIPS↓

1 vs 1 Comparison
INSTA Zielonka et al. (2023) 19.52 0.682 0.308

INSTA++ 27.74 0.915 0.09
Flash Avatar Xiang et al. (2024) 26.98 0.925 0.097

Ours 28.57 0.966 0.056

1 vs N Comparison

Gaussian Surfels Dai et al. (2024) 27.32 0.969 0.121
Gaussian Surfels++ 27.96 0.965 0.123

INSTA Zielonka et al. (2023) 26.98 0.935 0.077
Flash Avatar Xiang et al. (2024) 28.15 0.925 0.096

Ours 28.57 0.966 0.056

Table 7: Quantitative Evaluation with Generative Method. We evaluate our method with a generative method,
GANAvatar Kabadayi et al. (2023). Pink indicates the best.

TimeWalker-1.0 INSTA Data
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GANAvatar(1 vs 1) 15.40 0.809 0.227 18.15 0.832 0.172
GANAvatar(1 vs N) 18.44 0.852 0.151 24.76 0.900 0.0637

Ours 27.28 0.949 0.071 28.57 0.966 0.056

A.5.3 MESH COMPARISON

The effectiveness of our mesh reconstruction pipeline is evaluated through a comparison of meshes
extracted from various pipelines: Colmap Schönberger & Frahm (2016), INSTA++, Gaussian
Surfels Dai et al. (2024), and our own methodology. Data from a single lifestage is provided to
Colmap and Gaussian Surfels, tailored for static scene reconstruction. Conversely, our pipeline
and INSTA++, designed for handling multiple lifestages, receive all data of an individual. As
demonstrated in Fig. 13, our pipeline successfully reconstructs the head mesh with precise shape,
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Figure 13: Static Mesh Comparison. We visualize and compare static mesh reconstruction results from
Gaussian Surfels Dai et al. (2024) and Ours (adaptive version of GS with DNA-2DGS). We render the meshes in
both frontal and side views using Blender software under identical rendering conditions. Despite these consistent
settings, rendering results exhibit significant differences due to the diverse topologies of the meshes.

while the original Gaussian Surfel and Colmap fail to derive a meaningful mesh. This disparity is
partly attributed to the restricted data from a single appearance and camera pose. Both pipelines
struggle to recreate a plausible head mesh without prior knowledge of human head anatomy, given
that monocular reconstruction is inherently an ill-posed problem. In contrast, our mesh reconstruction,
utilizing data from multiple lifestages to encompass a broader spectrum of head poses and camera
angles, achieves superior quality with more accurate surface details. Although INSTA++ can also
reconstruct a plausible head mesh, it exhibits a higher level of noise. This comparison underscores
the efficacy of our DNA-2DGS component in reconstructing head meshes from unstructured photo
collections.

Time cost in meshing process. In the context of single mesh generation, our approach necessitates
approximately 10 minutes, a timeframe comparable to or longer than that required by Gaussian
Surfels and INSTA++. Notably, our methodology exhibits a notable advantage in the creation
of mesh sequences, as we leverage direct animation of the static mesh to generate a new mesh.
In contrast, Gaussian Surfels and INSTA++ are compelled to iteratively execute the entire mesh
generation process, leading to a linear growth in time consumption. Colmap’s inability to generate
mesh sequences stems from its requirement of the complete sequence to reconstruct a single mesh.

A.5.4 MORE ID RESULTS

To show the generalization and effectiveness of our pipeline, we demonstrate more individual results
from different genders and ethnicities in Fig. 16.

A.6 APPLICATION

3D Editting. To confirm the validity of our neural parametric model that produces 3D consistent and
personalized outcomes, we conduct additional experiments in the 3D head editing application. We
evaluate the results of our Gaussian Surfels-based approach by referring to DGE Chen et al. (2024),
which performs direct 3DGS editing with a pre-trained diffusion model while maintaining multi-view
consistency. During the optimization, we switch the representation to Gaussian Surfels and keep the
other settings unchanged from the original implementation. Fig. 17 presents a visual comparison of
the re-rendered results, based on various editing prompts, highlighting the 3D consistency achieved by
our method. The direct editing method fails to disentangle animated expressions (as can be observed
from the visual result of the text prompt: "Add smile"), and it also undergoes other unforeseen
changes, such as alterations in skin color. In contrast, our method executes disentangled and fine-
grained multi-dimensional animation. Focusing on the final column of the illustration, the editing
performance of the original implementation (DGE with 3DGS) within our TimeWalker-1.0 dataset
exhibits shortcomings, primarily attributed to the following factors. Primarily, noticeable blurring
is evident in both the original rendering and the edited output, particularly pronounced in the facial
features such as the eyes and mouth. Given that 3DGS is designed to handle static objects rather
than dynamic data sequences, areas that undergo frequent modifications lead to inconsistencies and
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GT               

GANAvatar(n)

GANAvatar(1)

Figure 14: Qualitative Comparison with Generative Method. Symbol (1) in figure means train one model for
each individual, symbol (n) means train N models for each individual, i.e., one model for each lifestage.

(a) (b)

Figure 15: Sampled Results of GANAvatar. In the #Protocal-1, (a) GANAvatar struggles to generate consistent
identity, which is rooted in (b) the expression mapping network overfits on different lifestages. Even close
expressions could generate quite different head images.

Angelina 
Jolie

Daniel 
Jacob 
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Emma 
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Figure 16: More sampled ID result. We visualize more individuals with different genders.
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Text Prompt: Make the man wear one fashion sunglass

Text Prompt: Add curly short red hair

Text Prompt: Make the man wear white beard

Origin Rendering from TimeWalker

Text Prompt: Add smile

Ours + DGE 3DGS + DGE

Figure 17: Visualization of Downstream Application on 3D Editing with DGE. We present the editing
outcomes elicited by a variety of text prompts. The upper two examples illustrate the capability of DGE Chen
et al. (2024) method to introduce new elements to the human head model, while the lower two examples illustrate
how it functions when altering the attributes of head components. We compare the editing results between our
models with DGE, and the original 3DGS with DGE.

produce blurred outcomes. Furthermore, the inadequate diversity in camera pose distribution within
the training data at a single lifestage results in depth ambiguity, notably observable in the neck region.
This issue persists after 3D editing, manifesting as discontinuities and dark artifacts encircling the
neck. In contrast, our model effectively addresses this challenge through the automated interpolation
of data from various lifestages during training, resulting in a more coherent geometric representation.

A.7 BROADER IMPACT

In this study, our objective is to accurately generate images of an individual, focusing solely on
rendering head avatars and seamlessly altering their appearance within a predefined set of lifestages.
It is noteworthy that our work does not endeavor to create fictitious motions or animations; rather,
we strive to faithfully represent the subject’s appearance and visible views. Due to its sensitivity, we
strictly obey the non-commercial license for the dataset and will take more necessary items before it
is released.

25


	Introduction
	Related Works
	TimeWalker
	Preliminaries
	Personalized Neural Parametric Model
	Neural Linear Combination Space
	Neural Head Basis

	Dynamic 2D Gaussian Splattings (DNA-2DGS)
	Dynamic Gaussian Rendering
	Dynamic Gaussian Meshing

	Training
	Building a Life Long Personalized Space

	Experiments
	Datasets
	Reenactment
	Ablation Studies

	Discussion
	Appendix
	Additional Related Work
	Building a Life Long Personalized Space
	Implementation Details
	TimeWalker-1.0
	TimeWalker-1.0 Construction
	Statistics
	Comparison with Other Datasets

	Experiments
	Personalized Space Visualization
	Comparisons with State-of-the-Arts
	Mesh Comparison
	More ID Results

	Application
	Broader Impact


