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Abstract001

Retrieval Augmented Generation (RAG) frame-002
works have shown significant promise in lever-003
aging external knowledge to enhance the per-004
formance of large language models (LLMs).005
However, conventional RAG methods often re-006
trieve documents based solely on surface-level007
relevance, leading to many issues: they may008
overlook deeply buried information within indi-009
vidual documents, miss relevant insights span-010
ning multiple sources, and are not well-suited011
for tasks beyond traditional question answering.012
In this paper, we propose Insight-RAG, a novel013
framework designed to address these issues. In014
the initial stage of Insight-RAG, instead of us-015
ing traditional retrieval methods, we employ016
an LLM to analyze the input query and task,017
extracting the underlying informational require-018
ments. In the subsequent stage, a specialized019
LLM—trained on the document database—is020
queried to mine content that directly addresses021
these identified insights. Finally, by integrating022
the original query with the retrieved insights,023
similar to conventional RAG approaches, we024
employ a final LLM to generate a contextually025
enriched and accurate response. Using two sci-026
entific paper datasets, we created evaluation027
benchmarks targeting each of the mentioned028
issues and assessed Insight-RAG against tradi-029
tional RAG pipeline. Our results demonstrate030
that the Insight-RAG pipeline successfully ad-031
dresses these challenges, outperforming exist-032
ing methods by a significant margin in most033
cases. These findings suggest that integrating034
insight-driven retrieval within the RAG frame-035
work not only enhances performance but also036
broadens the applicability of RAG to tasks be-037
yond conventional question answering. We will038
release our dataset and code.039

1 Introduction040

Recent advancements in large language models041

(LLMs) have spurred renewed interest in Retrieval042

Augmented Generation (RAG) frameworks (Gao043

Figure 1: In conventional RAG, using a retriever model,
we first retrieve relevant documents to answer a question.
In contrast, in Insight-RAG, we first identify necessary
insights to solve the task (e.g., answering a question),
and then feed the identified insights to an LLM con-
tinually pre-trained over the documents to extract the
necessary insights before feeding them to the final LLM
to solve the task.

et al., 2023; Fan et al., 2024). RAG has emerged 044

as a powerful solution for mitigating inherent chal- 045

lenges in LLMs—such as hallucination and the 046

lack of recent information—by integrating exter- 047

nal document repositories with retrieval models 048

to produce contextually enriched responses. How- 049

ever, conventional RAG pipelines typically rely on 050

surface-level relevance metrics for document re- 051

trieval, which can result in several limitations: they 052

may overlook deeply buried information within 053

individual documents and miss relevant insights 054

distributed across multiple sources. Beyond these 055

retrieval challenges, traditional RAG frameworks 056

lack well-defined solutions for tasks that extend 057

beyond standard question answering. 058

Traditional retrieval mechanisms often fail to 059

capture the nuanced insights required for complex 060

tasks (Barnett et al., 2024; Agrawal et al., 2024; 061

Wang et al., 2024). For example, they may over- 062

look deeply buried details within a single docu- 063

ment—such as subtle contractual clauses in a le- 064
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gal agreement or hidden trends in a business re-065

port—and may neglect relevant insights dispersed066

across multiple sources, like complementary per-067

spectives from various news articles or customer068

reviews. Moreover, these methods are not well-069

equipped for tasks beyond straightforward question070

answering, such as identifying the best candidate071

for a job by leveraging insights from a database072

of resumes or extracting actionable recommenda-073

tions for business strategy from qualitative feed-074

back gathered from surveys and online reviews.075

In this paper, we propose Insight-RAG—a novel076

framework that refines the retrieval process by in-077

corporating an intermediary insight extraction step078

(see Figure 1). In the first stage, an LLM analyzes079

the input query and extracts the essential informa-080

tional requirements, effectively acting as an intel-081

ligent filter that isolates critical insights from the082

query context. This targeted extraction enables083

the system to focus on deeper, task-specific con-084

text. Subsequently, a specialized LLM continually085

pre-trained (Ke et al., 2023) with LoRA (Hu et al.,086

2021; Zhao et al., 2024a; Biderman et al., 2024)087

(CPT-LoRA) on the target domain-specific corpus088

leverages these identified insights to retrieve highly089

relevant information from the document database.090

Finally, the original input—now augmented with091

these carefully retrieved insights—is processed by092

a final LLM to generate a context-aware response.093

To evaluate Insight-RAG, we use two scientific094

paper datasets—AAN (Radev et al., 2013) and095

OC (Bhagavatula et al., 2018)—and create tailored096

datasets to address each RAG aforementioned chal-097

lenge. We sample 5,000 papers from each dataset098

using a Breadth-First Search strategy and extract099

triples with GPT-4o mini (Hurst et al., 2024), fol-100

lowed by manual/rule-based filtering and normal-101

ization. For the deeply buried information chal-102

lenge, we focus on subject-relation pairs that yield103

a single object, selecting only those triples where104

both the subject and object appear only once in105

each document. For the multi-source challenge,106

we choose subject-relation pairs that yield multiple107

objects from different documents. We then, manu-108

ally filter the samples after translating each triple109

into a question using GPT-4o mini. Finally, for the110

non-QA task challenge, we use the matching labels111

between papers, capturing the citation recommen-112

dation task, provided by Zhou et al. (2020).113

By adopting five state-of-the-art LLMs to com-114

pare Insight-RAG with the conventional RAG ap-115

proach, we observe that Insight-RAG can achieve116

up to 60 percentage points improvement in accu- 117

racy with much less contextual information, for 118

both deeply buried and multi-source questions. 119

Moreover, we observe that for non-QA tasks such 120

as paper matching, Insight-RAG consistently helps 121

improve performance by up to 5.4 percentage 122

points in accuracy, while using RAG shows mixed 123

results, sometimes increasing and sometimes de- 124

creasing the performance. Through various abla- 125

tion studies, we then connect models behavior to 126

the performance of different components in the 127

pipelines, paving the way for future applications of 128

Insight-RAG. 129

2 Insight-RAG 130

In this section, we detail our proposed Insight-RAG 131

framework, which consists of three key units de- 132

signed to overcome the limitations of conventional 133

RAG approaches (see Figure 1). By incorporating 134

an intermediary insight extraction stage, our frame- 135

work captures nuanced, task-specific information 136

that traditional methods often miss. The pipeline 137

comprises the following units: 138

Insight Identifier: The Insight Identifier unit pro- 139

cesses the input to extract its essential informa- 140

tional requirements. Serving as an intelligent filter, 141

it isolates critical insights from both the input and 142

the task context, ensuring that subsequent stages 143

concentrate on deeper, necessary content. To fa- 144

cilitate this process, we employ LLMs guided by 145

a carefully designed prompt (provided in the Ap- 146

pendix). 147

Insight Miner: Inspired by previous work 148

(Pezeshkpour and Hruschka, 2025), the insight 149

miner unit leverages a specialized LLM to fetch 150

content for the insights identified earlier. We 151

adopt Llama-3.2 3B (Grattafiori et al., 2024) as 152

our insight-miner, continually pre-training it with 153

LoRA (Zhao et al., 2024a; Biderman et al., 2024) 154

over our scientific paper datasets. In line with 155

the previous work on insight mining (Pezeshkpour 156

and Hruschka, 2025), we continually pre-train the 157

model on both the original papers and the extracted 158

triples from them (see Section 3). This continual 159

pre-training enables the insight-miner to retrieve 160

highly relevant information to the task. 161

Response Generator: The final unit, response 162

generator, integrates the original query with the re- 163

trieved insights and employs a final LLM to gener- 164

ate a comprehensive, context-aware response. Fol- 165

2



Figure 2: We create our benchmark in several steps: 1) extracting triples from domain-specific documents using
GPT-4o mini and then manually normalizing/filtering them, 2) filtering the triples for each different type of issue, 3)
using GPT-4o mini to translate the sampled triples to question format, asking about the object of the triple.

lowing the conventional RAG approach, this aug-166

mented input allows the model to produce outputs167

that are both accurate and enriched by the addi-168

tional insights. The prompt used for this stage is169

provided in the Appendix.170

3 Benchmarking171

To evaluate the performance of our Insight-RAG172

framework, we employ two scientific paper’s ab-173

stract datasets—AAN and OC (provided by Zhou174

et al. (2020))—to create tailored evaluation bench-175

marks that address specific challenges encountered176

in conventional RAG pipelines. Figure 2 provides177

an overview of our process for creating the bench-178

marks. Below, we outline our benchmarking pro-179

cess for each identified issue. Data statistics are180

shown in Table 1, and the prompts used are pro-181

vided in the Appendix.182

Deeply Buried Insight: In here, our focus is on183

the challenge of capturing deeply buried informa-184

tion within individual documents. We begin by185

sampling 5,000 papers from each dataset using a186

Breadth-First Search (BFS) strategy. From these187

papers, following previous works (Papaluca et al.,188

2023; Wadhwa et al., 2023), we use GPT-4o mini to189

extract triples (we used the same prompt provided190

in Pezeshkpour and Hruschka (2025)), followed by191

manual/rule-based filtering and normalizing the re-192

lations. Then, we select subject-relation pairs that193

yield a single object and ensure that both the sub-194

ject and the object appear only once in the paper’s195

AAN OC

# Docs 5,000 5,000
# Triples 21,526 23,662
# Deep-Insight Samples 318 403
# Multi-Source Samples 173 90
# Matching Samples 500 500

Table 1: Data statistics of the created benchmark.

abstract. This constraint guarantees that the ex- 196

tracted information is deeply buried and not overly 197

prominent, thereby testing the framework’s ability 198

to capture subtle details. We then convert the cu- 199

rated triples into question formats using GPT-4o 200

mini—which generates questions about the object 201

based on the subject-relation pair—and manually 202

filtered them for quality. 203

Multi-Source Insight: To assess the capability 204

of Insight-RAG in synthesizing information from 205

multiple sources, we incorporate the extracted 206

triples from the papers. More specifically, we fo- 207

cus on subject-relation pairs that yield multiple 208

objects drawn from different papers, thereby sim- 209

ulating scenarios where relevant insights are dis- 210

tributed across various sources. Once the multi- 211

source triples are curated, we convert them into 212

question formats using GPT-4o mini. Acknowl- 213

edging that some extracted triples may be noisy or 214

vague (e.g., constructs like "<we, show, x>"), we 215

manually filter the questions to ensure quality. 216

Non-QA Task: The third benchmark addresses 217

tasks beyond traditional question answering, specif- 218
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ically evaluating the framework’s applicability for219

citation recommendation. For this benchmark, we220

leverage the matching labels between papers pro-221

vided by Zhou et al. (2020), which capture the222

citation recommendation task. Our goal is to de-223

termine if the insights extracted from a document224

database can effectively support solving arbitrary225

tasks on inputs that share similarities with the doc-226

uments, thereby extending the RAG framework’s227

utility to a variety of real-world applications.228

4 Experimental Details229

We employ several state-of-the-art LLMs as in-230

tegral components of the Insight-RAG pipeline:231

GPT-4o (Hurst et al., 2024), GPT-4o mini, o3-232

mini (OpenAI, 2025), Llama3.3 70B (Grattafiori233

et al., 2024), and DeepSeek-R1 (Guo et al., 2025).234

For the Insight Miner unit, we adopt Llama-3.2235

3B as our insight-miner, continually pre-trained236

with LoRA on domain-specific scientific papers237

and extracted triples. We hyperparameter-tuned238

the Llama-3.2 3B model based on loss, with addi-239

tional training and datasets details provided in the240

Appendix. Moreover, in the Insight-RAG pipeline,241

we use the same LLM for both the Insight Iden-242

tifier and Response Generator. For RAG Base-243

lines, we used LlamaIndex (Liu, 2022) and the244

embedding model gte-Qwen2-7B-instruct (Li et al.,245

2023), which is the open-sourced state-of-the-art246

model based on the MTEB leaderboard (Muen-247

nighoff et al., 2022). Finally, for fair comparison,248

we limit the insight miner’s maximum generated249

token length to 100 tokens for both datasets, which250

is less than the average document token length of251

134.6 and 226.4 for AAN and OC, respectively. We252

observe that further increasing the maximum gen-253

erated token length does not significantly change254

the performance. We evaluate LLM performance255

using accuracy, exact match accuracy (calculated256

by determining if the gold response exactly appears257

in the generated response), and F1 Score (standard258

QA metrics). We also employ Recall@K, which259

measures the proportion of correct predictions in260

the top-k results.261

5 Experiments262

This section investigates the impact of Insight-263

RAG in addressing the aforementioned challenges:264

deeply buried insights, multi-source information,265

and non-QA tasks. We first evaluate LLMs on our266

benchmarks, then analyze model behavior by exam-267

ining each Insight-RAG component and the quality 268

of identified insights. 269

5.1 Answering Questions using Deeply Buried 270

Insights 271

Figure 3 presents the exact match accuracy of 272

Insight-RAG versus conventional RAG using vari- 273

ous LLMs for answering questions based on deeply 274

buried information. First, the zero-shot perfor- 275

mance of all LLMs—i.e., without any context or 276

documents—is very low. This is primarily due to 277

the domain-specific nature of the questions, which 278

leaves the LLMs without the necessary informa- 279

tion to solve the task. Additionally, the questions 280

themselves may be ambiguous or even erroneous 281

when isolated; however, providing the associated 282

document context alleviates these issues. 283

As observed, Insight-RAG, even with only one 284

generated insight from the insight miner, achieves 285

significantly higher performance compared to the 286

conventional RAG approach. Although increas- 287

ing the number of retrieved documents improves 288

the performance of RAG, it still falls considerably 289

short of Insight-RAG. We suspect that the short- 290

comings of the RAG-based solution are due to re- 291

trieval errors (as confirmed in Section 5.4) and dis- 292

crepancies in phrasing between the generated ques- 293

tions and the original text, which negatively impact 294

performance (Modarressi et al., 2025). DeepSeek- 295

R1 performs best, followed by Llama-3.3, both 296

outperforming the OpenAI models. In contrast, o3 297

mini demonstrates the worst performance, primar- 298

ily because it tends to overthink the task, which is 299

reflected in its insight identifier performance (Sec- 300

tion 5.4). 301

We also report F1 performance of models in the 302

Appendix. Surprisingly, we observe that despite the 303

superior performance of DeepSeek in Exact Match, 304

its performance drops significantly in F1. Upon 305

further investigation, we observe that this is mostly 306

due to DeepSeek’s tendency to generate unneces- 307

sary content and occasional hallucinations, espe- 308

cially when the right document is not retrieved (we 309

removed the thinking part of DeepSeek-generated 310

answers to calculate the F1). Other models show 311

similar behavior as in Exact Match, with Llama-3.3 312

70B emerging as the best-performing model. 313

Finally, focusing on DeepSeek-R1 because of its 314

superior performance, we report its RAG-based per- 315

formance when, instead of retrieving documents, 316

we retrieve triples from the set of all extracted 317

triples for each dataset (see the Appendix). We 318
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Figure 3: We compare RAG and Insight-RAG on the AAN and OC datasets for questions based on deeply buried
information. DeepSeek-R1 performs best, followed by Llama-3.3 70B. Insight-RAG, even with a single generated
insight, consistently outperforms RAG by a wide margin. Although retrieving more documents narrows the gap,
Insight-RAG still maintains a clear advantage.

observe that the model shows similar behavior to319

document-based RAG, but with much less context—320

since a triple is much shorter than a document—and321

still falls significantly short compared to Insight-322

RAG performance. This further highlights the323

shortcomings of conventional retrieval approaches324

and the complexity of resolving them.325

5.2 Aggregating Information from Multiple326

Sources327

We present the averaged exact match accuracy (cal-328

culated over gold answers for each sample) of329

Insight-RAG versus conventional RAG using vari-330

ous LLMs for answering questions based on infor-331

mation from multiple sources in Figure 4. While332

using the same number of retrieved documents and333

generated insights, Insight-RAG consistently out-334

performs the conventional RAG approach. More-335

over, Insight-RAG performance increases rapidly336

with only a few generated insights, and then its rate337

of improvement slows down as more generated in-338

sights are added. While more retrieved documents339

improve RAG, it still lags behind Insight-RAG,340

though the gap narrows. Overall performance is341

lower in the multi-source setting than in the deeply342

buried case, but Insight-RAG remains clearly supe-343

rior. DeepSeek-R1 leads, followed by Llama, both344

outperforming OpenAI models. We also report the345

average F1 scores and triple-based RAG perfor-346

mance for DeepSeek-R1 in the Appendix. Notably,347

the performance trends mirror those observed in348

the F1 metrics for questions on deeply buried in-349

formation. For triple-based RAG, we observe a350

degradation in performance—it yields results simi-351

lar to document-based RAG but when using similar352

number of tokens in the context.353

5.3 RAG in Non-QA Tasks 354

In this section, we evaluate RAG-based solutions 355

on a non-question answering task—specifically, a 356

matching task for citation recommendation. For 357

the RAG baseline, we retrieve only one document 358

because the matching task is not well-defined for 359

traditional RAG approaches, and our experiments 360

did not show any improvement when retrieving 361

additional documents. 362

Our results, presented in Table 2, indicate that 363

Insight-RAG consistently outperforms the conven- 364

tional RAG baseline. This improvement is more 365

pronounced on the OC dataset, likely due to the 366

lower zero-shot performance of the LLMs on that 367

dataset. The subjective nature of the matching 368

task (particularly in the AAN dataset) constrains 369

the potential for improvement, resulting in a mod- 370

est performance gain. Furthermore, the RAG 371

baseline demonstrates mixed impacts—yielding 372

both positive and negative effects on model per- 373

formance across different configurations. Notably, 374

the o3 mini achieves the best overall performance, 375

whereas DeepSeek-R1 performs the worst. Upon 376

further investigation, we found that DeepSeek-R1 377

tends to unnecessarily overthink the task, which 378

negatively impacts its performance. These findings 379

underscore the effectiveness of the insight-driven 380

approach in extending RAG to tasks beyond ques- 381

tion answering and highlight the need for tailored 382

retrieval strategies in non-QA contexts. 383

5.4 Components Analysis 384

In this section, we analyze the performance of the 385

two key components of the Insight-RAG frame- 386

work—Insight Identifier and Insight Miner—in ad- 387
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Figure 4: We compare RAG and Insight-RAG on the AAN and OC datasets for multi-source questions. DeepSeek-
R1 performs best, followed by Llama-3.3 70B. Insight-RAG achieves much higher performance with just a few
insights, with improvements slowing as more are added.

Model AAN OC

Vanilla RAG (1 doc) Insight-RAG Vanilla RAG (1 doc) Insight-RAG

GPT-4o mini 80.8 81.6 (+0.8) 82.8 (+2.0) 74.4 70.0 (-4.4) 78.0 (+3.6)
GPT-4o 84.0 80.4 (-3.6) 84.0 (0.0) 71.6 73.6 (+2.0) 74.0 (+2.4)
o3 mini 85.4 85.6 (+0.2) 85.6 (+0.2) 77.0 74.2 (-2.8) 82.0 (+5.0)
Llama 3.3 70B 83.8 79.2 (-4.6) 84.4 (+0.6) 79.0 77.8 (-1.2) 81.4 (+2.4)
DeepSeek-R1 70.4 74.0 (+3.6) 73.8 (+3.4) 66.6 71.4 (+4.8) 72.0 (+5.4)

Table 2: The performance comparison of RAG versus Insight-RAG across the AAN and OC datasets in the paper
matching task. As demonstrated, o3 mini performs the best while DeepSeek-R1 shows the lowest performance.
Moreover, we observe that Insight-RAG consistently improves performance across all models, while RAG-based
solutions show mixed impacts on model performance.
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Figure 5: Insight Identifier performance: We ask GPT-
4o mini to score the identified insights compared to the
gold insights using a three-point scale: 0 (not similar),
0.5 (partially similar), and 1 (completely similar).

dition to the retriever performance of RAG base-388

lines, and discuss how their individual contribu-389

tions drive the overall success of the systems.390

Insight Identifier: The Insight Identifier plays391

a crucial role by processing the input query and392

distilling the essential informational requirements.393

To measure the accuracy of the Insight Identifier394

for deeply buried and multi-source questions, we 395

compare the identified insights with the gold in- 396

sights (which are concatenations of the subject and 397

relation used to generate the questions). We ask 398

GPT-4o mini to score their similarity using a three- 399

point scale: 0 (not similar), 0.5 (partially similar), 400

and 1 (completely similar). We provide the prompt 401

in the Appendix. 402

As shown in Figure 5, all models perform well 403

in identifying insights for simple questions. o3 404

mini performs the worst, likely due to its tendency 405

to overthink—consistent with its lower overall ac- 406

curacy. Moreover, all models show lower per- 407

formance in multi-source questions compared to 408

deeply buried questions, which is due to the fact 409

that when GPT-4o mini translates triples into ques- 410

tion format, it tends to add more unnecessary words 411

in multi-source questions (to capture the fact that 412

there is more than one answer). 413

Insight Miner: We calculate the accuracy of the 414

Insight Miner in predicting the object given the 415

concatenation of subject and relation used to create 416

questions in both deeply buried and multi-source 417

questions. Table 3 summarizes the Insight Miner’s 418

performance based on exact match accuracy for 419
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Task Type AAN OC

Deep-Insight 92.1 96.5
Multi-Source 72.1 74.8

Table 3: The Insight Miner performance: We report
exact match for deeply buried questions and Recall@10
for multiple source questions.

Data Deep-Insight Multi-Source

Hits@50 MRR A-Hits@50 A-MRR

AAN 39.3 0.13 46.8 0.16
OC 56.1 0.24 49.5 0.20

Table 4: The retriever performance: We report
Hits@50 and MRR for deeply buried questions, and
their averages for multi-source questions.

deeply buried questions and recall@10 for multi-420

source questions, respectively.421

Our results indicate that continual pre-training of422

Llama3.2 3B using LoRA on both the original pa-423

pers and the extracted triples leads to a reasonably424

well-performing Insight Miner, with higher perfor-425

mance on deeply buried questions versus multi-426

source questions. This difference is probably due427

to the fact that it is easier for the model to learn428

information about the pair of subject and relation429

with one object compared to cases when there are430

multiple objects for a given subject-relation pair.431

Retriever: Given our knowledge of each ques-432

tion’s source paper, we can evaluate the retriever433

model’s accuracy in fetching relevant documents434

for both deeply buried and multi-source questions.435

Table 4 presents the retriever performance using436

Hits@50 and MRR metrics, along with their aver-437

aged values for multi-source questions. As shown,438

retriever performance is consistently low across all439

settings, which explains the poor performance of440

the RAG-based baselines. We attribute this low per-441

formance to two primary factors: first, embedding-442

based representations struggle to capture deeply443

buried concepts within documents; second, our444

question generation method produces phrasing that445

differs from the original text, making it harder for446

the retriever to find the correct document (Modar-447

ressi et al., 2025). Additionally, similar retrieval448

performance is observed across both settings.449

5.5 Identified Insights in Non-QA Tasks450

To better understand the identified insights and their451

impact on the matching task, we first extract the452

insights generated by the Insight Identifier module453

for each model and dataset. We then assign a binary454

label (0 or 1) to each sample, indicating whether 455

augmenting the sample with these insights changes 456

the model’s prediction from correct to incorrect or 457

vice versa, respectively. Next, we identify words 458

with positive or negative impact by calculating the 459

Z-score—a metric introduced to detect artifacts in 460

textual datasets by measuring the correlation be- 461

tween the occurrence of each word and the corre- 462

sponding sample label (Gardner et al., 2021). 463

The Z-score results for the LLMs are shown 464

in Figure 6. Despite the fact that in the prompt 465

we clearly asked the models to identify insights 466

independent of the input identifiers (i.e., Paper A 467

and Paper B), we observe that "paper" appears as 468

an influential token in insights identified by GPT- 469

4o mini and o3 mini, mostly as a negative factor 470

except for o3 mini in the OC dataset. 471

Overall, OpenAI models appear to benefit from 472

relation words that indicate direct application or de- 473

scription (e.g., “used”, “based”, and “describes”), 474

while they are hindered by more discursive or pre- 475

dictive terms (e.g., “presents”, “discuss”, “relates”, 476

and “predict”). In contrast, open LLMs perform 477

better when relations emphasize analytical or con- 478

nective processes (e.g., “analyzed”, “connected”, 479

“enhance”, and “involve”), with generic or usage- 480

based terms impairing their performance (e.g., “in- 481

clude”, “based”, “used”, and “applied”). This in- 482

dicates that the same relation word can affect dif- 483

ferent models in opposite ways, highlighting the 484

significant role of model architecture and training 485

history in interpreting relational cues. Finally, we 486

observe that for GPT-4o, most of identified insights 487

did not result in changes to model predictions, sug- 488

gesting that the Z-scores for this model may not be 489

very trustworthy. 490

6 Related Works 491

RAG has emerged as a prominent strategy for en- 492

hancing LLMs by grounding their responses in ex- 493

ternal document repositories. Early works focused 494

on improving accuracy and contextual relevance 495

for tasks like open-domain QA and summarization 496

by integrating retrieval mechanisms with language 497

models (Lewis et al., 2020; Karpukhin et al., 2020; 498

Guu et al., 2020). However, these approaches of- 499

ten rely on surface-level matching, which can miss 500

deeper, context-specific insights. More advanced 501

variants, such as Iter-RetGen (Shao et al., 2023) and 502

self-RAG (Asai et al., 2023), have been proposed 503

to handle multi-step and decomposable reasoning 504
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Figure 6: The quality of identified insights in the matching task: We identified the top-5 most positively and
negatively influential words in the identified insights using Z-score metrics for each LLM.

tasks (Zhao et al., 2024b). While not applicable505

to our setting of atomic, non-decomposable ques-506

tions, these methods could complement Insight-507

RAG in tasks requiring iterative refinement. Along508

similar lines, recent work has explored fine-tuning509

LLMs to enhance specific aspects of RAG—Zhang510

et al. (2024) focus on domain relevance, Song511

et al. (2024) on hallucination suppression, and Wu512

et al. (2025) on dynamic retrieval routing—further513

demonstrating the flexibility and extensibility of514

the RAG framework.515

Parallel to these developments, research on in-516

sight extraction has demonstrated the value of iden-517

tifying critical, often overlooked details within518

documents. For example, transformer-based ap-519

proaches such as OpenIE6 (Kolluru et al., 2020)520

have advanced Open Information Extraction by521

leveraging pretraining to capture nuanced relational522

data from unstructured text. LLMs have emerged523

as powerful tools for keyphrase extraction (Muham-524

mad et al., 2024), and in recent years, they have525

been increasingly adopted to mine insights from526

documents across various domains (Ma et al., 2023;527

Zhang et al., 2023; Schilling-Wilhelmi et al., 2024).528

7 Conclusion and Future Work529

We introduced Insight-RAG, a novel framework530

that enhances traditional RAG by incorporating531

an intermediary insight extraction process. Our ap- 532

proach specifically addresses key challenges in con- 533

ventional RAG pipelines—capturing deeply buried 534

information, aggregating multi-source insights, and 535

extending beyond standard question answering 536

tasks. Evaluation on our developed benchmarks 537

from AAN and OC datasets shows that insight- 538

driven retrieval consistently boosts performance. 539

Moreover, through detailed component analysis, 540

we further identified both the reasoning behind 541

Insight-RAG’s superior performance and the short- 542

comings of standard RAG. 543

Looking ahead, Insight-RAG opens several 544

promising research directions: (1) extending be- 545

yond citation recommendation to domains such as 546

legal analysis, medical research, business intelli- 547

gence, and creative content generation; (2) devel- 548

oping hierarchical insight extraction methods that 549

categorize insights by importance, abstraction level, 550

and relevance, to support more nuanced retrieval; 551

(3) enabling multimodal insight extraction from 552

text, images, audio, and video, to create a more 553

comprehensive understanding of complex informa- 554

tion ecosystems; (4) incorporating expert feedback 555

loops to guide extraction in specialized fields; and 556

(5) exploring the transferability of insights across 557

domains to reduce the need for domain-specific 558

training while maintaining high performance. 559
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8 Limitations560

While Insight-RAG offers significant improve-561

ments over conventional RAG methods, several562

limitations must be acknowledged. First, to capture563

new knowledge and remain current with evolving564

information, the Insight Miner requires periodic565

re-training—a process that conventional RAG sys-566

tems can avoid by directly retrieving documents567

from an up-to-date corpus. This re-training require-568

ment increases both maintenance complexity and569

computational overhead. More details are provided570

in the Appendix.571

Additionally, the multi-stage design of Insight-572

RAG introduces increased computational complex-573

ity and potential latency, which may hinder its ap-574

plicability in real-time or resource-constrained en-575

vironments. The framework’s reliance on carefully576

crafted prompts for the Insight Identifier also rep-577

resents a limitation; minor deviations in prompt578

design can lead to inconsistencies in the extraction579

of critical insights, affecting downstream perfor-580

mance.581

Error propagation across the pipeline is another582

concern. Inaccuracies in insight identification may583

lead to misdirected retrieval efforts, ultimately im-584

pacting the overall quality of the generated re-585

sponse. Finally, our evaluation has been primar-586

ily conducted on scientific paper datasets, which587

raises questions about the generalizability of the588

approach to other domains or more unstructured589

data sources. Future work should explore broader590

applications and optimize the framework to address591

these challenges.592
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A Prompts779

The prompts used for the Insight Identifier, ques-780

tion answering with and without augmentation,781

matching with and without augmentation, and782

evaluating the identified insights are provided in783

prompts A.1, A.2, A.3, A.4, A.5, and A.6, respec-784

tively.785

Insight Identifier

You are given a question or task along with
its required input. Your goal is to extract
the necessary insight that will allow another
autoregressive LLM—pretrained on a dataset
of scientific papers—to complete the answer.
The insight must be expressed as a sentence
fragment (i.e., a sentence that is meant to be
completed).

Instructions:

Extract the Insight:
Identify the key information needed from
the dataset to solve the task or answer the
question.
Format the insight as a sentence fragment that
can be completed by the LLM trained on the
dataset.
For example, if the task is to find the
birthplace of Person X, your insight should be:
"Person X was born in".

Determine Answer Multiplicity:
Determine whether the answer should be singular
or plural based solely on the plurality of
the nouns in the question. Do not use common
sense or external context—rely exclusively on
grammatical cues in the question.
For instance, if the question uses plural nouns
(e.g., "What are the cities in California?"),
set Multi-answer to True. Conversely, if the
question uses singular nouns (e.g., "What does
pizza contain?"), set it to False.

Relevance Check:
Only include insights that are directly
answerable from the dataset.
If an insight does not relate to the available
dataset, ignore it.

Output Format:
Return the result as a list of dictionaries.
Each dictionary must have two keys:
"Insight": The sentence fragment containing
the key insight.
"Multi-answer": A Boolean (True or False)
indicating whether multiple answers are
required.
Example Output for follwing questions, Where
was Person X born in? what does pizza contain?
What are the Cities in California?:

786

[
{"Insight": "Person X was born in",
"Multi-answer": false},
{"Insight": "Pizza contains", "Multi-answer":
false},
{"Insight": "The cities in California are",
"Multi-answer": true}
]

Please provide your final answer in this
JSON-like list-of-dictionaries format with no
additional commentary.
Also, make sure to NOT add any extra word to
the insights other than the word present in
the input.
Remove all unnecessary words and provide the
insight in its simplest form. For example,
if the query asks "what are the components
that X uses?", the insight should be "X uses".
Similarly, if the query asks "what are all the
components/techniques/features/applications
included in Z?", the insight should be "Z
include".
If a non-question task is given, possible
insights might involve asking about how two
concepts are connected or a definition of a
concept. Only identify the insight you believe
will help solve the task, and provide it as a
short sentence fragment to be completed. Do
not add any unnecessary content or summaries
of the input.
Additionally, for non-question tasks, the
insight should NOT refer to the specific input
or include any input-specific identifiers.
Instead, it should be a STAND-ALONE statement
focusing on the underlying concepts, entities,
and their relationships from the inputs. If
you cannot find any such insights, return a
list of EMPTY dictionary.

Task:
{}

787

QA

Answer the question. Do not include any extra
explanation.
Question: {}

788

Augmented QA

Answer the question using the context. Do not
include any extra explanation.
Question: {}
Context: {}

789

Matching

You are provided with two research papers,
Paper-A and Paper-B. Your task is to determine
if the papers are relevant enough to be cited
by the other. Your response must be provided
in a JSON format with two keys:
"explanation": A detailed explanation of your
reasoning and analysis.
"answer": The final determination ("Yes" or
"No").

790
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Paper-A:
{}

Paper-B:
{}

791

Augmented Matching

You are provided with two research papers,
Paper-A and Paper-B, and some useful insights.
Your task is to determine if the papers are
relevant enough to be cited by the other. You
may use the insights to better predict whether
the papers are relevant or not. The insights
should only serve as supportive evidence; do
not rely on them blindly.
Your response must be provided in a JSON format
with two keys:
"explanation": A detailed explanation of your
reasoning and analysis.
"answer": The final determination ("Yes" or
"No").

Paper-A:
{}

Paper-B:
{}

Useful insights:
{}

792

Identified Insights Evaluation

You are given two incomplete sentences: a
target sentence and a generated sentence. Your
task is to evaluate how similar these two
incomplete sentences are in terms of meaning
and content. Please follow these instructions:

Similarity Criteria:

0: The sentences are not similar at all.
0.5: The sentences share some elements or
meaning, but are only partially similar.
1: The sentences are very similar or essentially
equivalent in meaning.

Output Requirement:

Provide only the similarity score (0, 0.5, or
1) as your output.
Do not include any additional text or
explanation. The output format should be as
follownig:

Score: <0, 0.5, or 1)>

Target Sentence: {}
Generated Sentence: {}

793

B Experimental Details794

Benchmarking: We use the processed abstracts795

from the AAN dataset (Radev et al., 2013) and the796

OC dataset (Bhagavatula et al., 2018), as provided 797

by Zhou et al. (2020). This curated set includes 798

approximately 13,000 paper abstracts from AAN 799

and 567,000 abstracts from OC, offering a rich and 800

diverse corpus of academic content. Specifically, 801

the AAN dataset comprises computational linguis- 802

tics papers published in the ACL Anthology from 803

2001 to 2014, along with their associated metadata, 804

while the OC dataset encompasses approximately 805

7.1 million papers covering topics in computer sci- 806

ence and neuroscience. 807

Modeling: For Insight Miner, we perform con- 808

tinual pre-training on Llama-3.2 3B with LoRA 809

and optimize hyperparameters through grid search 810

based on training loss. Specifically, following 811

Pezeshkpour and Hruschka (2025), we tuned learn- 812

ing rate α = [3× 10−3, 10−3, 3× 10−4, 10−4, 3× 813

10−5, 10−5]; the LoRA rank r = [4, 8, 16]; the 814

LoRA-alpha ∈ {8, 16, 32}; and the LoRA-dropout 815

∈ {0.05, 0.1}. We trained the Llama model for 30 816

epochs. 817

Cost and Complexity Considerations: Contin- 818

ual pre-training of the Insight Miner using LoRA 819

on 8 NVIDIA A100 SXM GPUs for 30 epochs per 820

dataset takes approximately 7 hours. Regarding 821

prompting costs, although Insight-RAG includes an 822

additional Insight Identifier component compared 823

to conventional RAG, its ability to achieve much 824

higher performance with a much shorter context 825

length results in lower API costs overall. Addition- 826

ally, while the Insight Miner unit requires periodic 827

retraining to incorporate new information, in many 828

settings this update can be performed infrequently. 829

For environments where new information arrives 830

regularly, an online learning-based solution (Hoi 831

et al., 2021; Liang et al., 2024) can be adopted to 832

update the model incrementally without necessitat- 833

ing a full retraining cycle. 834

C Experimnets 835

We report F1 and averaged F1 performance for all 836

models for deeply buried and multi-source ques- 837

tions in Figure 7 and 8, respectively. Interestingly, 838

despite DeepSeek’s superior performance in Ex- 839

act Match metrics, its F1 scores show a significant 840

decline. Upon closer examination, we discovered 841

this discrepancy stems primarily from DeepSeek’s 842

tendency to generate excessive content and occa- 843

sional hallucinations, particularly when the cor- 844

rect document isn’t retrieved. This poor F1 perfor- 845
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Figure 7: The performance comparison of RAG versus Insight-RAG across the AAN and OC datasets based on
F1 metric for deeply buried information. As demonstrated, Llama-3.3 performed the best, while DeepSeek-R1
performed the worst.

0 10 20 30 40 50
# Documents/Generated Insights

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F1

(a) AAN

0 10 20 30 40 50
# Documents/Generated Insights

0.00

0.05

0.10

0.15

0.20

0.25

F1

GPT-4o mini + RAG
GPT-4o mini + Insight-RAG
GPT-4o + RAG
GPT-4o + Insight-RAG
o3-mini + RAG
o3-mini + Insight-RAG
Llama-3.3 70B + RAG
Llama-3.3 70B + Insight-RAG
DeepSeek-R1 + RAG
DeepSeek-R1 + Insight-RAG

(b) OC

Figure 8: The performance comparison of RAG versus Insight-RAG across the AAN and OC datasets based on
averaged F1 metric for multi-source questions. As demonstrated, Llama-3.3 performed the best, while DeepSeek-R1
performed the worst.

mances occur despite our removal of DeepSeek’s846

“thinking” sections when calculating F1 scores. The847

other evaluated models demonstrate performance848

patterns similar to their Exact Match results, with849

Llama-3.3 70B consistently emerging as the top-850

performing model across both setting. Moreover,851

Table 5 presents the F1 scores for the paper match-852

ing task. While these results follow similar trends853

as the accuracy metric, the F1 scores reveal that854

both the positive and negative impacts of conven-855

tional RAG as well as the benefits of Insight-RAG,856

are even more amplified compared to accuracy.857

Finally, focusing on DeepSeek-R1 due to its su-858

perior performance, we report its RAG-based re-859

sults when, instead of retrieving documents, we860

retrieve triples from the set of all extracted triples861

for each dataset. Table 6 provides the exact match862

accuracy for the deeply buried information setting,863

along with the averaged exact match accuracy for864

the multi-source setting. We observe that while the865

model shows similar behavior to document-based 866

RAG, using much less context—since a triple is 867

much shorter than a document—it still falls sig- 868

nificantly short compared to Insight-RAG perfor- 869

mance. The overall gap between triple-based RAG 870

and Insight-RAG underscores the shortcomings of 871

conventional retrieval approaches and the complex- 872

ity of resolving them. 873
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Model AAN OC

Vanilla RAG (1 doc) Insight-RAG Vanilla RAG (1 doc) Insight-RAG

GPT-4o mini 78.8 79.9 (+1.1) 82.2 (+3.4) 66.0 57.9 (-8.1) 72.5 (+6.5)
GPT-4o 82.4 77.6 (-4.8) 82.8 (+0.4) 61.2 66.3 (+5.1) 65.6 (+4.4)
o3 mini 85.0 85.1 (+0.1) 85.4 (+0.4) 70.4 65.4 (-5.0) 78.9 (+8.5)
Llama 3.3 70B 83.8 80.0 (-3.8) 84.8 (+1.0) 73.8 71.8 (-2.0) 77.8 (+4.0)
DeepSeek-R1 59.3 66.7 (+7.4) 68.6 (+9.3) 50.4 60.6 (+10.2) 62.2 (+11.8)

Table 5: The F1 performance comparison of RAG versus Insight-RAG across the AAN and OC datasets in the paper
matching task. As demonstrated, o3 mini performs the best while DeepSeek-R1 shows the lowest performance.
Moreover, we observe that Insight-RAG consistently improves performance across all models, while RAG-based
solutions show mixed impacts on model performance.

Model AAN OC

1 triple 3 triples 10 triples 50 triples 1 triple 3 triples 10 triples 50 triples

DeepSeek-R1 (Deep) 13.8 18.9 25.8 35.2 20.1 27.0 33.0 42.2
DeepSeek-R1 (Multi) 12.1 14.0 14.7 25.2 10.6 13.9 17.9 22.7

Table 6: RAG-based exact match and averaged exact match accuracy of DeepSeek-R1 for deeply buried and
multi-source questions. Instead of retrieving documents, we retrieve triples—using the set of extracted triples.
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