

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SEGMENTATION AS A PLUG-AND-PLAY CAPABILITY FOR FROZEN MULTIMODAL LLMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Integrating diverse visual capabilities into a unified model is a significant trend in Multimodal Large Language Models (MLLMs). Among these, the inclusion of segmentation poses a distinct set of challenges. To equip MLLMs with pixel-level segmentation abilities, prevailing methods require finetuning the model to produce specific outputs compatible with a mask decoder. This process typically alters the model’s output space and compromises its intrinsic generalization, which undermines the goal of building a unified model. We introduce *LENS* (Leveraging kEypoiNts for MLLMs’ Segmentation), a novel plug-and-play solution. *LENS* attaches a lightweight, trainable head to a completely frozen MLLM. By refining the spatial cues embedded in attention maps, *LENS* extracts keypoints and describes them into point-wise features directly compatible with the mask decoder. Extensive experiments validate our approach: *LENS* achieves segmentation performance competitive with or superior to that of retraining-based methods. Crucially, it does so while fully preserving the MLLM’s generalization capabilities, which are significantly degraded by finetuning approaches. As such, the attachable design of *LENS* establishes an efficient and powerful paradigm for extending MLLMs, paving the way for truly multi-talented, unified models.

1 INTRODUCTION

Built on Large Language Models (LLMs), Multimodal LLMs (MLLMs) have demonstrated generalized visual understanding, most notably through their ability to ground language instructions in specific image regions (Zhang et al., 2025). This property connects high-level semantics with visual space, paving the way to reformulate different vision tasks into a unified visual-instruction-controlling manner (Wu et al., 2024c; Lai et al., 2024; Ma et al., 2024). As this trend unfolds, MLLMs are expected to encompass a full spectrum of visual tasks, including recognition (Liu et al., 2023c), detection (Wu et al., 2024c), and even dense, pixel-level segmentation (Lai et al., 2024).

Yet, integrating segmentation capability presents a unique challenge, as its dense pixel-mask outputs cannot be natively expressed by the text-generative nature of LLMs, nor is there a large-scale segmentation corpus for autoregressive pre-training (Lai et al., 2024). This skill must instead be transferred from a conventional, pre-trained segmentation model (Lai et al., 2024; Qian et al., 2025; Wu et al., 2024b). As illustrated in Fig. 1a, prevailing approaches feed MLLM features into SAM’s decoder (Ravi et al., 2024), which then maps them into masks. Notably, a significant mismatch exists: segmentation decoders are designed for low-level spatial cues (e.g., points or boxes), whereas MLLMs produce high-level, abstract semantic features (Jiang et al., 2025). To bridge this gap, existing solutions always involve extensively fine-tuning the MLLM with both segmentation and generation objectives, thereby training it to produce features compatible with the segmentation decoder (Qian et al., 2025). Despite its straightforwardness, these approaches prove highly effective for instruction-controlled segmentation.

This effectiveness, however, comes at a cost. The dual-objective training introduces an inherent tension between model’s capabilities: generative tasks thrive on abstract, sparse semantics, whereas segmentation requires direct, spatial features (Liu et al., 2024b). Although large models can accommodate both, this compatibility is fragile and often degrades other general-purpose abilities (Wu et al., 2024b). Take LISA (Lai et al., 2024) as an example, which is concurrently trained to generate a special [SEG] token and adapt its corresponding features to be compatible with the SAM-based

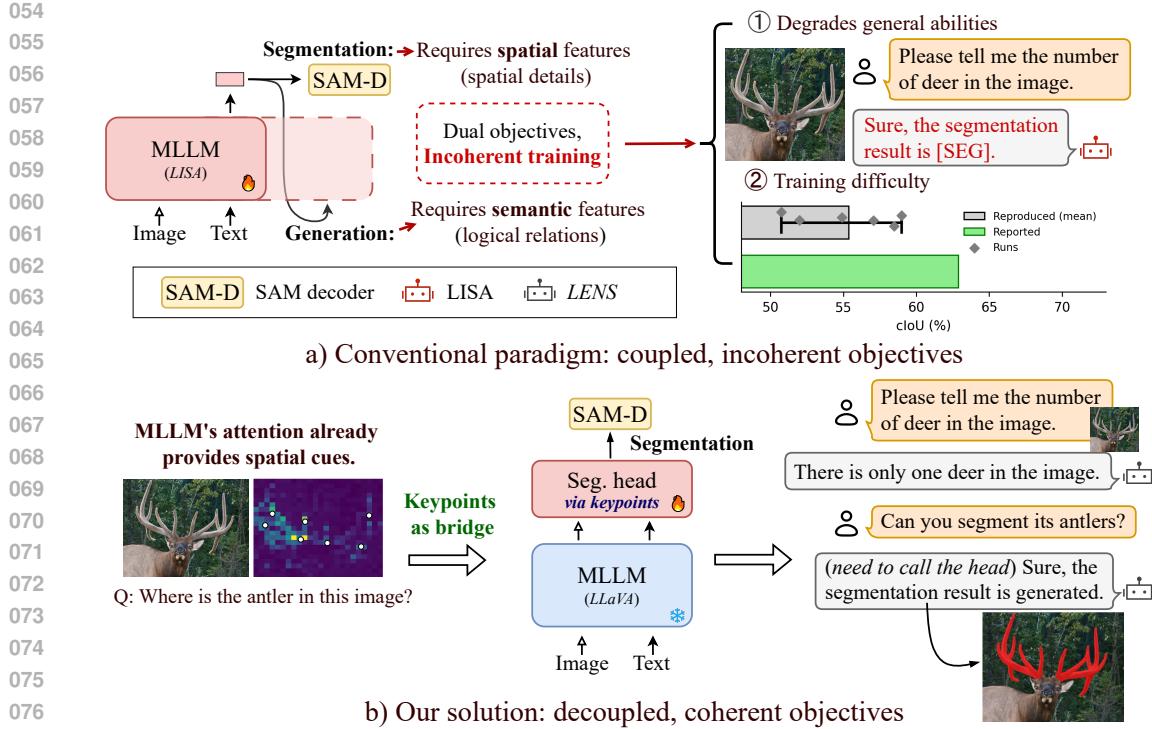


Figure 1: **Conventional architecture for MLLM segmentation vs. LENS.** (a) Conventional methods (e.g. LISA (Lai et al., 2024)) fine-tune an MLLM for both generation and segmentation tasks, leading to conflicting objectives that undermine the model’s general capabilities and training stability. (b) LENS decouples these roles: a frozen MLLM is dedicated to reasoning, while a lightweight head is trained exclusively for segmentation. The head can be adaptively invoked by the model when needed, allowing the MLLM to serve as a unified vision model capable of handling diverse tasks.

decoder. Consequently, it frequently defaults to segmentation-focused responses like “Sure, the segmentation result is [SEG]”, even for a completely unrelated counting query (c.f., Fig. 1a). This narrow focus reduces the MLLM to a single-task tool, causing its performance on the general-purpose benchmark like MMBench (Liu et al., 2024c) to plummet to near-zero. Such an outcome fundamentally contradicts the goal of building unified and versatile vision models.

Another drawback, as noted by prior studies (Chen et al., 2024b; Zhu et al., 2025), is that combining segmentation and generation losses increases optimization complexity, which we also observe in our reproductions (c.f. Fig. 1a). Dual-objective models are highly sensitive to training configurations and require extensive hyperparameter tuning to achieve competitive results.

Motivated by these limitations, we argue that segmentation should be introduced as a **plug-and-play** capability, one that enhances the MLLM without compromising its foundational strengths. An intuitive strategy is to freeze the MLLM entirely and train an external head dedicated to converting its features for segmentation. However, this simple architectural change is insufficient. Frozen MLLMs provide only semantic features, having already discarded most of the fine-grained spatial details critical for segmentation (Jiang et al., 2025). This flaw requires more than a mere structural modification; it necessitates a paradigmatic shift in how MLLMs’ features are leveraged.

Our approach sparks this shift through a crucial insight: an MLLM’s internal attention mechanisms already provide the spatial cues (Jiang et al., 2025; Wang et al., 2025; Zhang et al., 2025). As illustrated in Fig. 1b, when an MLLM processes a query, a distinct attention pattern emerges over the image, with high-scoring regions corresponding to the object of interest (e.g., the antler). This allows us to repurpose the segmentation head for a more direct task: refining these attention-derived spatial cues into keypoint coordinates and using the MLLM’s semantic judgment to assign corresponding descriptions (labels). These **keypoint–description** pairs act as direct prompts for the SAM decoder, effectively bridging the MLLM’s internal representations with the segmentation model’s in-

108 put requirements. By leveraging the MLLM’s native abilities for both localization via attention and
 109 verification via semantics, this process makes the head’s training remarkably coherent.
 110

111 We call this architecture *LENS* (Leveraging kEypoiNts for MLLMs’ Segmentation), which equips
 112 MLLMs with segmentation capability while keeping the backbone entirely frozen. This design
 113 avoids degrading the MLLM’s general-purpose abilities and delivers substantial efficiency gains:
 114 Since the MLLM is used purely in inference mode, training costs are greatly reduced. Meanwhile,
 115 the segmentation head functions as a modular, plug-and-play tool that can be invoked on demand,
 116 enabling seamless integration into agent-based systems (*c.f.* Fig. 1b). Overall, our contributions can
 117 be summarized as follows:
 118

- 119 1. We introduce *LENS*, a novel segmentation architecture to operate on a completely frozen MLLM
 120 backbone. This decoupled paradigm is designed to preserve the integrity of the MLLM’s general-
 121 purpose abilities, thereby resolving a central flaw in prior fine-tuning methods.
 122
- 123 2. We demonstrate how spatial cues from an MLLM’s internal attention can be refined into SAM-
 124 compatible prompts, with keypoints serving as the bridge between high-level reasoning and pixel-
 125 level segmentation.
 126
- 127 3. *LENS* achieves state-of-the-art performance on multiple segmentation benchmarks while notably
 128 reducing training costs, as the core MLLM is utilized purely for inference. Its efficiency and
 129 plug-and-play design offer a practical and scalable solution for unified vision models.
 130

131 2 RELATED WORK

132 **Multimodal Large Language Models (MLLMs).** The advent of MLLMs represents a paradigm
 133 shift in computer vision, driven by the powerful reasoning capabilities inherited from their underlying
 134 LLMs (Kaplan et al., 2020; OpenAI, 2024; Google, 2025). Architectures like LLaVA (Liu et al.,
 135 2023c; 2024a), InstructBLIP (Dai et al., 2023), and Qwen-VL (Bai et al., 2023) typically connect
 136 a visual encoder to a pre-trained LLM core via lightweight, parameter-efficient modules. This ar-
 137 chitectural integration enables the generation of text grounded in visual input, establishing a robust
 138 and sophisticated alignment between language and vision. There are two primary ways to leverage
 139 this intrinsic vision-language spatial association: either the model directly articulates its understand-
 140 ing through generated text (Bai et al., 2025; Peng et al., 2023), or its internal mechanisms, such as
 141 attention, can be decoded to reveal its spatial cues (Zhang et al., 2025; Wang et al., 2025).
 142

143 *Spatial Cues in Attention* Recent investigations have consistently shown that the attention mech-
 144 anisms within MLLMs serve as a natural bridge between textual tokens and their corresponding
 145 image regions (Zhang et al., 2025; Wang et al., 2025; Yang et al., 2025; Yu et al., 2024; Kang et al.,
 146 2025). When conditioned on paired image-text input, attention maps highlight the regions most rel-
 147 evant to the textual description, effectively providing coarse spatial cues of the target (Wang et al.,
 148 2025). Crucially, this is not an idiosyncratic feature of any single architecture but a universal, emer-
 149 gent property observed across a diverse range of models (Wang et al., 2025; Zhang et al., 2025; Yu
 150 et al., 2024; Kang et al., 2025). This phenomenon arises organically from the model’s objective to
 151 generate text that is contextually grounded in the visual input; to accurately describe an object, the
 152 model must first “look” at it. Consequently, attention maps offer a robust and direct source of spatial
 153 information, making them an ideal foundation for dense prediction tasks like segmentation, which
 154 demand more granular guidance than textual outputs can offer.
 155

156 **Segmentation Models.** Early image segmentation paradigms, such as semantic and panoptic seg-
 157 mentation (Badrinarayanan et al., 2017; Long et al., 2015; Ronneberger et al., 2015), were pre-
 158 dominantly closed-set, operating on a fixed vocabulary of object categories. A recent shift towards
 159 open-vocabulary segmentation has been driven by prompttable models that accept diverse control
 160 signals (Ravi et al., 2024; Kirillov et al., 2023; Liu et al., 2023b; Wu et al., 2024a; Ren et al., 2024a;
 161 Zou et al., 2023a; Liu et al., 2023a; Zou et al., 2023b). These range from low-level spatial prompts
 162 (*e.g.*, points, boxes) in models like SAM (Kirillov et al., 2023) to explicit textual phrases in Re-
 163 ferring Expression Segmentation (RES) (Hu et al., 2016; Liu et al., 2023b; Wu et al., 2024a; Ren
 164 et al., 2024a; Liang et al., 2023; Zou et al., 2023a). Despite their flexibility, these methods are
 165 fundamentally limited by their dependence on direct, literal prompts. They lack the higher-level
 166 reasoning ability needed to ground complex, inferential semantics in pixel space, which motivates
 167 the development of dedicated reasoning-based segmentation models.
 168

Reasoning Segmentation Models. As an advanced form of RES, reasoning segmentation targets objects that are only implicitly referenced and must be inferred from descriptive cues (e.g., segment “the organ used for defense” instead of just “antler”). The inherent demand for strong comprehension and reasoning has naturally positioned MLLMS as the foundational backbone for this task (Lai et al., 2024; Rasheed et al., 2024; Ren et al., 2024b; Wu et al., 2024b; Xia et al., 2024; Qian et al., 2025). LISA (Lai et al., 2024) pioneered this task by training an MLLM to emit a special token whose feature is then fed into a SAM-like decoder; the model is jointly optimized on large-scale mixtures of instruction-following and segmentation data to transfer the MLLM’s reasoning ability to the segmentation domain. Building on this paradigm, SESAME (Wu et al., 2024b) introduces negative examples to enable refusal of non-segmentable queries, while READ (Qian et al., 2025) analyzes the underlying mechanism and proposes similarity-based objectives to further refine performance. Although viable, these methods all rely on heavy joint training. Even with optimizations like LoRA (Hu et al., 2022), tightly coupling the objectives for generation (semantics) and segmentation (spatial) creates a trade-off. This often leads to the MLLM becoming over-specialized, compromising its foundational general-purpose abilities.

3 PROPOSED *LENS*

In this section, we present *LENS*, a novel architecture that equips a frozen MLLM with segmentation in a plug-and-play manner. As illustrated in Fig. 2a, *LENS* consists of three stages: a lightweight head (§3.1), a keypoints extraction and description module (§3.2), and a mask decoder (§3.3). The central innovation of this design is the use of keypoints from the MLLM’s internal attention maps as a bridge that intrinsically unifies the stages. We next detail each stage, followed by the training objectives and configurations (§3.4).

3.1 SEGMENTATION HEAD

The segmentation head receives semantic features from the MLLM, (i) refines the attention dependencies to increase target-region keypoints, and (ii) provides a decision on whether the attention-highlighted regions should be identified as segmentation targets.

Architecturally, the head is a two-layer transformer, mirroring a single MLLM layer for consistency. Its dual roles impose two requirements on input features: (i) strong cross-modal attention¹, and (ii) sufficient semantics to identify grounded targets. As shown in prior work (Zhang et al., 2025; Jiang et al., 2025), shallow layers are deficient in semantics, while deep layers exhibit diminished cross-modal attention. Thus, we adopt intermediate features (e.g., the 14th layer in LLaVA-1.5-7B), which best balance these properties.

Given an input image I and instruction T , we denote their intermediate features as $F_i \in \mathbb{R}^{L_i \times d}$ for the image (with $L_i = 576$ in LLaVA-1.5-7B) and $F_t \in \mathbb{R}^{L_t \times d}$ for the text. These are concatenated into $H_{\text{in}}^1 = [F_i; F_t] \in \mathbb{R}^{L \times d}$ which serves as the input to the head. For simplicity of exposition, we assume a fixed ordering where text features are always appended after the image features.

Layer 1: Attention Refinement. While MLLM attention maps can localize grounded targets, they are not tailored for segmentation. As observed by Darcet et al. (2024), they often highlight contextual regions useful for text generation but irrelevant to segmentation. Therefore, the first layer is to re-calculate and refine these maps, explicitly training them to suppress extraneous activations and selectively highlight only the regions corresponding to the intended target.

To achieve this, the layer first computes a full attention map A^1 over all input tokens. We then *aggregate* the attentions from text to image tokens by averaging their weights, yielding the text-to-image grounding map A_c^1 (Fig. 2b). The computation is as follows:

$$A^1 = \text{Softmax} \left(\frac{QK^\top}{\sqrt{d}} + M_a \right), \quad A_c^1 = \frac{1}{L_t} \sum_{k=L_i+1}^{L_i+L_t} A^1[k, 1:L_i], \quad (1)$$

where Q and K are linear projections of input features H_{in}^1 , and M_a is the causal attention mask. A_c^1 is explicitly optimized through training, and A^1 is used to produce the output features $H_{\text{out}}^1 \in \mathbb{R}^{L \times d}$.

¹Attention from text to image tokens.

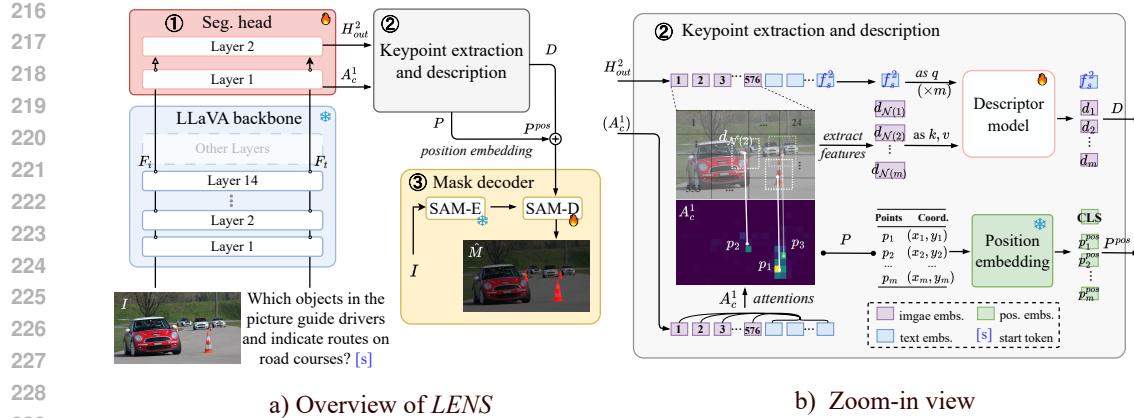


Figure 2: **LENS architecture.** (a) Overall architecture built on LLaVA-1.5-7B (Liu et al., 2024a), consisting of three stages: ① a segmentation head that refines attention and semantic features, ② keypoint extraction and description, and ③ a mask decoder that takes fused keypoint descriptions and coordinates to predict the final mask. Trainable and frozen modules are indicated, and the MLLM runs only in inference mode. (b) Zoom-in view of the attention and keypoint components.

Layer 2: Feature Enhancement. Since the attention in Layer 1 is explicitly optimized, the resulting representation H_{out}^1 may carry semantic bias. Layer 2 aims to mitigate this bias and enhance the discriminative semantics of H_{out}^1 , thereby producing the output H_{out}^2 . We expect the feature of the *start-of-answer token*² f_s^2 to align with the image features in H_{out}^2 , enabling it to serve as a semantic query for identifying the image regions that correspond to segmentation targets.

Overall, the process of the segmentation head can be summarized formally as follows:

$$A^1, H_{out}^1 \leftarrow \text{Layer}_1([F_i; F_t]), \quad A_c^1 \leftarrow \text{Aggregate}(A^1), \quad H_{out}^2 \leftarrow \text{Layer}_2(H_{out}^1). \quad (2)$$

3.2 KEYPOINT EXTRACTION AND DESCRIPTION

The second stage extracts points from the high-value regions of A_c^1 , which serve as indicators for segmentation. We define these as *keypoint* regions. Each keypoint is then *described* as positive if the semantics of its image feature in H_{out}^2 match f_s^2 , and negative otherwise. The resulting positions and descriptions together form the prompts, which serve as the structured input to the SAM decoder (*c.f.* Fig. 2b).

Keypoint Extraction. The attention map A_c^1 is reshaped into a 2D heatmap, from which keypoints are extracted via Non-Maximum Suppression (NMS). Local maxima are selected as candidate positions, and up to m keypoints are retained.

Since A_c^1 is defined at the patch level, the heatmap resolution is low and coordinates are confined to grid positions, which is suboptimal for pixel-level segmentation. To mitigate this, we apply a *sub-pixel* refinement³ that shifts grid-aligned coordinates toward the underlying peak locations. The refined set is denoted $P = \{p_i\}_{i=1}^m$, where each $p_i = (x_i, y_i)$. These keypoints are then encoded into position embeddings P_{pos} compatible with the SAM decoder. The implementation of this encoding is deferred to §3.3.

Keypoint Description. To determine whether each keypoint corresponds to a positive or negative region, we extract its associated semantic features. Specifically, at each coordinate we *sample* the image feature from H_{out}^2 via interpolation, and further sample from a $p \times p$ neighborhood to enrich the semantic representation. This yields a local feature set $d_{N(i)}$ for each keypoint p_i .

We then leverage the global *start-of-answer token* feature f_s^2 as a query to determine whether the region of p_i should be segmented. The neighborhood features $d_{N(i)}$ serve as keys and values in a de-

²Derived from the question’s final token [s] in Fig. 2b.

³Implemented with a Newton–Raphson update; details in the supplementary material.

270 descriptor model⁴, where *cross-attention* is performed to produce discriminative descriptions $\{d_i\}_{i=1}^m$.
 271 Through the interaction between f_s^2 and neighborhood features, these descriptions are expected to
 272 acquire the discriminative capacity needed for positive/negative interpretation.
 273

274 **Global Description.** While each keypoint yields a local description, these remain independent and
 275 may contain redundancy or spatial overlap. To promote coherence among them, we further introduce
 276 f_s^2 as a global semantic descriptor within the descriptor model. Through a subsequent *self-attention*
 277 operation, f_s^2 interacts with all local descriptions $\{d_i\}_{i=1}^m$, enabling global context to regularize
 278 redundant or spatially overlapping instances while simultaneously consolidating information back
 279 into f_s^2 . The final description set is defined as D .
 280

281 The process of keypoint extraction and description can be summarized as:
 282

$$P \leftarrow \text{Sub-pixel}(\text{NMS}(A_c^1)), \quad \{d_{\mathcal{N}(i)}\}_{i=1}^m \leftarrow \text{Sample}(\mathbf{F}_i^2, P), \\ \{d_i\}_{i=1}^m \leftarrow \text{Cross-attn}(f_s^2, \{d_{\mathcal{N}(i)}\}_{i=1}^m), \quad D \leftarrow \text{Self-attn}(\{f_s^2\} \cup \{d_i\}_{i=1}^m). \quad (3)$$

283 where both \mathbf{F}_i^2 (image tokens) and f_s^2 (start token) are taken from $\mathbf{H}_{\text{out}}^2$.
 284

285 3.3 MASK DECODER

286 At this stage, we have the keypoint set $P \in \mathbb{R}^{m \times 2}$ and the description set $D \in \mathbb{R}^{(m+1) \times d_s}$, where
 287 d_s matches the embedding dimension of the SAM decoder. The keypoints naturally match the
 288 point-based prompts of SAM, and the descriptors play the role of label embeddings. This structural
 289 alignment allows our outputs to be seamlessly integrated into the SAM decoder.
 290

291 **Position Embedding.** We adopt SAM’s point *position encoder* to transform the keypoints P into
 292 embeddings $P^{\text{pos}} = \{p_i^{\text{pos}}\}_{i=1}^m$. Since the global descriptor f_s^2 lacks a spatial position, we introduce a
 293 learnable [CLS] embedding as its positional counterpart. This yields both the position embeddings
 294 P^{pos} and the label embeddings D required by the SAM decoder.
 295

296 The summed embeddings are fed into the decoder to generate the final mask \hat{M} :
 297

$$P^{\text{pos}} \leftarrow \{\text{CLS}\} \cup \text{PosEnc}(P), \quad \hat{M} \leftarrow \text{Decoder}(D \oplus P^{\text{pos}}, F_{\text{img}}^{\text{SAM}}), \quad (4)$$

298 where \oplus denotes element-wise addition and $F_{\text{img}}^{\text{SAM}}$ are the image features from the SAM encoder.
 299

300 3.4 TRAINING AND USAGE

301 **Training.** Our model is trained end-to-end with a composite loss function consisting of two compo-
 302 nents: an attention loss $\mathcal{L}_{\text{attn}}$ and a segmentation loss \mathcal{L}_{seg} .
 303

304 **Attention Loss.** $\mathcal{L}_{\text{attn}}$ provides direct supervision for the cross-modal attention map $A_c^1 \in [0, 1]^{h \times w}$.
 305 Given the ground-truth binary mask $M \in \{0, 1\}^{h \times w}$, we use the binary cross-entropy (BCE) loss to
 306 enforce alignment between A_c^1 and M :
 307

$$\mathcal{L}_{\text{attn}} = -\frac{1}{hw} \sum_{i=1}^h \sum_{j=1}^w \left[M_{i,j} \log A_{c,i,j}^1 + (1 - M_{i,j}) \log (1 - A_{c,i,j}^1) \right]. \quad (5)$$

308 **Segmentation Loss.** For the segmentation loss \mathcal{L}_{seg} , we follow the practice of LISA (Lai et al.,
 309 2024) and adopt a combination of Dice loss and BCE loss applied to the final predicted mask
 310 $\hat{M} \in [0, 1]^{h \times w}$. It’s the weighted sum of the Dice and BCE losses:
 311

$$\mathcal{L}_{\text{seg}} = \lambda_{\text{dice}} \mathcal{L}_{\text{dice}} + \lambda_{\text{bce}} \mathcal{L}_{\text{bce}}. \quad (6)$$

312 **Overall Objective.** The overall training objective combines the two losses:
 313

$$\mathcal{L} = \mathcal{L}_{\text{seg}}(\hat{M}, M) + \mathcal{L}_{\text{attn}}(A_c^1, M). \quad (7)$$

314 **Usage.** Unlike token-based triggering mechanisms, LENS relies on the MLLM to determine through
 315 question answering whether segmentation should be activated. The routing can be implemented
 316 using tool frameworks (Chase, 2025) or thinking-based control (Liu et al., 2025). We center on
 317 LENS’s design; implementation details and illustrative demonstrations appear in the supplementary
 318 material.
 319

320 ⁴The detailed structure is described in the supplementary material.
 321

324

4 EXPERIMENTS

325

4.1 EXPERIMENTAL SETUP

326 **Implementation Details.** For a fair comparison with prior works, we adopted the widely used
 327 LLaVA-1.5-7B (Liu et al., 2024a) as the backbone for the main experiments, while SAM is instantiated
 328 with ViT-H. We used the 14th layer as the intermediate representation, set $m = 16$, and adopted
 329 a neighborhood size of 3×3 . The optimizer was AdamW with a learning rate of 5×10^{-5} . The
 330 loss weights for Dice and BCE in \mathcal{L}_{seg} were set to 2 and 4, respectively. Unless otherwise specified,
 331 other training settings followed LISA (Lai et al., 2024).
 332

333 **Training Datasets.** Following the dataset organization in LISA, we considered three categories: (1)
 334 semantic segmentation datasets including ADE20K (Zhou et al., 2019), COCO-Stuff (Caesar et al.,
 335 2018), PACO-LVIS (Ramanathan et al., 2023), PASCAL-Part (Chen et al., 2014), and Mapillary
 336 Vistas (Neuhold et al., 2017); (2) referring segmentation datasets including RefCLEF, RefCOCO,
 337 RefCOCO+ (Kazemzadeh et al., 2014), and RefCOCOg (He et al., 2017); and (3) reasoning
 338 segmentation dataset ReasonSeg (Lai et al., 2024). Note that *LENS* was trained only with segmentation
 339 objectives and preserves general abilities without extra VQA data.
 340

341 **Evaluations.** Our assessment proceeded from a *comprehensive* perspective to a *segmentation-
 342 specific* one. At the comprehensive level (*c.f.* Table 1), *LENS* excels in training efficiency while
 343 preserving general abilities (benchmark settings are provided in the supplementary material). At the
 344 segmentation level (*c.f.* Table 2 and Table 3), *LENS* establishes state-of-the-art results on reasoning
 345 segmentation and RES, measured by gIoU (per-image IoU) and cloU (dataset-level IoU).
 346

347 **Baselines.** We directly compared against methods that require fine-tuning MLLMs for segmen-
 348 tation, including LISA (Lai et al., 2024), SESAME (Wu et al., 2024b), and READ (Qian et al.,
 349 2025). In addition, following LISA, we also included traditional baselines for RES task for further
 350 comparison on segmentation tasks, as reported in Table 3.
 351

352

4.2 COMPREHENSIVE EVALUATION

353 We compared model backbones, training cost, training data, and resulting segmentation and general
 354 abilities (*c.f.* Table 1). Training cost was measured under the DeepSpeed (Rasley et al., 2020) ZeRO-
 355 2 setting with 8 GPUs and a batch size of 2. *Seg* denotes the segmentation data (see §4.1); *FP-Seg*
 356 denotes an augmented version of *Seg*, constructed using FP-RefCOCO(+/g) (Wu et al., 2024b) and
 357 R-RefCOCO(+/g) (Wu et al., 2024a). *VQA* is the instruction corpus from LLaVA. For segmentation
 358 evaluation, we reported cloU on ReasonSeg. For general capability evaluation, we adopted MME Fu
 359 et al. (2023), MMBench Liu et al. (2024c), MMMU (Yue et al., 2024), and MMStar (Chen et al.,
 360 2024a) benchmarks. Further details are provided in the supplementary material.
 361

362 **Training Efficiency.** As shown in Table 1, *LENS* is highly efficient. Since the MLLM is used only
 363 for inference, gradients are not back-propagated through it, allowing distributed execution or even
 364 pre-caching. As a result, the MLLM itself requires as little as 16 GB of memory. Overall, *LENS*
 365 reduces training memory to one-third while still achieving the best comprehensive performance.
 366

367 **Avoiding the Multi-Objective Trade-off.** *LENS* functions as a plug-and-play tool that the MLLM
 368 can invoke when needed (*e.g.*, via chain-of-thought reasoning), without relying on special tokens or
 369 auxiliary objectives. It is trained exclusively on segmentation data and remains fully decoupled from
 370 the MLLM’s generative learning. By contrast, prior approaches entangle segmentation with genera-
 371 tion through additional tokens and losses, which drastically compromise general-purpose ability
 372 (MMBench accuracy drops from 66.5 to 0 for READ and LISA). By avoiding this trade-off, *LENS*
 373 preserves unified vision–language capability without incurring additional cost.
 374

375 **SOTA Segmentation with Preserved General Capabilities** Our plug-and-play design endows
 376 *LENS* with state-of-the-art segmentation ability while retaining the general capabilities of the under-
 377 lying MLLM. Compared to LISA, *LENS* achieves higher segmentation performance (57.3 vs. 56.9)
 378 without the collapse of general abilities (MMBench, MMMU, and MMStar all remain on par with
 379 LLaVA-1.5-7B, whereas LISA drops to zero). READ shows slightly better segmentation (58.6)
 380 but benefits from a stronger backbone and larger training data, while still suffering from degraded
 381 generality. SESAME attempts to balance segmentation and understanding through refined data en-
 382

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

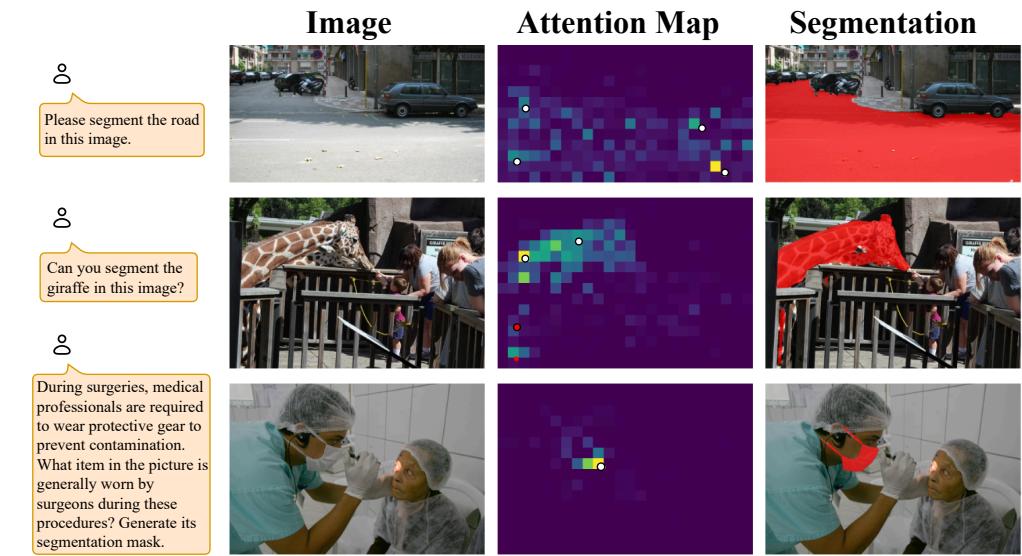


Figure 3: **Showcases of LENS.** Attention maps align well with ground-truth regions, where white points mark keypoints inside and red points mark those outside. These results illustrate how *LENS* links semantics with segmentation.

Table 1: **Comprehensive comparison.** *LENS* attains state-of-the-art segmentation with lower training cost while preserving general abilities. Training memory values with underlines mark inference overhead of the MLLM. *Seg* denotes segmentation data (semantic, referring, reasoning), *FP-Seg* augments it with false-premise samples, and *VQA* represents corpus from generative vision–language tasks. *READ* uses the largest training set, whereas *LENS* relies solely on *Seg*.

Method	Backbone	Training Mem (GB)↓	Training Data			Seg ↑	MME	MMBench	MMMU	MMStar
			Seg	FP-Seg	VQA					
random guess	–	–	–	–	–	–	1050.0	25.0	26.8	24.6
LLaVA-1.5-7B	–	–	–	✓	–	–	1808.4	66.5	35.7	33.1
SESAME	LLaVA-1.5-7B	30×8	✓	✓	30.4	1394.4	28.3	11.2	20.3	
LISA	LLaVA-1.5-7B	30×8	✓	✓	56.9	184.5	0	0	0	
READ	SESAME	30×8	✓	✓	✓	58.6	476.3	0	1.1	14.4
<i>LENS</i> (Ours)	LLaVA-1.5-7B	<u>16</u> + 10×8	✓	–	57.3	1801.4	64.0	34.4	33.3	

gineering, yet its dual-objective paradigm inherently weakens both. Overall, *LENS* achieves state-of-the-art segmentation while fully preserving general capabilities. In contrast, prior approaches that train the MLLM inevitably suffer severe degradation, often performing worse than random guessing.

4.3 SEGMENTATION EVALUATION

We reported the segmentation performance of *LENS* on both reasoning segmentation (Table 2) and referring segmentation (Table 3). Fig. 3 qualitatively illustrated the progression from attention maps to extracted keypoints and the final segmentation masks.

Strong Performance on Both Reasoning and Referring Segmentation. As shown in Table 2 and Table 3, *LENS* achieves strong performance on both reasoning segmentation (ReasonSeg) and referring segmentation (RefCOCO(+/g)). On ReasonSeg, *LENS* reaches 65.3 cloU on validation and 57.3 on test, outperforming LISA (62.9/56.9) under the same LLaVA-1.5-7B backbone. Its performance is also comparable to READ, even though READ benefits from SESAME-based initialization and substantially more training data. On RefCOCO(+/g), *LENS* achieves 70.3, exceeding LISA-7B (69.8) and markedly outperforming non-MLLM baselines such as LAVT (66.5) and CRIS (64.3).

432

433 Table 2: **Comparisons on the ReasonSeg dataset.** The best performance is highlighted in **bold**,
434 and the second best is underlined.

Method	val		test					
	overall		short query		long query		overall	
	gIoU	cIoU	gIoU	cIoU	gIoU	cIoU	gIoU	cIoU
SESAME (Wu et al., 2024b)	34.8	39.1	28.3	27.6	31.6	32.7	30.5	30.4
LLAVA + OVSeg (Liang et al., 2023)	38.2	23.5	24.2	18.7	44.6	37.1	39.7	31.8
LISA-7B (Lai et al., 2024)	52.9	54.0	40.6	40.6	49.4	51.0	47.3	48.4
LISA-LLaVA-1.5-7B (Lai et al., 2024)	61.3	62.9	48.3	46.3	57.9	59.7	55.6	56.9
READ-7B (Qian et al., 2025)	59.8	67.6	<u>52.6</u>	49.5	60.4	61.0	58.5	58.6
<i>LENS</i> -7B	61.4	<u>65.3</u>	47.8	41.7	<u>59.3</u>	61.6	<u>56.5</u>	<u>57.3</u>
14 th layer → 30 th layer	45.7	43.6	32.6	35.7	39.6	40.8	37.9	40.0
w/o keypoint description	51.8	48.5	42.1	39.3	49.8	49.8	47.9	47.8
w/o global description	56.0	61.9	44.0	40.3	50.4	49.4	48.8	47.9
w/o $\mathcal{L}_{\text{attn}}$	55.8	51.7	42.9	40.5	54.6	53.4	51.7	50.8

442

443

444

445

446

447 Table 3: **Comparison of SOTA referring segmentation (cIoU) on RefCOCO(+/g).**

Method	RefCOCO			RefCOCO+			RefCOCOg		Mean
	val	testA	testB	val	testA	testB	val(U)	test(U)	
MCN (Luo et al., 2020)	62.4	64.2	59.7	50.6	55.0	44.7	49.2	49.4	54.4
VLT (Ding et al., 2021)	67.5	70.5	65.2	56.3	61.0	50.1	55.0	57.7	60.4
CRIS (Wang et al., 2022)	70.5	73.2	66.1	62.3	68.1	53.7	59.9	60.4	64.3
LAVT (Yang et al., 2022)	72.7	75.8	68.8	62.1	68.4	55.1	61.2	62.1	66.5
ReLA (Liu et al., 2023a)	73.8	76.5	70.2	66.0	71.0	57.7	65.0	66.0	68.3
X-Decoder (Zou et al., 2023a)	—	—	—	—	—	—	64.6	—	—
SEEM (Zou et al., 2023b)	—	—	—	—	—	—	65.7	—	—
SESAME (Wu et al., 2024b)	74.7	—	—	64.9	—	—	66.1	—	—
LISA-7B (Lai et al., 2024)	74.9	79.1	72.3	65.1	70.8	58.1	67.9	70.6	69.8
<i>LENS</i> -7B	76.5	78.3	71.4	66.1	71.7	58.3	69.4	70.6	70.3

460

461

462

463 **Improvement Room on Short Queries.** ReasonSeg training set is highly imbalanced, as it was
464 originally designed for training MLLMs with explanatory content in combination with VQA data.
465 Since *LENS* can only leverage the segmentation portion, which contains no short-query samples,
466 performance on this category dataset remains limited.

467

468 **Ablation Study.** We evaluated the contributions of key components on the ReasonSeg dataset (*c.f.*
469 Table 2), focusing on their effect on cIoU. The steepest drop occurs when shifting the head’s input
470 from the 14th to the 30th layer, which reduces cIoU from 57.3 to 40.0. This decline arises because
471 features from deeper layers lose spatial detail and exhibit weak cross-modal attention, leaving the
472 head unable to exploit the MLLM’s intrinsic spatial cues. Likewise, removing the keypoint module
473 or the attention loss lowers performance (47.8 and 50.8), underscoring the importance of explicit
474 spatial signals. Finally, omitting the global description slightly affects validation performance but
475 significantly harms test performance, highlighting its role in supporting generalization.

476

477

478

5 CONCLUSION

479

480

481

482

483

484

485

486 This work establishes *LENS* (Leveraging kEypoiNts for MLLMs’ Segmentation) as a plug-and-
487 play architecture that brings segmentation into MLLMs without compromising their general-purpose
488 abilities. By freezing the entire MLLM and introducing a lightweight head that leverages the model’s
489 own spatial cues as keypoints, *LENS* bypasses the objective conflict that hampers prior fine-tuning-
490 based approaches. Our experiments demonstrate that *LENS* achieves state-of-the-art segmentation
491 performance while preserving the MLLM’s broad capabilities and cutting training costs by a large
492 margin. These results highlight *LENS* as an efficient and scalable paradigm for extending MLLMs,
493 marking a step toward unified vision models that combine high-level reasoning and ultimately en-
494 compass the full spectrum of visual tasks.

486 REFERENCES
487

488 Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A deep convolutional encoder-
489 decoder architecture for image segmentation. *IEEE TPAMI*, 39(12):2481–2495, 2017.

490 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
491 Zhou, and Jingren Zhou. Qwen-VL: A versatile vision-language model for understanding, local-
492 ization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

493 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
494 Shijie Wang, Jun Tang, et al. Qwen2.5-VL technical report. *arXiv preprint arXiv:2502.13923*,
495 2025.

496 Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-Stuff: Thing and stuff classes in context.
497 In *CVPR*, 2018.

498 Harrison Chase. LangChain—the platform for reliable agents. <https://www.langchain.com/>, 2025. Accessed: 2025-09-09.

499 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
500 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
501 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024a.

502 Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan Yuille. De-
503 tect what you can: Detecting and representing objects using holistic models and body parts. In
504 *CVPR*, 2014.

505 Yi-Chia Chen, Wei-Hua Li, Cheng Sun, Yu-Chiang Frank Wang, and Chu-Song Chen.
506 SAM4MLLM: Enhance multi-modal large language model for referring expression segmenta-
507 tion. In *ECCV*, 2024b.

508 Wenliang Dai, Junnan Li, DONGXU LI, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
509 Pascale N Fung, and Steven Hoi. InstructBLIP: Towards general-purpose vision-language models
510 with instruction tuning. In *NIPS*, 2023.

511 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
512 registers. In *ICLR*, 2024.

513 Henghui Ding, Chang Liu, Suchen Wang, and Xudong Jiang. Vision-language transformer and
514 query generation for referring segmentation. In *ICCV*, 2021.

515 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
516 Zheng, Ke Li, Xing Sun, et al. MME: A comprehensive evaluation benchmark for multimodal
517 large language models. *arXiv preprint arXiv:2306.13394*, 2023.

518 Google. Google Gemini 2.5 Pro, 2025. URL <https://deepmind.google/technologies/gemini/pro/>. <https://deepmind.google/technologies/gemini/pro/>.

519 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In *ICCV*, 2017.

520 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
521 Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. In *ICLR*, 2022.

522 Ronghang Hu, Marcus Rohrbach, and Trevor Darrell. Segmentation from natural language expres-
523 sions. In *ECCV*, 2016.

524 Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun Shen, and Xu Yang. Devils in middle
525 layers of large vision-language models: Interpreting, detecting and mitigating object hallucina-
526 tions via attention lens. In *CVPR*, 2025.

527 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
528 attention sink in large multimodal models. *arXiv preprint arXiv:2503.03321*, 2025.

540 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 541 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 542 models. *arXiv preprint arXiv:2001.08361*, 2020.

543 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferItGame: Referring to
 544 objects in photographs of natural scenes. In *EMNLP*, 2014.

545 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 546 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *ICCV*,
 547 2023.

548 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. LISA:
 549 Reasoning segmentation via large language model. In *CVPR*, 2024.

550 Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
 551 Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
 552 clip. In *CVPR*, 2023.

553 Chang Liu, Henghui Ding, and Xudong Jiang. GRES: Generalized referring expression segmenta-
 554 tion. In *CVPR*, 2023a.

555 Fang Liu, Yuhao Liu, Yuqiu Kong, Ke Xu, Lihe Zhang, Baocai Yin, Gerhard Hancke, and Rynson
 556 Lau. Referring image segmentation using text supervision. In *ICCV*, 2023b.

557 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 558 *in neural information processing systems*, 36:34892–34916, 2023c.

559 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 560 tuning. In *CVPR*, 2024a.

561 Xiaoyuan Liu, Wenxuan Wang, Youliang Yuan, Jen-tse Huang, Qiuwei Liu, Pinjia He, and Zhaopeng
 562 Tu. Insight over sight: Exploring the vision-knowledge conflicts in multimodal llms. *arXiv*
 563 *preprint arXiv:2410.08145*, 2024b.

564 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 565 Jiaqi Wang, Conghui He, Ziwei Liu, et al. MMBench: Is your multi-modal model an all-around
 566 player? In *ECCV*, 2024c.

567 Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Vision-
 568 Reasoner: Unified visual perception and reasoning via reinforcement learning. *arXiv preprint*
 569 *arXiv:2505.12081*, 2025.

570 Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
 571 segmentation. In *CVPR*, 2015.

572 Gen Luo, Yiyi Zhou, Xiaoshuai Sun, Liujuan Cao, Chenglin Wu, Cheng Deng, and Rongrong Ji.
 573 Multi-task collaborative network for joint referring expression comprehension and segmentation.
 574 In *CVPR*, 2020.

575 Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and Xiaojuan Qi. Groma: Localized visual
 576 tokenization for grounding multimodal large language models. In *ECCV*, 2024.

577 Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kortschieder. The Mapillary
 578 Vistas dataset for semantic understanding of street scenes. In *ICCV*, 2017.

579 OpenAI. Hello GPT-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.
 580 <https://openai.com/index/hello-gpt-4o/>.

581 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
 582 Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint*
 583 *arXiv:2306.14824*, 2023.

584 Rui Qian, Xin Yin, and Dejing Dou. Reasoning to attend: Try to understand how $\langle \text{SEG} \rangle$ token
 585 works. In *CVPR*, 2025.

594 Vignesh Ramanathan, Anmol Kalia, Vladan Petrovic, Yi Wen, Baixue Zheng, Baishan Guo, Rui
 595 Wang, Aaron Marquez, Rama Kovvuri, Abhishek Kadian, et al. PACO: Parts and attributes of
 596 common objects. In *CVPR*, 2023.

597

598 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
 599 Cholakkal, Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. GLaMM: Pixel
 600 grounding large multimodal model. In *CVPR*, 2024.

601 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System opti-
 602 mizations enable training deep learning models with over 100 billion parameters. In *KDD*, 2020.
 603

604 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 605 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. SAM 2: Segment anything in images
 606 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

607 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 608 Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing
 609 Jiang, and Lei Zhang. Grounded SAM: Assembling open-world models for diverse visual tasks,
 610 2024a.

611

612 Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie
 613 Jin. PixelLM: Pixel reasoning with large multimodal model. In *CVPR*, 2024b.

614 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomed-
 615 ical image segmentation. In *MICCAI*, 2015.

616

617 Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and Huajun
 618 Chen. MLLMs can see? dynamic correction decoding for hallucination mitigation. In *ICLR*,
 619 2025.

620

621 Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming Gong, and Tongliang
 622 Liu. CRIS: Clip-driven referring image segmentation. In *ICCV*, 2022.

623 Jianzong Wu, Xiangtai Li, Xia Li, Henghui Ding, Yunhai Tong, and Dacheng Tao. Toward robust
 624 referring image segmentation. *IEEE Transactions on Image Processing*, 33:1782–1794, 2024a.

625

626 Tsung-Han Wu, Giscard Biamby, David Chan, Lisa Dunlap, Ritwik Gupta, Xudong Wang, Joseph E
 627 Gonzalez, and Trevor Darrell. See say and segment: Teaching LMMs to overcome false premises.
 628 In *CVPR*, 2024b.

629

630 Yixuan Wu, Yizhou Wang, Shixiang Tang, Wenhao Wu, Tong He, Wanli Ouyang, Philip Torr, and
 631 Jian Wu. DetToolChain: A new prompting paradigm to unleash detection ability of MLLM. In
 632 *ECCV*, 2024c.

633

634 Zhuofan Xia, Dongchen Han, Yizeng Han, Xuran Pan, Shiji Song, and Gao Huang. GSVA: Gener-
 635 alized segmentation via multimodal large language models. In *CVPR*, 2024.

636

637 Shuo Yang, Yuwei Niu, Yuyang Liu, Yang Ye, Bin Lin, and Li Yuan. Look-Back: Implicit visual
 638 re-focusing in mllm reasoning. *arXiv preprint arXiv:2507.03019*, 2025.

639

640 Zhao Yang, Jiaqi Wang, Yansong Tang, Kai Chen, Hengshuang Zhao, and Philip HS Torr. LAVT:
 641 Language-aware vision transformer for referring image segmentation. In *CVPR*, 2022.

642

643 Runpeng Yu, Weihao Yu, and Xinchao Wang. Attention prompting on image for large vision-
 644 language models. In *ECCV*, 2024.

645

646 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 647 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. MMMU: A massive multi-discipline multimodal
 648 understanding and reasoning benchmark for expert agi. In *CVPR*, 2024.

649

650 Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. MLLMs know where to
 651 look: Training-free perception of small visual details with multimodal llms. In *ICLR*, 2025.

648 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Tor-
649 ralba. Semantic understanding of scenes through the ADE20K dataset. *International Journal of*
650 *Computer Vision*, 127(3):302–321, 2019.

651

652 Muzhi Zhu, Yuzhuo Tian, Hao Chen, Chunluan Zhou, Qingpei Guo, Yang Liu, Ming Yang, and
653 Chunhua Shen. SegAgent: Exploring pixel understanding capabilities in mllms by imitating
654 human annotator trajectories. In *CVPR*, 2025.

655

656 Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat
657 Behl, Jianfeng Wang, Lu Yuan, et al. Generalized decoding for pixel, image, and language. In
658 *CVPR*, 2023a.

659

660 Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jian-
661 feng Gao, and Yong Jae Lee. Segment everything everywhere all at once. *Advances in neural*
662 *information processing systems*, 36:19769–19782, 2023b.

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 Segmentation as a Plug-and-Play Capability for 703 Frozen Multimodal LLMs

704 705 Supplementary Material

706
707 In the supplementary materials, we report:

- 709 • Additional implementation details of our method, including keypoint sampling, sub-pixel
710 optimization, and the specific structure of the descriptor (§S1);
- 711 • The integration of *LENS* into an agent system (§S2);
- 712 • Detailed experiment settings (§S3);
- 713 • More showcases of *LENS* (§S4);

714 S1 ADDITIONAL IMPLEMENTATION DETAILS

715 S1.1 KEYPOINT SAMPLING

716 Given the attention map A_c^1 , we first reshape it into a 2D heatmap of size $h \times w \times 1$. To extract salient
717 keypoints, we apply a non-maximum suppression (NMS) strategy on this heatmap. Specifically,
718 we iteratively select the location with the highest response value as a keypoint, then suppress all
719 responses within a fixed Euclidean radius $r = 4$ pixels around the selected location by setting their
720 values to zero. This procedure is repeated until either no remaining responses exceed zero or the
721 number of selected keypoints reaches a predefined upper limit $N = 16$. The resulting set of spatial
722 coordinates corresponds to the most discriminative local regions in the attention map, ensuring a
723 sparse yet informative representation while avoiding redundant neighboring points.

724 S1.2 SUB-PIXEL REFINEMENT

725 Because the attention map is low resolution (*e.g.*, LLaVA-1.5-7B yields a $24 \times 24 \times 1$ heatmap),
726 integer-coordinate keypoints may be spatially biased. We therefore refine each integer keypoint to
727 sub-pixel precision by locally fitting a second-order Taylor model of the heatmap and taking a single
728 Newton step.

729 **Setup.** Let the batched heatmaps be $H \in \mathbb{R}^{B \times K \times \hat{H} \times \hat{W}}$ and the corresponding integer keypoints be

$$730 \mathbf{p}_{b,k}^{\text{int}} = (x_{b,k}, y_{b,k}) \in \{0, \dots, \hat{W} - 1\} \times \{0, \dots, \hat{H} - 1\},$$

731 for batch index $b \in \{1, \dots, B\}$ and keypoint index $k \in \{1, \dots, K\}$. We define the normalized grid
732 coordinates used for bilinear sampling (`align_corners = true`):

$$733 \tilde{x}_{b,k} = 2 \frac{x_{b,k}}{\hat{W} - 1} - 1, \quad \tilde{y}_{b,k} = 2 \frac{y_{b,k}}{\hat{H} - 1} - 1, \quad (1)$$

$$734 \Delta_x = \frac{2}{\hat{W} - 1}, \quad \Delta_y = \frac{2}{\hat{H} - 1}. \quad (2)$$

735 **Local sampling.** Around each integer keypoint we bilinearly sample the heatmap at the 3×3
736 neighborhood (center, 4-neighbors, and 4 diagonals) in normalized coordinates:

$$737 \begin{aligned} v^{(0)} &= H(\tilde{x}, \tilde{y}), & v^{(1)} &= H(\tilde{x} + \Delta_x, \tilde{y}), & v^{(2)} &= H(\tilde{x} - \Delta_x, \tilde{y}), \\ v^{(3)} &= H(\tilde{x}, \tilde{y} + \Delta_y), & v^{(4)} &= H(\tilde{x}, \tilde{y} - \Delta_y), & v^{(5)} &= H(\tilde{x} + \Delta_x, \tilde{y} + \Delta_y), \\ v^{(6)} &= H(\tilde{x} - \Delta_x, \tilde{y} - \Delta_y), & v^{(7)} &= H(\tilde{x} - \Delta_x, \tilde{y} + \Delta_y), & v^{(8)} &= H(\tilde{x} + \Delta_x, \tilde{y} - \Delta_y). \end{aligned} \quad (3)$$

738 (For brevity we drop indices b, k and the channel dimension; sampling is applied per (b, k) .)

756 **Finite-difference estimates of derivatives.** Using the samples in equation 3, we estimate first- and
 757 second-order partial derivatives at the center point via standard central differences:
 758

$$759 \quad D_x = \frac{1}{2}(v^{(1)} - v^{(2)}), \quad D_y = \frac{1}{2}(v^{(3)} - v^{(4)}), \quad (4)$$

$$761 \quad D_{xx} = v^{(1)} - 2v^{(0)} + v^{(2)}, \quad D_{yy} = v^{(3)} - 2v^{(0)} + v^{(4)}, \quad (5)$$

$$762 \quad D_{xy} = \frac{1}{4}(v^{(5)} + v^{(6)} - v^{(7)} - v^{(8)}). \quad (6)$$

764 These define the local gradient $\mathbf{g} \in \mathbb{R}^2$ and Hessian $\mathbf{H} \in \mathbb{R}^{2 \times 2}$:
 765

$$766 \quad \mathbf{g} = \begin{bmatrix} D_x \\ D_y \end{bmatrix}, \quad \mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}. \quad (7)$$

769 **Regularized Newton step.** We obtain the sub-pixel offset $\delta \in \mathbb{R}^2$ by a regularized Newton update
 770 of the quadratic model: $\delta = -(\mathbf{H} + \varepsilon \mathbf{I})^{-1} \mathbf{g}$ with a small Tikhonov term $\varepsilon > 0$ (e.g., $\varepsilon = 10^{-6}$) to
 771 improve numerical stability. To prevent spurious large corrections in flat or noisy regions, we clip
 772 the offset component-wise: $\delta \leftarrow \text{clip}(\delta, -1, 1)$

773 **Refined coordinates (pixel space).** The refined sub-pixel keypoint in pixel coordinates is
 774

$$775 \quad \mathbf{p}_{b,k}^{\text{sub}} = \mathbf{p}_{b,k}^{\text{int}} + \delta = \begin{bmatrix} x_{b,k} \\ y_{b,k} \end{bmatrix} + \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix}. \quad (8)$$

776 If \mathbf{H} is ill-conditioned, a diagonal fallback can be used: $\delta_x = -D_x/(D_{xx} + \varepsilon)$, $\delta_y = -D_y/(D_{yy} +$
 777 $\varepsilon)$.

780 S1.3 DESCRIPTOR MODEL

782 We provide a detailed description of the de-
 783 scriptor model used in the second stage, as il-
 784 lustrated in Fig. S1. The inputs to this model
 785 are the global semantic feature f_s^2 and a set of
 786 local keypoint feature vectors $\{d_{\mathcal{N}(i)}\}$. Note
 787 that for each keypoint i , $d_{\mathcal{N}(i)}$ contains mul-
 788 tiple feature vectors describing the surround-
 789 ing local region. Therefore, we use f_s^2 as the
 790 *query* and all feature vectors within $d_{\mathcal{N}(i)}$ as the
 791 *keys and values*, and perform a cross-attention
 792 operation to jointly determine whether the cor-
 793 responding region should be segmented. This
 794 process is repeated for all m keypoints, yielding
 795 descriptors $\{d_i\}$. Concatenating them with the
 796 global feature f_s^2 , we perform a self-attention
 797 refinement, followed by a projection to match
 798 the SAM decoder’s dimension, producing the
 799 final set $D \in \mathbb{R}^{(m+1) \times d_s}$.

800 We interpret the meaning of D as follows:
 801 each keypoint descriptor d_i indicates whether
 802 its associated local region should be segmented,
 803 while the global descriptor f_s^2 provides holistic contextual information that coordinates and comple-
 804 ments the local decisions across regions.

805 S1.4 TRAINING STRATEGY

807 Table 2 shows that removing either the global description or the keypoint description leads to a
 808 performance drop, indicating that both components contribute significantly to the overall perfor-
 809 mance. These two components need to be coordinated during training to achieve a better balance.
 To this end, we adopt a dropout-like mechanism: with a probability $p = 0.5$, we randomly use only

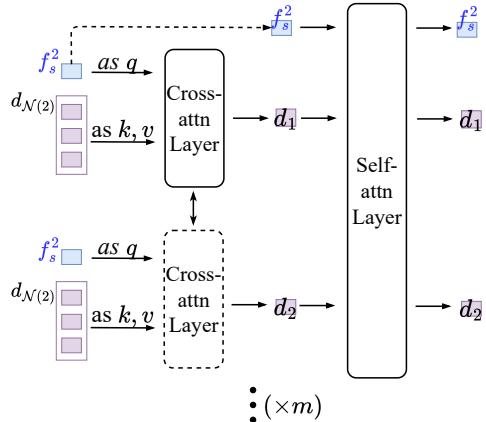


Figure S1: The structure of the descriptor model.

810 the global description or use both during training. During inference, both descriptions are always
 811 used. We find that this dropout mechanism generally ensures better performance. More fine-grained
 812 tuning of the balance between the two components may further boost performance, similar to how
 813 different settings of cloU and gIoU affect performance.
 814

815 S2 AGENT INTEGRATION

817 Algorithm S1 illustrates how to integrate *LENS* into an agent framework (in a LangChain-style ar-
 818 chitecture) for multimodal interaction. Given a user instruction u and an input image I , the agent \mathcal{A}
 819 (the MLLM) first determines the *intent* of the instruction using a prompt-based classifier. Speci-
 820 fically, the instruction and image are given to \mathcal{A} with a few-shot prompt that asks it to output one of
 821 the following three intent types:
 822

- 823 • **Dialogue:** The instruction is a general conversational query unrelated to segmentation. In
 824 this case, the agent directly performs autoregressive generation conditioned on the text and
 825 image, and outputs a natural-language answer.
- 826 • **Segmentation:** The instruction explicitly asks to segment certain objects or regions in the
 827 image. The agent extracts an intermediate embedding from its internal representation and
 828 passes it to *LENS*'s head \mathcal{H} , which decodes a segmentation mask. The segmentation result
 829 is visualized and stored in the memory \mathcal{M} for potential future reference, and the system
 830 returns a fixed textual response together with the visualized result.
- 831 • **Follow-up:** The instruction refers to the previously segmented content (e.g., asking about
 832 the segmented object). The original image and its segmentation result are concatenated and
 833 passed back to the agent \mathcal{A} , which then answers the follow-up question based on both.

834 This design enables seamless switching between general dialogue and vision-centric segmentation
 835 tasks, while maintaining conversational context through memory.
 836

837 Algorithm S1: Agent-guided Segmentation and Dialogue

839 **Input:** Instruction u , image I ; Agent model \mathcal{A} ; *LENS*'s head \mathcal{H} ; memory \mathcal{M}

```

1 intent  $\leftarrow \mathcal{A}.\text{Route}(u, I)$ ;  $\in \{\text{dialogue, seg, followup}\}$ 
2 if intent = seg then
3   // The user instruction contains a segmentation intent
4    $e \leftarrow \mathcal{A}.\text{Embed}(u, I)$ ;
5    $\text{mask} \leftarrow \mathcal{H}.\text{Decode}(e, I)$ ;
6    $\mathcal{M}.\text{last} \leftarrow (I, \text{mask})$ ;
7   return "Sure, the segmentation result is generated.",  $\text{Overlay}(I, \text{mask})$ ;
8 else if intent = followup then
9    $(I_0, \text{mask}_0) \leftarrow \mathcal{M}.\text{last}$  or  $(I, \emptyset)$ ;
10  if  $\text{mask}_0 = \emptyset$  then
11    return THISALGORITHM( $u, I$ );
12     $C \leftarrow \text{Concat}(I_0, \text{Overlay}(I_0, \text{mask}_0))$ ;
13  else
14    return  $\mathcal{A}.\text{Generate}(u, C)$ ;
```

856 S3 DETAILED SETTINGS

859 **Training Settings.** We clarify our training choices. Although one could follow READ by adopting
 860 a stronger backbone and incorporating broader *FP-Seg* data to obtain higher segmentation scores,
 861 such design diverges from our motivation. Our goal is not to improve segmentation accuracy by in-
 862 cremental modifications, but to explore a new architecture that preserves the general capabilities of
 863 MLLMs and advances toward a unified vision model. Using an MLLM already trained for segmen-
 864 tation as the backbone would contradict this objective, while *FP-Seg* introduces excessive generative

864 samples that are misaligned with our single segmentation objective. Therefore, we strictly follow
 865 the LISA training setup (but excluding VQA data).

866 **Evaluation Settings** We evaluate how *LENS* preserves the general capabilities of the underlying
 867 MLLM. As shown in Table 1, we introduce a `random guess` baseline to estimate the expected
 868 performance when answers are generated completely at random, since these benchmarks adopt
 869 multiple-choice formats.

870 **MME Benchmark.** The MME benchmark consists of 10 perception and 4 cognition subtasks (14 in
 871 total). Each image is paired with two binary (yes/no) questions. The official evaluation computes,
 872 for each subtask, the **accuracy** (fraction of correctly answered questions) and **accuracy+** (fraction
 873 of images where *both* questions are correct). The subtask score is defined as

$$874 \text{score} = 100 \times (\text{accuracy} + \text{accuracy}+).$$

875 Under random guessing ($p = 0.5$):

$$876 \mathbb{E}[\text{accuracy}] = 0.5, \quad \mathbb{E}[\text{accuracy}+] = 0.25, \quad \Rightarrow 100 \times (0.5 + 0.25) = 75.$$

877 Since there are 14 subtasks, the overall expected score is $14 \times 75 = 1050$.

878 **MMBench Benchmark.** We use the English test split of MMBench, which contains about 6.7K
 879 multiple-choice questions. Each question has four options with a single correct answer, and evalua-
 880 tion is conducted using overall **accuracy**. Under random guessing, the expected accuracy is 25%
 881 due to the 1/4 selection probability.

882 **MMMU Benchmark.** MMMU contains about 11.5K multimodal questions from college-level exams
 883 and textbooks, spanning six broad disciplines, 30 subjects, and 183 subfields. It combines both
 884 multiple-choice and open-ended formats with highly diverse image types (charts, diagrams, maps,
 885 chemical structures, etc.). Following the official protocol, we evaluate on the public **validation split**
 886 containing 900 samples, and report overall **accuracy**. The expected random-guessing performance
 887 is provided in the official report.

888 **MMStar Benchmark.** MMStar is a vision-indispensable benchmark of 1,500 carefully curated sam-
 889 ples covering six core capabilities and eighteen fine-grained axes. All questions are cast into a
 890 multiple-choice format, and we follow the official setting to report **accuracy** as the primary metric.
 891 Random-choice performance is provided by the official report and serves as the baseline reference.

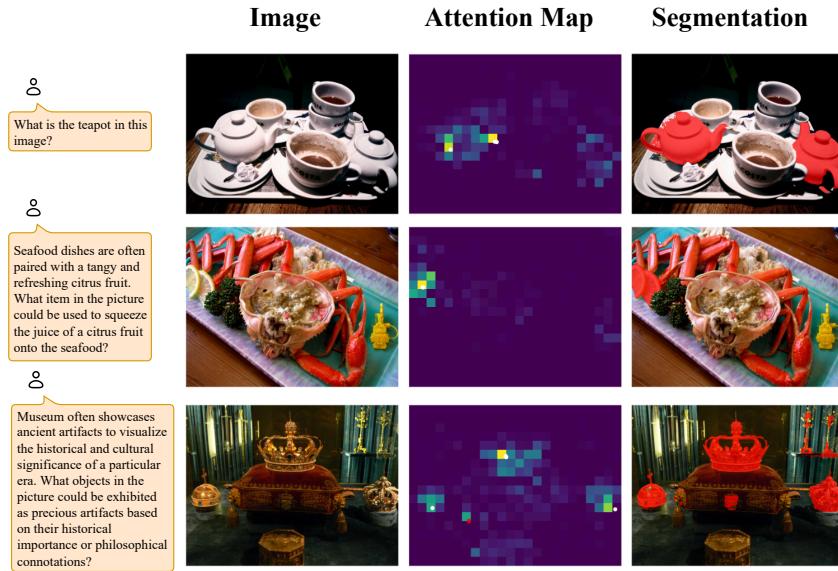
892 Models performing below the `random-guess` baseline (such as LISA and READ) tend to ig-
 893 nore the question content and directly output segmentation-related responses, indicating that their
 894 general-purpose reasoning ability has been severely impaired. SESAME observed this issue and
 895 introduced additional false-premise data during training to mitigate it, but its performance remains
 896 only slightly above random guessing, further validating our hypothesis that dual-objective training
 897 damages general capability.

898 In contrast, *LENS* is specifically designed to avoid this issue by introducing segmentation capabili-
 899 ty in a decoupled, plug-and-play manner: it attaches an external head while keeping all MLLM
 900 parameters frozen, allowing the model to autonomously decide whether to invoke the segmentation
 901 head.

902 S4 SHOWCASES

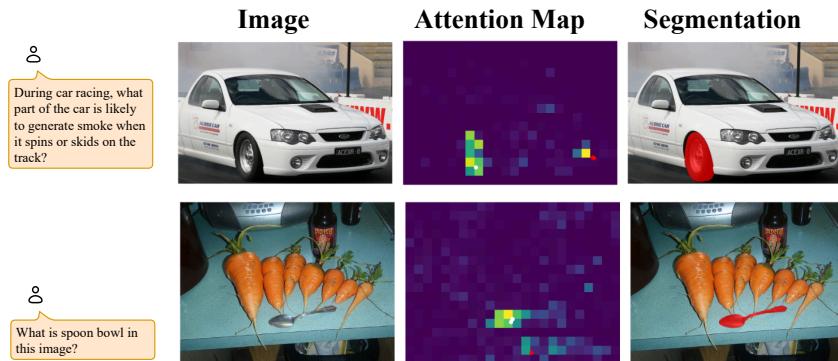
903 We present a comprehensive demonstration of *LENS*’s performance on both standard segmentation
 904 tasks and reasoning-based segmentation tasks in Figs. S2–S4. Typically, when the attention maps
 905 focus on correct regions and the keypoints are accurately localized (Fig. S2), the segmentation results
 906 are satisfactory. Even when some keypoints are mistakenly detected, the description mechanism
 907 in *LENS* can designate them as negatives and still produce correct segmentation results (Fig. S3).
 908 However, if the attention is largely distributed over non-target regions (Fig. S4), *LENS* may fail,
 909 resulting in incorrect segmentation.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936



937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

Figure S2: **Showcases of LENS.** The white dots overlaid on the attention maps indicate keypoints that are aligned with the target segmentation regions.



953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure S3: **Showcases of LENS.** The red dots on the attention maps denote keypoints located in non-target regions. Even when such keypoints are detected, the description mechanism in *LENS* ensures that the final segmentation results remain correct.

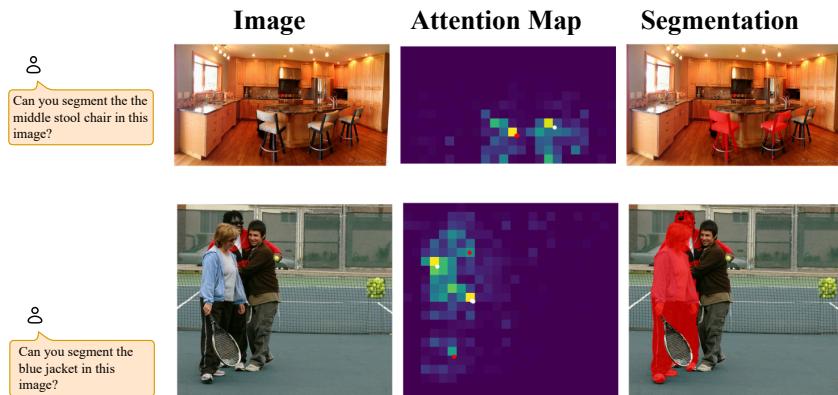


Figure S4: **Failure cases of LENS.** If the attention map shows strong responses on non-target regions, incorrect segmentation may occur.