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Abstract

Recent Large Vision-Language Models001
(LVLMs) demonstrate impressive abilities002
on numerous image understanding and003
reasoning tasks. The task of fine-grained004
object classification (e.g., distinction between005
animal species), however, has been probed in-006
sufficiently, despite its downstream importance.007
We fill this evaluation gap by creating FOCI008
(Fine-grained Object ClassIfication), a difficult009
multiple-choice benchmark for fine-grained010
object classification, from existing object011
classification datasets: (1) multiple-choice012
avoids ambiguous answers associated with013
casting classification as open-ended QA014
task; (2) we retain classification difficulty by015
mining negative labels with a CLIP model.016
FOCI complements five popular classification017
datasets with four domain-specific subsets018
from ImageNet-21k. We benchmark 12 public019
LVLMs on FOCI and show that it tests for020
a complementary skill to established image021
understanding and reasoning benchmarks. Cru-022
cially, CLIP models exhibit dramatically better023
performance than LVLMs. Since the image024
encoders of LVLMs come from these CLIP025
models, this points to inadequate alignment for026
fine-grained object distinction between the en-027
coder and the LLM and warrants (pre)training028
data with more fine-grained annotation. We029
release our code at ANONYMIZED.030

1 Introduction031

Large Vision Language Models (LVLMs)—Large032

Language Model (LLM) that have been adapted033

to process images as input alongside text—have034

shown impressive performance on a wide range035

vision-language tasks (Li et al., 2023b; Liu et al.,036

2023b; OpenAI, 2023a; Anil et al., 2023). LVLMs037

are mutually compared using a range of bench-038

marks that test for various image understanding and039

reasoning skills, such as existence and counting of040

objects, localization, comparison between objects041

Name this 
dog breed 
and tell me 
a fact 
about it.

LLaVA 1.5: The dog in the image is a 
Samoyed, which is a breed of dog known 
for its thick, white double coat. [...]

Idefics-2: Keeshond. These dogs were 
originally bred as ratters and watch 
dogs in Holland.

Figure 1: The importance of object recognition: LLaVA
1.5 fails to identify the dog breed. Idefics-2 correctly
recognizes it and gives a correct fact as a result.

or identifying object attributes (Goyal et al., 2017; 042

Hudson and Manning, 2019; Liu et al., 2023c). 043

LVLMs are, however, barely ever tested for 044

fine-grained object classification—the ability to 045

correctly recognize different animals, plants, or 046

man-made objects—which is, we argue, an impor- 047

tant skill that complements general image under- 048

standing.1 Besides it being an end-task in itself, 049

e.g., to answer questions such as “What is this 050

flower called?”, it is often implicitly needed in 051

information-seeking situations, where the success 052

depends on the models’ ability to correctly and 053

precisely identify an object (Hu et al., 2023; Chen 054

et al., 2023; Mensink et al., 2023). As illustrated in 055

Figure 1, only one of the LVLMs correctly identi- 056

fies the dog breed in the image and can follow up 057

with relevant information. Note that this is different 058

from general L(V)LM hallucination (Zhang et al., 059

2023b), where models ‘invent’ incorrect informa- 060

tion. Instead, the generated content is correct for 061

the object, but the object is misclassified: the in- 062

formation about Samoyed by LLaVa 1.5 is correct, 063

but the dog in the image is a Keeshond. 064

To fill this gap in LVLM evaluation, we create 065

1For simplicity, we use ‘object’ to refer to both living
entities like animals as well as to inanimate objects.
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a comprehensive benchmark dubbed FOCI (Fine-066

grained Object ClassIfication) that tests models’067

fine-grained object recognition over a wide range068

of object categories. Our key contribution is a well-069

defined task formulation that avoids pitfalls of prior070

work: We argue that an open question answering071

(QA) formulation (i.e., answer the question “What072

is this”?), as done, e.g., by Xu et al. (2023a), is an073

ill-defined task for two reasons. 1) the complete074

set of admissible answers is not provided (e.g., ad-075

missible answers for the dog in Figure 1 include076

Keeshond, Dutch Barge Dog, and Wolfspitz). For077

objects with only a few synonym labels, one can078

provide all answer options but this does not scale079

to hundreds or thousands of objects. Constrained080

decoding to only the admissible labels is computa-081

tionally expensive for large label sets (Chen et al.,082

2022). 2) The expected taxonomy level of the an-083

swer is not specified. For the given example, dog,084

Spitz, and Keeshond are all ontologically correct085

answers; but recognizing a Keeshond is much more086

difficult than recognizing a dog. To address the087

above shortcomings, we formulate object classifi-088

cation as a multiple-choice problem To avoid that089

the reduction to only a handful candidate answers090

renders the task trivial, we use a CLIP model (Rad-091

ford et al., 2021a) in a zero-shot configuration to092

mine difficult choices from the pool of class labels.093

We assemble FOCI from 5 popular classification094

datasets for different domains (flowers, cars, food,095

aircraft, pets) and additionally create 4 domain sub-096

sets from ImageNet-21k (Deng et al., 2009) for097

animals, plants, food, and man-made objects.098

We extensively evaluate 12 publicly available099

LVLMs on FOCI and find that many of them like100

the popular LLaVA 1.5 struggle with fine-grained101

object classification. We observe that models with102

similar performance on established benchmarks103

can yield quite different and uncorrelated results104

on FOCI, highlighting that fine-grained object clas-105

sification is indeed a distinct skill for LVLMs, and106

that FOCI should thus complement existing image107

understanding and reasoning benchmarks. Com-108

paring the models further, we observe that the scale109

of their (pre-)training data seems to impact their110

performance on FOCI significantly more than for111

image understanding tasks. A comparison with the112

underlying CLIP models used as the LVLMs’ im-113

age encoders shows that the encoder’s zero-shot114

accuracy provides an upper bound for the LVLM,115

with the LVLM performance lagging drastically116

behind. This suggests that the alignment between 117

the image encoder and LLM in LVLMs seems to 118

be insufficiently semantically fine-grained. We fi- 119

nally perform controlled experiments to isolate the 120

modeling and training decisions that impact the 121

models’ performance in FOCI. As is the case with 122

other benchmarks, both larger LLMs and stronger 123

image encoders improve results. Most importantly, 124

incorporating captions into the training data that 125

explicitly name the downstream objects helps with 126

classification. Similarly, including fine-grained 127

classification objectives to the training mix can 128

improve models’ FOCI performance. 129

2 Related Work 130

Large Vision-Language Models. LVLMs align 131

pre-trained image encoders (generally a Vision 132

Transformer (ViT) (Dosovitskiy et al., 2021) from 133

CLIP (Radford et al., 2021a)) to a Large Language 134

Model (LLM), yielding an LLM that can work 135

with images as input besides text (Chen et al., 136

2022; Alayrac et al., 2022; Li et al., 2023b; Dai 137

et al., 2023; Liu et al., 2023b,a; Bai et al., 2023; 138

Laurençon et al., 2023; Chu et al., 2023; Zhang 139

et al., 2023a). LVLMs are commonly trained in 140

two stages: first, an alignment module between 141

the image encoder and the LLM—a shallow feed- 142

forward network (Liu et al., 2023b,a) or more com- 143

plex modules like a resampler (Alayrac et al., 2022; 144

Li et al., 2023b)—that projects image tokens into 145

the LLM input embedding space is trained using 146

image-caption pairs. In the second stage, the model 147

is trained for general-purpose inference on a mix of 148

tasks, e.g., visual Q&A (Goyal et al., 2017; Hudson 149

and Manning, 2019) and (visual) chat instruction 150

data (Chiang et al., 2023; Liu et al., 2023b). While 151

the second stage is fairly similar across the recent 152

models, the first stage is where training greatly 153

varies: on the low end, models are trained with 154

less than a million examples (Liu et al., 2023a, 155

2024); on the high end, over a billion image-text 156

pairs are used (Bai et al., 2023; Dong et al., 2024; 157

Laurençon et al., 2024). Despite differences in 158

data size, models on both ends of the spectrum can 159

achieve competitive results on popular benchmarks. 160

In this work, we show that better visio-linguistic 161

alignment in the first training stage substantially 162

boosts fine-grained object classification abilities. 163

Benchmarking LVLMs. Most existing bench- 164

marks, e.g., VQAv2 (Goyal et al., 2017), GQA 165

(Hudson and Manning, 2019), MME (Fu et al., 166
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{Keeshond, Samoyed, 
Persian, Pomeranian, ...}

Cosine Similarity:

What is this?
A. Persian
B. Samoyed
C. Keeshond
D. Pomeranian

Answer: C

CLIP Image Encoder

CLIP Text Encoder

Keeshond
Samoyed

Persian

Pomeranian

Test Image (Keeshond)

Class Labels ① Find hard choices with CLIP similarity

② Formulate as a 
multiple-choice 

problem

③ Test LVLM 

Figure 2: Testing LVLMs on object classification through multiple-choice: (1) We compute the CLIP cosine
similarity between a test image and class labels; we select the correct label and the three most similar (wrong) labels
to (2) formulate a multiple-choice problem, which (3) is given to the LVLM who has to predict the correct choice.

2023), MMBench (Liu et al., 2023c), or Seed-167

Bench (Li et al., 2023a), test LVLMs for image168

understanding and reasoning capabilities such as169

recognition of color and other attributes, object170

counting, recognizing object position and orienta-171

tion and similar. Other benchmarks like MMMU172

(Yue et al., 2023) test world knowledge and rea-173

soning capabilities in different domains. Although174

(fine-grained) object classification is a prominent175

end-task in itself and relevant in conversational176

applications, it is barely considered in LVLM eval-177

uation protocols. The work that addresses the task178

is limited. (i) Models with in-context learning ca-179

pabilities are evaluated on few-shot object clas-180

sification but the models do not classify images181

in isolation and instead compare the target image182

with labeled in-context examples (Tsimpoukelli183

et al., 2021; Alayrac et al., 2022). (ii) Pali (Chen184

et al., 2022) was evaluated on ImageNet (Deng185

et al., 2009) by scoring every class labels, which186

is computationally expensive. (iii) LVLM-e-Hub187

(Xu et al., 2023a) includes some image classifica-188

tion datasets (like ImageNet) but they formulate189

it as open-ended QA task with ambiguity over ex-190

pected answers, which leads to low accuracy scores191

for all models. (iv) In knowledge-intensive VQA,192

models have to recognize the correct object (e.g., a193

specific building) to answer correctly; objects are194

recognized either implicitly (the QA model needs195

to know which object it is to answer correctly) or196

explicitly when a knowledge base is used to re-197

trieve relevant information (Hu et al., 2023; Chen198

et al., 2023; Mensink et al., 2023). In contrast to199

these efforts, we propose a standardized evaluation200

of LVLMs for (fine-grained) object classification201

by converting image classification datasets into dif-202

ficult multi-choice tasks.203

3 Multiple-Choice Image Classification 204

Image classification is a fundamental problem in 205

computer vision with a plethora of datasets avail- 206

able. In this work, we focus on fine-grained object 207

classification where models have to differentiate 208

between several objects belonging to a specific do- 209

main, e.g., animal species or car models. We lever- 210

age existing datasets as resources for annotated data 211

and frame object classification as a multiple-choice 212

task with well-defined answer candidates. 213

Why Multiple-Choice? The standard formulation 214

of object classification tasks for LVLMs is via ques- 215

tion answering, with open-ended answer generation 216

Xu et al. (2023b). This formulation, we argue, rep- 217

resents an ill-posed problem for two main reasons: 218

(1) the expected level of granularity in the object 219

taxonomy that is expected as the answer is not de- 220

fined, and is difficult to define in general (e.g., for 221

the image from Figure 1, dog, Spitz, or Keeshond 222

are all correct labels); (2) the set of admissible an- 223

swers in existing datasets is not complete: most 224

objects have multiple synonymous labels, all of 225

which constitute a correct answer (e.g., Keeshond, 226

Dutch Barge Dog, and Wolfspitz), but only subsets 227

of those are provided as admissible labeles in exist- 228

ing datasets. Providing complete synonym sets and 229

specifying the expected level of granularity of the 230

answer is, in the general case, infeasible. Instead, 231

we propose to formulate fine-grained object classi- 232

fication as a multi-choice task, where the models 233

are provided with a set of candidate answers from 234

which the correct answer is to be selected; this way 235

the expected (i.e., correct) output is well-defined. 236

Mining Hard Choices. To maintain difficulty de- 237

spite the reduction to only a small set of candidate 238
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labels, we mine for each example image difficult239

incorrect labels from all class labels used in the240

concrete image classification dataset. We argue241

that a reduction to the most likely incorrect classes242

retains the task difficulty as even in classification243

over large class sets (e.g., thousands of classes),244

models easily discern between unrelated classes245

and most errors stem from close classes anyways246

(e.g., in the Oxford-Pets dataset, which covers 37247

cat and dog breeds, cat breeds are irrelevant for248

dog images). We use a CLIP model for mining249

difficult candidates: for every example image, we250

select the three most similar (incorrect) class labels251

as negative choices. We rank the dataset classes for252

an image using the standard CLIP zero-shot setup:253

the text encoder embeds all class labels, the image254

encoder embeds the image, and the class labels are255

ranked in decreasing order of cosine similarity of256

their respective text embeddings with the image257

embedding. We avoid biasing the choice selec-258

tion towards any concrete LVLM in our evaluation259

by selecting OpenCLIP ViT-L/14 (Ilharco et al.,260

2021): its image encoder has not been used by any261

of the LVLMs. Figure 2 illustrates both the process262

of mining negatives for an image and testing an263

LVLM on the resulting set of candidate choices.264

FOCI (Fine-grained Object ClassIfication). We265

collate our FOCI benchmark from diverse exist-266

ing datasets, selecting in all cases four candidate267

choices for each image (i.e., the correct label and268

three most similar negatives). We complement (1)269

established datasets commonly used for evaluating270

CLIP models (Radford et al., 2021a; Ilharco et al.,271

2021) with (2) additional challenging larger-scale272

datasets that we derive from ImageNet-21k (Deng273

et al., 2009). For the former, we select the fol-274

lowing five datasets: FGVC-Aircraft (Maji et al.,275

2013) contains images of 100 different aircraft276

types; Flowers102 (Nilsback and Zisserman, 2008)277

contains images of 102 different flower species;278

Food101 (Bossard et al., 2014) covers 101 dishes;279

Oxford-Pet (Parkhi et al., 2012) contains images280

of 37 cat and dog breeds. Stanford-Cars (Krause281

et al., 2013) covers 196 car models.282

As some of the above datasets are not particu-283

larly challenging for existing CLIP models in zero-284

shot evaluations, we additionally construct four285

new challenging datasets from ImageNet-21k (IN-286

21k). We first merge ImageNet-COG (Sariyildiz287

et al., 2021) (5k classes) and ImageNet-1k (IN-1k),288

for a total of 6k classes that are all leaf nodes in the289

Model #P Pretrain Task Mix

Idefics-1 (Laurençon et al., 2023) 9B 350M 1M
Idefics-2 (Laurençon et al., 2024) 8B 1.5B ?
BLIP2 Flan-T5-XL (Li et al., 2023b) 4B 130M —
InstructBLIP Flan-T5-XL (Dai et al., 2023) 4B 130M 1M
InstructBLIP Vicuna (Dai et al., 2023) 8B 130M 1M
InternLM XComposer 2 (Dong et al., 2024) 7B >1B 600M
LLaVA 1.5 (Liu et al., 2023a) 7B 560k 660k
LLaVA-Next (Mistral) (Liu et al., 2024) 7B 560k 760k
MobileVLM V2 (Chu et al., 2024) 7B 1.2M 2.4M
Pali-Gemma1 3B >1M ?
Phi-3-Vision (Abdin et al., 2024) 4B >10M >1M
Qwen-VL-Chat (Bai et al., 2023) 10B 1.4B 50M

Table 1: The 12 tested public LVLMs. We provide pa-
rameters count (#P; LLM + image encoder parameters)
and the dataset size (in images) used during the pretrain-
ing and task mix training phase. For some fields, we put
a conservative estimate or ‘?’ if no estimate is possible.
1Model Card, tech report pending at time of writing.

WordNet (Miller, 1994) taxonomy: this means that 290

no two labels stand in the is-a relation and there 291

cannot be multiple correct answers stemming from 292

different taxonomy levels (e.g., dog and Pomera- 293

nian). Next, we group the classes according to 294

their WordNet lexicographer file names, and cre- 295

ate a dataset for each of the four most represented 296

ones: Animal (1322 classes), Plant (957 classes), 297

Food (563 classes), and Artifact (man-made ob- 298

jects, 2631 classes). We prepend IN- (ImageNet-) 299

in our experiment to mark these datasets. 300

One could, in principle, add more object types 301

and domains to the evaluation: our goal was to in- 302

clude a reasonably diverse set of domains, from 303

which, when put together in a benchmark, one 304

could reliably extrapolate general fine-grained ob- 305

ject recognition abilities of LVLMs. For further 306

analysis, in Appendix D we additionally evaluate 307

LVLMs on more general (i.e., not domain-specific) 308

object classification under different image distri- 309

bution shifts (using ImageNet-1k) and for geo- 310

graphic distribution shifts with common objects 311

photographed in different regions of the world, us- 312

ing GeoDE (Ramaswamy et al., 2023). 313

4 Evaluating Public LVLMs 314

We evaluate 12 diverse and publicly available 315

LVLMs on FOCI. We then analyze how the per- 316

formance of LVLMs relates to the results of their 317

underlying CLIP image encoders. 318

Model and Inference Details.. Our selected mod- 319

els span a variety of architectures and training 320

paradigms. Table 1 summarizes key information 321

(the number of parameters and the size of the train- 322

ing data) for each model. Due to our hardware 323
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constraints, we benchmark models with LLMs hav-324

ing ≤7B parameters. At inference time, we provide325

the LVLMs with the image and the four candidate326

choices. The choices are in random order to avoid327

model-specific preferences for answer positions328

(Liu et al., 2023c)); the model provides as output329

one of the choices, which is compared with the330

ground truth label: we then report the performance331

in terms of accuracy. See Appendix A for further332

details on models, the inference setup, and datasets.333

4.1 Results334

FOCI vs. Other Benchmarks. Table 2 displays the335

results for the 12 benchmarked LVLMs on FOCI.336

We first compare the models’ performance and rel-337

ative ranking on FOCI with their results on pop-338

ular image understanding benchmarks (we show339

the models’ performance on GQA (Hudson and340

Manning, 2019), MMBench (Liu et al., 2023c),341

and MMMU (Yue et al., 2023) in Table 5 in the342

Appendix C). Model’s results on FOCI are much343

less correlated with their respective results on other344

benchmarks: better results on GQA, MMBench,345

or MMMU do not necessarily imply better re-346

sults for fine-grained object classification and vice347

versa. Qwen-VL, for example, is amongst the best-348

performing models in object classification in FOCI,349

but is fares much worse on the standard bench-350

marks, where several yield better results. On the351

other hand, Phi-3-Vision has among the best results352

on the standard benchmarks but exhibits only av-353

erage performance on FOCI. These results indicate354

that fine-grained object classification is a skill that355

is complementary to what other image understand-356

ing and reasoning benchmarks test and as such357

should be added to LVLM evaluation protocols.358

Training Data. One important factor for strong359

object recognition on FOCI seems to be the amount360

of image-text data used for (pre-)training the align-361

ment component of the LVLM in the first training362

phase (see §2). On the common understanding363

benchmarks, models like LLaVA 1.5, and LLaVA-364

Next show strong results despite being pretrained365

with <1M image-text pairs. However, the two best366

models on FOCI, Idefics-2 and Qwen-VL, are both367

pretrained on ∼1.5B images and drastically outper-368

form the LLaVA models. This suggests that object369

classification requires larger-scale training for a370

much more fine-grained alignment between the im-371

age encoder and LLM, compared to what is needed372

in general for image understanding. We isolate the373
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Figure 3: We plot the LVLM accuracy against the CLIP
zero-shot accuracy (using the 4 multiple-choice options
for CLIP for a fair comparison) of the underlying CLIP
image encoder used by the LVLM.

effect of the alignment training data (in a smaller- 374

scale setup) in §5. The results for InstructBLIP 375

are somewhat inconclusive: with Flan-T5-XL as 376

LLM, it exhibits good FOCI performance, but with 377

Vicuna (and otherwise identical training) the results 378

are substantially worse. This would suggest that, 379

other than the scale of the alignment training, the 380

LLM itself plays an important role. 381

Other Factors. Very high image resolution, which 382

is highly beneficial for OCR-heavy tasks like chart 383

understanding (Liu et al., 2024), does not seem to 384

be relevant for fine-grained object classification. 385

This stems from the comparison between LLaVA 386

1.5 and LLaVA-Next, where the latter’s main dif- 387

ference w.r.t. the former is training with (and infer- 388

ence on) images of higher resolution. This is unsur- 389

prising as images in object classification datasets 390

typically contain large centered objects, making 391

larger resolution unnecessary for solving the task. 392

The LLM and image encoder are likely also major 393

factors for the ultimate performance but we cannot 394

isolate them in this observational analysis; instead, 395

we consider them in controlled experiments in §5. 396

4.2 LVLM vs. Its Corresponding CLIP 397

Several of the tested LVLMs keep their underly- 398

ing CLIP image encoder frozen throughout training. 399

This means that the cross-modal alignment between 400

the CLIP’s image encoder and its text encoder is un- 401

touched, allowing us to compare the performance 402

of these LVLMs directly against the CLIP models 403

from which they take the image encoder. 404

Specifically, we consider three LVLMs with 405

their corresponding CLIP models: Idefics-1, which 406

uses OpenCLIP ViT-H/14 (Ilharco et al., 2021), 407
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Model IN-Food IN-Artifact IN-Animal IN-Plant Aircraft Flowers102 Food101 O.-Pet S.-Cars ∅

Idefics-1 40.18 41.90 31.37 29.55 34.62 51.70 72.44 48.51 29.42 42.19
Idefics-2 56.38 52.56 46.50 41.47 56.23 72.78 89.70 81.28 80.25 64.13
BLIP-2 Flan-T5-XL 51.47 47.41 39.22 32.59 32.94 64.32 82.51 65.00 67.68 53.68
InstructBLIP Flan-T5-XL 49.25 47.83 38.07 32.88 29.19 62.29 76.77 59.99 64.58 51.21
InstructBLIP Vicuna 43.94 42.39 37.32 30.04 31.68 50.90 63.47 54.92 48.25 44.77
InternLM XComposer 2 50.43 47.84 38.98 33.23 40.53 54.25 79.30 63.23 53.89 51.30
LLaVA 1.5 47.76 45.61 36.32 33.00 34.71 51.37 72.80 52.25 46.92 46.75
LLaVA-Next 46.32 45.54 35.51 31.86 32.49 43.91 71.30 53.72 49.48 45.57
MobileVLM v2 46.50 44.58 37.60 33.75 35.01 54.89 74.38 53.69 46.29 47.41
Pali-Gemma 54.25 48.79 42.28 37.04 39.87 69.64 82.36 75.42 64.64 57.14
Phi-3-Vision 46.66 42.75 35.11 31.27 42.33 51.59 69.98 56.36 54.50 47.84
Qwen-VL-Chat 52.36 50.95 48.45 40.09 45.96 75.95 83.92 87.82 76.23 62.41

Table 2: Accuracy on FOCI: on individual datasets and average (∅), for the 12 tested public LVLMs.

Idefics-1 InstructBLIP Flan-T5-XL LLaVA 1.5
model

0.0
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cu

ra
cy

ImageNet-1k

CLIP correct
yes
no

Figure 4: Accuracy of three LVLMs on ImageNet-1k,
for example subsets on which the zero-shot classifica-
tion with the corresponding CLIP model is (in)correct.

LLaVA 1.5, which uses OpenAI ViT-L/14 (Rad-408

ford et al., 2021b), and InstructBLIP Flan-T5 with409

EVA-1 ViT-g/14 (Fang et al., 2022).410

CLIP Zero-Shot Classification as Upper Bound.411

The image and text encoder of a CLIP model were412

trained jointly on huge datasets; in contrast, the413

alignment of the CLIP’s image encoder to the LLM414

is learned with comparatively less image-text data415

(e.g., InstructBLIP is pre-trained with 100M sam-416

ples while EVA-1 was trained with 11B samples).417

We compare in Figure 3 the LVLM performance418

against the zero-shot classification accuracy of the419

corresponding CLIP model (for a fair comparison,420

CLIP only considers the same 4 labels as LVLM421

does in multiple-choice formulation). We observe422

that the LVLM performance is indeed consistently423

lower than that of the corresponding CLIP model.424

However, while the CLIP zero-shot classification425

accuracy seems to be an upper bound for the LVLM,426

the gaps vary substantially across the FOCI datasets:427

from <10% on IN-Artifact to 40-50% on Oxford-428

Pets. These results indicate that, while the align-429

ment between the image encoder and LLM is under-430

trained in general, there are also drastic differences431

in the quality of alignment for different types of432

objects (i.e., domains). For certain domains (e.g., 433

Oxford-Pets) the LLM seems to struggle to process 434

the image features, despite the CLIP image encoder 435

encoding sufficient information (as evidenced by 436

the much better corresponding CLIP performance). 437

CLIP wrong =⇒ LVLM wrong? We analyze 438

the predictions of LVLMs on instances that the cor- 439

responding CLIP model misclassifies to measure 440

whether those classification errors propagate to the 441

LVLM: in other words, if the CLIP model is wrong, 442

is the LVLM using its image encoder also bound 443

to misclassify the image? Figure 4 summarizes 444

the results of this analysis on ImageNet-1k (in our 445

multi-choice formulation) for three LVLMs; for 446

the FOCI datasets we provide the same analysis in 447

Figure 7 in the Appendix. We observe that LVLM 448

accuracy plummets on examples on which the cor- 449

responding CLIP fails: in fact, for instances that 450

CLIP cannot correctly classify, the performance 451

of the corresponding LVLM gets close to random 452

(25%) for all three LVLMs in the analysis. These 453

observations—that CLIP performance is an upper- 454

bound for LVLM accuracy and that its errors prop- 455

agate to the LVLM—highlight that the selection 456

of an image encoder is a key design decision for 457

LVLMs performance and suggest that future im- 458

provements in image encoding are likely to also 459

propagate to LVLM object recognition capabilities. 460

5 Controlled Experiments 461

We next perform a set of controlled experiments to 462

disentangle the effects of individual LVLM design 463

choices on (fine-grained) object classification. Our 464

analysis encompasses three main factors: (1) the 465

LLM size, (2) the image encoder, and (3) targeted 466

changes to the training data. For (2) and (3), we 467

train LVLMs following the LLaVA 1.5 recipe with 468

StableLM 2 Zephyr 1.6B (Bellagente et al., 2024) 469

as LLM and OpenAI CLIP-L/14-224 as the image 470
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Figure 6: Improvements over our baseline when chang-
ing the OpenAI ViT-L/14-224 image encoder to a
higher resolution (336) or to SigLIP SO400-224.

encoder (see the Appendix B for training details).471

LLM Size. Larger LLMs generally make for better472

LVLMs, yielding better benchmark performance473

due to (inter alia) improved reasoning capabilities474

(Liu et al., 2023a; Karamcheti et al., 2024; Chu475

et al., 2024). Our multiple-choice object classifica-476

tion is not difficult from a reasoning or language-477

understanding perspective, but it requires familiar-478

ity with thousands of objects, which may be be-479

yond the knowledge stored in smaller LLMs. For480

this analysis, we turn to the MobileVLM v2 model481

series (Chu et al., 2024): with models trained on482

top of 1.7B, 3B, and 7B LLM backbones and oth-483

erwise identical architecture (image encoder and484

alignment module) and training procedure (data485

and training protocol for both the LLMs and subse-486

quent LVLMs), we can isolate the effect of LLM487

size. Figure 5 summarizes the results. Expectedly,488

the performance on all FOCI datasets consistently489

improves with increased LLM size: we believe490

that this is because smaller LLMs simply encode491

less world knowledge and have semantically poorer492

Model IN-1k Train Half Test Half FOCI

Baseline 53.12 53.71 52.52 41.19
No Pretrain 51.94 51.56 52.32 38.71
Synthetic 54.46 55.12 53.80 41.48
Template 54.81 58.82 50.80 40.69
QA Task 57.40 59.89 54.91 43.64

Table 3: Results for experiments with changes to the
training data on: ImageNet-1k overall (IN-1k) and bro-
ken down for the training half and the held-out test half,
and the average results over the 9 FOCI datasets.

representations for (fine-grained) objects. 493

Image Encoder. Following the observation that 494

the quality of the CLIP image encoder may cap 495

the LVLMs’ performance (Figure 3), we investi- 496

gate the effect that LVLM’s image encoder has 497

on fine-grained object recognition. Our “baseline” 498

LVLM aligns the OpenAI CLIP-L/14-224 (CLIP- 499

224 for short) image encoder with the LLM. We 500

then create two other LVLMs by changing the im- 501

age encoder with: (1) OpenAI CLIP-L/14-336 502

(CLIP-336 for short), which takes images of larger 503

resolution and (2) SigLIP SO400M-224 (SigLIP 504

for short) (Zhai et al., 2023) as a ‘better’ image 505

encoder, boasting substantially higher benchmark 506

results on image processing benchmarks. Figure 6 507

summarizes the results. On one hand, encoding 508

images in higher resolution (with CLIP-336, i.e., 509

increasing from 224px to 336px) leads to only a 510

marginal ∼1 accuracy point gain, averaged over 511

all FOCI datasets. The effect seems to depend on 512

the object type: we see gains of over 5 points on 513

Flowers102 & Food102 but also a 5-point drop on 514

Oxford-Pets. The SigLIP encoder, on the other 515

hand, greatly improves the baseline performance 516

across the board. The absolute gains of the SigLIP- 517

based LVLM over the baseline LVLM (CLIP-224 518

encoder) are, however, not proportionate to gains 519

that the corresponding SigLIP CLIP model yields 520

over CLIP-224 in zero-shot object classification. 521

For example, while SigLIP beats CLIP-224 by 27% 522

on FGVC-Aircraft,2 the SigLIP-based LVLM beats 523

the CLIP-224-based LVLM on the same dataset by 524

only 3%; inversely, on Food101, SigLIP has only 525

a 2% edge in CLIP comparison, but yields 12% 526

better performance in LVLM comparison. 527

Training Data. The two LVLMs trained with most 528

data, Idefics-2 and Qwen-VL (>1.5B images in 529

total over both training stages) demonstrated the 530

best performance on FOCI (Table 2). As this scale 531

2Taken from: openclip_classification_results.csv
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of training is beyond the (computational) budget532

of most practitioners, we set to quantify the FOCI533

gains from adding training data at smaller data534

scales, concretely at the data budget of LLaVA 1.5535

(ca. 1.2M images in total, see Table 1).536

Changes to Pretraining. We hypothesize that a537

larger pretraining corpus benefits the LVLM due538

to having more of the objects named explicitly in539

the corresponding captions. We test this explic-540

itly by replacing 25% of the LLaVA 560k pre-541

trainng images (with captions) with images from542

the ImageNet-1k train split. To have a held-out543

control set, we only use 500 of the 1000 classes544

(choosing every other class) for training; we se-545

lect 280 images per class (140k training exam-546

ples in total). We consider three training strategies547

for the added ImageNet images: i) with synthetic548

captions, generated using BLIP (Li et al., 2022)549

(Synthetic); this setup tests the effect of images550

with objects but with captions that do not necessar-551

ily name them (e.g., for an image of a Keeshond,552

BLIP-generated caption will likely contain ‘dog’553

but not ‘Keeshond’). ii) with template captions554

(Template) such as “a picture of a $label.”; such555

captions are not visually descriptive but explicitly556

name the object in the image. iii) we skip the pre-557

training phase entirely (No Pretrain) and perform558

the task mix training on the randomly initialized559

alignment module; on standard benchmarks, skip-560

ping pretraining has been reported not to notably561

affect performance (Karamcheti et al., 2024).562

Changes to Task Mix Phase. We incorporate Ima-563

geNet as an open-ended QA Task where the model564

is prompted to name the image object without can-565

didate answers. We use the open-ended QA for-566

mulation in training to avoid model adaptation to567

the multiple-choice formulation of the task we use568

at test time on FOCI. We again use 500 (out of the569

1000) ImageNet classes and sample 150 examples570

per class (75k training examples in total). We do571

not otherwise change the LLaVA task mix data.572

Results. We report the results of this ablation in573

Table 3. Skipping the pretraining step entirely (No574

Pretrain) reduces the average FOCI performance575

by over 2 accuracy points: this suggest that pretrain-576

ing of the alignment module on image-text pairs577

is important for fine-grained object classification,578

unlike what was recently reported for other tasks579

(Karamcheti et al., 2024). Training on images with580

both Synthetic and Template captions has a very581

limited effect on FOCI performance and the unseen582

Test Half of ImageNet. Training on Synthetic 583

brings a ∼ 1.5-point gain for the 500 ImageNet 584

object classes seen in training (Train Half in Ta- 585

ble 3); in comparison, the Template captions bring 586

a much more significant gain of 5% for seen ob- 587

ject classes: this strongly suggests that explicitly 588

mentioning the objects in the captions is key for 589

learning the alignment module that allows LVLMs 590

better fine-grained object classification; just hav- 591

ing images containing the object does not suffice 592

(or is, at least, less effective). Note that only the 593

feed-forward alignment module is trained in the 594

first phase, so the improvements with Template 595

captions can only be the result of having learned a 596

better alignment and not due to the image encoder 597

or LLM (both frozen) obtaining better representa- 598

tions of objects and their mentions, respectively. 599

Including ImageNet as open-ended QA Task to the 600

second task mix training phase has a larger effect 601

on performance. For 500 of ImageNet-1k seen in 602

training (Train Half), we observe a 6% improve- 603

ment, but also a 2-point improvement on the images 604

from the held-out Test Half and on FOCI. 605

6 Conclusion 606

In this work, we evaluate the capabilities of LVLMs 607

for fine-grained object classification over differ- 608

ent domains. We address the ambiguity of open- 609

ended QA-based object classification evaluation 610

and propose to replace it with a multiple-choice 611

formulation, in which we retain the task difficulty 612

by mining difficult (semantically closest classes) 613

choices with a CLIP model. This way, we cre- 614

ate FOCI, a novel benchmark consisting of 9 fine- 615

grained multi-choice object classification datasets. 616

We benchmark 12 public LVLMs, demonstrating 617

that their performance on FOCI is largely uncorre- 618

lated with that on other image understanding and 619

reasoning benchmarks: this renders fine-grained 620

object classification a skill that is complementary to 621

what the existing benchmarks test the LVLMs for. 622

Our ablations identify the quality of the image en- 623

coder and the amount of explicit caption mentions 624

of image objects in LVLM training data as factors 625

that drive the performance. We hope our work stim- 626

ulates wider research efforts on improving LVLMs 627

for fine-grained object classification, in particular 628

conceptual innovation (e.g., more effective train- 629

ing data and protocols for object classification with 630

LVLMs) that goes well beyond mere scaling of 631

LVLM pretraining to billions of image-text pairs. 632
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Limitations633

We identify three main limitations for our work:634

First, while the goal of this work is not to eval-635

uate every possible domain, we still likely exhibit636

a bias towards Anglospheric concepts as multiple637

datasets were created at British and US universities638

and use images sourced from the English internet.639

ImageNet in particular shows such biases (Liu et al.,640

2021) in image source and for its classes. While641

we briefly consider performance over geographic642

distribution shifts in the Appendix, we still likely643

overestimate performance for diverse cultural ob-644

jects and concepts from around the globe.645

Another limitation stems from the multiple-646

choice formulation: while it allows for well-defined647

answers, users ‘in the wild’ are more likely to648

use an open-ended formulation. While we ex-649

pect results between the two formulations to cor-650

relate, some objects may be harder to classify in a651

multiple-choice setup due to the presence of chal-652

lenging confounder options, and vice versa, some653

objects may be easier to classify in multiple-choice654

with the correct name as an option.655

Finally, we only evaluate public LVLMs using656

LLMs of 7B parameters or less. We do not con-657

sider larger models (e.g., LLaVA 1.5 with Vicuna-658

13B) or proprietary LVLMs (e.g., GPT4 (OpenAI,659

2023b) or Gemini (Anil et al., 2023)) because the660

inference time is too high on our compute (or not661

possible at all VRAM-wise) for the former and too662

expensive with >100,000 of API calls for the latter.663
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We use the following prompt for all models. De-1067

pending on the task, we change the default question1068

at the beginning to prime the model for the dataset1069

domain:1070
1071

1 Default: Which of these choices is shown1072
in the image?1073

2 IN-Animal: Which of these animals is shown1074
in the image?1075

3 IN-Plant: Which of these plants is shown1076
in the image?1077

4 FGVC-Aircraft: Which of these aircrafts is1078
shown in the image?1079

5 Flowers102: Which of these flowers is1080
shown in the image?1081

6 Food101: Which of these dishes is shown1082
in the image?1083

7 Oxford-Pet: Which of these pets is shown in1084
the image?1085

8 Stanford-Cars: Which of these cars is shown1086
in the image?1087

9 Choices:1088
10 A. $CHOICE11089
11 B. $CHOICE21090
12 C. $CHOICE21091
13 D. $CHOICE31092
14 Answer with the letter from the given1093

choices directly.10941095

We expect the model to answer with a letter and1096

count the example as correct if the generated an-1097

swer begins with the letter corresponding to the1098

correct answer.1099

Dataset Details: In general, we evaluate on the1100

full test split (or, if no public test split exists1101

like with ImageNet, the validation split) of every1102

dataset.1103

The datasets that we constructed from ImageNet-1104

21k (Animal, Plant, Food, Artifact) are the excep-1105

tion: due to the large amount of classes, we only1106

use 10 images per class instead of the full 50 to1107

keep computation time manageable. In addition,1108

we use the processed version of ImageNet-21k and1109

not the original (>1TB large) version for disk space1110

reasons; the processed version has all images re-1111

sized to 224×224px. During creating of the four1112

datasets, we remove all classes that have no unique1113

label (keeping only the first occurrence of a label)1114

to achieve a 1-to-1 mapping between classes and1115

labels.1116

B Training Details1117

We closely follow the architecture and training1118

protocol of LLaVA 1.5 (Liu et al., 2023a).1119

As LLM, we use the instruction-trained Sta-1120

bleLM 2 1.6B Zephir (Bellagente et al., 2024)1121

(stabilityai/stablelm-2-zephyr-1_6b),1122

which is a small but performant LLM. The default1123

image encoder is OpenAI CLIP ViT-L/14-224. 1124

Training is done on a single NVIDIA RTX 3090 1125

with training one model taking less than 2 days. 1126

We train the models using AdamW optimizer 1127

(Loshchilov and Hutter, 2019) with a cosine learn- 1128

ing rate decay schedule. For the pre-training phase, 1129

we use learning rate 1e-3, weight decay 0, and 1130

batch size 256. For the task-mix training phase, we 1131

use learning rate 2e-4, weight decay 0, and batch 1132

size 128; we do not fine-tune the full LLM but 1133

apply LoRA (Hu et al., 2022) to all weights with 1134

r = 64, α = 128. 1135

C LVLM Performance on Popular 1136

Benchmarks 1137

We collate public results on select popular bench- 1138

marks for evaluating LVLMs (GQA (Hudson and 1139

Manning, 2019), MMBench (Liu et al., 2023c), 1140

and MMMU (Yue et al., 2023)) for the models of 1141

Table 1. Comparing these results against the per- 1142

formance in object classification shows that the 1143

latter is an independent skill that does not directly 1144

correlate with these benchmarks. 1145

D Additional Evaluation on More 1146

Datasets 1147

In this section, we consider general object classi- 1148

fication datasets (not covering a specific domain) 1149

and consider how LVLMs handle image distribu- 1150

tion shifts for the same object using ImageNet and 1151

its variants and GeoDE (Ramaswamy et al., 2023). 1152

ImageNet Image Distribution Shifts. There are 1153

several datasets that collect new images for the 1154

classes of ImageNet-1k (Deng et al., 2009), or 1155

at least for a subset of them. Here, we consider 1156

ImageNet-Adversarial (Hendrycks et al., 2021b), 1157

which contains images for 200 classes that are diffi- 1158

cult to correctly classify for a model trained on the 1159

ImageNet-1k training split; ImageNet-Rendition 1160

(Hendrycks et al., 2021a), which contains for 200 1161

classes images of the objects where the image is 1162

painted, a plushy, origami, or other renditions; and 1163

ImageNet-Sketch (Wang et al., 2019), which con- 1164

tains black-and-white drawings for all 1000 classes. 1165

CLIP models generally excel at transferring be- 1166

tween the different image distributions due to their 1167

large-scale training (Radford et al., 2021b). We 1168

evaluate in Table 6 if LVLMs see similar results 1169

despite training the alignment with the image en- 1170

coder on magnitudes less data and generally only 1171
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Model GQA MMBench MMMU

Idefics-1 — 35.2 28.7
Idefics-2 — 76.8 43.5
BLIP2 Flan-T5-XL *44.0 — 34.4
InstructBLIP Flan-T5-XL *48.4 — 32.9
InstructBLIP Vicuna 7B *49.2 38.3 —
InternLM XComposer 2 — 79.6 43.0
LLaVA 1.5 7B 62.0 64.3 —
LLaVA-Next Mistral 7B 64.8 68.7 —
MobileVLM V2 7B 62.6 69.2 —
Pali-Gemma **65.6 — —
Phi-3-Vision — 80.5 40.4
Qwen-VL-Chat 57.5 60.6 35.9

Table 5: Performance on standard benchmarks for image understanding and reasoning. * unlike other models, has
not included GQA in training task mix. ** with model fine-tuned on GQA, not the mix version used for testing.

with natural images. We observe that the ranking1172

between the models is similar to our evaluation on1173

FOCI in Table 2. The changes in accuracy from1174

ImageNet-1k to the variants are qualitatively simi-1175

lar to the underlying CLIP models for the LVLMs.1176

This suggests that other representations of objects1177

(like sketches) are encoded similarly enough by1178

the image encoder that the LVLM can ‘recognize’1179

without extra training on different image types.1180

Geographic Shifts with GeoDE. We now con-1181

sider geographic distribution shift using GeoDE1182

(Ramaswamy et al., 2023), a dataset with 401183

classes for which there are images evenly dis-1184

tributed around the globe for six regions: Europe,1185

Africa, Southeast Asia, West Asia, East Asia, and1186

the Americas (which does not include here the US1187

or Canada). Results of the tested LVLMs are re-1188

ported in Table 7. While GeoDE is a generally1189

easy dataset with high accuracy throughout, we1190

still observe substantial differences between the1191

regions: European images consistently enjoy the1192

highest accuracy, all non-African regions follow1193

close by with 0-3 points worse than Europe, and fi-1194

nally, the African images noticeably trail behind by1195

2-4 points lower accuracy compared to the overall1196

average accuracy. This shows that geographic bi-1197

ases in the training data, both for the image encoder1198

and for the LVLM (Pouget et al., 2024), result in1199

disadvantages for large parts of the population.1200

E More CLIP Results1201

We present the results for conditional accuracy of1202

LVLMs for all datasets in Figure 7.1203

F Full Experiment Results 1204

Complementary to the Figures in the main paper, 1205

we report the raw results of MobileVLMv2 in Ta- 1206

ble 8 and for our trained models in Table 9. 1207
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models IN-1k IN-adversarial IN-rendition IN-sketch ∅

Idefics-1 60.09 50.03 72.20 50.13 58.11
Idefics-2 73.39 79.84 93.23 68.21 78.67
BLIP-2 Flan-T5-XL 66.12 67.48 90.48 64.85 72.23
InstructBLIP Flan-T5-XL 66.15 69.69 90.58 64.46 72.72
InstructBLIP Vicuna 56.27 59.75 76.82 54.84 61.92
InternLM XComposer 2 65.65 73.08 83.29 56.99 69.75
LLaVA 1.5 62.44 68.53 79.30 55.88 66.54
LLaVA-Next 60.86 67.20 78.12 53.50 64.92
MobileVLM v2 61.16 64.59 79.63 54.66 65.01
Pali-Gemma 69.56 68.45 92.15 65.55 73.93
Phi-3-Vision 61.71 56.71 79.18 56.01 63.40
Qwen-VL-Chat 71.20 70.99 90.59 67.16 74.98

Table 6: Results for ImageNet-1k and four distribution-shifted versions.

models Europe Africa Southeast Asia Americas West Asia East Asia All

Idefics-1 85.48 79.85 84.65 83.61 84.06 84.22 83.56
Idefics-2 90.15 86.59 90.00 89.40 90.03 89.65 89.23
BLIP-2 Flan-T5-XL 91.24 87.49 90.91 89.64 90.45 89.32 89.79
InstructBLIP Flan-T5-XL 88.64 84.10 88.46 86.87 87.99 87.60 87.20
InstructBLIP Vicuna 76.36 70.53 75.61 75.34 74.78 76.19 74.70
InternLM XComposer 2 91.54 87.59 90.81 90.48 90.63 89.54 90.04
LLaVA 1.5 86.06 82.81 86.27 84.66 86.35 84.17 84.99
LLaVA-Next 86.75 82.90 86.55 85.35 85.46 84.65 85.24
MobileVLM v2 82.13 75.16 79.27 79.26 81.09 77.99 79.05
Pali-Gemma 90.94 87.12 90.53 90.14 90.68 90.09 89.84
Phi-3-Vision 89.76 86.49 89.44 88.75 88.46 87.61 88.39
Qwen-VL-Chat 90.94 87.31 88.86 89.24 90.79 89.32 89.34

Table 7: Result on the GeoDE dataset for each region and the overall accuracy for all examples together.

Model IN-food IN-artifact IN-animal IN-plant Aircraft Flowers102 Food101 O.-Pet S.-Cars ∅

1.7B 40.89 38.67 30.36 28.19 29.07 47.72 61.03 41.26 36.08 39.25
3B 44.28 42.30 34.83 31.97 32.85 47.70 68.67 46.69 41.52 43.42
7B 46.50 44.58 37.60 33.75 35.01 54.89 74.38 53.69 46.29 47.41

Table 8: Results for the three sizes of MobileVLM v2.

models IN-food IN-artifact IN-animal IN-plant fgvc aircraft flowers102 food101 oxford pet stanford cars ∅

Baseline 43.43 40.33 32.18 31.54 30.27 38.33 62.40 50.12 42.08 41.19
CLIP-336 45.01 41.51 32.81 31.20 32.49 44.15 68.73 45.05 42.61 42.62
SigLIP 49.88 47.44 36.70 34.11 33.09 56.82 74.69 54.51 50.08 48.59
No Pretrain 41.55 39.63 31.50 29.80 30.30 40.30 58.44 40.23 36.60 38.71
Synthetic 43.69 40.94 32.85 31.04 32.16 39.68 64.61 47.48 40.90 41.48
Template 44.74 39.93 32.79 31.09 30.09 38.07 62.80 46.31 40.43 40.69
QA Task 44.00 41.45 33.77 31.55 32.34 49.16 67.63 51.62 41.24 43.64

Table 9: Full results for our trained models.
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Figure 7: Conditionally accuracy on different datasets of different models if the CLIP image encoder would
(in)correctly classify an example in zero-shot.
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