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ABSTRACT

Open-Set domain generalization for semantic segmentation (OSDG-SS) aims to
segment known classes and identify unknown categories in target domains that
are entirely unseen during training. While recent domain generalization methods
perform well under the closed-set assumption, they struggle in open-set settings
by misclassifying unknown objects as one of the known classes. To address this
challenge, we propose a unified framework that explicitly models unknowns and
improves robustness to both semantic and visual domain shifts. First, to provide
supervision for unknown regions, we generate realistic unknown objects using
Stable Diffusion and insert them into source images, allowing the model to learn
unknown-aware representations via segmentation head expansion. However, since
synthetic unknowns may not reflect the true distribution of unknowns in target
domains, we introduce a meta-learning strategy that partitions the unknown set into
meta-train and meta-test subsets, guiding the model to generalize across unseen
unknown categories through entropy-based rejection and subdomain shifts. Finally,
to reduce confusion between unknowns and visually similar known classes, we
optimize the decision boundaries in feature space by enforcing compactness for
known classes and expanding the unknown using Mixup-based hard negative
synthesis. Extensive experiments across multiple benchmarks demonstrate that our
framework significantly improves in the OSDG-SS setting.

1 INTRODUCTION

While DG-SS methods have made significant progress, they are typically developed under a closed-
set assumption, where the source and target domains are expected to share the same label space.
However, in realistic scenarios where target domains are not accessible during training, there is no
prior knowledge of which categories may appear at test time. Consequently, target domains may
contain novel classes absent from the source domain, a scenario called open-set domain generalization
(OSDG). In such cases, models trained under the closed-set assumption are inevitably forced to
misclassify unseen classes as one of the known categories, potentially leading to critical failures. As
illustrated in Figure[I] we visualize predictions on an unseen target domain that includes unknown
classes such as “person” and “traffic sign”, which are not present in the source domain. We compare a
closed-set DG-SS model (FADA (Bi et al.|[2024)) and FADA with an additional post-hoc confidence-
based thresholding, which assigns low confidence regions to the unknown class. The FADA baseline
(Figure [T[b)) consistently predicts unknown objects as one of the known classes. Even when applying
thresholding (Figure[T|(c)), it still fails to detect or localize unknown areas, resulting in overconfident
and spatially inconsistent predictions. These failure cases reveal the potential risks of deploying
closed-set models in the open-set scenario, where unseen classes may appear unexpectedly. This
motivates the need for a framework that can explicitly predict unknown classes.

In this work, for the first time, we tackle a novel problem of Open-Set Domain Generalization for
Semantic Segmentation (OSDG-SS). The goal of OSDG-SS is to train a model on labeled source-
domain data such that, when evaluated on unseen target domains, it can (i) accurately segment pixels
belonging to known classes and (ii) reliably identify pixels from novel, unseen classes as “unknown”.

To meet the demands of OSDG-SS, we propose a framework that enables accurate segmentation
of known classes and robust detection of unknown classes in unseen target domains. Our approach
consists of three key components. First, we compensate for the lack of unknown-class information
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Figure 1: Visualization result in the OSDG-SS setting. Given an unseen target domain with unknown
classes, existing DG-SS methods such as FADA misclassify unknown regions as known classes,
even with confidence-based thresholding, while our method accurately segments unknowns. White
represents the unknown classes, and other colors indicate common classes.

in the source domain by synthesizing realistic unknown objects using Stable Diffusion (Rombach|
[2022)), a text-to-image generation model, from textual prompts sampled from an auxiliary
object vocabulary (e.g., CIFAR-100 (Krizhevsky et al., 2009) class label set). We then paste the
synthesized objects into source domain images for pixel-wise self-supervision. This allows the
model to explicitly learn representations of unknown classes by expanding the segmentation head,
which includes dedicated unknown-class nodes. Second, we introduce a meta-learning strategy to
prevent the model from overfitting to the specific synthetic unknowns used during training. Since
these generated samples may differ significantly from the actual unknown classes encountered in
target domains, the model must learn to generalize beyond their specific appearances. We split
the set of synthetic unknowns into meta-train and meta-test subsets. During meta-train, the model
learns to segment synthetic unknowns through explicit supervision. During meta-test, we apply an
entropy-based loss that encourages confident activation on unknown-class logits and high uncertainty
over known-class logits. This setup enables the model to generalize beyond the training unknowns
and recognize previously unseen target classes as “unknown’ at the test time. Finally, to reduce
confusion between unknowns and visually similar known classes, we apply two complementary
regularizations. For known classes, we minimize the Mahalanobis distance between known features
and their class-wise prototypes to encourage compactness of known regions. For unknown classes,
we synthesize hard negative samples by blending Stable Diffusion-generated images of known and
similar unknown classes using Mixup (Zhang et al.,[2017). These samples are inserted into training
images and learning as unknown. This approach makes the unknown decision boundary broader and
more separable, improving robustness to ambiguous unseen unknowns.

Our contributions are summarized as follows:

* We introduce a novel task of Open-Set Domain Generalization for Semantic Segmenta-
tion (OSDG-SS), where the goal is to segment known classes and simultaneously detect
unknowns in unseen domains.

* We introduce an unknown-aware learning framework by synthetic unknown samples using
a text-to-image generation model and promote generalizable unknown representations
through a meta-learning framework with word-level partitioning, entropy-based rejection,
and appearance-level subdomain splits.

* We introduce a feature space regularization scheme that encourages known-class clusters
to be compact, and expands unknown regions via Mixup-based synthesis of hard negative
samples between known and unknown prototypes.

* Our framework achieves state-of-the-art performance on multiple OSDG-SS benchmarks
with large margins, improving both segmentation of known classes and detection of un-
knowns.

2 RELATED WORK

2.1 SEMANTIC SEGMENTATION.

Semantic segmentation aims to classify each pixel in an image into a specific semantic category. A
foundational approach, Fully Convolutional Networks (FCNs) (Long et al., 2015)), has demonstrated
impressive performance in this task. To enhance contextual understanding, subsequent works have
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introduced methods such as dilated convolutions (Chen et al., 2017), global pooling (Liu et al.|
2015), pyramid pooling (Zhao et al.,[2017)), and attention mechanisms (Zhao et al., 2018} Zhu et al.,
2019). More recently, transformer-based methods have achieved significant performance gains (Xie
et al.,2021). Despite various studies, semantic segmentation models are still vulnerable to domain
shifts or category shifts. To address this issue, we propose a universal domain adaptation for semantic
segmentation that handles domain shifts and category shifts.

2.2 DOMAIN GENERALIZATION FOR SEMANTIC SEGMENTATION.

Domain Generalization for Semantic Segmentation (DG-SS) aims to train models that generalize
well to unseen target domains without any access to target data during training. Early works focused
on appearance-level robustness using style transfer (Kim et al.,|2023)) or frequency adaptation (B1
et al.} 2024). Recent approaches leverage powerful vision foundation models (VFMs) such as DINO-
V2 (Oquab et al., 2023)), CLIP (Radford et al.| [2021)), SAM (Kirillov et al.l [2023)), and integrate
them with segmentation decoders like Mask2Former (Cheng et al.,2022). Several methods exploit
contrastive learning (Chot & Kiml 2024; |Wei et al.,|2024), hierarchical grouping (Zhang et al., 2023),
or self-supervised projection (Li et al., 2023b) to obtain domain-invariant representations. Other lines
of work propose transformer-based architectures (Park & Kim), 2024)) or network structures such as
Siamese learning (Chen et al.,[2022)) to improve robustness to domain shifts. Some approaches (Ros
et al.| [2022) leverage diffusion models for domain extension, while others use textual prompts (Kim
et al 2023) to align high-level semantics across domains. Although these approaches improve
generalization across domains, they operate under the closed-set assumption and fail to account
for the presence of novel categories in the target domain. In contrast, our work addresses open-set
domain generalization, where the target may contain previously unseen classes.

2.3 OPEN-SET DOMAIN GENERALIZATION.

Open-Set Domain Generalization (OSDG) for classification seeks to learn models that not only
generalize across domains but also detect unknown classes in the target domain. Recent methods
tackle this by leveraging evidential learning (Zhang et al.| 2024)), consistency regularization (Zhu &
Lil 2021)), or data augmentation strategies (Li et al.,[2023al). Meta-learning approaches (Peng et al.,
2023)) have also been proposed to simulate train-test splits between known and unknown categories.
These methods often operate at the image or feature level and apply uncertainty-aware objectives to
distinguish known from unknown samples. Although progress has been made in classification-level
OSDG, these methods are not directly applicable to semantic segmentation, which requires pixel-level
predictions with spatial and shape consistency. Our work extends the open-set generalization setting
to the semantic segmentation task and introduces an explicit unknown-aware training strategy with
realistic object-level unknowns and meta-learning.

3 METHOD

3.1 PROBLEM SETUP: OPEN-SET DOMAIN GENERALIZATION FOR SEMANTIC SEGMENTATION

In the OSDG-SS scenario, the goal is to train a segmentation model fy using only labeled source data
D = {(2%,y*)}}¥ |, where N is the total number of samples. Each source image 2* € R¥*W>3 is an
RGB image, and y* € RF*WXC g the corresponding pixel-wise ground-truth label. At test time, the
model is evaluated on unseen target domains and is expected to segment pixels from known classes
and classify pixels from novel classes, which are not present in the source label space, as “unknown”.

To tackle this scenario, we propose three key components: (i) generating and learning from realistic
unknown samples, (ii) a meta-learning strategy for unknown generalization, and (iii) optimizing
decision boundaries for robust unknown detection. Figure [2]illustrates the overall architecture.

3.2 META-LEARNING FOR UNKNOWN GENERALIZATION (MUG)

The challenge of open-set domain generalization lies in enabling the model to identify unknown
classes it has never seen during training. Rather than relying solely on thresholding or energy-
based post-hoc rejection, we propose a learning strategy that leverages synthetic unknown samples
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Figure 2: Overview of our proposed framework. We split the source domain D and the synthetic
unknown samples set I/ into disjoint meta-train and meta-test subsets. During meta-train (top), we
generate hard negatives by mixing synthetic unknowns 4, with their most similar known objects,
then paste them into source images to form augmented samples x/, for £,,,_;rqin. During meta-test
(bottom), we use unseen source images and unknown samples U, to compute an L, _sest. The
numbers indicate the sequence of the training process.

while applying meta-learning to simulate an open-set scenario. Specifically, we expose the model
to semantically meaningful unknowns that resemble objects outside the source label space, but at
the same time encourage generalization beyond these specific categories to avoid overfitting. This
strategy enables the model to learn a generalized concept of “unknown" and effectively handle unseen
unknowns at deployment.

We first construct an unknown word setf = {u1, ..., uk } by sampling class names from an external
vocabulary (e.g., CIFAR-100), excluding overlap with known and target classes. These prompts are
fed into Stable Diffusion (Rombach et al.| 2022) to generate realistic object-shaped unknowns. Each
generated image is processed with a pretrained segmentation model (e.g., SAM Kirillov et al.| (2023)))
to extract object masks. The segmented unknown objects are then composited onto source-domain
images, forming augmented training samples. Corresponding pixel-level labels are updated to assign
the pasted region to a newly defined unknown class.

To reflect the discrepancy between training-time and real-world unknowns, we partition ¢/ into disjoint
subsets: Uy = {uf,... uf} for meta-train and Uy, = {uf, ..., u‘}e{f 1.} for meta-test. During meta-
train, we generate unknowns using U, and expand the segmentation head to C + L classes. The
model is supervised using cross-entropy loss:

H-W C+L
Eseg:_ Z Zy(j,c)logfg(x)(j,c), (1)
j=1 c=1

where C' is the number of known classes and L = |U|. During meta-test, we present samples
containing unseen unknowns from U, and apply an entropy-based loss to guide the model toward
rejecting these as “unknown”. Specifically, for pixels x; € Xy, the loss encourages low confidence
on known logits and high confidence on unknown logits:

C C+L
1
Lent = _W § E pc(mi) 1ngc(l‘i) - E pc(xi) logpc(xi) . @)
unk ;€ Xunk Le=1 c=C+1

Here, p.(x;) is the softmax probability of pixel x; belonging to class ¢. This formulation allows the
model to learn the concept of “unknown” as a general semantic category, decoupled from specific
identities. To further simulate appearance-level domain shift, we split source images into two
sub-domains based on average RGB brightness. Meta-train and meta-test samples are drawn from
different sub-domains, exposing the model to both semantic and low-level visual variation.

More importantly, the meta-learning procedure enhances the generalization ability to previously
unseen unknowns. By explicitly separating synthetic unknowns into Meta-Train and Meta-Test
subsets, the model is repeatedly exposed to a setting where the training and testing of unknown
categories do not overlap. In this way, the model cannot rely on memorizing the appearance of specific
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synthetic samples, but instead must capture The broader and transferable concept of “unknown” that
distinguishes it from known classes. During meta-train, the model acquires pixel-level supervision
on synthetic unknowns, while during meta-test, it learns to reject novel, unseen unknowns through
entropy-based regularization. This combination allows the model to form a generalized representation
of unknowns, leading to improved prediction performance on entirely unseen categories in the
target domain, even when their visual or semantic properties differ significantly from the synthetic
unknowns used in training.

3.3 OPTIMIZING DECISION BOUNDARIES FOR ROBUST UNKNOWN DETECTION

Although the above training strategy equips the model with unknown awareness, misclassification can
still occur when unseen unknown classes resemble known ones in appearance. For instance, a novel
object with a similar texture or shape may be incorrectly predicted as a known class. To mitigate this,
we propose a decision boundary optimization framework to reshape the feature space.

We aim to (i) compress known-class clusters for clear class separation, and (ii) expand the unknown
region to occupy broader, non-overlapping areas in the embedding space. Two complementary
strategies are employed.

Prototype-Based Compactness for Known Classes. We define a compactness loss over all pixels
of known classes using Mahalanobis distance from the class prototype fi.:

Lo = 7 Z 1 2 VU@ TS () - o). )

z; €EXe

where X is the set of features from class ¢, and X, is the covariance matrix. This encourages tighter
known-class clusters.

MixUp-Based Expansion for Unknowns. To increase separation between unknowns and visually
similar knowns, we identify for each known class c its most similar unknown prototype p,, and
generate a hard negative by mixing two Stable Diffusion outputs:

u* = arg max sim(fie, fy), w4’ = MixUp(SD(cword), SD(Uisord))s )]
uEUy
and assign the resulting region the label of u* only. The pasted sample (x/, y/) is supervised via:
H-W C+L
=3 Syl log ol ). )
j=1 c=1

Together, these losses promote compact known decision boundaries and broad unknown coverage,
reducing ambiguity near class borders and enhancing open-set robustness.

3.4 OPTIMIZING DECISION BOUNDARIES FOR ROBUST UNKNOWN DETECTION (ODB)

While the components described above enable the model to detect unknown classes, confusion can
still occur when an unseen unknown class closely resembles a known class in appearance. For
example, an unknown object with a texture or structure similar to a known class may be mistakenly
classified as that class. To mitigate this issue, we propose a decision boundary optimization strategy
that reshapes the feature space so that known classes form compact clusters, while unknown classes
are encouraged to form broad and non-overlapping regions that do not interfere with known-class
boundaries. To achieve this, we apply two complementary regularization techniques during training:
(i) prototype-based compactness for known classes, and (ii) hard negative sample generation for
expanding the unknown region.

Prototype-Based Compactness for Known Classes (PCK). We newly define a prototype com-
pactness loss over all pixels belonging to each known class, using Mahalanobis distance to measure
deviation from the class prototype. For the class ¢, we compute:

1 C
Eproto = C Z |Xc| Z dM 177 (6)

T, EX,

(9}
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Algorithm 1 Meta-Learning Procedure for OSDG-SS

Require: Source domain D, known classes C, unknown words U/, model parameters 0;
learning rates «, 5,7
Ensure: Updated parameters
1: SphtZ/l — Uy, Use
2: Split D = {(z,y)} into D" DI by mean brightness of images
3: while 6 not converged do
Meta-Train: )
Generate unknowns from U, and Mixup-based hard negatives, and paste them into D,?rl gh
Compute Lon—train < Lmix + »Cproto
Update: 0 <— 0 — aVyLy
Meta-Test:
9:  Generate unseen unknowns from U;. and paste them into DI
10: Compute Ly, —est ﬁseg + Lproto + Lent
11:  Update: 6 < 0 — n(VoL1 + BV;L2)
12: end while

A A

where dy(x;) = \/(f(xl) — 1e)TE N (f () — pe) is the Mahalanobis distance between the pixel

feature f(x;) and the prototype p.. This encourages all known-class features to lie close to their
respective prototypes, promoting global intra-class compactness and sharper decision boundaries.

Hard Negative Mixup for Unknown Region Expansion (MEU). We aim to expand the unknown
decision boundary while maintaining a clear separation from known classes, in order to prevent
visually similar unknown objects from being misclassified as known classes. To this end, we introduce
a Mixup-based strategy that synthesizes ambiguous unknown samples designed to challenge the
model. For each known class ¢, we compute its prototype . and identify the most similar unknown
prototype i, based on cosine similarity:

u* = arg max sim(fie + fhy,)- @)

u€Usr

We generate synthetic images for the known class ¢ and its most similar unknown class ©* using
Stable Diffusion, guided by the corresponding text prompts cyorq and uy, ;. These images are blended
via Mixup to create a hard negative sample:

u = Mixup(SD(cword), SD(Uiyord) ) 8)

word

where SD(+) denotes the output of Stable Diffusion from a class-specific prompt. Importantly, the
resulting sample is assigned the label of the unknown class u* only, without mixing class labels.
This sample is then pasted into the source image to form a new augmented sample (7, v/, ), which is
trained using the standard cross-entropy loss:

H-W C+L

Lo =3 3 v(.c) log fola!) (.. ©)

j=1 c=1

This strategy encourages the unknown nodes to occupy a broader region of the feature space, reducing
overlap with known classes and improving robustness to unseen but similar unknowns.

To sum up, these two regularizations reshape the feature distribution such that known classes are
tightly enclosed, and unknown classes, especially those visually similar to known ones, are assigned
to their own distinct region. This structure reduces open-set confusion and enables the model to reject
challenging unknowns more reliably during inference.

3.5 OVERALL TRAINING PROCEDURE

We summarize the entire learning procedure in Algorithm[I] which iteratively trains the model with
synthetic unknowns, meta-learning over unseen unknowns, and decision boundary optimization.
During meta-train, the model is updated using the Mixup loss Lyix and the prototype 10ss Lproro.
During meta-test, the model is evaluated using the segmentation loss L, the prototype 1oss Lprot0,
and the entropy loss L., to simulate generalization to unseen unknowns under appearance shift.
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Table 1: Semantic segmentation performance on the OSDG-SS benchmarks. We report results
trained on GTAS5 and SYNTHIA, and evaluated on Cityscapes, BDD100k, and Mapillary, under the
open-set domain generalization setting. Our method outperforms existing approaches across both
common and private classes. The best results are highlighted in bold.

Trained on GTAS
Method Backbone — Cityscapes [ — BDD100k [ — Mapillary
Common  Private H-Score ‘ Common  Private H-Score ‘ Common Private H-Score | Common Private H-Score

Average

Open-Set Domain Generalization for Classification based:

CrossMatchfzhu & Li){2021] (CVPR'21) | ResNet50 | 3130 1421 1954 | 2331 689 1063 | 2854 450 777 2771 632 1020
MEDIC|Wang et al. (2023] (ICCV” 24) ResNet-50 41.34 8.82 14.53 3271 8.97 14.08 37.23 4.25 7.63 37.09 7.34 12.08
EBil-HaDS Peng et al. [2024] (NeurIPS® 24) | ResNet-50 | 3979 7.06  11.99 1525 560 819 1384 377 592 2296 547 870
Closed-Set Domain G ization for Semantic Seg based:
IBN-Net/Pan et al J2018] (cVPR® 22) ResNet50 | 2264 1876 2051 1934 994 1313 1692 783 1070 1963 1217 1478
TLDR|Kim et al.{2023[ (1CCV" 23) ResNet-50 | 5258 1132 1863 | 4489 857 1439 | 3073 542 921 4273 843 1408
ResNet50 | 3477 900 1430 | 3039 745 1196 | 3321 890 1404 | 3279 845 1343
DINO-VZ | 7342477 71237 2004 | 4958 7510 1304 [ 46210 951 1577 |7 S001 979 1632
TQDM]Pak et al. {2024] (ECCV" 24) DINO-V2 | 5439 1505 2384 | 4851 981 2384 | 5084 1484 2297 | 5224 1323 2104
FADA|Bi et al.|[(2024] (NeurIPS’ 24) DINO-V2 5743 17.83 27.21 51.80 8.74 14.96 51.29 16.04 24.43 53.51 14.20 2220
Open-Set Domain Generalization for Semantic (Ours) based:
Ours | DINO-V2 | 6184 3028  40.65 | 5448 1837 2748 | 5364 2426 3341 56.65 2430 3384

Trained on SYNTHIA
Method Backbone — Cityscapes [ — BDD100k [ — Mapillary
Common  Private H-Score ‘ Common  Private H-Score ‘ Common  Private H-Score | Common Private H-Score

Average

Open-Set Domain Generalization for Classification based:

CrossMatchZhu & Lil2021] (CVPR’ 21) ResNet-50 | 20.51 37.23 425 13.13 22.60 6.55 12.40 14.40 5.85 1535 24.74 5.55
MEDIC|Wang et al.|(2023] (ICCV" 24) ResNet-50 | 25.59 3758 7.06 1635 3632 6.24 10.65 22.94 6.92 17.53 3228 6.74
EBiL-HaDS|Peng et al. |{2024] (NeurIPS’ 24) | ResNet-50 | 3627 7.68 34.14 38.56 6.76 6.34 34.34 6.27 10.60 36.39 6.90 17.03
Closed-Set Domain Generalization for Semantic ion based:
IBN-Net/Pan et al. (2018 (CVPR’ 22) ResNet-50 | 32.50 7.20 12.00 28.40 5.80 9.50 25.90 5.10 8.60 28.93 6.03 10.03
TLDR|Kim et al.[(2023] ICCV" 23) ResNet-50 | 35.00 8.10 13.00 30.20 6.20 10.00 28.40 5.90 9.30 31.20 6.73 10.77
BlindNet/Ahn et al.[{2024] (CVPR’ 24) ResNet-50 | 39.32 10.24 16.25 38.52 7.24 12.18 3434 7.10 10.67 37.39 8.19 14.97
" Rein|Wei etal {2024] (CVPR™24) ~~ ~ | T DINO-V2 | ~4451° " 1271 1977 | 4033 ~ 1177 1812 [ 4159 1348 2035 | 4214 1265 1641
TQDM|Pak et al. (2024] (ECCV’ 24) DINO-V2 | 47.68 1268 20.03 41.83 11.53 18.70 43.26 1238 20.63 44.26 1220 17.79
FADABi et al.[(2024] (NeurIPS® 24) DINO-V2 | 4934 1442 2214 44.08 12.55 19.62 46.52 1600 23.67 46.64 1432 19.81
Open-Set Domain Generalization for Semantic Segmentation (Ours) based:
Ours | DINO-V2 | 5570 2090 30.07 48.47 1477 24.69 50.44 19.88 2852 51.53 1901 2776

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluated our method on two newly defined OSDG-SS benchmarks using synthetic-
to-real settings. Specifically, we used GTAS (Richter et al., 2016) and SYNTHIA (Ros et al., 2016)
as labeled source domains, and Cityscapes (Cordts et al., 2016), BDD100K (Yu et al., 2020), and
Mapillary (Neuhold et al.||2017) as target domains.

Evaluation Protocols. In the OSDG-SS setting, it is essential to evaluate both segmentation
performance on common classes and unknown classes. We use H-Score as the evaluation metric,
defined as the harmonic mean of the Common mloU (mean Intersection-over-Union) and the Private
(“unknown") IoU. This provides a balanced measure of performance in open-set scenarios.

Implementation Details. Our method is built upon FADA (Bi1 et al.| 2024), a frequency-adapted
domain generalization method. We adopt the same training backbone and decoder setup as FADA.
We adopt DINO-V2 (Oquab et al., 2023)) as the Vision Foundation Model (VFM) backbone and use
a Mask2Former (Cheng et al., 2022) decoder for segmentation. For unknown sample generation,
we construct an unknown word set by excluding both the known classes and the target unknown
classes from CIFAR-100, resulting in 88 remaining class names. These are used as prompts for
Stable Diffusion to synthesize realistic unknown objects, ensuring that no overlap occurs with the
target unknown categories. During meta-learning, we split both the word-based unknown class set
and the RGB-based image classification cues into meta-train and meta-test subsets with a ratio of
3:1. The learning rates for the meta-learning stage are set to n = 0.001, o = 0.01, and 8 = 0.01.
Regarding the computational time of using the diffusion model, we have used a single RTX 3090
GPU, and it takes about 3 seconds to generate one image with the diffusion model. However, since we
generate a synthetic image from text prompts in advance before training begins, there is no additional
computational cost from using the diffusion model during the training process.

Baselines. Since no prior work has addressed the OSDG-SS setting, we adapt existing methods
from related domains for comparison. First, for OSDG for image classification methods (Zhu &
Lil 2021} |Peng et al., 2024} Wang et al., 2023), we experimented by changing the backbone to a
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Table 2: Ablation study of our method trained on GTAS. Baseline is FADA with confidence
thresholding. The best results are highlighted in bold.

Trained on GTAS
Config. Method — Cityscapes — BDD100k — Mapilliary
Common | Private | H-Score | Common | Private | H-Score | Common | Private | H-Score | Common | Private | H-Score

Average

FADA with
A Confidence-based threshold 5743 | 1859 | 27.21 | 51.80 | 8.74 | 1497 | 5129 | 17.81 | 2443 | 53.50 |15.71 | 24.08
B |A+MUG (w/o meta-learning)| 5291 | 2049 | 29.54 | 49.34 | 14.02 | 21.84 | 50.34 | 1856 | 27.12 | 50.86 | 17.69 | 26.16
C B + MUG (full) 59.42 | 2643 | 36.60 | 5229 |16.78 | 25.41 51.98 | 2120 30.12 | 54.56 |21.47| 30.71
Ours C+ ODB 61.84 | 30.28 | 40.65 | 54.48 | 18.37 | 27.48 | 53.64 |24.26 | 29.10 | 56.65 | 24.30 | 33.84

semantic segmentation model. In this case, we used the DeepLabv2 (Chen et al., 2017) segmentation
network and ResNet-50 (He et al., 2016) as the backbone. For the CSDG-SS methods (Pan et al.|
2018 |Ahn et al., 2024; Kim et al.l 2023} |Wei et al., [2024; [Pak et al., [2024; Bi et al., [2024), we
apply confidence-based thresholding (Choe et al.||2024) to detect unknown regions, making them
compatible with the OSDG-SS setting.

4.2 COMPARISONS WITH THE BASELINES

We compared our method against a wide range of adapted baselines, including open-set domain gener-
alization (OSDG) methods originally designed for classification, and closed-set domain generalization
methods for semantic segmentation. Table[I]shows results under two settings: training on GTA5 (Top)
and SYNTHIA (Bottom), and testing on three real-world target domains—Cityscapes, BDD 100K,
and Mapillary. Open-set classification methods such as CrossMatch (Zhu & Li,[2021), MEDIC (Peng
et al., 2024), and EBiL-HaDS (Wang et al. [2023)) are adapted to the semantic segmentation task.
These methods show limited ability to handle dense spatial predictions and often underperform in
both common and private regions. Closed-set DG-SS methods including IBN-Net (Pan et al., [2018)),
BlindNet (Ahn et al.|[2024)), and FADA (Bi et al.,|2024)) are extended to the open-set setting using
post-hoc confidence-based thresholding (Choe et al.}|2024). While they achieve competitive results
on common classes, their ability to handle unknown classes remains limited, as reflected by lower
H-Scores. In contrast, our method achieves the best performance across all target domains and
training settings, consistently outperforming all baselines in both common and private class accuracy.
Notably, our method achieves an average H-Score of 33.84 when trained on GTAS and 27.76 when
trained on SYNTHIA, demonstrating superior robustness to domain and category shifts. These results
validate the effectiveness of our framework in a realistic OSDG-SS scenario.

4.3 ABLATION STUDY

Ablation Study about Proposed Framework. We conducted an ablation study to evaluate the
contribution of each component in our framework. Table [2] shows results using the GTAS —
Cityscapes, BDD100K, Mapillary setting. Config. A represents the baseline, where FADA (Bi et al.,
2024)) is extended with confidence-based thresholding to reject low-confidence regions. In Config .B,
we utilize a synthetic image train as unknown class, which explicitly trains the model to recognize
realistic unknown samples generated via Stable Diffusion. This improves the average H-Score from
22.20 to 26.16, demonstrating the benefit of learning from object-shaped unknowns. Config. C
further incorporates our meta-learning strategy (MUG), which simulates novel unknowns during
training and pushes the model to generalize beyond seen unknown categories, resulting in an H-Score
of 30.70. Finally, our full model adds the decision boundary optimization module (ODB), leading to
the best performance of 33.85. These results highlight the complementary effect of unknown-aware
learning, meta-learning, and feature space regularization in addressing the OSDG-SS challenge.

Ablation Study about MUG. We conducted an ablation study to evaluate the effectiveness of
each component in our meta-learning strategy. As shown in Table [3] the baseline corresponded
to applying unknown sample learning on top of FADA, achieving an average H-Score of 26.16.
Introducing meta-learning with only the unknown word set split improved performance to 28.03.
Further applying domain split based on brightness led to an additional gain (29.05), demonstrating
the benefit of simulating domain-level variation. Finally, incorporating the entropy-based loss Ly
into the meta-test phase resulted in the best performance across all target domains, reaching an
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Table 3: Ablation study on MUG. The best Table 4: Ablation study on ODB. The best re-

results are highlighted in bold. sults are highlighted in bold.
Trained on GTAS Trained on GTAS \
MUG — Cityscapes|— BDDI0OK[— Mapillary}Averﬁge ODB — Cityscapes[— BDD100K|— Mapilliary | Average
U split D split Loy H-Score PCK MEU H-Score

29.54 21.84 27.12 26.16 36.60 25.41 30.12 30.71
v 32.15 2341 28.54 28.03 v 38.95 23.13 32.84 31.73
v v 34.28 24.45 28.42 29.05 v 37.45 25.95 31.64 31.68
v v Vv 36.60 25.41 30.12 30.71 v v 40.65 27.48 33.41 33.84

Image GT Eonﬁg. A Config. B Config. C ~ Ours

Figure 3: Qualitative results of our method trained on GTAS and evaluated on Cityscapes. White
represents the unknown classes, while other colors indicate common classes.

average H-Score of 30.71. These results confirmed that each component contributed to improved
generalization to unseen unknowns in the OSDG-SS setting.

Ablation Study about ODB. Table []shows the impact of the individual components of ODB,
namely PCK and MEU trained on GTAS. The baseline included unknown training and meta-learning,
yielding an average H-Score of 30.71. Applying prototype-based compactness (PCK) improved
the alignment of known-class features by reducing intra-class variance near the decision boundary,
resulting in 31.73. Applying Mixup-based expansion for unknowns (MEU) encouraged the model
to distinguish unknowns from visually similar known classes by expanding the unknown feature
region, leading to 31.68. When both were applied together, the model benefited from tighter known
boundaries and more separable unknown distributions, achieving the best performance of 33.84.
These results confirmed that both the local compactness of known features and the strategic expansion
of unknowns played complementary roles in improving robustness to unknown regions in open-set
segmentation.

4.4 QUALITATIVE RESULT

To better understand the contribution of each component in our framework, we provide qualitative
comparisons across the ablation configurations shown in Table[2] As illustrated in Figure [3| Config
A (FADA with confidence thresholding) often fails to localize unknown regions, either missing them
entirely or producing fragmented masks. Adding synthetic unknowns (Config. B) improves coverage
but still suffers from misclassification. Config. C, which includes our meta-learning strategy, captures
more of the unknown region but remains noisy near boundaries. Ours, which incorporates decision
boundary optimization, produces the most accurate and spatially coherent predictions, demonstrating
the synergistic effect of our proposed components in OSDG-SS.

5 CONCLUSION

We presented a unified framework for Open-Set Domain Generalization for Semantic Segmentation
(OSDG-SS), addressing the realistic and challenging scenario where target domains contain unknown
classes not observed during training. To this end, we introduce a new framework (i) explicit
unknown supervision via Stable Diffusion-based synthesis, (ii) a meta-learning strategy that promotes
generalizable unknown representations by simulating unknown-class shifts through partitioned
supervision and entropy-based loss, and (iii) feature space regularization to compact the decision
boundary for known classes and expand the decision boundary for unknown classes. Extensive
experiments on synthetic-to-real benchmarks demonstrated that our approach consistently outperforms
prior DG-SS and OSDG classification methods adapted to segmentation, both in segmenting known
classes and detecting unknowns. We hope this work provides a foundation for future research on
unknown-aware generalization in semantic segmentation.
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