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Abstract

As language models scale, their performance improves dramatically across a wide
range of tasks, but so does their tendency to memorize and regurgitate parts of
their training data verbatim. This tradeoff poses serious legal, ethical, and safety
concerns, especially in real-world deployments. Existing mitigation techniques,
such as differential privacy or model unlearning, often require retraining or access
to internal weights making them impractical for most users. In this work, we
introduce TOKENSWAP, a lightweight, post-hoc defense designed for realistic
settings where the user can only access token-level outputs. Our key insight is
that while large models are necessary for high task performance, small models
(e.g., DistilGPT-2) are often sufficient to assign fluent, grammatically plausible
probabilities to common function words - and crucially, they memorize far less. By
selectively swapping token probabilities between models, TOKENSWAP preserves
the capabilities of large models while reducing their propensity for verbatim repro-
duction. Evaluations on Pythia-6.9B and Llama-3-8B show up to a 10× drop in
exact memorization with negligible task degradation. Our method offers a practical,
accessible solution for mitigating memorized generation in deployed LLMs. Code
is available at https://github.com/parjanya20/verbatim-llm.
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Figure 1: TOKENSWAP combines the strengths of large and small language models. Large models
achieve high performance but exhibit high memorization. Small models have low memorization but
poor performance (generating incoherent text). TOKENSWAP achieves both low memorization and
high performance by selectively swapping token probabilities, generating novel, fluent text.
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1 Introduction

Large language models (LLMs) such as GPT–4, GEMINI, and LLAMA have demonstrated strong
performance across a wide range of tasks, from natural language understanding to complex reason-
ing [3, 66, 25]. These capabilities are driven by their massive parameter counts and extensive training
corpora, enabling human-level fluency and impressive reasoning across domains. Often referred to
as emergent properties, such abilities arise directly from scale, with well-established scaling laws
predicting performance gains. However, increased scale also introduces a critical drawback: the
tendency of LLMs to memorize and reproduce parts of their training data [15, 14, 10, 49].

One of the most pressing consequences of memorization is the verbatim or near-verbatim generation
of training data [39, 67, 6]. Although memorization is an inherent property and not necessarily
harmful, its consequence of verbatim generation leads to plagiarism and copyright violation. This
behavior poses serious risks to both model providers and end-users. Providers may face legal
challenges, including copyright infringement lawsuits [39, 30, 52], while users unknowingly risk
legal liability by reproducing protected content. Crucially, the threat is not limited to exact substring
matches: even approximate or near-verbatim outputs can constitute infringement, as evidenced by
lawsuits like the New York Times case against OpenAI for near-verbatim content generation [29].
Moreover, verbatim generation can occur even in benign scenarios where users have no adversarial
intent to extract training data [4, 22]. Users may unknowingly generate copyrighted content during
routine interactions, exposing themselves to unintended legal risks [23].
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Figure 2: Overview of TOKENSWAP. Our approach replaces token probabilities of high-frequency
"grammar-based" tokens with those from a small auxiliary language model. This mitigates memorized
generation while maintaining fluency and model performance. The top path shows standard LLM
generation, while the bottom path demonstrates how TOKENSWAP alters token selection to disrupt
memorization and produce novel text.

We consider the perspective of a typical user of commerical LLMs such as GPT-4 [3], GEMINI [66],
LLAMA [25], and DEEPSEEK [43]. These models do not share their training data and many do not
make their weights publicly available. Even in cases where weights are openly shared, hosting a
production-grade LLM requires substantial memory resources, rendering it impractical for the average
user. Consequently, it is reasonable to assume that most users can only interact with these models
through APIs hosted on external servers, with access limited to model outputs such as token-level
logits. Despite these practical constraints, to our knowledge, none of the existing methods, whether
designed to prevent memorization or mitigate verbatim output, can effectively operate under such
limited access conditions.

Existing methods require access to training data and/or model weights Approaches to address
memorization are broadly categorized into pre-training and post-training interventions. Pre-training
methods include deduplication [38], differential privacy (DP) [2], and selective token exclusion
during training [32]. While these approaches can reduce memorization, they often incur substantial
computational costs and degrade model performance [7]. Post-training interventions focus on un-
learning techniques that attempt to modify specific neurons and weights or utilize finetuning methods
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to prevent models from generating memorized content [45, 57, 19, 55]. However, these methods
remain susceptible to training data extraction [61], often impair general model capabilities [35], and
can lead to unintended forgetting of critical aspects such as safety guardrails [68]. This challenge
is further complicated by theoretical findings suggesting that some degree of memorization may be
inherent to achieving generalization in learning algorithms [8].
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Figure 3: Memorization (EMR) vs Performance (CE
Loss) across different model sizes. Larger, more capa-
ble models exhibit higher memorization. TOKENSWAP,
with Pythia-70M as the auxiliary model, achieves low
memorization rates while maintaining competitive per-
formance. Details in Section 4.2 and Section 5.

In contrast, another line of work focuses on
preventing the generation of memorized con-
tent at inference time without modifying model
weights. These approaches include blocking ex-
act matches to training data [36] or combining
logits from multiple models trained on disjoint
datasets [1]. However, these methods too re-
quire access to training data or multiple LLMs
trained on strictly disjoint datasets. Table 1 sum-
marizes the various approaches and assumptions
under which they operate (see Appendix A for
a comprehensive review).

Memorization scales with size The propensity
to reproduce training data consistently increases
with the size of the language model [14, 10].
Since model performance generally scales posi-
tively with size, users are forced into a trade-off
between obtaining high performance and mit-
igating memorized generations. Figure 3 demonstrates this relationship using a series of Pythia
models, showing the trade-off between memorization and cross-entropy loss.

In this work, we present TOKENSWAP, an inference-time method that significantly alleviates this
tradeoff by combining large model performance with small model memorization (Figure 3). TO-
KENSWAP selectively replaces the probabilities of a subset of common grammar tokens (e.g., “the”,
“of”, “and”) of the large main model with those from a small auxiliary model. This technique disrupts
the verbatim generation by breaking the high-probability paths that lead to verbatim reproduction.
This disruption has a cascading effect: once one token deviates from the memorized sequence,
all subsequent predictions are conditioned on this altered context, further preventing reproduction.
Importantly, since small models reliably approximate probabilities for common grammatical tokens,
TOKENSWAP preserves the large model’s performance. For auxiliary models of size much smaller
than the main model, this provides a verbatim memorization mitigation method which requires access
neither to the training data nor the model weights. Since we treat the effect of memorization, and not
the cause itself, our method is able to reduce verbatim generation at inference time.

We extensively evaluate TOKENSWAP through both controlled experiments and real-world deploy-
ments. In controlled fine-tuning experiments (Section 4.1), TOKENSWAP achieves a 50-800×
reduction in verbatim generation compared to undefended models. Evaluations on commercial-grade
models such as Pythia-6.9b and Llama-3-8b (Section 4.2) demonstrate reductions in verbatim genera-
tion by upto 10×, without compromising downstream task performance. Furthermore, comparisons
with Goldfish [32] show that TOKENSWAP matches or surpasses the effectiveness of state-of-the-art
pre-training methods (Section 4.3).

2 Preliminaries

2.1 Language Models: Notation and Setup

We consider auto-regressive language models that model the log-probability of a token conditioned
on all previous tokens in a sequence. They operate over a vocabulary V = {v1, . . . , v|V|} of typically
|V| ≈ 105 − 106 tokens. Given an input prompt (x−lp , . . . , x−1) ∈ V lp of length lp followed by a
response sequence (x0, . . . , xl−1) ∈ V l of length l, an auto-regressive language model parametrizes
the joint probability by factorizing over conditional probabilities:
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Table 1: Comparison of TOKENSWAP with existing methods based on their assumptions. TO-
KENSWAP uniquely avoids requiring access to model weights or the copyrighted training corpus.
While it employs an auxiliary model, the memory overhead is small ≈ 1% due to the small size of
the auxiliary model. PT: pre-training, UL: unlearning, FT: fine-tuning, Inf: inference-time.

Model Access Copyrighted Corpus Access Inference Overhead

Deduplication [38] PT weights ✓ ✗
Goldfish [32] PT weights ✓ ✗
Balanced subnet [57] UL weights ✓ ✗
Obliviate [55] FT weights ✓ ✗
MemFree [36] Inf logits ✓ efficient querying
CP-Fuse [1] Inf logits ✓ twice of standard generation
TOKENSWAP Inf logits ✗ small auxiliary model

p(x0, . . . , xl|x−lp , . . . , x−1) =

l∏
i=0

p(xi |x<i), (1)

For each position i, the model outputs a distribution pi[v] over V , where pi[v] = p(xi = v|x<i).

Since language models are trained to maximize the likelihood of observed sequences, they tend
to assign high probabilities to tokens that frequently follow specific prefixes during training. This
increases the risk of memorization and verbatim reproduction of training data.

2.2 Extractable Memorization

Memorization in language models can manifest in various ways, but a practically relevant and widely
adopted framework is extractable memorization [15, 14]. Carlini et al. [15] demonstrate that models
can be induced to regurgitate training sequences when prompted with prefixes from their training
data. The following definition formalizes this concept:

Definition 1 (Extractable Memorization). A sequence x = (x0, . . . , xl−1) of length l is con-
sidered extractable with lp tokens of context from a language model p if there exists a prefix
x− = (x−lp , . . . , x−1) of length lp such that [x− ∥x ] appears in the training data of p, and p
reproduces x via greedy decoding.
Formally, for each i ∈ { 0, . . . , l − 1}:

xi = argmax
x′∈V

p
(
x′ |x<i, x−

)
.

This definition is practically useful because: (1) it aligns with real-world risks of copyright and
memorized generation [48, 39], (2) it provides a concrete, testable condition that can be evaluated
on real models, and (3) it extends to models of different sizes, capturing the well-documented trend
that larger models memorize more data [14, 10]. This scaling behavior is important in motivating our
methodology in Section 3.

3 Methodology

As discussed earlier, small language models (e.g., DistilGPT-2, Pythia-70M) have lower propensity to
reproduce training data compared to large models (e.g., Llama3, GPT-4). We introduce TOKENSWAP,
a lightweight, post-hoc method that combines the strengths of both model scales: large-model perfor-
mance with small-model memorization. During inference, TOKENSWAP replaces the probabilities
for selected tokens of a large model with those a small model.

Algorithm Let pmain and paux denote the probability distributions of the main and auxiliary models
respectively, where pmain(xt | x<t) and paux(xt | x<t) represent their token probabilities conditioned
on previous tokens. We assume the parameter count of the main model significantly exceeds that of
the auxiliary model. Given these models, TOKENSWAP selectively replaces probabilities for a fixed
subset of tokens G ⊂ V . The complete procedure is formalized in Algorithm 1.
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At each position i, TOKENSWAP queries both pmain and paux to obtain probability distributions
conditioned on the current context x<i. For tokens in subset G ⊂ V , probabilities from the main
model are replaced with scaled probabilities from the auxiliary model, with scaling factor α ensuring
the final distribution pfinal remains a valid distribution. This prevents reproduction of memorized
sequences: if any token xi in a memorized sequence belongs to G, its probability under pfinal is
determined by the auxiliary model. Since the auxiliary model memorizes less, this disrupts the chain
of conditional probabilities required for verbatim generation of most sequences. Importantly, for
tokens v /∈ G, their probabilities remain unchanged, i.e., pfinal

i [v] = pmain
i [v].

Algorithm 1 TOKENSWAP

Require: Main model pmain, auxiliary model paux, token subset G, prompt x<0

1: for i = 0, 1, . . . do
2: pmain

i ← pmain(·|x<i) {Get main model probabilities}
3: paux

i ← paux(·|x<i) {Get auxiliary model probabilities}

4: α←
∑

v∈G pmain
i [v]∑

v∈G paux
i [v] {Compute normalization}

5: for v ∈ V do

6: pfinal
i [v]←

{
pmain
i [v], if v /∈ G

α · paux
i [v], if v ∈ G

7: end for
8: xi ∼ pfinal

i {Sample next token}
9: end for

Selecting G for Effective Memorization Disruption The choice of G affects both memorization
and model performance. By modifying token probabilities, TOKENSWAP disrupts memorized
sequences while preserving fluency. However, not all tokens are equally effective for this purpose. G
should consist of tokens that frequently appear in memorized text, as replacing their probabilities
reduces the likelihood of exact reproduction. At the same time, modifying inappropriate tokens can
degrade model performance, especially for specialized tasks. For instance, if G includes numeric
tokens, mathematical reasoning may degrade. Therefore, G should satisfy two key criteria. First,
it must contain frequently occurring tokens. Second, it should avoid tokens where probability
replacement impacts the model’s capabilities.

Empirical studies suggest that small models correctly approximate the probabilities of high-frequency
function words while diverging more on rare or domain-specific terms [53]. Additionally, small
language models (≈ 100M ) can generate coherent and grammatically correct text [26]. Based
on these insights, we construct G from grammar-based high-frequency tokens (e.g. - ’the’, ’in’).
Further, since G consists of high-frequency words, there exists a natural one-to-one mapping between
tokens even when pmain and paux use different tokenizers and vocabularies. While this approach
is well-suited for natural language, structured domains such as code may require domain-specific
adaptations. Additional details on the construction of G are provided in Appendix C.2 and C.3.

4 Experiments

In this section, we demonstrate the effectiveness of TOKENSWAP, in both controlled and real-world
settings. Our experiments evaluate TOKENSWAP along two dimensions:

• The method’s efficacy in preventing exact and approximate reproduction of training data.

• The impact on model performance across common-sense reasoning, language and fluency.

We evaluate TOKENSWAP across three settings to demonstrate its effectiveness. In Section 4.1,
we deliberately induce memorization through extensive fine-tuning on small datasets to stress-test
our defense. Section 4.2 evaluates TOKENSWAP on production-grade models including Pythia-
6.9B and Llama-3-8B. Finally, in Section 4.3, we compare against Goldfish [32], a pre-training
method specifically designed to reduce memorization, showing that our post-hoc approach achieves
comparable results without requiring model retraining.
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4.1 Extreme Memorization

In order to rigorously evaluate TOKENSWAP, we create an extreme test case by deliberately inducing
memorization through extensive fine-tuning. While TOKENSWAP can be applied to real-world
models directly, our baselines require specific experimental conditions for comparison. Similar
extreme test cases have been generated to evaluate memorization in prior work [32, 1]. Following
Abad et al. [1], we fine-tune a Llama-3.2-3B model [25] on 2,000-sequence subsets from two
datasets: MathAbstracts [71] and WritingStories [28]. We train for 50 epochs to deliberately amplify
memorization beyond typical levels.

Memorization Metrics Our analysis employs both exact and approximate memorization and
performance metrics to ensure a comprehensive assessment. Exact memorization is measured through
Matching Length (ML), which the number of verbatim characters or tokens generated before first
deviation, and Exact Matching Rate (EMR), which computes the fraction of sequences reproduced
verbatim. To capture partial memorization, we use the ROUGE-L score, which identifies the longest
common non-contiguous subsequence and gives a score between 0 and 1, and the Normalized
Levenshtein Distance, which quantifies the minimum number of edits needed to transform generated
text into the original sequence. Lower scores indicate reduced memorization for Matching Length,
Exact Matching Rate, and ROUGE-L. Higher scores are better for Normalized Levenshtein Distance.
These metrics are widely used to evaluate verbatim and approximately verbatim generation [39, 32, 1].

Performance Metrics Since our setup intentionally induces extreme memorization, standard
performance metrics are not meaningful. Nonetheless, we report cross-entropy loss on a held-out
validation set in Appendix B.2.

Setup and Inference-time Baselines We compare against the two inference-time baselines: CP-
Fuse [1], which samples from weighted combinations of models trained on disjoint datasets, and
MemFree [36], which blocks exact n-gram matches to the training data. Standard refers to greedy
decoding without any memorization mitigation. Both baselines rely on unrealistic assumptions-
MemFree requires access to the training data, while CP-Fuse assumes access to two separately
trained models on disjoint corpora. To assess CP-Fuse under more realistic conditions, we evaluate
two variants: CP-FUSE HALF, with perfectly disjoint sets of 1,000 sequences each, and CP-FUSE
MIXTURE, with 1,500 sequences per model and 500 overlapping. For TOKENSWAP, we employ
DistilGPT-2 (80M) [58] as paux. We construct G with |G| = 110 tokens using high-frequency
’grammar-based’ words. Additional details on G are provided in Appendix C.2. For all experiments
and methods, a prefix of 20 tokens is used and the next 128 tokens are greedily sampled.

Table 2: Comparison of memorization mitigation methods for WritingPrompts and MathAbstracts datasets.
Memorization metrics: Matching Length (ML), Exact Match Rate (EMR), Normalized Levenshtein Distance
(Levenshtein), ROUGE-L. Models used: Finetuned Llama-3.2-3B.

WritingPrompts MathAbstracts

Method ML↓ EMR↓ ROUGE-L↓ Lev.↑ ML↓ EMR↓ ROUGE-L↓ Lev.↑
Standard 464.0 83.4 0.89 0.10 450.4 93.6 0.98 0.03
MemFree 17.4 0.0 0.29 0.63 6.7 0.0 0.44 0.55
CP-Fuse-mix 280.3 49.2 0.58 0.37 233.7 47.1 0.62 0.36
CP-Fuse-half 12.5 0.0 0.17 0.73 15.3 0.1 0.26 0.71
TOKENSWAP 19.7 0.1 0.19 0.71 53.0 1.8 0.38 0.60

Results Table 2 demonstrates TOKENSWAP’s effectiveness in reducing memorization across both
datasets. For WritingPrompts, TOKENSWAP reduces EMR by 800x (from 83.4% to 0.1%) and
ROUGE-L by 4.6x (from 0.89 to 0.19) compared to standard generation. On MathAbstracts, EMR
decreases by 50x (from 93.6% to 1.8%) and ROUGE-L by 2.6x (from 0.98 to 0.38). CP-Fuse-half
achieves slightly better results but requires disjoint training sets, while CP-Fuse-mix performs signifi-
cantly worse due to dataset overlap. MemFree achieves the lowest scores on the exact memorization
metrics (Exact Matching Rate and Matching Length) but performs poorly on approximate memo-
rization metrics (ROUGE-L and Levenshtein). This shows that, while MemFree prevents verbatim
generation, it still allows high levels of near-verbatim generation. The performance gap between
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Prefix: Magic – once a real and potent force but as the world population

Original Suffix

grew from millions to bil-
lions the shared mana per
person is now negligible. A
group of astronauts help-
lessly watching the Earth
perish experience...

Standard Generation

grew from millions to bil-
lions the shared mana per
person is now negligible. A
group of astronauts help-
lessly watching the Earth
perish experience...

TOKENSWAP Generation

grew and the number of wiz-
ards and witches declined,
the world began to suffer.
Now the world suffers from
a lack of magic, and the gov-
ernment is tasked with...

Figure 4: Comparison of text generation methods. Red text indicates memorized content. Standard
generation reproduces the entire suffix verbatim, while TOKENSWAP generates novel content.

WritingPrompts (EMR: 0.1%) and MathAbstracts (EMR: 1.8%) aligns with our intuition - G was
designed focusing on natural language tasks. Nevertheless, TOKENSWAP achieves substantial memo-
rization reduction for both domains. To complement our quantitative results, we provide qualitative
examples of generations from the WritingPrompts dataset in Figure 4 and Appendix E.

4.2 Memorization in the wild

In this section, we demonstrate the efficacy of our approach on production-grade models. We assess
the effectiveness of TOKENSWAP on two pre-trained models: Pythia-6.9B [11] and Llama-3-8B [25].

Pile-Memorized Dataset For Pythia-6.9B, we evaluate on memorized sequences identified by
Chang et al. [16] from the Pile dataset, consisting of 32-token prefixes and 48-token suffixes. After
filtering to retain only natural language content (excluding code, URLs, etc.), we obtain 184 evaluation
examples.

LeetCode Dataset For Llama-3-8B, following previous work demonstrating LeetCode problem
memorization [39], we evaluate on 1,825 LeetCode problem statements [31]. These problem state-
ments are written in natural language. Since the exact format of LeetCode problems in Llama’s
training data is unknown, we remove punctuation while calculating the memorization metrics. Ad-
ditionally, instead of exact match rate, we use ROUGE-L > 0.8 as our threshold for identifying
memorized content. Prefix length of 20 tokens is used and the next 100 tokens are sampled.

Evaluation Setup We face two key limitations when comparing TOKENSWAP with existing
baselines. CP-Fuse requires models trained on disjoint datasets, but verifying this is difficult since
most LLMs do not release training data. Even when available, disjoint datasets are unlikely given
that most models train on overlapping web corpora like Common Crawl. Additionally, CP-Fuse
requires identical tokenizers, limiting comparisons to models within the same family. Similarly, we
cannot evaluate against MemFree due to unavailable training data (LLaMA) or prohibitively large
datasets (Pythia uses the 800GB Pile [11]). To ensure fair evaluation for CP-Fuse, we paired each
model with a smaller counterpart: Pythia-2.8B with Pythia-6.9B, and Llama-3.2-3B with Llama-3-8B.
Using smaller models actually favors CP-Fuse since they memorize less. We avoid very small
models (<100M) as CP-Fuse needs roughly equally capable models (see Appendix C.1.4). The
setup for TOKENSWAP follows Section 4.1. For LeetCode evaluation, we use both DistilGPT-2
and SmolLM-135M [5] as auxiliary models. SmolLM is an instruction-tuned model, which enables
evaluation on instruction-following tasks like MT-Bench where an instruct-capable auxiliary model
is required. For memorization, we use the same metrics as Section 4.1.

Performance Metrics We evaluate two key aspects: task performance and generation quality. For
task performance, we assess five-shot learning on multiple commonsense reasoning benchmarks:
BoolQ [20], SIQA [59], PIQA [12], ARC-Challenge [21], ARC-Easy [21], OBQA [46], and Wino-
Grande [56]. For generation quality, we report cross-entropy loss on samples from Slimpajama [62],
which correlates with fluency [9] and has been used to evaluate prior memorization mitigation
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work [32, 1]. We also evaluate on MT-Bench [72], which tests multi-turn conversation, instruction-
following, and generation quality through realistic conversational scenarios. Note that MT-Bench and
commonsense reasoning results are only reported for Llama-3-8B (LeetCode Dataset) since these
require instruction-following capabilities not available in the base Pythia models.

Table 3: Comparison of mitigation methods for LeetCode and Pile-Memorized datasets. Memorization metrics:
Matching Length (ML), Exact Match Rate (EMR), Normalized Levenshtein Distance (Levenshtein), ROUGE-L
& Performance metrics: Cross Entropy Loss (CE Loss) on SlimPajama, MT-Bench with GPT-4 as a judge, Mean
of scores on Commonsense Reasoning benchmarks. Models used: Llama-3-8B and Pythia-6.9B.

LeetCode Dataset (Llama)

Method ML ↓ROUGE-L> 0.8 ↓ROUGE-L ↓Lev. ↑CE Loss ↓MT-Bench ↑Commonsense ↑
Standard 24.57 9.65 0.39 0.60 2.38 7.75 71.87
CP-Fuse 19.44 7.01 0.37 0.61 2.45 8.53 70.18
TOKENSWAP 1 6.04 0.96 0.27 0.71 2.52 - 71.87
TOKENSWAP 2 8.58 1.92 0.30 0.69 2.43 7.78 -

Pile-Memorized Dataset (Pythia)

Method ML ↓ EMR ↓ ROUGE-L ↓ Lev. ↑ CE Loss ↓
Standard 151.6 65.22 0.80 0.18 2.80
CP-Fuse 97.05 29.35 0.62 0.35 2.81
TOKENSWAP 1 35.10 5.98 0.38 0.56 2.88

1DistilGPT-2 as auxiliary model. 2SmolLM-135M as auxiliary model.

Results Table 3 demonstrates that TOKENSWAP substantially reduces memorization across both
datasets compared to standard generation and CP-Fuse. Exact match rate decreases by over 10x
compared to standard generation and 5-7x compared to CP-Fuse on both datasets. The average
matching length shows similar improvements, reducing by 4-5x versus standard and 3-4x versus
CP-Fuse. The consistent improvements in approximate memorization metrics (ROUGE-L and
Levenshtein distance) demonstrate that TOKENSWAP robustly prevents verbatim generation rather
than simply introducing small perturbations. CP-Fuse shows limited effectiveness in these real-world
scenarios primarily because its core assumption of disjoint training datasets does not hold. Even
when using different models, the inherent overlap in web-scale training corpora prevents CP-Fuse
from effectively disrupting memorized sequences.

TOKENSWAP maintains task performance by selectively targeting only grammar-based tokens,
leaving reasoning-critical content words unchanged. This preserves commonsense reasoning abilities,
as shown by identical accuracy scores (71.87%) compared to standard generation. The method
also maintains fluency, evidenced by minimal cross-entropy increases and nearly equal MT-Bench
scores. While CP-Fuse achieves better conversational performance (8.53 vs 7.78), it fails to verbatim
generation, making it unsuitable for the desired goal.

Evaluation on OLMo-2-13B. To further validate TOKENSWAP on a fully open model with known
training data, we evaluate TOKENSWAP on OLMo-2-13B [50]. The full training corpus contains 3T
tokens, making exhaustive memorization search infeasible. We therefore focus on the Wikipedia
subset of the training data. Results in Appendix B.1 show that TOKENSWAP eliminates exact verbatim
generation (EMR=0) and substantially reduces approximate memorization.

4.3 Comparison with Pre-training Methods

While previous sections demonstrate that TOKENSWAP outperforms post-hoc baselines, we also
compare with Goldfish [32], a pre-training approach that reduces memorization by excluding a
fraction 1/k of tokens from loss computation during training. Since pre-training large models using
this loss is expensive, we evaluate on pre-trained goldfish models from Hans et al. [32]. These models
were trained on a subset of RedPajama [69] combined with 2000 Wikipedia sequences. To induce
memorization, the Wikipedia sequences were duplicated 50 times during training. We compare
against models trained with k ∈ {3, 4, 32}. For TOKENSWAP, we maintain the same experimental
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setup from Section 4.1. Following Hans et al. [32], we use identical prefix and suffix lengths for
extraction of memorized sequences.

Table 4: Comparison of TOKENSWAP with Goldfish [32] for k ∈ {3,4,32}. Memorization metrics: Match-
ing Length (ML), Exact Match Rate (EMR), Normalized Levenshtein Distance (Levenshtein), ROUGE-L &
Performance metrics: Cross Entropy Loss (CE Loss) on SlimPajama.

Method ML↓ EMR↓ ROUGE-L↓ Levenshtein↑ CE Loss↓
Standard 73.9 7.8 0.38 0.58 3.44
Goldfish (k=3) 12.7 0.0 0.23 0.72 3.54
Goldfish (k=4) 14.7 0.0 0.23 0.71 3.50
Goldfish (k=32) 58.1 2.5 0.35 0.60 3.44
TOKENSWAP 12.4 0.1 0.22 0.72 3.44
TOKENSWAP + Goldfish (k=3) 7.9 0.0 0.21 0.73 3.57

Results Table 4 shows TOKENSWAP achieves comparable or superior performance to Goldfish
across all memorization metrics. Notably, TOKENSWAP obtains the best Matching Length, Rouge-
L and Normalized Levenshtein distance scores while maintaining better cross-entropy than the
Goldfish variants for k = 3, 4. The effectiveness of Goldfish varies with parameter k - smaller values
(more aggressive token exclusion) yield stronger memorization reduction but worse performance, as
evidenced by higher cross-entropy. This illustrates a key advantage of TOKENSWAP: we achieve
similar memorization reduction without requiring modified training or reduced training data tokens.
Figure 5 (Appendix B.7) further supports this finding, showing nearly identical ROUGE-L score
distributions between TOKENSWAP and Goldfish (k=3), indicating that our post-hoc approach
matches the most aggressive pre-training variant. Furthermore, applying TOKENSWAP to Goldfish
(k = 3) as the main model reduces memorization more than either method alone, demonstrating that
our approach is orthogonal to pre-training methods and can enhance existing techniques.

5 Discussion and Limitations

In this section, we analyze TOKENSWAP’s behavior across different settings. We first perform
ablations on the auxiliary model choice and the size of G. We then analyze TOKENSWAP across
the Pythia model family to demonstrate significant improvements in the performance-memorization
tradeoff. Finally, we discuss limitations and potential extensions of our method.

Choice of the Auxiliary Model In Section 4 we test TOKENSWAP with DistilGPT-2 as the auxiliary
model. A natural question arises: What auxiliary model should one choose and how does the size of
the auxiliary model affect memorized generation? To answer this, we use the SmolLM family [5]
with three sizes (135M, 360M, 1.7B) and evaluate on both Pythia-6.9B (Pile-memorized dataset) and
Llama-3-8B (LeetCode dataset). Detailed results are in Table 10 (Appendix B.6).

We observe a clear trend: smaller auxiliary models lead to less verbatim generation, confirming
our hypothesis that TOKENSWAP’s effectiveness stems from low memorization in auxiliary models.
Importantly, auxiliary model size has minimal impact on performance. MT-Bench scores show
negligible variation across auxiliary models—this is particularly significant since MT-Bench evaluates
overall sequence generation quality, unlike cross-entropy loss which measures token-level accuracy.
Therefore, any small model (≈ 100M ) which can generate fluent text and predict grammar-based
tokens well, such as DistilGPT-2 or SmolLM-135M, can be used effectively as an auxiliary model.

Ablations on G The subset of tokens G is constructed by selecting grammar-based words from the
top 500 most frequent English words, resulting in |G| = 110 (details in Appendix C.2). To understand
the impact of G size on memorization reduction, we ablate by constructing G from the top k most
frequent words for k ∈ {10, 50, 100, 500, 2500}, yielding |G| ∈ {9, 43, 66, 110, 136}. We evaluate
on the Pile-memorized task using Pythia-6.9B as the main model and Pythia-70M as auxiliary (see
Appendix B.5 for complete results). We observe a clear trend: as |G| increases, memorization
decreases significantly. For example, EMR drops from 22.28% (|G| = 9) to 8.15% (|G| = 136).
This makes intuitive sense—larger G enables the auxiliary model to disrupt memorized sequences

9



more frequently. The cross-entropy loss remains largely stable, indicating minimal performance
degradation with increase in |G|.

Performance-Memorization Tradeoff We analyze how TOKENSWAP affects the tradeoff between
model performance and memorization across seven Pythia models (70M to 6.9B parameters), using
Pythia-70M as the auxiliary model. Figure 3 shows exact match rate (EMR) versus cross-entropy
loss—lower values are better for both metrics. Standard generation faces a severe tradeoff: reducing
memorization from 45% to 6% EMR costs 0.7 points in cross-entropy (2.85 → 3.55). TOKENSWAP
considerably improves this tradeoff. At similar performance levels (cross-entropy ≈ 2.87), TO-
KENSWAP achieves 8.7% EMR versus 45% for standard models—an 8× memorization reduction.
Even when targeting very low memorization (6% EMR), TOKENSWAP maintains cross-entropy at
3.07, significantly outperforming standard models at equivalent memorization levels.

Limitations and Future work One limitation of our work is that in the rare cases where the small
auxiliary model memorizes a sequence, our approach will preserve that memorization. However,
in practice, small auxiliary models (≈ 100M parameters) memorize very little, and we empirically
match or outperform existing baselines without requiring access to training data or restrictive assump-
tions like disjoint datasets. Additionally, while pre-training or unlearning mitigation methods are
impractical for large models, they can be applied to small models since these are often open-source
with accessible training data. Therefore, we expect future development in small models with low
memorization. This makes our work even more significant: any advance in pre-training or unlearning
methods to reduce memorization in small models can be immediately extended to large models using
TOKENSWAP. Second, our current implementation focuses on natural language tasks. A promising
direction for future work is extending TOKENSWAP to other domains such as code generation.

6 Conclusion

TOKENSWAP offers several key advantages for mitigating memorized generation in language models:
it operates without requiring access to model weights or training data, and makes no assumptions
about the underlying training distribution. Our experiments demonstrate 10-800× reductions in
verbatim generation, matching or exceeding baselines that assume access to training data, disjoint
models, or require pre-training their own models. Importantly, this comes at minimal cost to model
performance. TOKENSWAP maintains performance on commonsense reasoning tasks, and our MT-
Bench evaluation shows that it preserves fluency, instruction-following, and conversational abilities.
This makes TOKENSWAP a practical solution for both providers and users of LLMs.
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A Related Work

Memorization in LLMs LLMs have been shown to memorize and potentially reproduce copy-
righted information from their training data [15, 14, 39, 33]. This is demonstrated through prefix
attacks, where models prompted with training data prefixes generate their memorized completions.
Shwarzschild et al. [60] formalize this notion based on adversarial compression, requiring that any
memorized sequence must be longer than the prefix used to elicit it. Zhou et al. [73] and Nasr et
al. [48] demonstrate that large-scale training data can be extracted without access to training prefixes.
Aerni et al. [4] show that models may regurgitate training data even under benign or non-adverserial
prompting. Studies further indicate a correlation between model scale and memorization, with larger
models regurgitating higher proportions of their training data [14, 73, 10].

Pre-training Several training-time strategies reduce memorization and verbatim generation, but
often at the cost of accessibility or performance. De-duplication [38] is limited by pervasive near-
duplicates in large-scale corpora. Differential Privacy (DP) [2] offers formal guarantees, but degrades
performance and is computationally costly [7, 27]. Other methods such as token masking [32] and
early stopping [47, 54] show some promise but remain expensive, degrade model performance and
are unavailable to end users.

Unlearning and Finetuning Post-training approaches offer alternative strategies to reduce mem-
orization. Unlearning methods [45, 37, 57, 17] modify internal weights linked to memorized con-
tent. Others remove sequences via gradient ascent [13], steer activations away from memorization-
correlated directions [65], or fine-tune with losses discouraging verbatim recall [55, 19]. However,
these methods require access to model internals and often degrade utility [35, 65, 19].

Inference time The two methods most relevant to our work are MemFree [36] and CP-Fuse [1].
These methods operate during generation and do not assume access to model internals. MemFree
filters next-token outputs to block n-gram matches from the training set. It requires access to the
full training corpus, often unavailable or prohibitively large for end users. Further, MemFree often
degrades fluency by introducing unnatural punctuation [1]. CP-Fuse combines logits from two LLMs
trained on disjoint corpora. This is rarely practical since most production-grade LLMs are trained
on internet-scale data. Also, CP-Fuse requires the tokenizers of the two models to be the same. In
contrast, our method can mitigate memorization in real-world models trained on internet-scale data.

Speculative decoding Speculative decoding approaches accelerate inference by generating can-
didate tokens from a small draft model, which are selectively accepted by the large model [42, 41,
18, 64, 70, 40]. These methods preserve the model distribution and do not aim to mitigate verbatim
generation. Further, if all candidates are rejected, the tokens are generated by the large model. In
contrast, TOKENSWAP modifies the large model’s distribution to reduce verbatim generation. In
Appendix B.9, we show that speculative decoding fails to mitigate verbatim generation.

B Additional Experiments

B.1 OLMo-2-13B Evaluation

We evaluate TOKENSWAP on OLMo-2-13B [50], which is trained on the open Dolma dataset [63].
Since Dolma contains 3 trillion tokens making exhaustive memorization search impractical, we
focus on Wikipedia as a known subset. We sample 5000 random Wikipedia sequences and prompt
OLMo-2-13B with 50 token prefixes to generate the next 50 tokens. We select those with ROUGE-L
> 0.9 with the ground-truth to identify sequences memorized verbatim or near-verbatim. For CP-Fuse,
we use OLMo-2-7B as the second model.

Table 5 reports the results. TOKENSWAP completely eliminates exact verbatim generation and
reduces approximate-verbatim generation significantly (ROUGE-L: 0.38 vs 0.95, Levenstein 0.60 vs
0.07).
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Table 5: Memorization on the Wikipedia subset of the Dolma corpus for OLMo-2-13B. Memorization metrics:
Matching Length (ML), Exact Match Rate (EMR), Normalized Levenshtein Distance (Levenshtein), ROUGE-L.

Method ML↓ EMR↓ ROUGE-L↓ Lev.↑
Standard 111.0 27.3 0.95 0.07
CP-Fuse 65.6 10.9 0.66 0.34
TOKENSWAP (DistilGPT-2) 22.9 0.0 0.38 0.60

Table 6: Validation Cross-entropy loss on WritingPrompts and MathAbstracts. Lower values ↓
indicate better performance.

Method WritingPrompts MathAbstracts

Standard 6.68 4.94
MemFree 6.68 4.94
CP-Fuse-mixture 9.38 6.89
CP-Fuse-half 9.43 6.67
TOKENSWAP 5.98 4.65

B.2 Cross-Entropy for Extreme Memorization

Table 6 reports the cross-entropy on a held-out validation set. TOKENSWAP achieves the lowest cross-
entropy loss across both datasets (5.98 and 4.65 for WritingPrompts and MathAbstracts respectively).
The superior performance, even compared to standard generation, suggests our method effectively
disrupts memorization pathways while preserving model capabilities. For sequences not in the
training set, MemFree and Standard produce identical generations. Therefore, their cross-entropy
values on a held-out validation set are the same.

B.3 Commonsense Reasoning Results

Table 7 reports performance across various commonsense reasoning benchmarks. TOKENSWAP
matches the performance of standard generation because our method does not affect token prediction
for non-grammar tokens. This demonstrates that TOKENSWAP achieves substantial memorization
reduction without affecting task performance and reasoning.

Table 7: Performance comparison on commonsense reasoning and general alignment benchmarks.
All values are accuracy percentages or MT-Bench scores; higher is better (↑).

Method WinoGrande ↑ PIQA ↑ OpenBookQA ↑ BoolQ ↑ ARC-E ↑ ARC-C ↑
Standard 54.69 64.84 76.56 70.31 82.03 82.81
CP-Fuse 54.69 64.84 77.34 58.59 83.59 82.03
TOKENSWAP 54.69 64.84 76.56 70.31 82.03 82.81

B.4 Fractional Exact Rate

Fractional Exact Rate (FER) measures approximate verbatim generation by computing the fraction of
tokens that are identical at the same position between generated and reference text [51]. While more
robust than exact verbatim metrics, FER can be gamed by simple insertions or deletions, whereas
ROUGE-L and Levenshtein distance are robust to such manipulations.

For example, consider:

• Reference: "The American musician and satirist Tom Lehrer has died at the age of 97"
• Generated: "American musician and satirist Tom Lehrer has died at the age of 97"

Treating each word as a token, FER = 0 due to position shift, but ROUGE-L = 0.93 (13/14 tokens
matched). Despite this limitation, we include FER for completeness. Table 8 shows FER results
across the real-world tasks. TOKENSWAP achieves the lowest FER across all datasets.
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Table 8: Fractional Exact Rate (FER) results. LeetCode (Llama-3-8B), Pile-Memorized (Pythia-6.9B),
and Wikipedia (OLMo-2-13B).

Method LeetCode Pile-Memorized Wikipedia

Standard 0.20 0.75 0.56
CP-Fuse 0.18 0.52 0.35
TOKENSWAP (DistilGPT-2) 0.11 0.26 0.17

B.5 Ablation on size of G

In this paper, G is constructed by selecting grammar-based words from the top 500 most frequent
English words, yielding 110 words in total (see Appendix C.2 for further details).

In this section, we ablate the size of G by constructing it from the top k most frequent English words
for k ∈ {10, 50, 100, 500, 2500}. We evaluate on the Pile-memorized dataset using Pythia-6.9B as
the main model and Pythia-70M as the auxiliary model.

Table 9: Memorization metrics for different G sizes. Top-k words refers to the number of most
frequent English words considered for G construction. For all experiments in the main paper,
k = 500 (|G| = 110) is used.

Top-k words |G| ML ↓ ROUGE-L ↑ Levenshtein ↑ EMR ↓ CE ↓
10 9 87.92 0.562 0.389 22.28 2.86
50 43 53.24 0.442 0.498 11.41 2.87

100 66 47.86 0.415 0.523 10.33 2.87
500 110 42.65 0.399 0.536 8.70 2.87
2500 136 41.79 0.393 0.540 8.15 2.87

Table 9 shows the results. We observe a clear trend: as the size of G increases, memorization
decreases. This makes intuitive sense since for larger |G|, the sequences would be disrupted more
frequently.

B.6 Ablations with Auxiliary Model Variants

We repeat the real-world experiments using models from the SmolLM family as auxiliary models.
These models are available in multiple sizes—135M, 360M, and 1.7B parameters—and include
both instruct and non-instruct variants trained on the same dataset. This allows us to evaluate the
robustness of TokenSwap across a range of auxiliary model capacities.

Results in Table 10 demonstrate that using smaller auxiliary models reduces memorization even
further, while the performance does not get affected a lot. The sensitivity of auxiliary model with
memorization is much higher than it is with performance, while the opposite is true for main model.
Table 11 shows the scores for MT-bench. The scores for TOKENSWAP slightly outperform standard
generation. This shows TOKENSWAP continues to maintain conversational abilities, instruction
following and fluency.

18



Table 10: Memorization metrics on LeetCode and Pile-Memorized datasets: ML: Matching Length, EMR:
Exact Match Rate, Lev.: Normalized Levenshtein Distance & Performance metric on SlimPajama Dataset: CE
Loss

LeetCode Dataset SlimPajama Dataset

Method ML ↓ ROUGE-L ↑ Lev. ↓ R@0.8 ↓ CE ↓
Standard 24.57 0.39 0.60 9.65 2.38
TokenSwap (DistilGPT2) 6.04 0.27 0.71 0.96 2.52
TokenSwap (SmolLM-135M) 8.58 0.30 0.69 1.92 2.43
TokenSwap (SmolLM-360M) 10.97 0.31 0.67 3.06 2.40
TokenSwap (SmolLM-1.7B) 13.40 0.33 0.66 3.95 2.37

Pile-Memorized Dataset SlimPajama Dataset

Method ML ↓ ROUGE-L ↑ Lev. ↓ EMR ↓ CE ↓
Standard 151.6 0.80 0.18 65.22 2.80
TokenSwap (DistilGPT2) 35.10 0.38 0.56 5.98 2.88
TokenSwap (SmolLM-135M) 25.39 0.32 0.61 4.89 2.82
TokenSwap (SmolLM-360M) 34.09 0.35 0.58 7.07 2.80
TokenSwap (SmolLM-1.7B) 35.43 0.36 0.57 7.61 2.77

Table 11: MT-Bench

Method Score

Standard 7.75
TOKENSWAP (SmolLM-135M) 7.78
TOKENSWAP (SmolLM-360M) 7.90
TOKENSWAP (SmolLM-1.7B) 7.91

B.7 Plots for comparison with Goldfish [32]
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Figure 5: We compare TOKENSWAP with Goldfish [32] on RougeL score distributions for Wikipedia
generations. The similar distributions of TOKENSWAP and Goldfish (k=3) demonstrate that our
inference-time approach is comparable to expensive pre-training methods in reducing memorization.

B.8 Performance vs Memorization

Table 12 provides the memorization and cross-entropy scores for the family of Pythia models.
TOKENSWAP significantly reduces verbatim and near-verbatim generation with a negligible increase
in CE loss.

B.9 Comparison with Speculative Decoding

A common inference method that uses an auxiliary model is Speculative Decoding [41], which we
evaluate for memorization mitigation. We test on the Pile-Memorized dataset using Pythia-6.9B as
the main model and Pythia-70M as the auxiliary model. For speculative decoding, we set γ = 5
(number of tokens proposed by the draft model) and use temperature T = 1.0 for the main model to
introduce randomness, since greedy decoding would be identical to standard generation.

Table 13 shows that while speculative decoding with T = 1 improves over standard generation (as
expected due to temperature sampling), it still exhibits 4× higher exact match rate than TOKENSWAP
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Table 12: Memorization and CE Loss across different Pythia model sizes. Values for TOKENSWAP
are shown in bold.

Model Size Method ML ↓ ROUGE-L ↑ Levenshtein ↑ EMR ↓ CE Loss↓

70M Standard 6.57 0.180 0.709 1.09 3.95
TOKENSWAP 5.77 0.173 0.714 1.09 4.05

160M Standard 19.89 0.239 0.669 5.98 3.55
TOKENSWAP 15.05 0.224 0.680 3.80 3.65

410M Standard 48.92 0.382 0.556 16.30 3.20
TOKENSWAP 25.02 0.279 0.642 5.98 3.30

1B Standard 84.85 0.528 0.428 32.61 3.05
TOKENSWAP 27.36 0.309 0.614 5.43 3.15

1.4B Standard 100.37 0.595 0.369 36.96 2.97
TOKENSWAP 30.33 0.348 0.589 5.43 3.07

2.8B Standard 114.82 0.684 0.292 45.11 2.85
TOKENSWAP 38.61 0.372 0.563 7.61 2.95

6.9B Standard 151.55 0.797 0.182 65.22 2.77
TOKENSWAP 42.65 0.399 0.536 8.70 2.87

Table 13: Comparison with speculative decoding on Pile-Memorized dataset. Both methods use
Pythia-6.9B as main model and Pythia-70M as auxiliary model. ML: Matching Length, EMR: Exact
Match Rate, Lev.: Normalized Levenshtein Distance.

Method ML ↓ EMR ↓ ROUGE-L ↓ Lev. ↑
Standard 151.60 65.22 0.80 0.18
CP-Fuse 97.05 29.35 0.62 0.35
Speculative Decoding (γ = 5, T = 1) 86.80 23.91 0.56 0.40
TOKENSWAP (Pythia-70M) 35.10 5.98 0.38 0.56

with greedy decoding, along with higher memorization on approximate metrics. We hypothesize this
occurs because: (1) the large model selects tokens from the small model based on its own likelihood,
preserving memorization potential, and (2) the large model frequently generates tokens directly,
especially when the small model produces low-likelihood candidates.

C Experimental Details

C.1 Implementation and Baselines

We implement our method in PyTorch and HuggingFace. We take the CP-Fuse implementation
available publicly at https://github.com/jaabmar/cp_fuse. We conducted our experiments
using a combination of large and small language models to assess the effectiveness of our approach.
Below, we detail the models, hyperparameters, computational resources, and training procedures.

C.1.1 Models Used

• Primary Models: The experiments utilized large-scale pre-trained models, including Llama-
3-8B [25] and Pythia-6.9B [11]. All the fine-tuning experiments in the extreme memorization
section were done using Llama-3.2-3B [25].

• Auxiliary Model: A lightweight auxiliary model, DistilGPT-2, was employed to adjust
token probabilities selectively, leveraging its reduced memorization properties.

• Goldfish Models: We used models pre-trained using standard and goldfish loss on the
RedPajama Dataset from the Goldfish Loss paper [32]. The implementation and the mod-
els are publicly available at their GitHub repository https://github.com/ahans30/
goldfish-loss.
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C.1.2 Hyperparameters

The training and evaluation phases were configured with the following hyperparameters. The
hyperparameters were taken from previous work, used as a baseline [1]:

• Sequence Length: 2048 tokens

• Batch Size: 1

• Learning Rate: 5× 10−5

• Optimizer: AdamW with default parameters

• Gradient Accumulation Steps: 1

• Warmup Steps: 50

C.1.3 Computational Resources

Experiments were conducted using a single NVIDIA A6000 GPU, ensuring efficiency in training and
inference without excessive computational overhead.

C.1.4 CP-Fuse in Section 4.2

In Section 4.2, we face limitations in comparing with CP-Fuse. CP-Fuse requires at least two models
with disjoint datasets, a constraint impossible to satisfy for production-level model. Moreover, CP-
Fuse requires both models to have the same vocabulary size and tokenizer, which constrains the choice
of the second model to those within the same model family. To ensure a fair comparison, we avoided
se- lecting larger models as the second model, as larger models are known to memorize more. Instead,
we selected smaller counterparts: Pythia-2.8B for Pythia-6.9B and LLaMA-3.2- 3B for LLaMA-3-8B.
However, we do not select a very small model for CP-Fuse (< 100M). This is because CP-Fuse
requires two equally-capable models with large number of parameters to maintain performance. To
empirically verify this, we compute the cross-entropy loss of CP-Fuse on SlimPajama [62] with
Pythia-70M and Pythia-6.9b. The cross-entropy loss increases to 3.41 from 2.81 for Pythia-2.8b and
Pythia-6.9b (Standard has 2.80, TOKENSWAP has 2.88).

C.2 Construction of G

We construct G with |G| = 110 tokens using high-frequency ’grammar-based’ words. Starting with
the 500 most frequent tokens from COCA [24], we apply NLTK [44] part-of-speech filtering to retain:

• Core grammatical elements: determiners (DT), prepositions (IN), conjunctions (CC)

• Pronouns (PRP, PRP$) and modal verbs (MD)

• Question-related tokens: wh-words (WDT, WP, WRB)

• Auxiliary verbs: be, do, have

This construction prioritizes tokens with high frequency but low semantic content, ensuring syntactic
fluency while minimizing impact on model capabilities. To estimate the frequency of tokens (γ)
in G empirically, we analyzed 2000 samples from the SlimPajama dataset [62], finding γ = 0.233.
Appendix C.3 provides the full list of words in G.

Ablations on the effect of G on memorization and performance are provided in Appendix B.5.

C.3 List of words in G

The list of words in the G used for the experiments are: the, to, and, of, a, in, that, you, it, for, on,
he, with, this, as, we, but, at, they, what, his, from, by, or, she, my, all, an, her, about, me, if, your,
can, who, out, their, like, would, when, him, them, some, how, which, than, our, into, because, these,
over, us, its, where, after, any, those, should, may, through, why, before, off, while, around, another,
both, between, every, each, might, since, against, without, must, during, under, though, until, whether,
among, along, within, across, behind, either, himself, although, outside, themselves, is, was, be, have,
are, do, had, has, were, will, did, been, could, does, need, being, am, used, doing, having
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Tokenizer consistency. We verified that all 110 grammar-based tokens in G (e.g., the, of, and, to)
appear as single tokens across GPT-2/Pythia (BPE), LLaMA-3 (WordPiece), OLMo-2 (Unigram), and
SmolLM (Byte-BPE), confirming that TokenSwap can be applied without any vocabulary alignment.

C.4 Fine-tuning Datasets

For our experiments, we use the AutoMathText dataset , referred to as MathAbstracts in the
tables, which aggregates mathematical content from diverse sources including arXiv, OpenWebMath,
RedPajama, and Algebraic Stack. The titles in this corpus were generated using the Qwen-72B
language model. Additionally, we use the WritingPrompts dataset (Fan et al., 2018), which contains
user-generated stories based on provided premises from a Reddit community. For both datasets, we
randomly sample 2,000 training examples with a fixed seed to ensure consistent training across all
models. We further sample 500 distinct points for evaluation, during which we generate sequences of
128 tokens.Both the datasets are downloaded from HuggingFace.

C.5 Evaluation Datasets

We use The Pile dataset to evaluate memorization of Pythia models. For our experiments, we use a
targeted subset of The Pile—a comprehensive 825 GiB English corpus spanning 22 high-quality
sources. Specifically, we analyze 500 sequences previously identified as memorized by the Pythia
model to investigate memorization dynamics and mitigation approaches.To check memorization in
Llama, we use the LeetCode problems dataset from Kaggle. We perform some pre-processing. This
is because recent works have shown that Llama memorizes sequences from this dataset. For all the
memorization evaluation, we set the prefix to be 20 tokens and then generate either 100 or 128 tokens.

CommonSense170k combines eight distinct datasets focused on commonsense reasoning tasks
[34]. The dataset presents problems in multiple-choice format, requiring models to generate answers
without explanatory content. Following [34], we implement their prompt structure. The component
datasets comprise:

1. ARC Easy (ARC-e) [21] contains elementary-level science questions designed to evaluate
basic logical reasoning capabilities.

2. PIQA [12] focuses on physical reasoning, presenting scenarios where models must deter-
mine appropriate actions based on physical constraints.

3. WinoGrande [56] evaluates commonsense understanding through binary choice completion
tasks in ambiguous sentences.

4. ARC Challenge (ARC-c) [21] presents advanced science questions requiring deep reasoning
skills beyond pattern recognition.

5. OBQA [46] presents questions requiring synthesis of information from multiple sources,
testing complex reasoning abilities.

6. BoolQ [20] consists of binary questions derived from authentic user queries, testing real-
world reasoning capabilities.

We downloaded the dataset from HuggingFace. For evaluation, we sample a subset of each dataset
(128 datapoints) and evaluate 5-shot performance. We then generate the next 10 tokens, since all the
datasets are classification datasets.

D Evaluation Metrics

D.1 Memorization Metrics

To evaluate memorization, we use both exact and approximate measures. The exact memorization
metrics include:

• Matching Length (ML): Measures the longest contiguous sequence in generated text that
matches the training data, before the first deviation. A higher value indicates longer verbatim
memorization, suggesting higher risk of overfitting.
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• Exact Match Rate (EMR) evaluates how long of an uninterrupted sequence exists between
a model’s generated text and the reference text it’s being compared against. The metric
calculates the longest common substring and normalizes the result to produce a score
between 0 and 1, with a score of 1 representing a complete match. This measurement helps
quantify how well the model preserves continuous portions of the original text.

• ROUGE-L Score (Recall-Oriented Understudy for Gisting Evaluation) analyzes text sim-
ilarity by examining shared patterns between generated and reference texts. It looks at
matching sequences of words, whether consecutive (n-grams) or paired, with particular
emphasis on how comprehensively the generated text captures elements from the reference
text. Scores fall between 0 and 1, with 1 indicating that all reference text elements were
successfully captured. The widely-used ROUGE-L variant specifically focuses on finding
the longest sequence of words that appears in both texts, even if not consecutive. ROUGE-L
is computed as:

ROUGE − L =
LCS

len(reference text)
(2)

where LCS(G,R) represents the longest common subsequence length. A higher score
suggests stronger memorization.

• Normalized Levenshtein Distance calculates how many character-level changes are needed
at minimum to transform one text into another, as a ratio of total characters. Each change
can be adding a character, removing one, or replacing one. When comparing generated and
reference texts, a smaller Levenshtein score suggests the texts are more similar, while a
larger score indicates they are more different. The metric is normalized to produce values
between 0 and 1, where 0 means the texts match perfectly.

D.2 Performance Metrics

To evaluate model performance beyond memorization, we assess:

• Cross-Entropy (CE) Loss: This metric quantifies how well the model predicts tokens in a
sequence. For a sequence X = {x1, x2, ..., xn} with ground truth probabilities P (X), the
cross-entropy loss is computed as:

CE = −
n∑

i=1

P (xi) logQ(xi) (3)

where Q(xi) is the predicted probability distribution. Lower values indicate better general-
ization.

• Commonsense Reasoning Benchmark Accuracy: The model’s ability to reason about
everyday knowledge is tested across multiple established datasets, including WinoGrande,
PIQA, OpenBookQA, BoolQ, ARC-Easy, and ARC-Challenge. We report the accuracy of
the model.

• Fluency and Instruction-following: This is evaluated on MT-Bench [72]. MT-Bench
evaluates a model’s fluency, conversational and instruction following ability.

E Examples

We provide examples of text generated by standard greedy decoding and TOKENSWAP on four
random examples from the WritingPrompts dataset. Memorized text is in red.

Example 1

Prefix

### Prompt: [ WP ] Magic - once a real and potent force but as the world population
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Suffix

grew from millions to billions the shared mana per person is now negligible. A group of
astronauts helplessly watching the Earth perish experience something... unexpected.

### Story: Lauren sobbed. She was engaged to be married as soon as we got back
home. We all lost loved ones. Hell, we all lost everything we ever knew.

First the atmosphere started turning black. We got word that the Koreans had started
a nuclear war. But within minutes of receiving news, all radio contact was lost. We didn’t even
have a chance to tell anyone goodbye. Now, there’s only 4 of us left.

Lauren hasn’t

Standard Generation

grew from millions to billions the shared mana per person is now negligible. A group of
astronauts helplessly watching the Earth perish experience something... unexpected.

text### Story: Lauren sobbed. She was engaged to be married as soon as we got
back home. We all lost loved ones. Hell, we all lost everything we ever knew.

First the atmosphere started turning black. We got word that the Koreans had started
a nuclear war. But within minutes of receiving news, all radio contact was lost. We didn’t even
have a chance to tell anyone goodbye. Now, there’s only 4 of us left.

Lauren hasn’t

TOKENSWAP Generation

grew and the number of wizards and witches declined, the world began to suffer. Now the
world suffers from a lack of magic, and the government is tasked with maintaining the only
magic university in the world.

### Story: “ Welcome to Magic University.”

The spell is cast, and the portal opens. Through the portal, the world is revealed to
be a beautiful place. The grass is a deep emerald, and the trees sky blue. It is a place of
incredible beauty, and the students here are lucky enough to have grown up in such a place.
The university is built on the side of the volcano, and the students live
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Example 2

Prefix

### Prompt: [ WP ] The year is 2040, and you are the last smoker

Suffix

alive. The “ Quit Smoking ” ads get personal.

### Story: “ Quit now Dan!” said the man on the talking billboard. A finger point-
ing at the lone figure walking down the empty street. Empty due to everyone crossing to the
other side to avoid him and his smog.
Dan paused by a waste bin, small cardboard box in hand. He looked from the box to the bin and
back again. Those across the street stopped and stared, ready to witness history being made.
There was absolute silence as Dan lifted his hand, as if to throw the packet towards the bin, all
eyes now on him, even the

Standard Generation

alive. The “ Quit Smoking ” ads get personal.

### Story: “ Quit now Dan!” said the man on the talking billboard. A finger point-
ing at the lone figure walking down the empty street. Empty due to everyone crossing to the
other side to avoid him and his smog.
Dan paused by a waste bin, small cardboard box in hand. He looked from the box to the bin and
back again. Those across the street stopped and stared, ready to witness history being made.
There was absolute silence as Dan lifted his hand, as if to throw the packet towards the bin, all
eyes now on him, even the

TOKENSWAP Generation

alive. The “ Quit Smoking ” ads get personal.

### Story: “ Quit now Dan!” said the man who was once John, who now went to
work as a telephone scammer. “ You’re killing yourself, and you know what? I know you’re
lying. I know you’re lying and you’re sucking your parents pockets dry. They worked hard for
you know what? And you’re not grateful. You never thank me know what? I never see you
thanking me. I never see you thanking anyone. You just keep on doing it, killing yourself, and
I’m not going to stand by you. I’m not
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Example 3

Prefix

### Prompt: [ WP ] A young man killed his abusive father. The court has exoner

Suffix

ated him, but society hasn’t.

### Story: I can see disapproving stares from my classmates and teachers all the
time. Nobody wants to stay near me anymore. All my friends avoid me or ignore me. Every
classmate stays far away from me.

Eventually, my smile turns cracked. In the mirror, I see haunting eyes looking back
at me. Memories and visions of my father lying there with the side of his head completely
covered in blood. So this is what true loneliness feels like.

I remember my father. He tortured me, hit me, locked me out of the house. I oftened stayed at

Standard Generation

ated him, but society hasn’t.

### Story: I can see disapproving stares from my classmates and teachers all the
time. Nobody wants to stay near me anymore. All my friends avoid me or ignore me. Every
classmate stays far away from me.

Eventually, my smile turns cracked. In the mirror, I see haunting eyes looking back
at me. Memories and visions of my father lying there with the side of his head completely
covered in blood. So this is what true loneliness feels like.

I remember my father. He tortured me, hit me, locked me out of the house. I oftened stayed at

TOKENSWAP Generation

ated him, but society hasn’t.

### Story: I was abused. I was taken advantage of. I was exploited.

Who is the real villain here? The one who committed the act, the one who pushed
me past the point where I was comfortable, was the villain. Or the one who stood idly by and
was complicit in the crime, the one who provided the weapon, the one who pushed me past the
point where I was comfortable.

You see, I was comfortable. I was happy. I was loved. I was cared for.

But then I grew up. I learned to think about it
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Example 4

Prefix

### Prompt: [ WP ] A demon and an angel meet up weekly in a coffee shop to

Suffix

complain about their jobs.

### Story: “ Is this a long story?”

Felix gritted his teeth; his jaw jutted out. “ Dude, I’ve only just started it.”

“ I’ve got news, is all.”

He leaned back and held out both hands in an exaggerated show of compliance. “
Please, by all means, take the floor.”

Hope cracked his knuckles and stared, embarrased, at the floor. “ No, I’m sorry.”

“ Go ahead! Please! I was just trying to -”

“ OK. Tell me your story in thirty words or less

Standard Generation

complain about their jobs.

### Story: “ Is this a long story?”

Felix gritted his teeth; his jaw jutted out. “ Dude, I’ve only just started it.”

“ I’ve got news, is all.”

He leaned back and held out both hands in an exaggerated show of compliance. “
Please, by all means, take the floor.”

Hope cracked his knuckles and stared, embarrased, at the floor. “ No, I’m sorry.”

“ Go ahead! Please! I was just trying to -”

“ OK. Tell me your story in thirty words or less

TOKENSWAP Generation

complain about the job.

### Story: “ Is this a long story?”

Felix gritted his teeth; he usually doesn’t show emotion, but he feels annoyed. “ Dude, I’ve
only just started to tell you.”

“ I’ve got news, but I’ll save you a table. Sit down.”

He sat down and crossed his arms. “ So, what’s the issue?”
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“ I’ve got a client who’s totally fucked up. No motivation, no direction. Just a bunch
of negative traits. I haven’t got much time, and I’m a busy man.”

“ So
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims reflect the paper’s scope and contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5 for discussion on limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details of experiments in Appendix C.1 and we provide the link to
our code in the abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All the datasets used in the experiments are publicly available and we provide
the link to our code in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details of experiments in Appendix C.1 and we provide the link to
our code in the abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our evaluation methodology aligns with standard practice in the memorization
mitigation literature [1, 32, 19]. The main experiments in Sections 4.2 and 4.3 use determin-
istic greedy decoding, which produces consistent results across runs. Additionally, the scale
of our evaluation (testing on 1,825 LeetCode problems and 184 Pile sequences) provides
sufficient data points for robust assessment without requiring multiple experimental runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute required in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research in the manuscript is compliant with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts of our work in Section 1

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research poses no risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the creators/original owners of assets used in the paper are properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used for any core methodology in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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