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ABSTRACT

Neural networks hold great potential to act as approximate models of nonlinear
dynamical systems, with the resulting neural approximations enabling verification
and control of such systems. However, in safety-critical contexts, the use of neural
approximations requires formal bounds on their closeness to the underlying system.
To address this fundamental challenge, we propose a novel, adaptive, and paral-
lelizable verification method based on certified first-order models. Our approach
provides formal error bounds on the neural approximations of dynamical systems,
allowing them to be safely employed as surrogates by interpreting the error bound
as bounded disturbances acting on the approximated dynamics. We demonstrate the
effectiveness and scalability of our method on a range of established benchmarks
from the literature, showing that it significantly outperforms the state-of-the-art.
Furthermore, we show that our framework can successfully address additional
scenarios previously intractable for existing methods— neural network compres-
sion and an autoencoder-based deep learning architecture for learning Koopman
operators for the purpose of trajectory prediction.

1 INTRODUCTION

Nonlinear dynamical models are ubiquitous across science and engineering and play a central role
in describing and designing complex cyber-physical systems (Alur, 2015). However, to verify and
control such systems, it is often necessary to construct an abstraction: an approximation that locally
simplifies the model or relaxes its nonlinearities (Derler et al., 2012; Khalil, 2002; Sastry, 1999).
In general, an abstraction translates the concrete model—the system under study—into a simpler
abstract model that is more amenable to analysis (Baier and Katoen, 2008; Clarke et al., 2018). A
common method for synthesizing abstractions is known as hybridization and involves partitioning
the state space into regions, each representing a state in a finite-state machine (Althoff et al., 2008;
Asarin et al., 2007; Bak et al., 2016; Dang et al., 2010; Frehse, 2005; García Soto and Prabhakar,
2020; Henzinger and Wong-Toi, 1995; Li et al., 2020; Majumdar and Zamani, 2012; Prabhakar et al.,
2015; Roohi et al., 2016). Neural networks with ReLU activations have emerged as a particularly
effective approach to hybridization, as each network configuration implicitly induces a partition of
the input domain into convex polytopes (Abate et al., 2022; Goujon et al., 2024; Villani and Schoots,
2023). This enables simultaneous learning of both the partitioning and the simplified dynamics.

For neural abstractions to be practically useful, properties inferred from the abstraction—such as
those related to reachability or safety—must reliably transfer to the original system. Simulation-
based techniques fall short, as they are non-exhaustive and may miss unsafe behaviour. Formal
verification provides a sound alternative by exhaustively analyzing all possible inputs and outputs.
Prior work has used SMT (Satisfiability Modulo Theories) solvers for this task (Fränzle et al., 2007;
Abate et al., 2022; Solanki et al., 2025). SMT extends the Boolean Satisfiability Problem (SAT) to
more complex formulas such as those involving linear real arithmetic or integers. This makes SMT
solvers an indispensable tool for a range of applications; however, for neural network verification, the
computational cost of SMT solvers severely limits the scale and expressivity of verifiable networks.

To overcome these limitations, we introduce a scalable framework for verification of neural abstrac-
tions that avoids reliance on expensive SMT solvers. Our method constructs certified first-order local
approximations to tightly bound a nonlinear system’s behaviour, which enables us to employ neural
network verification tools based on linear bound propagation to certify that the network’s output re-
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mains sufficiently close to the linearization. By combining this with a parallelizable input-partitioning
strategy, we achieve substantial verification speedups, can handle higher-dimensional systems (up to
7D), and considerably larger neural networks than state-of-the-art methods.

To exploit these new capabilities to handle higher-dimensional systems and larger networks, we
extend neural abstractions to learning Koopman operators (Brunton et al., 2016; 2022) (Section 4.2).
This application, which enables trajectory-level reasoning by representing nonlinear dynamics as
linear operators in a high-dimensional space, previously posed a significant verification challenge,
as the network’s output represents predicted trajectory points (in our example, involving a final
layer with over 100 states). Finally, to demonstrate the versatility of our framework, particularly
for more general function approximation tasks, we extend neural abstractions beyond their native
developments for dynamical systems, demonstrating their effective application to neural network
compression (Section 4.3).

Our contributions are summarised as follows:

1. We introduce a novel method based on certified linearizations to eliminate the reliance on
SMT solvers capable of handling nonlinear real arithmetic, thereby removing the primary
computational bottleneck in prior approaches.

2. We introduce a parallelizable refinement strategy that enables adaptive verification of neural
abstractions with nonuniform accuracy across the input domain.

3. We demonstrate that our approach outperforms existing methods on a variety of benchmarks.
4. We demonstrate the effectiveness of our approach on two novel applications that are beyond

the capability of state-of-the-art methods: neural network compression and the discovery of
Koopman operators.

We begin in Section 2 by formally introducing neural abstractions, followed by presenting our
approach to certification in Section 3.

2 NEURAL APPROXIMATIONS OF NONLINEAR DYNAMICS

We begin by introducing the system dynamics, for which we will synthesise neural network abstrac-
tions over a bounded domain. Let X ⊂ Rn denote the bounded input domain of interest, and suppose
f : X → Rm is a continuous (nonlinear) function describing the system’s dynamics. We focus on
two classes of systems:

• Continuous-time nonlinear systems, described by differential equations of the form
dx
dt = f(x), x ∈ X ;

• Discrete-time nonlinear systems, described by difference equations of the form xk+1 =
f(xk), xk ∈ X .

Given a dynamical system as described above, a neural abstraction is an ϵ-close approximation of
the dynamical system, as formally defined in Definition 1 below, which is a generalization of the
definition of neural abstractions introduced in Abate et al. (2022) for continuous-time dynamical
systems.
Definition 1 (Neural Abstraction). Consider a dynamical system described by function f : Rn → Rm

and let X ⊂ Rn be a region of interest. A feed-forward neural network N : Rn → Rm defines a
neural abstraction, also called a neural approximation, of f with error bound ϵ > 0 over X , if it
holds that ∀x ∈ X : ∥f(x)−N(x)∥ ≤ ϵ where ∥ · ∥ is the L∞-norm1.

According to Definition 1, a neural abstraction of a dynamical system describes a dynamical system
with a bounded additive disturbance d, such that any trajectory (solution to the differential equation)
of the original dynamical system f is also a trajectory of the perturbed system. Specifically, in the
case where f describes a continuous-time system, we have the following equation for the perturbed
system:

dx

dt
= N(x) + d, ∥d∥ ≤ ϵ, x ∈ X , (1)

1For the remainder of the paper, unless otherwise specified, all norms are L∞.
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where ϵ represents the maximal deviation between the neural network approximation N(x) and the
original function f(x). In the discrete-time case, where f defines an update rule xk+1 = f(xk), any
trajectory (solution to the difference equation) of the original system f is also a trajectory of the
following discrete-time system:

xk+1 = N(xk) + d, ∥d∥ ≤ ϵ, x ∈ X . (2)

As the disturbance d is bounded by ϵ, the original system response, defined by f , is always contained
within that of the abstraction, defined by N with disturbance d. Thus, the abstraction is sound, which
enables formal guarantees to transfer from the abstraction to the concrete model.

Remark. The applicability of our framework is not contingent on access to f not its derivatives, but
only on access to linear bounding functions, as we will show in Section 3. Linear bounding functions
can be constructed in various ways with varying degrees of conservatism depending on the available
information about f . We describe three such methods in Appendix D.

2.1 TRAINING

To obtain a neural network approximation of a dynamical system, we train a neural network N
to minimize both the mean and maximum approximation error over a batch of sampled inputs
{x1, . . . , xM}. To this end, we assume for the remainder of the paper that the function f has bounded
output and define the following loss function:

L =
1

M

M∑
l=1

∥f(xl)−N(xl)∥2 + λmax max
l∈{1,...,M}

∥f(xl)−N(xl)∥∞, (3)

where the parameter λmax = 0.001 balances the trade-off between minimizing the average error and
controlling the worst-case error across the sampled domain. We focus on training neural abstractions
with ReLU and LeakyReLU activation functions, although our approach is compatible with more
general activation functions, as permitted by the underlying solver (neural network verification tool).
For our approach to be sound while also scalable, we utilise a complete solver, specifically Marabou
2.0 (Wu et al., 2024). Further details regarding the network architecture, training procedure, and
hyperparameters are provided in Section 4 and Appendix B. Once a neural network N has been
trained, the central challenge lies in certifying the accuracy, i.e., formally establishing the relation
∥f(x)−N(x)∥ ≤ ϵ between the neural network abstraction and the concrete model. In what follows,
we present our primary contribution, a scalable verification approach for this problem based on an
adaptive refinement of first-order models. In Section 4, we empirically show how this framework
substantially outperforms the state-of-the-art.

3 CERTIFICATION OF ϵ-CLOSENESS

We now introduce our verification approach that leverages local first-order models of f(x), thereby
enabling the application of modern techniques for neural network verification. To perform the
verification, we will seek to prove that no counterexample against ϵ-closeness exists. Thus we seek
an assignment of the negation of our desired specification, i.e.,

∃x : x ∈ X ∧ ∥f(x)−N(x)∥ > ϵ︸ ︷︷ ︸
ϕ

. (4)

If we find an assignment for x such that the formula ϕ is satisfiable, then we can establish that N
is not a valid neural abstraction for a given accuracy ϵ. As the search for satisfying assignments is
exhaustive, failure to find an assignment constitutes a proof that no such assignment exists, and thus
N is a valid neural abstraction for a given accuracy ϵ. In Section 3.1, we will describe the first-order
models and how they can be used in the context of verification, followed by certificate refinement in
Section 3.2 to combat conservatism introduced by the first-order models.

Remark. The selection of ϵ can be performed empirically, based on the maximum error observed
during training, or predefined according to strict application requirements. Notably, our proposed
approach allows for an efficient search for the optimal ϵ within a given computational budget.
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3.1 FIRST-ORDER MODELS

Given that the function f may include nonlinear terms, finding a satisfying assignment of ϕ in
Equation (4) typically requires reasoning over quantifier-free nonlinear real arithmetic formulae. This
is computationally challenging and does not scale efficiently with problem complexity or the number
of optimization variables. To address this, we introduce an over- and under-approximation of the
dynamics of f using local first-order Taylor expansions of the vector field f . The choice of first-order
models is a balance in the trade-off between expressivity, since we are verifying input-output relations,
and maintaining linearity to enable formal verification. In this context, we will adaptively partition
the domain of interest X into hyperrectangles, which are represented as weighted L∞-balls.
Definition 2. Given a hyperrectangle with radius δ ∈ Rn

≥0 and center c ∈ Rn, the weighted L∞-ball
around c, denoted by Hδ(c), is defined as

Hδ(c) = {x ∈ Rn : |x− c| ≤ δ},

where | · | is the element-wise absolute value and ≤ is interpreted element-wise. Similarly, we
can define the hyperrectangle by its lower and upper corners, Hmin = c − δ and Hmax = c + δ,
respectively, as Hδ(c) = {x ∈ Rn : Hmin ≤ x ≤ Hmax}.

The choice of partitioning will be discussed in more detail in the following section. For now, let us
introduce the local first-order Taylor expansion, including an error bound.
Proposition 1 (Certified first-order Taylor Expansion). Let f : Rn → Rm be a continuously
differentiable function, and let Hδ(c) be a hyperrectangle centered at c ∈ Rn with radius δ. Then,
there exists a hyperrectangle R ⊆ Rm such that for all x ∈ Hδ(c), the following relation holds:

f(x) ∈ (f(c) +∇f(c)(x− c))⊕R,

where ⊕ denotes the Minkowski sum.

Computing R can be done efficiently when f is twice continuously differentiable using the Lagrange
error bound (see Appendix D.1 for details). The proof follows directly from Taylor’s theorem for
multivariate functions, along with the Lagrange error bound for higher-order terms (Joldes, 2011).
For the remainder of the paper, we use the subscript indices i ∈ {1, . . . , n} when referring to the
input dimensions of the function or the neural network, and j ∈ {1, . . . ,m} when referring to the
output dimensions. The first-order Taylor expansion in Proposition 1 provides the following sufficient
condition for a valid neural abstraction.
Theorem 1. Let f : Rn → Rm, N : Rn → Rm, and let Hδ(c) ⊂ Rn be a hyperrectangle centered
at c with radius δ. Let f(c) + ∇f(c)(x − c) ⊕ R be a certified Taylor expansion for f in Hδ(c).
If for each output dimension j ∈ {1, . . . ,m}, there does not exist a state x such that either of the
following inequalities is satisfied:

x ∈ Hδ(c) ∧ fj(c) +∇fj(c) · (x− c) +Rmax
j −Nj(x) ≥ ϵ, (5a)

x ∈ Hδ(c) ∧Nj(x)− fj(c)−∇fj(c) · (x− c)−Rmin
j ≥ ϵ, (5b)

then N is an ϵ-accurate neural abstraction of f over Hδ(c), i.e., ∥f(x)−N(x)∥ ≤ ϵ, ∀x ∈ Hδ(c).

The proof of Theorem 1 is provided in Appendix C. Both f and ∇f are evaluated at the center
point, c, of the hyperrectangle Hδ(c), ensuring that all terms highlighted in orange in Equations (5a)
and (5b) remain fixed for a given hyperrectangle. In contrast, only the terms in blue vary with
the specific choice of x ∈ Hδ(c). As a result, the expression fj(c) +∇fj(c)(x − c) +Rmax/min

j

becomes linear. This allows Theorem 1 to be applied as a relaxation of the nonlinear predicate ϕ
from Equation (4), thereby enabling formal verification to proceed without relying on SMT solvers
capable of reasoning over nonlinear real arithmetic. Specifically, we employ Marabou 2.0 (Wu et al.,
2024), which implements an extension of the Simplex algorithm that was originally developed to
solve linear programs (Dantzig, 2002), to verify the satisfiability of Equations (5a) and (5b).

Since the domain X can be over-approximated by a finite union of hyperrectangles, i.e., X ⊆⋃I
ι=1 Hδι(c

ι), we can perform verification locally within each hyperrectangle Hδι(c
ι). By applying

a local first-order Taylor expansion within each region and bounding the remainder using Rmax

and Rmin, we obtain tighter bounds on the approximation error compared to approximating over
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j

‖f(x)−N(x)‖

≤ ε

> ε

Found x
satisfying φ?

Figure 1: Graphical representation of the neural abstraction verification procedure with certificate
refinement.

the full domain X . This localized approach effectively reduces the conservatism introduced by
the approximation, i.e., omitting higher-order derivative terms, while maintaining soundness of the
verification process.
Remark. We could allow the bound ϵ to vary over the domain X , selecting different values of ϵ for
each partition Hδι(c

ι). This would lead to a state-dependent disturbance in Equations (1) and (2).
Similarly, we could allow different ϵ for each output dimension, i.e., output-weighted ϵ-closeness.
However, for the sake of clarity and simplicity in the exposition, we omit this variation of ϵ.

3.2 CERTIFICATE REFINEMENT

In the previous section, we introduced first-order Taylor expansions to derive conservative over- and
under-approximations of the dynamics f . These approximations, captured in Equations (5a) and (5b),
consider the worst-case realizations of the error term r ∈ R. Consequently, when we compute the
bounds Rmax

j and Rmin
j , the counterexample x found may not always satisfy the formula ϕ from

Equation (4). This happens because the error bounds derived from the Taylor expansion may be
overly conservative. To address this issue, we propose a refinement strategy that partitions each
hyperrectangle locally, enabling tighter approximations of the dynamics and reducing conservatism.
The certification and partitioning strategy is illustrated in Figure 1. The decision to partition a
hyperrectangle into two separate hyperrectangles, referred to as a split, results from one of two
conditions:

1. the Taylor remainder term is too conservative, i.e., Rmax
j −Rmin

j > ϵ,

2. a counterexample x does not satisfy ∥f(x)−N(x)∥j > ϵ.

In the first case, we split the hyperrectangle based purely on the conservatism of the Taylor approxi-
mation, which can be done without reasoning over the neural network, while in the second case, the
decision to split depends on the outcome of the network verification. If x satisfies ∥f(x)−N(x)∥ > ϵ,
no further splitting is necessary and x is returned as a proper counterexample.

When splitting a hyperrectangle, it is necessary to determine along which axis the split should occur.
We choose this axis by prioritizing input dimensions according to their contribution to the Taylor
approximation error in the output. Specifically, we first identify input dimensions that appear in
nonlinear terms of the output of interest, fj(x), by analysing the dependency graph of f . Then, for
each of those dimensions i, we evaluate their contribution to the approximation error by perturbing the
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Figure 2: Partitioning of the domain to reduce conservatism. (Left) Linear terms do not require
partitioning, as they are captured accurately by the first-order model. (Right) In regions of high
nonlinearity (steeper dark function), finer rectangular partitioning reduces first-order approximation
error by adaptively refining the domain.

center point c of the hyperrectangle along that dimension. The perturbed point, denoted c′, is defined
such that c′l = cl for all l ̸= i, and c′i = ci + hi, where hi ∈ (0, δi) is a small, fixed perturbation
magnitude. For each such perturbation, we evaluate the absolute error between the first-order Taylor
model and the true dynamics f at c′. While the splitting strategy prioritizes axes based on their
contribution to the Taylor remainder, the procedure is relaxed to eventually split on all axes that
enter Nj(x) nonlinearly, as this can impact the execution time of Marabou. For the selected input
dimension i, we split the original hyperrectangle Hδ(c) into two smaller hyperrectangles. These are
centered at c + (δ − δ′) and c − (δ − δ′), respectively, where the new radius vector δ′ is defined
elementwise as:

δ′l =

{
δl if l ̸= i,
δl
2 if l = i.

This effectively halves the size of the hyperrectangle along the selected axis i, while keeping the
width in all other dimensions unchanged. Since each input dimension xi for i ∈ {1, . . . , n} can
influence each output dimension fj(x) for j ∈ {1, . . . ,m} differently, we perform verification and
refinement separately for each output dimension.

The proposed partitioning strategy adapts the size of the hyperrectangles locally according to the
nonlinearity of the function f(x) based on the dependency graph and the perturbed first-order Taylor
remainder. As illustrated in Figure 2, for the component f1(x), which is linear, a single hyperrectangle
suffices to certify the ϵ-closeness over the entire domain X . In contrast, the second component,
f2(x), contains highly nonlinear terms that necessitate finer partitioning in regions where linear
approximations are no longer sufficiently tight. For many real-world systems, this targeted approach
avoids the worst-case exponential growth and scales far more effectively than methods that cannot
leverage this decoupling. To illustrate this, consider the Jet Engine dynamics in Appendix A.2. The
dynamics of ẋ are coupled, yet the nonlinearity only appears in x, while the dynamics in ẏ are linear.
Our certification refinement strategy capitalizes on this, resulting in fast and efficient verification.

Since the verification of ϵ-closeness can be performed locally over partitions Hδ(c), we exploit this
structure to parallelize the procedure across multiple processors, significantly improving performance.
To facilitate parallel execution, we employ a shared stack accessed by a pool of worker processes.
The domain X is initially partitioned into a set of hyperrectangles, which are pushed onto the stack.
Each process draws a hyperrectangle from the stack, performs the verification procedure described
earlier, and either (i) certifies the region, (ii) marks it as uncertifiable if a counterexample is found,
or (iii) splits the region as previously discussed. In the case of a split, the resulting subregions are
pushed onto the stack. The process then retrieves the next hyperrectangle and repeats the procedure,
as summarized in Figure 1.

Remark. The use of a stack (Last-In-First-Out) instead of a queue (First-In-First-Out) corresponds to
a depth-first rather than breadth-first exploration of the verification space, consistent with strategies
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from branch-and-bound algorithms (Morrison et al., 2016). A queue would be equally valid, though
it would require more memory. If early termination with counterexamples is desired rather than verifi-
cation until full coverage, e.g., in the context of Counter-Example Guided Inductive Synthesis (Abate
et al., 2018; 2022), a priority queue can be employed where the hyperrectangles would be weighted
by the error relative to their volume (Lebesgue measure).

4 EXPERIMENTAL RESULTS

We empirically evaluate our approach on the benchmarks introduced in Abate et al. (2022) and
described in Table 1, and whose detailed dynamics can be found in Appendix A, as well as on
new benchmarks designed to demonstrate the extended capabilities of our method. In particular, in
what follows, we first present an empirical comparison with the method introduced in Abate et al.
(2022) and based on dReal (Gao et al., 2013), which currently represents the state-of-the-art for
neural abstractions; then, to highlight the generality and scalability of our approach, we include two
particularly challenging tasks: (i) a neural network compression benchmark, where a network with 5
layers and 1024 neurons per layer is compressed to a network with 5 layers and 128 neurons per layer,
achieving a 98.4% reduction in size; and (ii) a verification benchmark based on a trajectory prediction
network introduced in Dey and Davis (2023); Lusch et al. (2018), which learns to approximate
nonlinear system dynamics through Koopman operator theory. These two benchmarks are discussed
in Section 4.3 and 4.2, respectively. All experiments were executed on an Intel i7-6700k CPU (8
cores) with 16GB memory.

4.1 COMPARISON WITH DREAL-BASED APPROACHES

To benchmark our method against the state-of-the-art, we compare it with the approach of Abate et al.
(2022), which is based on dReal (Gao et al., 2013); an SMT-solver over nonlinear real arithmetic2.
As evident from the results in Table 1, our method scales to larger models (7D) more effectively than
verification using dReal. This improved scalability arises as dReal is reasoning over nonlinear
real arithmetic, while our method avoids this by reasoning over local linear approximations. Our
approach successfully certifies all models with the 3x[64] architecture, while dReal exceeds the
1-hour timeout on all large models, with the exception of the WaterTank and NonlinearOscillator.
Our method nevertheless achieves a noticeable speedup on all models (e.g. ≈820x faster for the
WaterTank experiment).

4.2 TRAJECTORY-LEVEL REASONING THROUGH KOOPMAN OPERATORS

We now consider abstractions for discrete-time nonlinear systems. Instead of limiting the abstraction
to predicting a single next state, however, we extend its task to predicting an entire trajectory—a
sequence of future states from an initial condition. To facilitate trajectory-level reasoning, we shift to
an operator-theoretic viewpoint of dynamical systems, wherein the evolution of a system is described
through the action of a (linear) operator on measurement functions. This framework, known as
Koopman theory, offers a powerful lens for analysing complex, nonlinear systems (Brunton et al.,
2022). Notably, Koopman theory provides a route to uncovering intrinsic coordinate systems in which
the nonlinear dynamics manifest as linear. Originally introduced in Koopman (1931), the Koopman
operator represents a nonlinear dynamical system via an infinite-dimensional linear operator acting on
a Hilbert space of measurement functions. Despite the underlying system’s nonlinearity, the Koopman
operator is linear, and its spectral decomposition fully characterizes the system’s behaviour (Brunton
et al., 2016; 2022; Korda and Mezić, 2018).

In general, the Koopman operator is infinite-dimensional, making its exact computation intractable.
Thus, the aim is commonly to construct finite-dimensional approximations that capture the dominant
behaviour of the system. This entails identifying a low-dimensional invariant subspace spanned by
eigenfunctions of the Koopman operator, within which the dynamics evolve linearly. Despite the
promise of Koopman embeddings, obtaining tractable representations has remained a central challenge

2Note that our approach allows one to establish a certified subset of the domain, while the method in Abate
et al. (2022) provides only a single counterexample. One application of partial certification is to cordon off
uncertified regions and restrict the system to known, correct behaviours. Our approach can be further extended
with a variable ϵ over the domain of interest, allowing for a tighter certification in general.
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Table 1: Verification Results for Learning Dynamical Systems2

Our approach dReal
Model Network Dim Certified (%) Time (s) Result Time (s)
WaterTank [12] 1 100.0 0.02 ✓ 0.02

3x[64] 1 100.0 0.56 ✓ 458.91

JetEngine [10, 16] 2 100.0 4.35 ✓ 27.18
3x[64] 2 100.0 19.27 Timeout (1h)

SteamGovernor [12] 3 100.0 0.18 ✓ 39.37
3x[64] 3 100.0 69.47 Timeout (1h)

Exponential 2x[14] 2 100.0 0.23 ✓ 9.99
3x[64] 2 100.0 3.92 Timeout (1h)

NonLipschitzVectorField1 [10] 1 100.0 0.03 ✓ 0.03
3x[64] 1 100.0 2.14 Timeout (1h)

NonLipschitzVectorField2 [12, 10] 2 100.0 0.08 ✓ 4.55
3x[64] 2 100.0 11.93 Timeout (1h)

VanDerPolOscillator 3x[64] 2 100.0 48.76 Timeout (1h)
Sine2D 3x[64] 2 100.0 69.06 Timeout (1h)
NonlinearOscillator 3x[64] 1 100.0 0.35 ✓ 234.52
LowThrustSpacecraft 3x[64] 7 100.0 94.51 Timeout (1h)

in control theory. Utilizing neural networks to discover and represent Koopman eigenfunctions has
emerged as a promising approach in recent years (Lusch et al., 2018; Dey and Davis, 2023). While
Koopman operators are commonly learned from data and a typical analysis of learned Koopman
embeddings would verify structural properties—such as the orthonormality of eigenfunctions in
Hamiltonian systems—such a treatment lies beyond the scope of this work. We instead demonstrate
that our approach to verification can be applied to neural architectures deployed for learning Koopman
embeddings, by verifying that the learned system evolution remains ϵ-close to the true system
dynamics.

K

x0

K

x0 x1 xH

E

D D D

Figure 3: The network architecture used
to learn a Koopman operator. The En-
coder (blue) lifts the input into a higher
dimensional space where linear multi-
plication with K (green) propagates the
system. To obtain trajectory points,
[x0, x1, . . . , x50], each propagated state
in the lifted space is decoded (orange).

We adopt a standard setup using the dlkoopman li-
brary (Dey and Davis, 2023). The network architecture
comprises an autoencoder that learns the encoding and
decoding of states into a Koopman-invariant subspace,
along with a linear transformation within that subspace
(Figure 3). This network architecture can be interpreted
as a discrete-time neural abstraction that advances the sys-
tem ahead one-time step and outputs the state at time step
k + 1 (Equation (2)). Thus, the output of the network is
a trajectory, i.e., a sequence of H-subsequent states. Ap-
plications of such trajectory tasks are commonly found
throughout control theory, notably in model predictive
control (Rawlings et al., 2017).

We consider the Quadratic System provided in Ap-
pendix A.12, a benchmark problem frequently studied
in the literature (H. Tu et al., 2014; Brunton et al., 2016;
Lusch et al., 2018; Dey and Davis, 2023). To improve
reproducibility, we leverage the dataset provided by Dey
and Davis (2023) to learn the evolution of the system from
data. The final trained model takes an initial state x0 and
produces the sequence [x0, x1, . . . , x50], which represents
the evolution of the dynamics. The network architecture is summarized in Figure 3. Verification
of the abstraction completed in 162.60 seconds with 29 counterexamples found and 99.03% of the
domain certified. An interesting observation is that, although the network achieved a low prediction

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

loss—specifically, a mean squared error of 0.002 on the validation set—our verification framework
was still able to identify counterexamples where the prediction error exceeds the specified tolerance
of ϵ = 0.1. At the same time, the method certifies that the network ϵ-accurately predicts the system
evolution over 99.03% of the input domain. Recall that in the presence of counterexamples, previous
verification methods fail to identify regions where the model remains ϵ-accurate. Meanwhile, our
approach offers valuable insight by localizing the regions in which the model can still be trusted,
even when global verification fails.

4.3 COMPRESSION OF LEARNED DYNAMICS

To demonstrate the capabilities of our approach beyond constructing abstractions of known analytical
dynamics, we apply the verification procedure to a neural network compression benchmark. This
not only serves to demonstrate our approach’s ability to handle networks with a large number of
parameters but also showcases its broader applicability beyond the dynamical systems and control
literature.

State-of-the-art techniques often produce large, over-parameterized neural networks. While highly
accurate and implicitly regularized (Martin and Mahoney, 2021; Belkin et al., 2019; Jacot et al.,
2018), these models present two major drawbacks that motivate the need for knowledge distillation:
they are computationally expensive, which is problematic for applications like embedded systems,
and they are difficult to analyze, e.g., via the Piece-Wise Affine (PWA) representation induced by
their ReLU structure Gou et al. (2021). Neural network compression aims to mitigate this by reducing
model size while preserving input-output behaviour (Luo et al., 2017; Memmel et al., 2024). The key
challenge, which motivates this benchmark, is formally guaranteeing that the compressed network
stays ϵ-close to the original.

For this compression benchmark, we first train a 5-layer ReLU network with 1024 neurons per
layer to learn the dynamics of the Lorenz attractor (described in Appendix A.10) from observed
trajectories. Using a simple teacher–student architecture Gou et al. (2021), we reduce the model by
independently training a smaller ReLU network, consisting of 5 layers with 128 neurons per layer, to
replicate the input-output behaviour of the larger model—without access to its training trajectories
or the underlying system dynamics. The larger model comprises 4, 205, 571 parameters, while the
compressed model contains only 66, 947, corresponding to a 98.4% reduction in size. From the
perspective of verification, the larger network serves as the reference dynamics, while the smaller
network acts as an abstraction of those learned dynamics. This setup allows us to evaluate our
method’s ability to handle large-scale networks and non-analytical dynamics.

To fit within our verification framework, we construct certified linearizations of the neural network
dynamic model using CROWN (Zhang et al., 2022). This is necessary since the network is not twice
continuously differentiable, which is required to calculate Lagrange error bounds. CROWN computes
(local) linear relaxations of a nonlinear function, particularly neural networks, by recursively relaxing
nonlinearities on the computation graph corresponding to the function (see Appendix D.2 for details).
The verification procedure was executed with ϵ = 0.6 and completed in 89 hours and 13 minutes.
In total, 3, 504, 327 hyperrectangles were checked and certified or further split according to the
algorithm in Figure 1.

5 CONCLUSION

We presented a method for certifying neural abstractions of dynamical systems using a parallelisable
domain partitioning strategy in conjunction with local first-order models. This allows us to efficiently
verify complex nonlinear systems without relying on expensive SMT solvers required to reason over
nonlinear arithmetic. To address the fundamental limitation on scalability, our certificate refinement
strategy verifies each output dimension independently. This approach ensures that local refinement is
only performed on input dimensions that significantly affect a given output in a nonlinear manner. We
demonstrated the effectiveness of our approach on several new challenging benchmarks, including
network compression tasks and the verification of a trajectory prediction task based on Koopman
linearization.

9
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6 REPRODUCIBILITY STATEMENT

All experiments can be reproduced using the scripts provided in the accom-
panying codebase available at https://anonymous.4open.science/r/
certified-neural-approximations-E679. The repository contains code for the
dynamics, training, and verification, pre-trained models stored as .onnx file, and a Docker image for
a reproducible environment. The randomness in all experiments controlled by explicitly setting seed
for the pseudorandom number generators. The hyperparameters are listed in Appendix B.
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A DYNAMICAL SYSTEMS

A.1 WATER TANK

A simple first-order nonlinear dynamical system modelling the water level in a tank with constant
inflow and outflow dependent on the water pressure (proportional to the square root of height).

ẋ = 1.5−
√
x

where x > 0 represents the water level. For certification, we use ϵ = 0.097 for the small network and
a tighter ϵ = 0.007 for the larger network. The input domain for certification is X = [0.1, 10.0].

A.2 JET ENGINE

A two-dimensional nonlinear system with polynomial dynamics that models the behaviour of a
simplified jet engine:

ẋ = −y − 1.5x2 − 0.5x3 − 0.1

ẏ = 3x− y

For certification, we use ϵ = 0.039 for the small network and a tighter ϵ = 0.012 for the larger
network. The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.3 STEAM GOVERNOR

A mechanical governor used in steam engines, formulated as a three-dimensional nonlinear system
with trigonometric terms:

ẋ = y

ẏ = z2 sin(x) cos(x)− sin(x)− 3y

ż = −(cos(x)− 1)

For the implementation we use the trigonometric identity sin(x) cos(x) = 1
2 sin(2x) to rewrite ẏ as

1
2z

2 sin(2x)− sin(x)− 3y. For certification, we use ϵ = 0.105 for the small network and a tighter
ϵ = 0.06 for the larger network. The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0]×
[−1.0, 1.0].

A.4 EXPONENTIAL SYSTEM

The exponential system features highly nonlinear dynamics with nested nonlinearities combining
trigonometric, exponential, and polynomial terms:

ẋ = − sin(ey
3+1)− y2

ẏ = −x

For certification, we use ϵ = 0.112 for the small network and a tighter ϵ = 0.04 for the larger network.
The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.5 NON-LIPSCHITZ VECTOR FIELD 1 (NL1)

A non-Lipschitz continuous vector field:

ẋ = y

ẏ =
√
x

where x ≥ 0. For certification, we use ϵ = 0.11 for the small network and a tighter ϵ = 0.03 for the
larger network. The input domain for certification is X = [0.0, 1.0]× [−1.0, 1.0].
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A.6 NON-LIPSCHITZ VECTOR FIELD 2 (NL2)

A more challenging non-Lipschitz continuous vector field:

ẋ = x2 + y

ẏ = (x2)1/3 − x

For certification, we use ϵ = 0.081 for the small network and a tighter ϵ = 0.02 for the larger network.
The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.7 VAN DER POL OSCILLATOR

The classical Van der Pol oscillator with nonlinear damping:

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1

where µ > 0. For certification, we use ϵ = 0.25. The input domain for certification is X =
[−3.0, 3.0]× [−3.0, 3.0].

A.8 SINE 2D SYSTEM

The Sine 2D system represents a two-dimensional nonlinear oscillator with sinusoidal coupling:

ẋ = sin(ωy · y)
ẏ = − sin(ωx · x)

with parameter values ωx = 1.0, ωy = 0.5. For certification, we use ϵ = 0.02. The input domain for
certification is X = [−π, π] × [−π, π]. We utilize a LeakyReLU activation function for networks
learning the Sine 2D System, both to improve learning accuracy and to demonstrate the applicability
of our approach beyond standard ReLU activation functions.

A.9 NONLINEAR OSCILLATOR

The nonlinear oscillator combines linear, cubic, and sinusoidal terms:

ẋ = −ax− bx3 + c sin(x)

with parameter values a = 1.0, b = 1/2, c = 0.3. For certification, we use ϵ = 0.165. The input
domain for certification is X = [−3.0, 3.0].

A.10 LORENZ ATTRACTOR

The three-dimensional Lorenz Attractor, famous for exhibiting chaotic behaviour:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

with parameter values σ = 10, ρ = 28, and β = 8/3. The input domain for certification is
X = [−30.0, 30.0]× [−30.0, 30.0]× [0.0, 60.0]
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A.11 LOW THRUST SPACECRAFT

The dynamics of spacecraft with continuous low-thrust propulsion on a planar orbit around Earth.
The system has 5 states (r, θ, vr, vθ,∆m) and 2 control inputs (T, α).

ṙ = vr

θ̇ =
vθ
r

v̇r = − µ

r2
+

vθ2

r
+

T · cos(α)
m0 +∆m

v̇θ = −vr · vθ
r

+
T · sin(α)
m0 +∆m

ṁ = − T

vexhaust

where:

• r is the radial distance from the central body
• θ is the azimuthal angle
• vr is the radial velocity component
• vθ is the tangential velocity component
• ∆m is the propellant mass
• T is the magnitude of the thrust
• α is the angle of the applied thrust
• µ is the gravitational parameter of the central body
• m0 is the initial spacecraft mass
• vexhaust is the propellant exhaust velocity

A.12 QUADRATIC SYSTEM DYNAMICS AND DISCRETE-TIME SOLUTION DERIVATION

A simple system governed by the continuous time dynamics:

ẋ1 = µx1

ẋ2 = λ(x2 − x2
1)

where x1 and x2 are the state variables, and µ and λ are system parameters. The system includes
a linear term for x1 and a quadratic term involving x2

1 in the equation for x2. For training, the
initial conditions there chosen at random and the trajectory is computed over the time horizon [0, 1],
with parameters µ = −0.05, λ = −1 and timestep of 0.02. The input domain for certification is
X = [−0.5, 0.5]× [−0.5, 0.5].

To generate trajectories of the system, we integrate the system numerically and sample the trajectory
evenly across the time horizon. For the purpose of verification, we derive the analytic expression of
the discrete-time system. The differential equation for x1(t) yields the solution

x1(t) = x1(0)e
µt

Solving the differential equation for x2(t) with 2µ ̸= λ yields

x2(t) =

(
x2(0) +

λx1(0)
2

2µ− λ

)
eλt − λx1(0)

2

2µ− λ
e2µt

For a discrete time step ∆t, we obtain the discrete-time system is:

xn+1
1 = xn

1 e
µ∆t

xn+1
2 =

(
xn
2 +

λ(xn
1 )

2

2µ− λ

)
eλ∆t − λ(xn

1 )
2

2µ− λ
e2µ∆t

where ∆ = 0.02 in the experiments.
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B HYPERPARAMETERS

For all experiments, the architecture is described in Section 4 and the networks are trained with the
loss function defined in Section 2.1 using the AdamW optimizer with a weight decay of 1e−4. The
gradient is clipped to a norm of 1 if the norm exceeds this limit.

For the experiment comparing the proposed framework with dReal, the learning rate is initialized
at 1e−3 and reduced according to a cosine annealing schedule to a minimum of 1e−6 over 50 000
iterations. The data is sampled at each iteration uniformly over the domain X , with a batch size of
4096.

For the compression benchmark, the two networks are trained with different parameters. First, the
large-scale network is trained from steps of the Lorenz attractor with a discrete time step ∆t = 0.02,
obtained as trajectories using an RK45 integrator for 32 time steps and 128 different initial conditions
in X , for a batch size of 4096. The learning rate is initialised to 1e−6 and reduced by a factor of 0.9
when encountering a loss plateau for 2000 iterations. The network is trained for 500 000 iterations.
The compressed network is trained with a fixed learning rate of 1e−6 for 1 000 000 iterations where
data is sampled at each iteration uniformly over the domain X , with a batch size of 4096.

For the Koopman benchmark, the network is trained for 200 epochs over a dataset of 10500 trajectories,
with a batch size of 125, and with a weight decay of 1e−6.

C PROOF OF THEOREM 1

Proof. We can express f(x) as:

f(x) = f(c) +∇f(c)(x− c) + r,

where r ∈ [Rmin,Rmax]. If no satisfying assignment exists for Equation (5a), it follows that:

fj(c) +∇fj(c)(x− c) +Rmax
j −Nj(x) < ϵ.

Since fj(c) +∇fj(c)(x− c) +Rmax
j provides an upper bound for fj(x), we have:

fj(x)−Nj(x) < ϵ.

Similarly, for the lower bound, Equation (5b):

Nj(x)− fj(x) < ϵ.

These bounds hold for all j ∈ {1, . . . ,m}. Therefore, when no satisfying assignment is found for all
j ∈ {1, . . . ,m}, it follows that:

∥f(x)−N(x)∥ ≤ ϵ, ∀x ∈ Hδ(c).

D CERTIFIED LINEARIZATIONS

D.1 CERTIFIED TAYLOR EXPANSIONS OF ELEMENTARY FUNCTIONS

Suppose that f : Rn → Rm is composed of smooth elementary functions and is at least twice
continuously differentiable. We consider the first-order Taylor approximation of f around a point
x0 ∈ Rn:

f(x) ≈ f(x0) + Jf (x0)(x− x0),

where Jf (x0) is the m × n Jacobian matrix of f at x0. We define the remainder R(x) ∈ Rm

componentwise for each j ∈ {1, . . . ,m}:

Rj(x) = fj(x)−
[
fj(x0) +∇fj(x0)

⊤(x− x0)
]
.

This remainder captures the contribution of second and higher-order terms. By the Lagrange form of
the Taylor remainder, we have:

Rj(x) =
1

2
(x− x0)

⊤∇2fj(ξ)(x− x0),
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for some ξ on the line segment between x0 and x. Here ∇2fj(ξ) is the n× n Hessian matrix of the
j-th component function. To bound the magnitude of the remainder, we find a constant Mj (bounding
the spectral norm of the Hessian):

∥∇2fj(x)∥2 ≤ Mj for all x ∈ Hδ(c),

where Hδ(c) is the compact, convex hyperrectangle containing x0 and x. Then,

|Rj(x)| ≤
1

2
Mj∥x− x0∥22.

By simple application of the chain rule, we can similarly bound compositions, i.e., f(g(x)). Let
y = g(x) be the input function (where g : Rn → Rm) with its own expansion centered at x0, and
f : Rm → Rm be the elementary function we are applying (element-wise). We define y0 = g(x0) ∈
Rm as the center for the expansion of f .

The total remainder for the composition f(g(x)) is a vector Rtotal(x) ∈ Rm:

Rtotal(x) = Rprop(x) +Rlocal(x)

This splits the remainder into two parts:

1. Propagated Remainder: Rprop(x) = Jf (y0)Rg(x). This term propagates the remainder of
the input function, Rg(x) ∈ Rm, via the Jacobian of f . Since f is an element-wise function
(e.g., ex), its Jacobian Jf (y0) is a diagonal matrix:

Jf (y0) = diag (f ′(y0,1), . . . , f
′(y0,m))

2. Local Remainder: Rlocal(x) = Rf (g(x)). This term is the local remainder of the elemen-
tary function f itself, evaluated at the input y = g(x).

To produce tight bounds for Rf (y) (element-wise), we leverage properties over the input hyperrect-
angle Iy = [ymin, ymax]:

• If f is convex on Iy (i.e., f ′′(yj) ≥ 0 for all yj ∈ [yj,min, yj,max]), the linear approximation
is an underestimate. The local remainder Rf (y) is non-negative.

Rmin = 0

Rmax = max (f(ymin)− fL(ymin), f(ymax)− fL(ymax))

• If f is concave on Iy (i.e., f ′′(yj) ≤ 0), the linear approximation is an overestimate. The
local remainder Rf (y) is non-positive.

Rmin = min (f(ymin)− fL(ymin), f(ymax)− fL(ymax))

Rmax = 0

All operations (max, min, fL, f ) are applied element-wise.

For functions with a known, fixed global range, such as sin(y) and cos(y) where f(y) ∈ [−1, 1],
or for monotonically increasing/decreasing functions where we can utilise the fact that the maxi-
mum/minimum of the f(y) is easily found by checking the boundaries of the domain of interest, we
can perform an additional, post-processing step to tighten the remainder bounds, i.e. we clip Rf (y)
to the domain

Rf (y) ∈ [L− fL(y), U − fL(y)] ⊆
[
L−max

y
fL(y), U −min

y
fL(y)

]
,

where f(y) ∈ [L,U ].

D.2 USING CROWN

If the function f is not twice continuously differentiable, e.g. for a ReLU network, then the Lagrange
bound is not valid to compute the Taylor remainder. Instead, we employ CROWN (Zhang et al.,
2022), also known as Linear Bound Propagation, which was originally developed to verify neural
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Figure 4: Taylor expansions of common elementary functions

Outputx31 Stack
[
0 1 h
h
3 −h 1− h

]
x

A1 = I ∈ R2×2A2 ∈ R2×3A3 ∈ R2×1

A4 ∈ R2×2

A5 ∈ R2×2

A5x+ b ≤ f(x) ≤ Ā5x+ b̄
Linear bounds:

Figure 5: The computation graph with CROWN annotation for function f(x) =[
x1 + hx2

x2 + h( 13x
3
1 − x1 − x2)

]
.

networks via linear relaxations of the network. CROWN comes in several flavours including forward-
mode (similar to the Taylor bound propagation above), backward-mode, forward-backward-mode
(relaxations via forward mode), CROWN-IBP (relaxations via Interval Bound Propagation), α-
CROWN (optimization of bounds), β-CROWN (neuron splitting branch-and-bound), and GCP-
CROWN (general cutting planes). We only employ backward mode, which is the original version. In
the remainder, when we refer to CROWN we mean backward-mode CROWN.

The idea of CROWN is to operate on the computation graph and relax nonlinearities based on node
local input intervals, which can be computed using CROWN itself recursively. Figure 5 exemplifies
this process on a composition of polynomial functions, for ease of exposition. First, the nonlinear
term x3 is locally relaxed to upper and lower linear functions based on the input range. Then, starting
from the output with the linear functions Ay + b = Iy + 0 and Ay + b = Iy + 0, the bounding
functions are propagated backward through the computation graph to the input. If the computation
graph contains multiple nonlinearities, using the backward propagation from each nonlinearity to the
input, the input range to each node is calculated to locally relax it. We refer to (Xu et al., 2020) for
details on how to compute local relaxations based on input bounds and how to propagate through
linear and locally relaxed nonlinear operations.

18
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D.3 USING LIPSCHITZ CONSTANTS

While conservative, it is possible to construct linear relaxations from the (local) Lipschitz constant of
the function f , if such exists, and evaluation of the function at a point c. The approach is shown in
the following constructive proof.
Proposition 2. For any function f locally Lipschitz in a hyperrectangle Hδ(c) ⊂ Rn with the
Lipschitz constant Lf , there exist linear relaxations Ax+ b and Ax+ b of f in Hδ(c).

Proof. We prove the statement by construction. A (local) Lipschitz constant Lf of f in Hδ(c) implies
that

∥f(x1)− f(x2)∥∞ ≤ Lf∥x1 − x2∥∞, for all x1, x2 ∈ Hδ(c). (6)
This limit to the rate of change implies the following component-wise bounds

f(c)− Lf∥x− c∥∞ · 1 ≤ f(x) ≤ f(c) + Lf∥x− c∥∞ · 1, for all x ∈ Hδ(c), (7)

where 1 ∈ Rm is a vector of all ones. Let M = supx∈Hδ(c)
∥x− c∥∞ = ∥r∥∞. Then, we obtain the

linear (interval) relaxations

b = f(c)− LfM · 1 ≤ f(x) ≤ f(c) + LfM · 1 = b, for all x ∈ Hδ(c), (8)

where A = A = 0. Thus, trivial linear relaxations always exist for any locally Lipschitz continuous
function.
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