
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CERTIFIED NEURAL APPROXIMATIONS
OF NONLINEAR DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks hold great potential to act as approximate models of nonlinear
dynamical systems, with the resulting neural approximations enabling verification
and control of such systems. However, in safety-critical contexts, the use of neural
approximations requires formal bounds on their closeness to the underlying system.
To address this fundamental challenge, we propose a novel, adaptive, and paral-
lelizable verification method based on certified first-order models. Our approach
provides formal error bounds on the neural approximations of dynamical systems,
allowing them to be safely employed as surrogates by interpreting the error bound
as bounded disturbances acting on the approximated dynamics. We demonstrate the
effectiveness and scalability of our method on a range of established benchmarks
from the literature, showing that it significantly outperforms the state-of-the-art.
Furthermore, we show that our framework can successfully address additional
scenarios previously intractable for existing methods— neural network compres-
sion and an autoencoder-based deep learning architecture for learning Koopman
operators for the purpose of trajectory prediction.

1 INTRODUCTION

Nonlinear dynamical models are ubiquitous across science and engineering and play a central role
in describing and designing complex cyber-physical systems (Alur, 2015). However, to verify and
control such systems, it is often necessary to construct an abstraction: an approximation that locally
simplifies the model or relaxes its nonlinearities (Derler et al., 2012; Khalil, 2002; Sastry, 1999).
In general, an abstraction translates the concrete model—the system under study—into a simpler
abstract model that is more amenable to analysis (Baier and Katoen, 2008; Clarke et al., 2018). A
common method for synthesizing abstractions is known as hybridization and involves partitioning
the state space into regions, each representing a state in a finite-state machine (Althoff et al., 2008;
Asarin et al., 2007; Bak et al., 2016; Dang et al., 2010; Frehse, 2005; García Soto and Prabhakar,
2020; Henzinger and Wong-Toi, 1995; Li et al., 2020; Majumdar and Zamani, 2012; Prabhakar et al.,
2015; Roohi et al., 2016). Neural networks with ReLU activations have emerged as a particularly
effective approach to hybridization, as each network configuration implicitly induces a partition of
the input domain into convex polytopes (Abate et al., 2022; Goujon et al., 2024; Villani and Schoots,
2023). This enables simultaneous learning of both the partitioning and the simplified dynamics.

For neural abstractions to be practically useful, properties inferred from the abstraction—such as
those related to reachability or safety—must reliably transfer to the original system. Simulation-
based techniques fall short, as they are non-exhaustive and may miss unsafe behaviour. Formal
verification provides a sound alternative by exhaustively analyzing all possible inputs and outputs.
Prior work has used SMT (Satisfiability Modulo Theories) solvers for this task (Fränzle et al., 2007;
Abate et al., 2022; Solanki et al., 2025). SMT extends the Boolean Satisfiability Problem (SAT) to
more complex formulas such as those involving linear real arithmetic or integers. This makes SMT
solvers an indispensable tool for a range of applications; however, for neural network verification, the
computational cost of SMT solvers severely limits the scale and expressivity of verifiable networks.

To overcome these limitations, we introduce a scalable framework for verification of neural abstrac-
tions that avoids reliance on expensive SMT solvers. Our method constructs certified first-order local
approximations to tightly bound a nonlinear system’s behaviour, which enables us to employ neural
network verification tools based on linear bound propagation to certify that the network’s output re-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mains sufficiently close to the linearization. By combining this with a parallelizable input-partitioning
strategy, we achieve substantial verification speedups, can handle higher-dimensional systems (up to
7D), and considerably larger neural networks than state-of-the-art methods.

To exploit these new capabilities to handle higher-dimensional systems and larger networks, we
extend neural abstractions to learning Koopman operators (Brunton et al., 2016; 2022) (Section 4.2).
This application, which enables trajectory-level reasoning by representing nonlinear dynamics as
linear operators in a high-dimensional space, previously posed a significant verification challenge,
as the network’s output represents predicted trajectory points (in our example, involving a final
layer with over 100 states). Finally, to demonstrate the versatility of our framework, particularly
for more general function approximation tasks, we extend neural abstractions beyond their native
developments for dynamical systems, demonstrating their effective application to neural network
compression (Section 4.3).

Our contributions are summarised as follows:

1. We introduce a novel method based on certified linearizations to eliminate the reliance on
SMT solvers capable of handling nonlinear real arithmetic, thereby removing the primary
computational bottleneck in prior approaches.

2. We introduce a parallelizable refinement strategy that enables adaptive verification of neural
abstractions with nonuniform accuracy across the input domain.

3. We demonstrate that our approach outperforms existing methods on a variety of benchmarks.
4. We demonstrate the effectiveness of our approach on two novel applications that are beyond

the capability of state-of-the-art methods: neural network compression and the discovery of
Koopman operators.

We begin in Section 2 by formally introducing neural abstractions, followed by presenting our
approach to certification in Section 3.

2 NEURAL APPROXIMATIONS OF NONLINEAR DYNAMICS

We begin by introducing the system dynamics, for which we will synthesise neural network abstrac-
tions over a bounded domain. Let X ⊂ Rn denote the bounded input domain of interest, and suppose
f : X → Rm is a continuous (nonlinear) function describing the system’s dynamics. We focus on
two classes of systems:

• Continuous-time nonlinear systems, described by differential equations of the form
dx
dt = f(x), x ∈ X ;

• Discrete-time nonlinear systems, described by difference equations of the form xk+1 =
f(xk), xk ∈ X .

Given a dynamical system as described above, a neural abstraction is an ϵ-close approximation of
the dynamical system, as formally defined in Definition 1 below, which is a generalization of the
definition of neural abstractions introduced in Abate et al. (2022) for continuous-time dynamical
systems.
Definition 1 (Neural Abstraction). Consider a dynamical system described by function f : Rn → Rm

and let X ⊂ Rn be a region of interest. A feed-forward neural network N : Rn → Rm defines a
neural abstraction, also called a neural approximation, of f with error bound ϵ > 0 over X , if it
holds that ∀x ∈ X : ∥f(x)−N(x)∥ ≤ ϵ where ∥ · ∥ is the L∞-norm1.

According to Definition 1, a neural abstraction of a dynamical system describes a dynamical system
with a bounded additive disturbance d, such that any trajectory (solution to the differential equation)
of the original dynamical system f is also a trajectory of the perturbed system. Specifically, in the
case where f describes a continuous-time system, we have the following equation for the perturbed
system:

dx

dt
= N(x) + d, ∥d∥ ≤ ϵ, x ∈ X , (1)

1For the remainder of the paper, unless otherwise specified, all norms are L∞.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where ϵ represents the maximal deviation between the neural network approximation N(x) and the
original function f(x). In the discrete-time case, where f defines an update rule xk+1 = f(xk), any
trajectory (solution to the difference equation) of the original system f is also a trajectory of the
following discrete-time system:

xk+1 = N(xk) + d, ∥d∥ ≤ ϵ, x ∈ X . (2)

As the disturbance d is bounded by ϵ, the original system response, defined by f , is always contained
within that of the abstraction, defined by N with disturbance d. Thus, the abstraction is sound, which
enables formal guarantees to transfer from the abstraction to the concrete model.

Remark. The applicability of our framework is not contingent on access to f not its derivatives, but
only on access to linear bounding functions, as we will show in Section 3. Linear bounding functions
can be constructed in various ways with varying degrees of conservatism depending on the available
information about f . We describe three such methods in Appendix D.

2.1 TRAINING

To obtain a neural network approximation of a dynamical system, we train a neural network N
to minimize both the mean and maximum approximation error over a batch of sampled inputs
{x1, . . . , xM}. To this end, we assume for the remainder of the paper that the function f has bounded
output and define the following loss function:

L =
1

M

M∑
l=1

∥f(xl)−N(xl)∥2 + λmax max
l∈{1,...,M}

∥f(xl)−N(xl)∥∞, (3)

where the parameter λmax = 0.001 balances the trade-off between minimizing the average error and
controlling the worst-case error across the sampled domain. We focus on training neural abstractions
with ReLU and LeakyReLU activation functions, although our approach is compatible with more
general activation functions, as permitted by the underlying solver (neural network verification tool).
For our approach to be sound while also scalable, we utilise a complete solver, specifically Marabou
2.0 (Wu et al., 2024). Further details regarding the network architecture, training procedure, and
hyperparameters are provided in Section 4 and Appendix B. Once a neural network N has been
trained, the central challenge lies in certifying the accuracy, i.e., formally establishing the relation
∥f(x)−N(x)∥ ≤ ϵ between the neural network abstraction and the concrete model. In what follows,
we present our primary contribution, a scalable verification approach for this problem based on an
adaptive refinement of first-order models. In Section 4, we empirically show how this framework
substantially outperforms the state-of-the-art.

3 CERTIFICATION OF ϵ-CLOSENESS

We now introduce our verification approach that leverages local first-order models of f(x), thereby
enabling the application of modern techniques for neural network verification. To perform the
verification, we will seek to prove that no counterexample against ϵ-closeness exists. Thus we seek
an assignment of the negation of our desired specification, i.e.,

∃x : x ∈ X ∧ ∥f(x)−N(x)∥ > ϵ︸ ︷︷ ︸
ϕ

. (4)

If we find an assignment for x such that the formula ϕ is satisfiable, then we can establish that N
is not a valid neural abstraction for a given accuracy ϵ. As the search for satisfying assignments is
exhaustive, failure to find an assignment constitutes a proof that no such assignment exists, and thus
N is a valid neural abstraction for a given accuracy ϵ. In Section 3.1, we will describe the first-order
models and how they can be used in the context of verification, followed by certificate refinement in
Section 3.2 to combat conservatism introduced by the first-order models.

Remark. The selection of ϵ can be performed empirically, based on the maximum error observed
during training, or predefined according to strict application requirements. Notably, our proposed
approach allows for an efficient search for the optimal ϵ within a given computational budget.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 FIRST-ORDER MODELS

Given that the function f may include nonlinear terms, finding a satisfying assignment of ϕ in
Equation (4) typically requires reasoning over quantifier-free nonlinear real arithmetic formulae. This
is computationally challenging and does not scale efficiently with problem complexity or the number
of optimization variables. To address this, we introduce an over- and under-approximation of the
dynamics of f using local first-order Taylor expansions of the vector field f . The choice of first-order
models is a balance in the trade-off between expressivity, since we are verifying input-output relations,
and maintaining linearity to enable formal verification. In this context, we will adaptively partition
the domain of interest X into hyperrectangles, which are represented as weighted L∞-balls.
Definition 2. Given a hyperrectangle with radius δ ∈ Rn

≥0 and center c ∈ Rn, the weighted L∞-ball
around c, denoted by Hδ(c), is defined as

Hδ(c) = {x ∈ Rn : |x− c| ≤ δ},

where | · | is the element-wise absolute value and ≤ is interpreted element-wise. Similarly, we
can define the hyperrectangle by its lower and upper corners, Hmin = c − δ and Hmax = c + δ,
respectively, as Hδ(c) = {x ∈ Rn : Hmin ≤ x ≤ Hmax}.

The choice of partitioning will be discussed in more detail in the following section. For now, let us
introduce the local first-order Taylor expansion, including an error bound.
Proposition 1 (Certified first-order Taylor Expansion). Let f : Rn → Rm be a continuously
differentiable function, and let Hδ(c) be a hyperrectangle centered at c ∈ Rn with radius δ. Then,
there exists a hyperrectangle R ⊆ Rm such that for all x ∈ Hδ(c), the following relation holds:

f(x) ∈ (f(c) +∇f(c)(x− c))⊕R,

where ⊕ denotes the Minkowski sum.

Computing R can be done efficiently when f is twice continuously differentiable using the Lagrange
error bound (see Appendix D.1 for details). The proof follows directly from Taylor’s theorem for
multivariate functions, along with the Lagrange error bound for higher-order terms (Joldes, 2011).
For the remainder of the paper, we use the subscript indices i ∈ {1, . . . , n} when referring to the
input dimensions of the function or the neural network, and j ∈ {1, . . . ,m} when referring to the
output dimensions. The first-order Taylor expansion in Proposition 1 provides the following sufficient
condition for a valid neural abstraction.
Theorem 1. Let f : Rn → Rm, N : Rn → Rm, and let Hδ(c) ⊂ Rn be a hyperrectangle centered
at c with radius δ. Let f(c) + ∇f(c)(x − c) ⊕ R be a certified Taylor expansion for f in Hδ(c).
If for each output dimension j ∈ {1, . . . ,m}, there does not exist a state x such that either of the
following inequalities is satisfied:

x ∈ Hδ(c) ∧ fj(c) +∇fj(c) · (x− c) +Rmax
j −Nj(x) ≥ ϵ, (5a)

x ∈ Hδ(c) ∧Nj(x)− fj(c)−∇fj(c) · (x− c)−Rmin
j ≥ ϵ, (5b)

then N is an ϵ-accurate neural abstraction of f over Hδ(c), i.e., ∥f(x)−N(x)∥ ≤ ϵ, ∀x ∈ Hδ(c).

The proof of Theorem 1 is provided in Appendix C. Both f and ∇f are evaluated at the center
point, c, of the hyperrectangle Hδ(c), ensuring that all terms highlighted in orange in Equations (5a)
and (5b) remain fixed for a given hyperrectangle. In contrast, only the terms in blue vary with
the specific choice of x ∈ Hδ(c). As a result, the expression fj(c) +∇fj(c)(x − c) +Rmax/min

j

becomes linear. This allows Theorem 1 to be applied as a relaxation of the nonlinear predicate ϕ
from Equation (4), thereby enabling formal verification to proceed without relying on SMT solvers
capable of reasoning over nonlinear real arithmetic. Specifically, we employ Marabou 2.0 (Wu et al.,
2024), which implements an extension of the Simplex algorithm that was originally developed to
solve linear programs (Dantzig, 2002), to verify the satisfiability of Equations (5a) and (5b).

Since the domain X can be over-approximated by a finite union of hyperrectangles, i.e., X ⊆⋃I
ι=1 Hδι(c

ι), we can perform verification locally within each hyperrectangle Hδι(c
ι). By applying

a local first-order Taylor expansion within each region and bounding the remainder using Rmax

and Rmin, we obtain tighter bounds on the approximation error compared to approximating over

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Initialize stack with
X , define accuracy ε

Pop new Hδι(c
ι)

from stack

Hδι(c
ι)

Split Hδι(c
ι) and

push onto stack

Hδ′(c
′
+)

Hδ′(c
′
−)

Compute 1st-order
Taylor expansion

and bounds R

> ε

Yes

≤ ε

No

No Yes

x is a
counterexample

Terminate

Check Equations
(5a) and (5b)

Hδι(c
ι) is certifiedIs stack empty?

Rmax
j −Rmin

j

‖f(x)−N(x)‖

≤ ε

> ε

Found x
satisfying φ?

Figure 1: Graphical representation of the neural abstraction verification procedure with certificate
refinement.

the full domain X . This localized approach effectively reduces the conservatism introduced by
the approximation, i.e., omitting higher-order derivative terms, while maintaining soundness of the
verification process.
Remark. We could allow the bound ϵ to vary over the domain X , selecting different values of ϵ for
each partition Hδι(c

ι). This would lead to a state-dependent disturbance in Equations (1) and (2).
Similarly, we could allow different ϵ for each output dimension, i.e., output-weighted ϵ-closeness.
However, for the sake of clarity and simplicity in the exposition, we omit this variation of ϵ.

3.2 CERTIFICATE REFINEMENT

In the previous section, we introduced first-order Taylor expansions to derive conservative over- and
under-approximations of the dynamics f . These approximations, captured in Equations (5a) and (5b),
consider the worst-case realizations of the error term r ∈ R. Consequently, when we compute the
bounds Rmax

j and Rmin
j , the counterexample x found may not always satisfy the formula ϕ from

Equation (4). This happens because the error bounds derived from the Taylor expansion may be
overly conservative. To address this issue, we propose a refinement strategy that partitions each
hyperrectangle locally, enabling tighter approximations of the dynamics and reducing conservatism.
The certification and partitioning strategy is illustrated in Figure 1. The decision to partition a
hyperrectangle into two separate hyperrectangles, referred to as a split, results from one of two
conditions:

1. the Taylor remainder term is too conservative, i.e., Rmax
j −Rmin

j > ϵ,

2. a counterexample x does not satisfy ∥f(x)−N(x)∥j > ϵ.

In the first case, we split the hyperrectangle based purely on the conservatism of the Taylor approxi-
mation, which can be done without reasoning over the neural network, while in the second case, the
decision to split depends on the outcome of the network verification. If x satisfies ∥f(x)−N(x)∥ > ϵ,
no further splitting is necessary and x is returned as a proper counterexample.

When splitting a hyperrectangle, it is necessary to determine along which axis the split should occur.
We choose this axis by prioritizing input dimensions according to their contribution to the Taylor
approximation error in the output. Specifically, we first identify input dimensions that appear in
nonlinear terms of the output of interest, fj(x), by analysing the dependency graph of f . Then, for
each of those dimensions i, we evaluate their contribution to the approximation error by perturbing the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Partitioning of the domain to reduce conservatism. (Left) Linear terms do not require
partitioning, as they are captured accurately by the first-order model. (Right) In regions of high
nonlinearity (steeper dark function), finer rectangular partitioning reduces first-order approximation
error by adaptively refining the domain.

center point c of the hyperrectangle along that dimension. The perturbed point, denoted c′, is defined
such that c′l = cl for all l ̸= i, and c′i = ci + hi, where hi ∈ (0, δi) is a small, fixed perturbation
magnitude. For each such perturbation, we evaluate the absolute error between the first-order Taylor
model and the true dynamics f at c′. While the splitting strategy prioritizes axes based on their
contribution to the Taylor remainder, the procedure is relaxed to eventually split on all axes that
enter Nj(x) nonlinearly, as this can impact the execution time of Marabou. For the selected input
dimension i, we split the original hyperrectangle Hδ(c) into two smaller hyperrectangles. These are
centered at c + (δ − δ′) and c − (δ − δ′), respectively, where the new radius vector δ′ is defined
elementwise as:

δ′l =

{
δl if l ̸= i,
δl
2 if l = i.

This effectively halves the size of the hyperrectangle along the selected axis i, while keeping the
width in all other dimensions unchanged. Since each input dimension xi for i ∈ {1, . . . , n} can
influence each output dimension fj(x) for j ∈ {1, . . . ,m} differently, we perform verification and
refinement separately for each output dimension.

The proposed partitioning strategy adapts the size of the hyperrectangles locally according to the
nonlinearity of the function f(x) based on the dependency graph and the perturbed first-order Taylor
remainder. As illustrated in Figure 2, for the component f1(x), which is linear, a single hyperrectangle
suffices to certify the ϵ-closeness over the entire domain X . In contrast, the second component,
f2(x), contains highly nonlinear terms that necessitate finer partitioning in regions where linear
approximations are no longer sufficiently tight. For many real-world systems, this targeted approach
avoids the worst-case exponential growth and scales far more effectively than methods that cannot
leverage this decoupling. To illustrate this, consider the Jet Engine dynamics in Appendix A.2. The
dynamics of ẋ are coupled, yet the nonlinearity only appears in x, while the dynamics in ẏ are linear.
Our certification refinement strategy capitalizes on this, resulting in fast and efficient verification.

Since the verification of ϵ-closeness can be performed locally over partitions Hδ(c), we exploit this
structure to parallelize the procedure across multiple processors, significantly improving performance.
To facilitate parallel execution, we employ a shared stack accessed by a pool of worker processes.
The domain X is initially partitioned into a set of hyperrectangles, which are pushed onto the stack.
Each process draws a hyperrectangle from the stack, performs the verification procedure described
earlier, and either (i) certifies the region, (ii) marks it as uncertifiable if a counterexample is found,
or (iii) splits the region as previously discussed. In the case of a split, the resulting subregions are
pushed onto the stack. The process then retrieves the next hyperrectangle and repeats the procedure,
as summarized in Figure 1.

Remark. The use of a stack (Last-In-First-Out) instead of a queue (First-In-First-Out) corresponds to
a depth-first rather than breadth-first exploration of the verification space, consistent with strategies

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

from branch-and-bound algorithms (Morrison et al., 2016). A queue would be equally valid, though
it would require more memory. If early termination with counterexamples is desired rather than verifi-
cation until full coverage, e.g., in the context of Counter-Example Guided Inductive Synthesis (Abate
et al., 2018; 2022), a priority queue can be employed where the hyperrectangles would be weighted
by the error relative to their volume (Lebesgue measure).

4 EXPERIMENTAL RESULTS

We empirically evaluate our approach on the benchmarks introduced in Abate et al. (2022) and
described in Table 1, and whose detailed dynamics can be found in Appendix A, as well as on
new benchmarks designed to demonstrate the extended capabilities of our method. In particular, in
what follows, we first present an empirical comparison with the method introduced in Abate et al.
(2022) and based on dReal (Gao et al., 2013), which currently represents the state-of-the-art for
neural abstractions; then, to highlight the generality and scalability of our approach, we include two
particularly challenging tasks: (i) a neural network compression benchmark, where a network with 5
layers and 1024 neurons per layer is compressed to a network with 5 layers and 128 neurons per layer,
achieving a 98.4% reduction in size; and (ii) a verification benchmark based on a trajectory prediction
network introduced in Dey and Davis (2023); Lusch et al. (2018), which learns to approximate
nonlinear system dynamics through Koopman operator theory. These two benchmarks are discussed
in Section 4.3 and 4.2, respectively. All experiments were executed on an Intel i7-6700k CPU (8
cores) with 16GB memory.

4.1 COMPARISON WITH DREAL-BASED APPROACHES

To benchmark our method against the state-of-the-art, we compare it with the approach of Abate et al.
(2022), which is based on dReal (Gao et al., 2013); an SMT-solver over nonlinear real arithmetic2.
As evident from the results in Table 1, our method scales to larger models (7D) more effectively than
verification using dReal. This improved scalability arises as dReal is reasoning over nonlinear
real arithmetic, while our method avoids this by reasoning over local linear approximations. Our
approach successfully certifies all models with the 3x[64] architecture, while dReal exceeds the
1-hour timeout on all large models, with the exception of the WaterTank and NonlinearOscillator.
Our method nevertheless achieves a noticeable speedup on all models (e.g. ≈820x faster for the
WaterTank experiment).

4.2 TRAJECTORY-LEVEL REASONING THROUGH KOOPMAN OPERATORS

We now consider abstractions for discrete-time nonlinear systems. Instead of limiting the abstraction
to predicting a single next state, however, we extend its task to predicting an entire trajectory—a
sequence of future states from an initial condition. To facilitate trajectory-level reasoning, we shift to
an operator-theoretic viewpoint of dynamical systems, wherein the evolution of a system is described
through the action of a (linear) operator on measurement functions. This framework, known as
Koopman theory, offers a powerful lens for analysing complex, nonlinear systems (Brunton et al.,
2022). Notably, Koopman theory provides a route to uncovering intrinsic coordinate systems in which
the nonlinear dynamics manifest as linear. Originally introduced in Koopman (1931), the Koopman
operator represents a nonlinear dynamical system via an infinite-dimensional linear operator acting on
a Hilbert space of measurement functions. Despite the underlying system’s nonlinearity, the Koopman
operator is linear, and its spectral decomposition fully characterizes the system’s behaviour (Brunton
et al., 2016; 2022; Korda and Mezić, 2018).

In general, the Koopman operator is infinite-dimensional, making its exact computation intractable.
Thus, the aim is commonly to construct finite-dimensional approximations that capture the dominant
behaviour of the system. This entails identifying a low-dimensional invariant subspace spanned by
eigenfunctions of the Koopman operator, within which the dynamics evolve linearly. Despite the
promise of Koopman embeddings, obtaining tractable representations has remained a central challenge

2Note that our approach allows one to establish a certified subset of the domain, while the method in Abate
et al. (2022) provides only a single counterexample. One application of partial certification is to cordon off
uncertified regions and restrict the system to known, correct behaviours. Our approach can be further extended
with a variable ϵ over the domain of interest, allowing for a tighter certification in general.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Verification Results for Learning Dynamical Systems2

Our approach dReal
Model Network Dim Certified (%) Time (s) Result Time (s)
WaterTank [12] 1 100.0 0.02 ✓ 0.02

3x[64] 1 100.0 0.56 ✓ 458.91

JetEngine [10, 16] 2 100.0 4.35 ✓ 27.18
3x[64] 2 100.0 19.27 Timeout (1h)

SteamGovernor [12] 3 100.0 0.18 ✓ 39.37
3x[64] 3 100.0 69.47 Timeout (1h)

Exponential 2x[14] 2 100.0 0.23 ✓ 9.99
3x[64] 2 100.0 3.92 Timeout (1h)

NonLipschitzVectorField1 [10] 1 100.0 0.03 ✓ 0.03
3x[64] 1 100.0 2.14 Timeout (1h)

NonLipschitzVectorField2 [12, 10] 2 100.0 0.08 ✓ 4.55
3x[64] 2 100.0 11.93 Timeout (1h)

VanDerPolOscillator 3x[64] 2 100.0 48.76 Timeout (1h)
Sine2D 3x[64] 2 100.0 69.06 Timeout (1h)
NonlinearOscillator 3x[64] 1 100.0 0.35 ✓ 234.52
LowThrustSpacecraft 3x[64] 7 100.0 94.51 Timeout (1h)

in control theory. Utilizing neural networks to discover and represent Koopman eigenfunctions has
emerged as a promising approach in recent years (Lusch et al., 2018; Dey and Davis, 2023). While
Koopman operators are commonly learned from data and a typical analysis of learned Koopman
embeddings would verify structural properties—such as the orthonormality of eigenfunctions in
Hamiltonian systems—such a treatment lies beyond the scope of this work. We instead demonstrate
that our approach to verification can be applied to neural architectures deployed for learning Koopman
embeddings, by verifying that the learned system evolution remains ϵ-close to the true system
dynamics.

K

x0

K

x0 x1 xH

E

D D D

Figure 3: The network architecture used
to learn a Koopman operator. The En-
coder (blue) lifts the input into a higher
dimensional space where linear multi-
plication with K (green) propagates the
system. To obtain trajectory points,
[x0, x1, . . . , x50], each propagated state
in the lifted space is decoded (orange).

We adopt a standard setup using the dlkoopman li-
brary (Dey and Davis, 2023). The network architecture
comprises an autoencoder that learns the encoding and
decoding of states into a Koopman-invariant subspace,
along with a linear transformation within that subspace
(Figure 3). This network architecture can be interpreted
as a discrete-time neural abstraction that advances the sys-
tem ahead one-time step and outputs the state at time step
k + 1 (Equation (2)). Thus, the output of the network is
a trajectory, i.e., a sequence of H-subsequent states. Ap-
plications of such trajectory tasks are commonly found
throughout control theory, notably in model predictive
control (Rawlings et al., 2017).

We consider the Quadratic System provided in Ap-
pendix A.12, a benchmark problem frequently studied
in the literature (H. Tu et al., 2014; Brunton et al., 2016;
Lusch et al., 2018; Dey and Davis, 2023). To improve
reproducibility, we leverage the dataset provided by Dey
and Davis (2023) to learn the evolution of the system from
data. The final trained model takes an initial state x0 and
produces the sequence [x0, x1, . . . , x50], which represents
the evolution of the dynamics. The network architecture is summarized in Figure 3. Verification
of the abstraction completed in 162.60 seconds with 29 counterexamples found and 99.03% of the
domain certified. An interesting observation is that, although the network achieved a low prediction

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

loss—specifically, a mean squared error of 0.002 on the validation set—our verification framework
was still able to identify counterexamples where the prediction error exceeds the specified tolerance
of ϵ = 0.1. At the same time, the method certifies that the network ϵ-accurately predicts the system
evolution over 99.03% of the input domain. Recall that in the presence of counterexamples, previous
verification methods fail to identify regions where the model remains ϵ-accurate. Meanwhile, our
approach offers valuable insight by localizing the regions in which the model can still be trusted,
even when global verification fails.

4.3 COMPRESSION OF LEARNED DYNAMICS

To demonstrate the capabilities of our approach beyond constructing abstractions of known analytical
dynamics, we apply the verification procedure to a neural network compression benchmark. This
not only serves to demonstrate our approach’s ability to handle networks with a large number of
parameters but also showcases its broader applicability beyond the dynamical systems and control
literature.

State-of-the-art techniques often produce large, over-parameterized neural networks. While highly
accurate and implicitly regularized (Martin and Mahoney, 2021; Belkin et al., 2019; Jacot et al.,
2018), these models present two major drawbacks that motivate the need for knowledge distillation:
they are computationally expensive, which is problematic for applications like embedded systems,
and they are difficult to analyze, e.g., via the Piece-Wise Affine (PWA) representation induced by
their ReLU structure Gou et al. (2021). Neural network compression aims to mitigate this by reducing
model size while preserving input-output behaviour (Luo et al., 2017; Memmel et al., 2024). The key
challenge, which motivates this benchmark, is formally guaranteeing that the compressed network
stays ϵ-close to the original.

For this compression benchmark, we first train a 5-layer ReLU network with 1024 neurons per
layer to learn the dynamics of the Lorenz attractor (described in Appendix A.10) from observed
trajectories. Using a simple teacher–student architecture Gou et al. (2021), we reduce the model by
independently training a smaller ReLU network, consisting of 5 layers with 128 neurons per layer, to
replicate the input-output behaviour of the larger model—without access to its training trajectories
or the underlying system dynamics. The larger model comprises 4, 205, 571 parameters, while the
compressed model contains only 66, 947, corresponding to a 98.4% reduction in size. From the
perspective of verification, the larger network serves as the reference dynamics, while the smaller
network acts as an abstraction of those learned dynamics. This setup allows us to evaluate our
method’s ability to handle large-scale networks and non-analytical dynamics.

To fit within our verification framework, we construct certified linearizations of the neural network
dynamic model using CROWN (Zhang et al., 2022). This is necessary since the network is not twice
continuously differentiable, which is required to calculate Lagrange error bounds. CROWN computes
(local) linear relaxations of a nonlinear function, particularly neural networks, by recursively relaxing
nonlinearities on the computation graph corresponding to the function (see Appendix D.2 for details).
The verification procedure was executed with ϵ = 0.6 and completed in 89 hours and 13 minutes.
In total, 3, 504, 327 hyperrectangles were checked and certified or further split according to the
algorithm in Figure 1.

5 CONCLUSION

We presented a method for certifying neural abstractions of dynamical systems using a parallelisable
domain partitioning strategy in conjunction with local first-order models. This allows us to efficiently
verify complex nonlinear systems without relying on expensive SMT solvers required to reason over
nonlinear arithmetic. To address the fundamental limitation on scalability, our certificate refinement
strategy verifies each output dimension independently. This approach ensures that local refinement is
only performed on input dimensions that significantly affect a given output in a nonlinear manner. We
demonstrated the effectiveness of our approach on several new challenging benchmarks, including
network compression tasks and the verification of a trajectory prediction task based on Koopman
linearization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

All experiments can be reproduced using the scripts provided in the accom-
panying codebase available at https://anonymous.4open.science/r/
certified-neural-approximations-E679. The repository contains code for the
dynamics, training, and verification, pre-trained models stored as .onnx file, and a Docker image for
a reproducible environment. The randomness in all experiments controlled by explicitly setting seed
for the pseudorandom number generators. The hyperparameters are listed in Appendix B.

REFERENCES

Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth Polgreen. Coun-
terexample Guided Inductive Synthesis Modulo Theories, page 270–288. Springer International
Publishing, 2018. ISBN 9783319961453. doi: 10.1007/978-3-319-96145-3_15.

Alessandro Abate, Alec Edwards, and Mirco Giacobbe. Neural abstractions. In Proceedings of the
36th International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook,
NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability analysis of nonlinear systems with
uncertain parameters using conservative linearization. In Proceedings of the 47th IEEE Conference
on Decision and Control (CDC), pages 4042–4048. IEEE, 2008.

Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015. ISBN 9780262548922.

Eugene Asarin, Thao Dang, and Antoine Girard. Hybridization methods for the analysis of nonlinear
systems. Acta Informatica, 43(7):451–476, 2007.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008. ISBN
9780262026499.

Stanley Bak, Sergiy Bogomolov, Thomas A. Henzinger, Taylor T. Johnson, and Pradyot Prakash.
Scalable static hybridization methods for analysis of nonlinear systems. In Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control (HSCC), pages 155–164.
ACM, 2016.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019. doi: 10.1073/pnas.1903070116.

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Koopman invariant
subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE,
11(2):e0150171, February 2016. ISSN 1932-6203. doi: 10.1371/journal.pone.0150171.

Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. Modern koopman theory for
dynamical systems. SIAM Review, 64(2):229–340, 2022. doi: 10.1137/21M1401243.

Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and Helmut Veith. Model
Checking, 2nd Edition. MIT Press, 2018. ISBN 9780262038836.

Thao Dang, Oded Maler, and Romain Testylier. Accurate hybridization of nonlinear systems. In
Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and
Control (HSCC), pages 11–20. ACM, 2010.

George B Dantzig. Linear programming. Operations research, 50(1):42–47, 2002.

Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vincentelli. Modeling cyber–physical
systems. Proceedings of the IEEE, 100(1):13–28, 2012. doi: 10.1109/JPROC.2011.2160929.

Sourya Dey and Eric William Davis. Dlkoopman: A deep learning software package for koopman
theory. In Nikolai Matni, Manfred Morari, and George J. Pappas, editors, Proceedings of The 5th
Annual Learning for Dynamics and Control Conference, volume 211 of Proceedings of Machine
Learning Research, pages 1467–1479. PMLR, 15–16 Jun 2023.

10

https://anonymous.4open.science/r/certified-neural-approximations-E679
https://anonymous.4open.science/r/certified-neural-approximations-E679

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In Hybrid Systems:
Computation and Control (HSCC), volume 3414 of Lecture Notes in Computer Science, pages
258–273. Springer, 2005.

Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schubert. Efficient solving
of large non-linear arithmetic constraint systems with complex boolean structure1. Journal on
Satisfiability, Boolean Modeling and Computation, 1(3–4):209–236, May 2007. ISSN 1574-0617.
doi: 10.3233/sat190012.

Sicun Gao, Soonho Kong, and Edmund M. Clarke. dreal: An smt solver for nonlinear theories over
the reals. In Maria Paola Bonacina, editor, Automated Deduction – CADE-24, pages 208–214,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-38574-2.

Miriam García Soto and Pavithra Prabhakar. Hybridization for stability verification of nonlinear
switched systems. In Proceedings of the 41st IEEE Real-Time Systems Symposium (RTSS), pages
244–256. IEEE, 2020.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International journal of computer vision, 129(6):1789–1819, 2021.

Alexis Goujon, Arian Etemadi, and Michael Unser. On the number of regions of piecewise linear
neural networks. Journal of Computational and Applied Mathematics, 441:115667, 2024. doi:
10.1016/j.cam.2023.115667.

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz.
On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics,
1(2):391–421, 2014. ISSN 2158-2505. doi: 10.3934/jcd.2014.1.391.

Thomas A. Henzinger and Howard Wong-Toi. Linear phase-portrait approximations for nonlinear
hybrid systems. In Hybrid Systems, volume 1066 of Lecture Notes in Computer Science, pages
377–388. Springer, 1995.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and
generalization in neural networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 8580–8589, Red Hook, NY, USA, 2018. Curran
Associates Inc.

Mioara Maria Joldes. Rigorous Polynomial Approximations and Applications. Theses, Ecole normale
supérieure de lyon - ENS LYON, September 2011.

Hassan K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, 3rd edition, 2002.
ISBN 9780130673893.

B. O. Koopman. Hamiltonian systems and transformations in hilbert space. Proceedings of the
National Academy of Sciences of the United States of America, 17(5):315–318, 1931. ISSN
00278424, 10916490. URL http://www.jstor.org/stable/86114.

Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149–160, 2018. ISSN 0005-1098. doi: 10.1016/j.
automatica.2018.03.046.

Ding Li, Stanley Bak, and Sergiy Bogomolov. Reachability analysis of nonlinear systems using hy-
bridization and dynamics scaling. In Formal Modeling and Analysis of Timed Systems (FORMATS),
volume 12288 of Lecture Notes in Computer Science, pages 265–282. Springer, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pages 5058–5066, 2017.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal lin-
ear embeddings of nonlinear dynamics. Nature Communications, 9(1):4950, 2018. doi:
10.1038/s41467-018-07210-0.

11

http://www.jstor.org/stable/86114

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rupak Majumdar and Majid Zamani. Approximately bisimilar symbolic models for digital control
systems. In Computer Aided Verification (CAV), volume 7358 of Lecture Notes in Computer
Science, pages 362–377. Springer, 2012.

Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural networks:
evidence from random matrix theory and implications for learning. J. Mach. Learn. Res., 22(1),
January 2021. ISSN 1532-4435.

Eva Memmel, Clara Menzen, Jetze Schuurmans, Frederiek Wesel, and Kim Batselier. Position:
Tensor networks are a valuable asset for green AI. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 35340–35353. PMLR, 21–27 Jul 2024.

David R Morrison, Sheldon H Jacobson, and Joshua J Sauppe. Branch-and-bound algorithms: A
survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19:79–102,
2016. doi: 10.1016/j.disopt.2016.01.005.

Pavithra Prabhakar, Geir E. Dullerud, and Mahesh Viswanathan. Stability preserving simulations and
bisimulations for hybrid systems. IEEE Transactions on Automatic Control, 60(12):3210–3225,
2015.

James B. Rawlings, David Q. Mayne, and Moritz M. Diehl. Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, Madison, WI, 2nd edition, 2017.

Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Hybridization based cegar for hybrid
automata with affine dynamics. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 9636 of Lecture Notes in Computer Science, pages 752–769. Springer,
2016.

Shankar Sastry. Nonlinear Systems, volume 10 of Interdisciplinary Applied Mathematics. Springer,
New York, NY, 1999. ISBN 9780387985138.

Prashant Solanki, Nikolaus Vertovec, Yannik Schnitzer, Jasper Van Beers, Coen de Visser, and
Alessandro Abate. Certified approximate reachability (care): Formal error bounds on deep learning
of reachable sets. arXiv preprint arXiv:2503.23912, 2025. URL https://arxiv.org/abs/
2503.23912.

Mattia Jacopo Villani and Nandi Schoots. Any deep relu network is shallow. arXiv preprint
arXiv:2306.11827, 2023. URL https://arxiv.org/abs/2306.11827.

Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Eka-
terina Komendantskaya, Guy Katz, and Clark Barrett. Marabou 2.0: A Versatile Formal Analyzer
of Neural Networks, page 249–264. Springer Nature Switzerland, 2024. ISBN 9783031656309.
doi: 10.1007/978-3-031-65630-9_13.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certi-
fied robustness and beyond. Advances in Neural Information Processing Systems, 33:1129–1141,
2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. Advances in
neural information processing systems, 35:1656–1670, 2022.

12

https://arxiv.org/abs/2503.23912
https://arxiv.org/abs/2503.23912
https://arxiv.org/abs/2306.11827

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DYNAMICAL SYSTEMS

A.1 WATER TANK

A simple first-order nonlinear dynamical system modelling the water level in a tank with constant
inflow and outflow dependent on the water pressure (proportional to the square root of height).

ẋ = 1.5−
√
x

where x > 0 represents the water level. For certification, we use ϵ = 0.097 for the small network and
a tighter ϵ = 0.007 for the larger network. The input domain for certification is X = [0.1, 10.0].

A.2 JET ENGINE

A two-dimensional nonlinear system with polynomial dynamics that models the behaviour of a
simplified jet engine:

ẋ = −y − 1.5x2 − 0.5x3 − 0.1

ẏ = 3x− y

For certification, we use ϵ = 0.039 for the small network and a tighter ϵ = 0.012 for the larger
network. The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.3 STEAM GOVERNOR

A mechanical governor used in steam engines, formulated as a three-dimensional nonlinear system
with trigonometric terms:

ẋ = y

ẏ = z2 sin(x) cos(x)− sin(x)− 3y

ż = −(cos(x)− 1)

For the implementation we use the trigonometric identity sin(x) cos(x) = 1
2 sin(2x) to rewrite ẏ as

1
2z

2 sin(2x)− sin(x)− 3y. For certification, we use ϵ = 0.105 for the small network and a tighter
ϵ = 0.06 for the larger network. The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0]×
[−1.0, 1.0].

A.4 EXPONENTIAL SYSTEM

The exponential system features highly nonlinear dynamics with nested nonlinearities combining
trigonometric, exponential, and polynomial terms:

ẋ = − sin(ey
3+1)− y2

ẏ = −x

For certification, we use ϵ = 0.112 for the small network and a tighter ϵ = 0.04 for the larger network.
The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.5 NON-LIPSCHITZ VECTOR FIELD 1 (NL1)

A non-Lipschitz continuous vector field:

ẋ = y

ẏ =
√
x

where x ≥ 0. For certification, we use ϵ = 0.11 for the small network and a tighter ϵ = 0.03 for the
larger network. The input domain for certification is X = [0.0, 1.0]× [−1.0, 1.0].

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.6 NON-LIPSCHITZ VECTOR FIELD 2 (NL2)

A more challenging non-Lipschitz continuous vector field:

ẋ = x2 + y

ẏ = (x2)1/3 − x

For certification, we use ϵ = 0.081 for the small network and a tighter ϵ = 0.02 for the larger network.
The input domain for certification is X = [−1.0, 1.0]× [−1.0, 1.0].

A.7 VAN DER POL OSCILLATOR

The classical Van der Pol oscillator with nonlinear damping:

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1

where µ > 0. For certification, we use ϵ = 0.25. The input domain for certification is X =
[−3.0, 3.0]× [−3.0, 3.0].

A.8 SINE 2D SYSTEM

The Sine 2D system represents a two-dimensional nonlinear oscillator with sinusoidal coupling:

ẋ = sin(ωy · y)
ẏ = − sin(ωx · x)

with parameter values ωx = 1.0, ωy = 0.5. For certification, we use ϵ = 0.02. The input domain for
certification is X = [−π, π] × [−π, π]. We utilize a LeakyReLU activation function for networks
learning the Sine 2D System, both to improve learning accuracy and to demonstrate the applicability
of our approach beyond standard ReLU activation functions.

A.9 NONLINEAR OSCILLATOR

The nonlinear oscillator combines linear, cubic, and sinusoidal terms:

ẋ = −ax− bx3 + c sin(x)

with parameter values a = 1.0, b = 1/2, c = 0.3. For certification, we use ϵ = 0.165. The input
domain for certification is X = [−3.0, 3.0].

A.10 LORENZ ATTRACTOR

The three-dimensional Lorenz Attractor, famous for exhibiting chaotic behaviour:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

with parameter values σ = 10, ρ = 28, and β = 8/3. The input domain for certification is
X = [−30.0, 30.0]× [−30.0, 30.0]× [0.0, 60.0]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.11 LOW THRUST SPACECRAFT

The dynamics of spacecraft with continuous low-thrust propulsion on a planar orbit around Earth.
The system has 5 states (r, θ, vr, vθ,∆m) and 2 control inputs (T, α).

ṙ = vr

θ̇ =
vθ
r

v̇r = − µ

r2
+

vθ2

r
+

T · cos(α)
m0 +∆m

v̇θ = −vr · vθ
r

+
T · sin(α)
m0 +∆m

ṁ = − T

vexhaust

where:

• r is the radial distance from the central body
• θ is the azimuthal angle
• vr is the radial velocity component
• vθ is the tangential velocity component
• ∆m is the propellant mass
• T is the magnitude of the thrust
• α is the angle of the applied thrust
• µ is the gravitational parameter of the central body
• m0 is the initial spacecraft mass
• vexhaust is the propellant exhaust velocity

A.12 QUADRATIC SYSTEM DYNAMICS AND DISCRETE-TIME SOLUTION DERIVATION

A simple system governed by the continuous time dynamics:

ẋ1 = µx1

ẋ2 = λ(x2 − x2
1)

where x1 and x2 are the state variables, and µ and λ are system parameters. The system includes
a linear term for x1 and a quadratic term involving x2

1 in the equation for x2. For training, the
initial conditions there chosen at random and the trajectory is computed over the time horizon [0, 1],
with parameters µ = −0.05, λ = −1 and timestep of 0.02. The input domain for certification is
X = [−0.5, 0.5]× [−0.5, 0.5].

To generate trajectories of the system, we integrate the system numerically and sample the trajectory
evenly across the time horizon. For the purpose of verification, we derive the analytic expression of
the discrete-time system. The differential equation for x1(t) yields the solution

x1(t) = x1(0)e
µt

Solving the differential equation for x2(t) with 2µ ̸= λ yields

x2(t) =

(
x2(0) +

λx1(0)
2

2µ− λ

)
eλt − λx1(0)

2

2µ− λ
e2µt

For a discrete time step ∆t, we obtain the discrete-time system is:

xn+1
1 = xn

1 e
µ∆t

xn+1
2 =

(
xn
2 +

λ(xn
1)

2

2µ− λ

)
eλ∆t − λ(xn

1)
2

2µ− λ
e2µ∆t

where ∆ = 0.02 in the experiments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B HYPERPARAMETERS

For all experiments, the architecture is described in Section 4 and the networks are trained with the
loss function defined in Section 2.1 using the AdamW optimizer with a weight decay of 1e−4. The
gradient is clipped to a norm of 1 if the norm exceeds this limit.

For the experiment comparing the proposed framework with dReal, the learning rate is initialized
at 1e−3 and reduced according to a cosine annealing schedule to a minimum of 1e−6 over 50 000
iterations. The data is sampled at each iteration uniformly over the domain X , with a batch size of
4096.

For the compression benchmark, the two networks are trained with different parameters. First, the
large-scale network is trained from steps of the Lorenz attractor with a discrete time step ∆t = 0.02,
obtained as trajectories using an RK45 integrator for 32 time steps and 128 different initial conditions
in X , for a batch size of 4096. The learning rate is initialised to 1e−6 and reduced by a factor of 0.9
when encountering a loss plateau for 2000 iterations. The network is trained for 500 000 iterations.
The compressed network is trained with a fixed learning rate of 1e−6 for 1 000 000 iterations where
data is sampled at each iteration uniformly over the domain X , with a batch size of 4096.

For the Koopman benchmark, the network is trained for 200 epochs over a dataset of 10500 trajectories,
with a batch size of 125, and with a weight decay of 1e−6.

C PROOF OF THEOREM 1

Proof. We can express f(x) as:

f(x) = f(c) +∇f(c)(x− c) + r,

where r ∈ [Rmin,Rmax]. If no satisfying assignment exists for Equation (5a), it follows that:

fj(c) +∇fj(c)(x− c) +Rmax
j −Nj(x) < ϵ.

Since fj(c) +∇fj(c)(x− c) +Rmax
j provides an upper bound for fj(x), we have:

fj(x)−Nj(x) < ϵ.

Similarly, for the lower bound, Equation (5b):

Nj(x)− fj(x) < ϵ.

These bounds hold for all j ∈ {1, . . . ,m}. Therefore, when no satisfying assignment is found for all
j ∈ {1, . . . ,m}, it follows that:

∥f(x)−N(x)∥ ≤ ϵ, ∀x ∈ Hδ(c).

D CERTIFIED LINEARIZATIONS

D.1 CERTIFIED TAYLOR EXPANSIONS OF ELEMENTARY FUNCTIONS

Suppose that f : Rn → Rm is composed of smooth elementary functions and is at least twice
continuously differentiable. We consider the first-order Taylor approximation of f around a point
x0 ∈ Rn:

f(x) ≈ f(x0) + Jf (x0)(x− x0),

where Jf (x0) is the m × n Jacobian matrix of f at x0. We define the remainder R(x) ∈ Rm

componentwise for each j ∈ {1, . . . ,m}:

Rj(x) = fj(x)−
[
fj(x0) +∇fj(x0)

⊤(x− x0)
]
.

This remainder captures the contribution of second and higher-order terms. By the Lagrange form of
the Taylor remainder, we have:

Rj(x) =
1

2
(x− x0)

⊤∇2fj(ξ)(x− x0),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

for some ξ on the line segment between x0 and x. Here ∇2fj(ξ) is the n× n Hessian matrix of the
j-th component function. To bound the magnitude of the remainder, we find a constant Mj (bounding
the spectral norm of the Hessian):

∥∇2fj(x)∥2 ≤ Mj for all x ∈ Hδ(c),

where Hδ(c) is the compact, convex hyperrectangle containing x0 and x. Then,

|Rj(x)| ≤
1

2
Mj∥x− x0∥22.

By simple application of the chain rule, we can similarly bound compositions, i.e., f(g(x)). Let
y = g(x) be the input function (where g : Rn → Rm) with its own expansion centered at x0, and
f : Rm → Rm be the elementary function we are applying (element-wise). We define y0 = g(x0) ∈
Rm as the center for the expansion of f .

The total remainder for the composition f(g(x)) is a vector Rtotal(x) ∈ Rm:

Rtotal(x) = Rprop(x) +Rlocal(x)

This splits the remainder into two parts:

1. Propagated Remainder: Rprop(x) = Jf (y0)Rg(x). This term propagates the remainder of
the input function, Rg(x) ∈ Rm, via the Jacobian of f . Since f is an element-wise function
(e.g., ex), its Jacobian Jf (y0) is a diagonal matrix:

Jf (y0) = diag (f ′(y0,1), . . . , f
′(y0,m))

2. Local Remainder: Rlocal(x) = Rf (g(x)). This term is the local remainder of the elemen-
tary function f itself, evaluated at the input y = g(x).

To produce tight bounds for Rf (y) (element-wise), we leverage properties over the input hyperrect-
angle Iy = [ymin, ymax]:

• If f is convex on Iy (i.e., f ′′(yj) ≥ 0 for all yj ∈ [yj,min, yj,max]), the linear approximation
is an underestimate. The local remainder Rf (y) is non-negative.

Rmin = 0

Rmax = max (f(ymin)− fL(ymin), f(ymax)− fL(ymax))

• If f is concave on Iy (i.e., f ′′(yj) ≤ 0), the linear approximation is an overestimate. The
local remainder Rf (y) is non-positive.

Rmin = min (f(ymin)− fL(ymin), f(ymax)− fL(ymax))

Rmax = 0

All operations (max, min, fL, f) are applied element-wise.

For functions with a known, fixed global range, such as sin(y) and cos(y) where f(y) ∈ [−1, 1],
or for monotonically increasing/decreasing functions where we can utilise the fact that the maxi-
mum/minimum of the f(y) is easily found by checking the boundaries of the domain of interest, we
can perform an additional, post-processing step to tighten the remainder bounds, i.e. we clip Rf (y)
to the domain

Rf (y) ∈ [L− fL(y), U − fL(y)] ⊆
[
L−max

y
fL(y), U −min

y
fL(y)

]
,

where f(y) ∈ [L,U].

D.2 USING CROWN

If the function f is not twice continuously differentiable, e.g. for a ReLU network, then the Lagrange
bound is not valid to compute the Taylor remainder. Instead, we employ CROWN (Zhang et al.,
2022), also known as Linear Bound Propagation, which was originally developed to verify neural

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: Taylor expansions of common elementary functions

Outputx31 Stack
[
0 1 h
h
3 −h 1− h

]
x

A1 = I ∈ R2×2A2 ∈ R2×3A3 ∈ R2×1

A4 ∈ R2×2

A5 ∈ R2×2

A5x+ b ≤ f(x) ≤ Ā5x+ b̄
Linear bounds:

Figure 5: The computation graph with CROWN annotation for function f(x) =[
x1 + hx2

x2 + h(13x
3
1 − x1 − x2)

]
.

networks via linear relaxations of the network. CROWN comes in several flavours including forward-
mode (similar to the Taylor bound propagation above), backward-mode, forward-backward-mode
(relaxations via forward mode), CROWN-IBP (relaxations via Interval Bound Propagation), α-
CROWN (optimization of bounds), β-CROWN (neuron splitting branch-and-bound), and GCP-
CROWN (general cutting planes). We only employ backward mode, which is the original version. In
the remainder, when we refer to CROWN we mean backward-mode CROWN.

The idea of CROWN is to operate on the computation graph and relax nonlinearities based on node
local input intervals, which can be computed using CROWN itself recursively. Figure 5 exemplifies
this process on a composition of polynomial functions, for ease of exposition. First, the nonlinear
term x3 is locally relaxed to upper and lower linear functions based on the input range. Then, starting
from the output with the linear functions Ay + b = Iy + 0 and Ay + b = Iy + 0, the bounding
functions are propagated backward through the computation graph to the input. If the computation
graph contains multiple nonlinearities, using the backward propagation from each nonlinearity to the
input, the input range to each node is calculated to locally relax it. We refer to (Xu et al., 2020) for
details on how to compute local relaxations based on input bounds and how to propagate through
linear and locally relaxed nonlinear operations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.3 USING LIPSCHITZ CONSTANTS

While conservative, it is possible to construct linear relaxations from the (local) Lipschitz constant of
the function f , if such exists, and evaluation of the function at a point c. The approach is shown in
the following constructive proof.
Proposition 2. For any function f locally Lipschitz in a hyperrectangle Hδ(c) ⊂ Rn with the
Lipschitz constant Lf , there exist linear relaxations Ax+ b and Ax+ b of f in Hδ(c).

Proof. We prove the statement by construction. A (local) Lipschitz constant Lf of f in Hδ(c) implies
that

∥f(x1)− f(x2)∥∞ ≤ Lf∥x1 − x2∥∞, for all x1, x2 ∈ Hδ(c). (6)
This limit to the rate of change implies the following component-wise bounds

f(c)− Lf∥x− c∥∞ · 1 ≤ f(x) ≤ f(c) + Lf∥x− c∥∞ · 1, for all x ∈ Hδ(c), (7)

where 1 ∈ Rm is a vector of all ones. Let M = supx∈Hδ(c)
∥x− c∥∞ = ∥r∥∞. Then, we obtain the

linear (interval) relaxations

b = f(c)− LfM · 1 ≤ f(x) ≤ f(c) + LfM · 1 = b, for all x ∈ Hδ(c), (8)

where A = A = 0. Thus, trivial linear relaxations always exist for any locally Lipschitz continuous
function.

19

	Introduction
	Neural approximations of nonlinear dynamics
	Training

	Certification of epsilon-closeness
	First-order models
	Certificate refinement

	Experimental Results
	Comparison with dReal-based approaches
	Trajectory-Level Reasoning through Koopman Operators
	Compression of learned dynamics

	Conclusion
	Reproducibility statement
	Dynamical systems
	Water Tank
	Jet Engine
	Steam Governor
	Exponential System
	Non-Lipschitz Vector Field 1 (NL1)
	Non-Lipschitz Vector Field 2 (NL2)
	Van der Pol Oscillator
	Sine 2D System
	Nonlinear Oscillator
	Lorenz Attractor
	Low Thrust Spacecraft
	Quadratic System Dynamics and Discrete-Time Solution Derivation

	Hyperparameters
	Proof of Theorem 1
	Certified Linearizations
	Certified taylor expansions of elementary functions
	Using CROWN
	Using Lipschitz constants

