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Abstract

Text-to-speech (TTS) systems are modelled as001
mel-synthesizers followed by speech-vocoders002
since the era of statistical TTS that is carried003
forward into neural designs. We propose an al-004
ternative approach to TTS modelling referred to005
as ParrotTTS borrowing from self-supervised006
learning (SSL) methods. ParrotTTS takes a007
two-step approach by initially training a speech-008
to-speech model on unlabelled data that is009
abundantly available, followed by a text-to-010
embedding model that leverages speech with011
aligned transcriptions to extend it to TTS. Par-012
rotTTS achieves competitive mean opinion013
scores on naturalness compared to traditional014
TTS models but significantly improves over the015
latter’s data efficiency of transcribed pairs and016
speaker adaptation without transcriptions. This017
further paves the path to training TTS mod-018
els on generically trained SSL speech mod-019
els. Speech samples from ParrotTTS can be020
found at https://parrottts.github.021
io/tts/022

1 Introduction023

Vocal learning forms the first phase of infants024

starting to talk (Locke, 1996, 1994). In this025

phase, the learning happens by simply listening026

to sounds/speech. Studies show that vocal learn-027

ing begins in the final trimester of pregnancy; the028

normally developing fetus can hear its mother’s029

voice within the womb (Kolata, 1984). Several030

studies show that the best way to promote language031

development for babies is to talk to them. It is hy-032

pothesized (Kuhl and Meltzoff, 1996) that infants033

listening to ambient language store perceptually034

derived representations of the speech sounds they035

hear, which in turn serve as targets for the pro-036

duction of speech utterances. Interestingly, in this037

phase, the infant has no conception of text or lin-038

guistic rules, and speech is considered sufficient to039

influence speech production (Kuhl and Meltzoff,040

1996). Eventually, if parrots can talk without under-041
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Figure 1: (a) Traditional TTS and (b) Proposed TTS
model

standing language, there is no reason human infants 042

should need to possess grammatical capability ei- 043

ther to comprehend and produce speech (Locke, 044

1994). 045

We propose a novel design for text-to-speech 046

synthesis called ParrotTTS that follows a similar 047

learning process. Our idea mimics the-step ap- 048

proach, with the first learning to produce sounds 049

capturing the whole gamut of phonetic variations. 050

It is attained by learning quantized representations 051

of sound units in a self-supervised manner. The 052

second phase builds on top of the first by learning a 053

mapping from text to the quantized representations 054

(embeddings). This step uses paired text-speech 055

data. The two phases are analogous to first learning 056

to talk followed by learning to read. 057

Our proposed ParrotTTS is illustrated in Fig- 058

ure 1(b) distinguishing it from traditional design 059

in Figure 1(a). The self-supervised module learns 060

discrete speech representations using raw audio 061

data from multiple speakers without aligned tran- 062

scriptions similar to Wav2Vec 2.0 (Baevski et al., 063

2020) or Hubert (Hsu et al., 2021). The SSL mod- 064

ule includes a speech-to-embedding (STE) encoder 065

trained on masked prediction task to generate the 066

intermediate representation of audio input. An 067

embedding-to-speech (ETS) decoder is indepen- 068
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dently trained to invert embeddings to synthesize069

audio waveforms and is additionally conditioned070

on speaker identity. This learning to talk is the first071

of the two-step training pipeline.072

In the subsequent learning to read step, a sep-073

arate text-to-embedding (TTE) encoder is trained074

to generate embeddings from text (or equivalent075

phonetic) inputs. This step requires labeled speech076

with aligned transcriptions. However, the data re-077

quirement in this step is very low in terms of vol-078

ume and number of speakers. We show that tran-079

scribed samples from even a single speaker suffices080

to learn phonetic mapping (TTE) sufficiently well081

for generalization on a large number of speakers.082

Further, the decoder ETS can be conditioned on083

speaker identity to change the voice of rendered084

speech. In our model, the speech embeddings can085

be obtained either from the text (using TTE) or di-086

rectly from audio (using STE), providing a unified087

model for speech synthesis, of which we limit the088

scope of this work to only text-to-speech.089

Overall, the restructuring of learning compo-090

nents has effectively changed the data dependence091

equation in our favor, cutting down the amount092

of transcribed data needed by leveraging abundant093

raw audio to achieve similar speech quality. This094

further makes it easy to extend the model to de095

novo voices unseen in initial training by indepen-096

dently fine-tuning the ETS decoder module on un-097

transcribed audio from the corresponding speak-098

ers. Also, the ParrotTTS’ components are function-099

ally different from that of traditional synthesizer-100

vocoder design. This offers several other benefits.101

1. For instance, our speech embedding has lower102

variance than that of Mel frames reducing the103

complexity to train TTE and increasing ca-104

pacity of downstream ETS. We observe that,105

for example, our embeddings are speaker ag-106

nostic, requiring ETS conditioning on speaker107

identity for speaker adaptation.108

2. Speaker agnostic speech embeddings paired109

with independently trained STE disentangled110

speaker handling from content. This enabled111

adaptation to novel voices with untranscribed112

speech alone. The data requirement is placed113

between zero-shot methods that use speaker-114

embedding but are poor in quality and tradi-115

tional TTS requiring fully transcribed speech116

while its quality matches the latter.117

3. Segregation of functions pushed acoustic han-118

dling into ETS module towards the end that 119

directly infers the speech signal without going 120

through Mel frames. This bypasses poten- 121

tial vocoder generalization issues (Kim et al., 122

2021) similar to FastSpeech2s (Ren et al., 123

2020). 124

4. Reduced complexity helps in stabler training 125

of TTE encoder for either autoregressive or 126

non-autoregressive choice. For example, we 127

observe at least eight-fold faster convergence 128

in training iterations of our TTE module com- 129

pared to that of Ren et al. (2020) and Wang 130

et al. (2017). 131

The main contribution of this work is the novel 132

ParrotTTS architecture detailed in Section 3. It 133

redesigns the standard synthesizer-vocoder neu- 134

ral TTS to leverage self-supervised learning from 135

which the various benefits listed above flow. 136

We train multiple models of the proposed Par- 137

rotTTS approach with different choices and study 138

their effects like the quality of rendered speech, 139

data efficiency, word-error rates upon transcription 140

of speech output, etc., see Section 4. Experimen- 141

tal results reported in Section 5 consistently point 142

to the competitive or superior performance of Par- 143

rotTTS relative to the current state-of-the-art for 144

TTS. While these observations are of significant 145

value to practitioners in evaluating the adoption 146

of ParrotTTS approach for speech synthesis, nu- 147

merous questions need further investigation. We 148

conclude in Section 6 with a discussion of these 149

questions and the related topics that need further 150

exploration to better understand the proposed ap- 151

proach. 152

2 Related work 153

TTS systems have been studied for decades now, 154

with the concatenative statistical models from ear- 155

lier attempts (Hunt and Black, 1996; Cohn and 156

Zellou, 2020) being increasingly replaced by neu- 157

ral variants in recent years (Oord et al., 2016). 158

We specifically review the popular and better- 159

performing supervised models in Section 2.1 and 160

their unsupervised counterparts in Section 2.2. 161

These references help understand data challenges 162

for TTS training and how their quality is observed 163

to vary with the degree of supervision. Towards the 164

end of this section, we review the self-supervised 165

learning approach that ParrotTTS leverages with 166

pointers to its application in other domains. 167
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2.1 Supervised TTS168

A typical neural TTS model has an acoustic syn-169

thesizer that generates frequency-domain Mel-170

spectrogram frames. The synthesizer has an en-171

coder that maps text or phonetic inputs to hidden172

states, followed by a decoder that generates Mels173

from the hidden states. Predicted Mel frames con-174

tain all the necessary information to reconstruct175

speech (Griffin and Lim, 1984) and an indepen-176

dently trained vocoder (Oord et al., 2016; Kong177

et al., 2020) transforms them into time-domain178

waves. Mel predicting decoders could be autore-179

gressive models (Wang et al., 2017; Valle et al.,180

2020; Shen et al., 2018) that generate the Mel181

frames in sequential order. It conditions the gen-182

eration of a Mel frame at any time instant on all183

preceding predictions and the encoder output us-184

ing attention modules (Graves, 2013). In contrast,185

non-autoregressive or parallel models (Ren et al.,186

2019, 2020; Łańcucki, 2021) predict intermediate187

features like duration, pitch, and energy for each188

phoneme. Mel frames of all time instants are then189

generated simultaneously from these predicted in-190

termediate features. Non-autoregressive models are191

quicker at inference and robust to word skipping or192

repetition errors (Ren et al., 2020).193

The quality and quantity of transcribed audio194

used in TTS training are known to impact the qual-195

ity of speech rendered. Public data with about 24196

hours of studio recorded audio is known to train197

reasonable quality single-speaker models (Ito and198

Johnson, 2017). This becomes more demanding199

in a multi-speaker setting requiring sufficient per-200

speaker audio to learn all voices well (Veaux et al.,201

2017). Speaker conditioning of the decoder is202

commonly achieved by one-hot-encoding of those203

seen at train time. Alternatively, speaker embed-204

dings (Jia et al., 2018) could be used for decoder205

conditioning which in theory could render speech206

for de novo voices not part of the training set. How-207

ever, speech rendered through this method is known208

to be of poorer quality and naturalness, especially209

for speakers not sufficiently represented in the train210

set (Tan et al., 2021).211

2.2 Raw-audio for TTS212

Unsupervised speech synthesis (Ni et al., 2022)213

does not require transcribed text-audio pairs for214

the TTS acoustic modeling. They typically employ215

unsupervised automatic speech recognition (ASR)216

model (Baevski et al., 2021; Liu et al., 2022a) to217

transcribe raw speech to generate pseudo labels. 218

However, their performance tends to be bounded by 219

the performance of the unsupervised ASR model, 220

which still has to close a significant gap compared 221

to supervised counterparts (Baevski et al., 2021). 222

Furthermore, switching to a multi-speaker setup 223

worsens quality relative to fully supervised mod- 224

els (Liu et al., 2022b). 225

Some prior works have looked at adapting TTS 226

to novel speakers using untranscribed audio (Yan 227

et al., 2021; Luong and Yamagishi, 2019; Taigman 228

et al., 2017). Unlike ours, these methods require a 229

large amount of paired data from multiple speak- 230

ers during initial training. Some of these (Luong 231

and Yamagishi, 2019; Taigman et al., 2017) jointly 232

train the TTS pipeline and the modules for speaker 233

adaptation but the model convergence gets tricky. 234

In contrast, ParrotTTS benefits from the disentan- 235

glement of linguistic content from speaker infor- 236

mation, making adaptation easier. 237

2.3 Self-supervised learning 238

Self-supervised learning (SSL) methods have be- 239

come increasingly popular in numerous applica- 240

tions owing to their ability to leverage copious 241

amounts of unlabeled data to learn large models 242

that can be fine-tuned for multiple tasks later. They 243

are reported to achieve results better than super- 244

vised models trained on fewer labeled samples and 245

have found applications in computer vision (He 246

et al., 2022), natural language processing (Devlin 247

et al., 2018; Vaswani et al., 2017) and audio pro- 248

cessing (Schneider et al., 2019). Mask prediction, 249

temporally contrastive learning, next-step predic- 250

tion, etc., are some common techniques to train 251

SSL models. Wav2vec2 (Baevski et al., 2020), 252

Hubert (Hsu et al., 2021) are popular SSL mod- 253

els for speech processing and ASR (Baevski et al., 254

2020), phoneme segmentation (Kreuk et al., 2020), 255

and spoken language modeling (Lakhotia et al., 256

2021), speech resynthesis (Polyak et al., 2021) are 257

tasks that gained from leveraging them. In the 258

same spirit, our work explores SSL, specifically 259

pre-trained Hubert (Hsu et al., 2021), for TTS. To 260

the best of our knowledge, there are no known TTS 261

models trained on SSL, and our efforts fill this gap. 262

3 ParrotTTS architecture 263

As mentioned earlier, ParrotTTS has three mod- 264

ules; two encoders, STE and TTE that map audio 265

and text respectively to embedding, and a decoder 266
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Figure 2: Schematic diagram of the proposed model.

ETS that maps the embedding to the speech signal.267

Our speech encoder-decoder choices are borrowed268

from (Polyak et al., 2021). The speech encoder269

STE is HuBERT (Hsu et al., 2021) that maps input270

audio clip to discrete vectors with entries called Hu-271

BERT units. Our speech decoder ETS is a modified272

version of HiFiGan (Kong et al., 2020). Text en-273

coder TTE is an encoder-decoder architecture, and274

we experiment with both autoregressive (AR) and275

non-autoregressive (NAR) choices for the same.276

We give architectural details of these three modules277

below.278

3.1 Speech encoder STE279

The self-supervised HuBERT model we use for280

our STE is pre-trained on large raw audio data on281

masked prediction task very similar to the BERT282

model for text (Devlin et al., 2018) to learn “com-283

bined acoustic and language model over the contin-284

uous inputs” of speech. It borrows the base archi-285

tecture from Wav2vec 2.0 (Baevski et al., 2020)286

with convolutions on raw inputs followed by a287

few transformer layers, however, replaces its con-288

trastive loss with a BERT-like classification. The289

“noisy” classes are derived by clustering MFCC290

features of short speech signals. Encoder input is291

audio signal X = (x1, ....xT ) sampled at a rate of292

16kHz. Let Er denote the raw-audio encoder, and293

its output be,294

hr = (h1, ...., hT̂ ) := Er(X),295

Where T̂ = T/320 indicating downsampling and296

each hi ∈ {1, . . . ,K} with K being a number of297

clusters in HuBERT’s clustering step, set to 100 in298

our experiments.299

3.2 Speech decoder ETS 300

We use a modified version of HiFiGAN (Kong 301

et al., 2020) vocoder for our ETS to decode 302

from h = (hr,hs) to speech, where hs is the one- 303

hot speaker embedding. It has a generator G and 304

a discriminator D. G runs h through transposed 305

convolutions for upsampling to recover the original 306

sampling rate followed by residual block with di- 307

lations to increase the receptive field to synthesize 308

the signal, X̂ := G(h). 309

The discriminator distinguishes synthesized X̂ 310

from the original signal X and is evaluated by 311

two sets of discriminator networks. Multi-period 312

discriminators operate on equally spaced samples, 313

and multi-scale discriminators operate at different 314

scales of the input signal. Overall, the model at- 315

tempts to minimize D(X, X̂) over all its parame- 316

ters to train ETS. 317

3.3 Text encoder TTE 318

The third module we train, TTE is a text encoder 319

that maps phoneme sequence P = (p1, . . . , pN ) to 320

embedding sequence hp = (h1, . . . , hN̂ ). We train 321

a sequence-to-sequence architecture to achieve 322

this hp := Ep(P ). Ep initially encodes P into 323

a sequence of fixed dimensional vectors (phoneme 324

embeddings), conditioned upon which its sequence 325

generator produces variable dimensional hp. Em- 326

bedding hp is intended to mimic hr := Er(X) 327

extracted from the audio X corresponding to the 328

text P . Hence, the requirement of transcribed data 329

(X,P ) to derive the target hr for training TTE by 330

optimizing over the parameters of Ep. 331

One could model Ep to generate hp autoregres- 332

sively one step at a time, which we refer to as 333

AR-TTE model. See Figure 2(b) for an illustra- 334
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tion. Input phoneme sequence is encoded through335

a feed-forward transformer block that stacks self-336

attention layers (Vaswani et al., 2017) and 1D con-337

volutions similar to FastSpeech2 (Ren et al., 2019).338

Decoding for hp uses a transformer module with339

self-attention and cross-attention. Future-masked340

self-attention attends to ground truth at train and to341

previous decoder predictions at inference. Cross-342

attention attends to phoneme encoding in both343

cases.344

Alternatively, for a non-autoregressive choice345

of Ep, the model NAR-TTE determines the out-346

put length N̂ followed by a step to simultaneously347

predict all N̂ entries of hp. Figure 2(c) depicts348

NAR-TTE where the input phoneme sequence en-349

coding is similar to that of AR-TTE. The duration350

predictor and length regulator modules are respon-351

sible for determining N̂ followed by the decoding352

step to generate hp.353

4 Experiments354

We train multiple models of the ParrotTTS under355

different settings and benchmark them against com-356

parable models in the literature. Specifically, we357

train single-speaker and multi-speaker models to358

evaluate naturalness, intelligibility, and speaker359

adaptability. Naturalness is measured by mean-360

opinion scores (MOS) from human judgments. In-361

telligibility is measured by word-error rates from an362

ASR model on the rendered speech output. Speaker363

adaptability is measured using Equal-Error-Rate364

from a pre-trained speaker verification system. We365

perform these experiments with both autoregres-366

sive and non-autoregressive choices of TTE.367

4.1 ParrotTTS training368

We use two public data sets for our experiments.369

LJSpeech (Ito and Johnson, 2017) provides about370

13k high-quality English transcribed audio clips371

totaling about 24 hours from a single speaker. Data372

are split into two, with 512 samples set aside for373

validation and the remaining available for model374

training. VCTK (Veaux et al., 2017) with about375

44 hours of transcribed speech from 108 different376

speakers is used for the multi-speaker setup. It has377

a minimum, average, and maximum of 7, 22.8, and378

31 minutes per speaker speech length, respectively.379

All audio samples are resampled to 16kHz before380

use.381

STE training. We use 12 layer transformer382

model for HuBERT trained for two epochs on 960383

hour-long LibriSpeech corpus (Panayotov et al., 384

2015) as our STE module to extract hr embeddings. 385

The model splits each T seconds long audio into 386

units of T/320 seconds and maps each of the ob- 387

tained units to a 768 dimensional vector. The vec- 388

tors are drawn from the network’s activation units 389

on the sixth layer similar to that of Lakhotia et al. 390

(2021). Continuous vectors are then discretized 391

to hr embeddings using a codebook made from 392

applying k-means (with k set to 100) to 100 hour 393

subset of the data called LibriSpeech-clean (Panay- 394

otov et al., 2015). 395

TTE training. We use LJSpeech to train two 396

different TTE encoder modules; TTELJS that uses 397

all the data from our LJSpeech train set and a sec- 398

ond, TTE 1
2

LJS with only half the data. This is used 399

to understand the effect of training data size on our 400

metrics. All variants of TTE we experiment with 401

are trained only on samples from the single speaker 402

in LJSpeech data. 403

Text converted to phoneme sequence as de- 404

scribed by Sun et al. (2019) are inputs with hr 405

targets extracted from STE for training. Addition- 406

ally, NAR-TTE requires phonetic alignment to train 407

the duration predictor. We use Montreal forced- 408

aligner (McAuliffe et al., 2017) to generate them 409

for its training. Unlike standard TTS systems that 410

predict Mel spectrograms, TTE generates discrete 411

units. Hence, we replace the mean-square error 412

loss used in Mels with cross-entropy with as many 413

classes as clusters in the discretization codebook. 414

ETS training. We train a single-speaker ETS, 415

SS-ETS using only speech clips from LJSpeech 416

since its training does not require transcriptions. 417

Similarly, our multi-speaker ETS, MS-ETS de- 418

coder model uses only raw audio of all speakers 419

from VCTK data (Veaux et al., 2017). So only em- 420

beddings hr extracted from VCTK audio clips are 421

used along with one-hot speaker vector hs. We em- 422

phasize that VCTK data were used only in training 423

the multi-speaker-ETS module, and the TTE has 424

not seen any from this set. 425

4.2 Comparison to prior art 426

Single Speaker TTS. We compare against state- 427

of-the-art TTS models from the literature of both 428

kinds; Tacotron2 (Wang et al., 2017) from among 429

autoregressive models and FastSpeech2 (Ren et al., 430

2020) from the non-autoregressive models. Both 431

models are trained using the ground truth tran- 432

scripts of LJspeech and referred to as SS-Tacotron2 433
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Model MOS ↑ WER ↓

Traditional TTS

SS-FastSpeech2 3.87 4.52
SS-Tacotron2 3.90 4.59
FastSpeech2-SupASR 3.78 4.72
Tacotron2-UnsupASR 3.50 11.3

ParrotTTS
AR-TTELJS+SS-ETS 3.85 4.80
NAR-TTELJS+SS-ETS 3.86 4.58
NAR-TTE 1

2
LJS+SS-ETS 3.81 6.14

Table 1: Subjective and objective comparison of studied TTS models in the single speaker setting.

and SS-FastSpeech2.434

We additionally trained an unsupervised ver-435

sion of FastSpeech2 by replacing the ground truth436

transcripts with transcriptions obtained from the437

ASR model. FastSpeech2-SupASR uses super-438

vised ASR model (Radford et al., 2022) to gener-439

ate the transcripts while Tacotron2-UnsupASR (Ni440

et al., 2022) alternatively uses unsupervised ASR441

Wav2vec-U 2.0 (Liu et al., 2022a). We compare442

against three variants of ParrotTTS;443

1. AR-TTELJS+SS-ETS that is autoregressive444

TTE trained on full LJSpeech with single445

speaker ETS,446

2. NAR-TTELJS+SS-ETS that pairs TTE with447

non-autoregressive decoding trained on full448

LJSpeech with single speaker ETS, and449

3. NAR-TTE 1
2

LJS+SS-ETS that uses TTE with450

non-autoregressive decoding trained on half451

LJSpeech with single speaker ETS.452

Multi-speaker TTS. In the multi-speaker setting,453

we compare against a fully supervised Fastspeech2454

baseline trained on VCTK with all its speakers455

using the entire paired audio-transcript data that456

we refer to as MS-FastSpeech2. We borrow the457

TTE module trained on LJSpeech and use the raw458

audio of VCTK to train the multi-speaker ETS mod-459

ule. We refer to this multi-speaker variant of our460

ParrotTTS model as NAR-TTELJS+MS-ETS that461

uses non-autoregressive decoding for TTE similar462

to the FastSpeech2 baseline trained on LJSpeech463

alone and multi-speaker ETS trained on VCTK464

alone.465

For a fair comparison, we also curate a multi-466

speaker TTS baseline using a combination of467

single-speaker TTS and a voice cloning model.468

We use FastSpeech2 trained on LJspeech with469

state-of-the-art voice cloning model (Polyak et al.,470

2021) in our experiments and refer to this model as471

VC-FastSpeech2. We also compare against multi- 472

speaker TTS trained by obtaining pseudo labels 473

from a supervised ASR called MS-FastSpeech2- 474

SupASR. In all multi-speaker experiments, we use 475

one-hot encoding for speaker identity. Additionally, 476

we also report numbers from GT-Mel+Vocoder that 477

converts ground truth Mels from actual audio clip 478

back to speech using a vocoder (Kong et al., 2020) 479

for a perspective of best achievable with ideal Mel 480

frames. 481

4.3 Evaluation metrics 482

Naturalness is measured by mean opinion scores 483

(MOS) from subjective listening tests on a five- 484

point Likert scale, with 1 being “completely unnat- 485

ural” speech to 5 indicating “completely natural” 486

output. We randomly sample five clips per model 487

from the validation set for each of our forty sub- 488

jects who are proficient English speakers. They 489

are asked to make quality judgments by rating the 490

naturalness of the synthesized speech samples. The 491

average rating of MOS is calculated and reported. 492

Intelligibility is measured by the word error rate 493

of ASR transcriptions of rendered speech. We use 494

pre-trained Whisper small model (Radford et al., 495

2022) for this. 496

We validate the speaker adaptability by reporting 497

Equal Error Rate (EER) from a pre-trained speaker 498

verification network. Specifically, we use the verifi- 499

cation model proposed in (Desplanques et al., 2020) 500

trained on VoxCeleb2 (Chung et al., 2018) with a 501

0.8% EER on the test split of VoxCeleb1 (Chung 502

et al., 2018). 503

5 Results 504

Quantitative and qualitative results evaluating the 505

proposed ParrotTTS system are shown in Tables 1 506

and 2 for single-speaker and multi-speaker models, 507

respectively. 508
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Model VCTK Transcripts MOS ↑ WER ↓ EER ↓
GT-Mel+Vocoder Yes 4.12 2.25 2.12
MS-FastSpeech2 Yes 3.62 5.32 3.21
MS-FastSpeech2-SupASR No 3.58 6.65 3.85
VC-FastSpeech2 No 3.41 7.44 8.18
NAR-TTELJS+MS-ETS No 3.78 6.53 4.38

Table 2: Comparison of the studied multi-speaker TTS models on the VCTK dataset. The second column suggests
if the corresponding method uses the ground truth VCTK transcripts while training.

5.1 Single-speaker TTS509

Naturalness and intelligibility. As shown in Ta-510

ble 1, ParrotTTS is competitive to state-of-the-art511

in the single-speaker setting. In the autoregressive512

case, our AR-TTELJS+SS-ETS has a statistically513

insignificant drop (of about 0.05 units) on the MOS514

scale relative to the Tacotron2 baseline. The non-515

autoregressive case has a similar observation (with516

a 0.01 drop) on MOS in our NAR-TTELJS+SS-517

ETS model relative to FastSpeech2. This empiri-518

cally establishes that the naturalness of the speech519

rendered by ParrotTTS is on par with the currently520

established methods. The WER scores show a sim-521

ilar trend with a statistically insignificant drop (of522

under 0.2pp1) among the autoregressive and non-523

autoregressive model classes.524

Supervision and data efficiency. In the study525

to understand how the degree of supervision af-526

fects TTS speech quality, we see a clear drop by527

0.28 MOS units in moving from the FastSpeech2-528

SupASR model that employs supervised ASR for529

transcriptions to Tacotron2-UnsupASR model us-530

ing unsupervised ASR. Despite some modeling531

variations, this is generally indicative of the impor-532

tance of clean transcriptions on TTS output quality,533

given that all other models are within 0.05 MOS534

units of each other.535

The data requirement for TTS supervision needs536

to be understood in light of this impact on output537

quality, and we show how ParrotTTS helps cut538

down on this dependence. TTE is the only mod-539

ule that needs transcriptions to train, and we show540

that by reducing the size of the train set by half in541

NAR-TTE 1
2

LJS+SS-ETS the MOS is still compa-542

rable to that of the model trained on all data NAR-543

TTELJS+SS-ETS (with only about 0.04 units MOS544

drop). Finally, the MOS numbers of FastSpeech2-545

SupASR, need to be read with some caution since546

the supervised ASR model used, Whisper, is it-547

self trained with plenty of transcriptions (spanning548

1Percentage points abbreviated as pp.

over 600k hours) from the web, including human 549

and machine transcribed data achieving very low 550

WERs on various public and test sets. So, the ma- 551

chine transcriptions used in FastSpeech2-SupASR 552

are indeed very close to ground truth. 553

5.2 Multi-speaker TTS 554

Naturalness and intelligibility. Table 2 summa- 555

rizes results from our multi-speaker experiments. 556

Among all methods listed in it, NAR-TTELJS+MS- 557

ETS clearly outperform all other models ranking 558

only below re-synthesizing from ground truth Mels, 559

GT-Mel+Vocoder. Interestingly, ParrotTTS fares 560

even better than MS-FastSpeech2, which is, in turn, 561

better than other models that ignore transcripts at 562

the train, namely, MS-FastSpeech2-SupASR and 563

VC-FastSpeech2. On the WER metric for intelli- 564

gibility, ParrotTTS is about 1pp behind supervised 565

MS-FastSpeech2 but fares better than the other two 566

models that discard VCTK transcripts for training. 567

Speaker adaptability. VC-FastSpeech2 is the 568

closest in terms of experimental setup since it is 569

limited to transcriptions from LJSpeech for train- 570

ing similar to ours, with VCTK used only for adap- 571

tation. In this case, EER of NAR-TTELJS+MS- 572

ETS is about twice as good as that of VC- 573

FastSpeech2. However, improvements are visible 574

when VCTK transcripts are part of training data 575

but remain under 1pp relative to ParrotTTS while 576

GT-Mel+Vocoder continues to dominate the score- 577

board leaving room for further improvement. 578

5.3 Stabler training and faster inference 579

In Figure 3, we compare training profiles of 580

Tacotron2 and AR-TTE keeping batch size the 581

same. As visualized in Figure 3(a), the attention 582

matrix in Tacotron2 takes about 20k iterations to 583

stabilize with an anti-diagonal structure and pre- 584

dict a phoneme-aligned Mel sequence. AR-TTE, in 585

contrast, is about ten times faster at predicting a dis- 586

crete HuBERT unit sequence that aligns with input 587

phonemes taking only about 2k iterations to arrive 588

7



Figure 3: Visualization of attention between output units and phonemes. (a) Evolution of attention matrix with
training steps. (b) Attention loss plotted against training steps.

at a similar-looking attention plot. While the snap-589

shots are illustrative, we use the guided-attention590

loss described by Tachibana et al. (2018) as a met-591

ric to quantify the evolution of the attention matrix592

through training steps. As shown in Figure 3(b), the593

loss dives down a lot sooner for ParrotTTS relative594

to its Tacotron2 counterpart. In a similar compar-595

ison, we observe that NAR-TTE converges (20k596

steps) about eight times faster than FastSpeech2597

(160k steps).598

We suppose that the faster convergence derives599

from the lower variance of discrete embeddings in600

ParrotTTS as opposed to the richness of Mels that601

are complete with all acoustic variations, including602

speaker identity, prosody, etc. The output speech is603

independent of inputs given the Mel-spectrogram604

unlike ParrotTTS embeddings that further need605

cues like speaker identity in later ETS module. We606

hypothesize that segregating content mapping away607

from learning acoustics like speaker identity helps608

improve training stability, convergence, and data609

efficiency for the TTE encoder.610

The proposed NAR-TTE system also improves611

inference latency and memory footprint, which612

are crucial factors for real-world deployment. On613

NVIDIA RTX 2080 Ti GPU, we observe Par-614

rotTTS serves 15% faster than FastSpeech2, re-615

ducing the average per utterance inference time to616

11ms from 13 ms. Furthermore, the TTE module617

uses 17M parameters in contrast to 35M parame-618

ters of the Mel synthesizer module in Fastspeech2.619

6 Conclusion, limitations and future work620

In this work, we proposed ParrotTTS, a fast, high621

quality, and efficient to train TTS system. The two-622

stage learning process of ParrotTTS is designed to 623

leverage untranscribed speech data and the corre- 624

sponding self-supervised embeddings. We show 625

that even when trained using transcribed data of 626

a single speaker from the LJSpeech dataset, Par- 627

rotTTS can synthesize speech in 108 different 628

voices of the VCTK corpus. In terms of natural- 629

ness of speech, ParrotTTS outperforms the estab- 630

lished prior art and alternative baselines by a notice- 631

able margin in the multi-speaker setup. On single 632

speaker benchmarks, ParrotTTS provides competi- 633

tive performance compared to the prior art. Overall, 634

our work paves the way for further explorations to- 635

wards exploiting SSL in TTS models. 636

Our experiments are limited to a single language. 637

A deeper study exploring multiple languages, ef- 638

fects of background noise, accents, and other de- 639

mographic variations is left for future work. The 640

current pre-trained HuBERT model skips prosody 641

information (Kharitonov et al., 2021), so the model 642

has no levers to control these prosodic variations. 643

We want to study ways to bring prosodic controlla- 644

bility into ParrotTTS. Further, it would be essential 645

to improve TTE training to use noisy samples that 646

the current model does not work well with to lever- 647

age weak supervision to scale. 648

7 Ethical Considerations 649

Our research is founded on ethical considerations. 650

We are excited about the potential of text-to-speech 651

synthesis to push the frontier of technology, such 652

as in accessibility (giving voice to the voiceless), 653

human-computer interaction, telecommunications, 654

and education. However, there is the potential for 655

misuse. Notably, multi-speaker text-to-speech sys- 656
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tems have raised concerns about unethical cloning.657

Our experiments limit to publicly available datasets,658

and our method is not intended for synthesizing659

someone’s voice without their permission. Another660

potential misuse is creating an audio file of some-661

one supposedly speaking words they never actually662

uttered. We are keenly aware of these negative663

consequences. While the benefits outweigh the664

concerns at this point, we firmly believe that the665

research community should proactively continue666

to identify methods for detecting and preventing667

misuse.668

Our approach is trained on western speech data669

and has yet to be validated on different languages670

or people with speech impediments. As such, the671

dataset and results are not representative of the672

population. A deeper understanding of this issue673

requires future studies in tandem with linguistic674

and socio-cultural insights.675
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