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Abstract

Text-to-speech (TTS) systems are modelled as
mel-synthesizers followed by speech-vocoders
since the era of statistical TTS that is carried
forward into neural designs. We propose an al-
ternative approach to TTS modelling referred to
as ParrotTTS borrowing from self-supervised
learning (SSL) methods. ParrotTTS takes a
two-step approach by initially training a speech-
to-speech model on unlabelled data that is
abundantly available, followed by a text-to-
embedding model that leverages speech with
aligned transcriptions to extend it to TTS. Par-
rotTTS achieves competitive mean opinion
scores on naturalness compared to traditional
TTS models but significantly improves over the
latter’s data efficiency of transcribed pairs and
speaker adaptation without transcriptions. This
further paves the path to training TTS mod-
els on generically trained SSL speech mod-
els. Speech samples from ParrotTTS can be
found at https://parrottts.github.
io/tts/

1 Introduction

Vocal learning forms the first phase of infants
starting to talk (Locke, 1996, 1994). In this
phase, the learning happens by simply listening
to sounds/speech. Studies show that vocal learn-
ing begins in the final trimester of pregnancy; the
normally developing fetus can hear its mother’s
voice within the womb (Kolata, 1984). Several
studies show that the best way to promote language
development for babies is to talk to them. It is hy-
pothesized (Kuhl and Meltzoff, 1996) that infants
listening to ambient language store perceptually
derived representations of the speech sounds they
hear, which in turn serve as targets for the pro-
duction of speech utterances. Interestingly, in this
phase, the infant has no conception of text or lin-
guistic rules, and speech is considered sufficient to
influence speech production (Kuhl and Meltzoff,
1996). Eventually, if parrots can talk without under-
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Figure 1: (a) Traditional TTS and (b) Proposed TTS
model

standing language, there is no reason human infants
should need to possess grammatical capability ei-
ther to comprehend and produce speech (Locke,
1994).

We propose a novel design for text-to-speech
synthesis called ParrotTTS that follows a similar
learning process. Our idea mimics the-step ap-
proach, with the first learning to produce sounds
capturing the whole gamut of phonetic variations.
It is attained by learning quantized representations
of sound units in a self-supervised manner. The
second phase builds on top of the first by learning a
mapping from text to the quantized representations
(embeddings). This step uses paired text-speech
data. The two phases are analogous to first learning
to talk followed by learning to read.

Our proposed ParrotTTS is illustrated in Fig-
ure 1(b) distinguishing it from traditional design
in Figure 1(a). The self-supervised module learns
discrete speech representations using raw audio
data from multiple speakers without aligned tran-
scriptions similar to Wav2Vec 2.0 (Baevski et al.,
2020) or Hubert (Hsu et al., 2021). The SSL mod-
ule includes a speech-to-embedding (STE) encoder
trained on masked prediction task to generate the
intermediate representation of audio input. An
embedding-to-speech (ETS) decoder is indepen-
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dently trained to invert embeddings to synthesize
audio waveforms and is additionally conditioned
on speaker identity. This learning to talk is the first
of the two-step training pipeline.

In the subsequent learning to read step, a sep-
arate text-to-embedding (TTE) encoder is trained
to generate embeddings from text (or equivalent
phonetic) inputs. This step requires labeled speech
with aligned transcriptions. However, the data re-
quirement in this step is very low in terms of vol-
ume and number of speakers. We show that tran-
scribed samples from even a single speaker suffices
to learn phonetic mapping (TTE) sufficiently well
for generalization on a large number of speakers.
Further, the decoder ETS can be conditioned on
speaker identity to change the voice of rendered
speech. In our model, the speech embeddings can
be obtained either from the text (using TTE) or di-
rectly from audio (using STE), providing a unified
model for speech synthesis, of which we limit the
scope of this work to only text-to-speech.

Overall, the restructuring of learning compo-
nents has effectively changed the data dependence
equation in our favor, cutting down the amount
of transcribed data needed by leveraging abundant
raw audio to achieve similar speech quality. This
further makes it easy to extend the model to de
novo voices unseen in initial training by indepen-
dently fine-tuning the ETS decoder module on un-
transcribed audio from the corresponding speak-
ers. Also, the ParrotTTS’ components are function-
ally different from that of traditional synthesizer-
vocoder design. This offers several other benefits.

1. For instance, our speech embedding has lower
variance than that of Mel frames reducing the
complexity to train TTE and increasing ca-
pacity of downstream ETS. We observe that,
for example, our embeddings are speaker ag-
nostic, requiring ETS conditioning on speaker
identity for speaker adaptation.

2. Speaker agnostic speech embeddings paired
with independently trained STE disentangled
speaker handling from content. This enabled
adaptation to novel voices with untranscribed
speech alone. The data requirement is placed
between zero-shot methods that use speaker-
embedding but are poor in quality and tradi-
tional TTS requiring fully transcribed speech
while its quality matches the latter.

3. Segregation of functions pushed acoustic han-

dling into ETS module towards the end that
directly infers the speech signal without going
through Mel frames. This bypasses poten-
tial vocoder generalization issues (Kim et al.,
2021) similar to FastSpeech2s (Ren et al.,
2020).

4. Reduced complexity helps in stabler training
of TTE encoder for either autoregressive or
non-autoregressive choice. For example, we
observe at least eight-fold faster convergence
in training iterations of our TTE module com-
pared to that of Ren et al. (2020) and Wang
et al. (2017).

The main contribution of this work is the novel
ParrotTTS architecture detailed in Section 3. It
redesigns the standard synthesizer-vocoder neu-
ral TTS to leverage self-supervised learning from
which the various benefits listed above flow.
We train multiple models of the proposed Par-
rotTTS approach with different choices and study
their effects like the quality of rendered speech,
data efficiency, word-error rates upon transcription
of speech output, etc., see Section 4. Experimen-
tal results reported in Section 5 consistently point
to the competitive or superior performance of Par-
rotTTS relative to the current state-of-the-art for
TTS. While these observations are of significant
value to practitioners in evaluating the adoption
of ParrotTTS approach for speech synthesis, nu-
merous questions need further investigation. We
conclude in Section 6 with a discussion of these
questions and the related topics that need further
exploration to better understand the proposed ap-
proach.

2 Related work

TTS systems have been studied for decades now,
with the concatenative statistical models from ear-
lier attempts (Hunt and Black, 1996; Cohn and
Zellou, 2020) being increasingly replaced by neu-
ral variants in recent years (Oord et al., 2016).
We specifically review the popular and better-
performing supervised models in Section 2.1 and
their unsupervised counterparts in Section 2.2.
These references help understand data challenges
for TTS training and how their quality is observed
to vary with the degree of supervision. Towards the
end of this section, we review the self-supervised
learning approach that ParrotTTS leverages with
pointers to its application in other domains.



2.1 Supervised TTS

A typical neural TTS model has an acoustic syn-
thesizer that generates frequency-domain Mel-
spectrogram frames. The synthesizer has an en-
coder that maps text or phonetic inputs to hidden
states, followed by a decoder that generates Mels
from the hidden states. Predicted Mel frames con-
tain all the necessary information to reconstruct
speech (Griffin and Lim, 1984) and an indepen-
dently trained vocoder (Oord et al., 2016; Kong
et al., 2020) transforms them into time-domain
waves. Mel predicting decoders could be autore-
gressive models (Wang et al., 2017; Valle et al.,
2020; Shen et al., 2018) that generate the Mel
frames in sequential order. It conditions the gen-
eration of a Mel frame at any time instant on all
preceding predictions and the encoder output us-
ing attention modules (Graves, 2013). In contrast,
non-autoregressive or parallel models (Ren et al.,
2019, 2020; Lancucki, 2021) predict intermediate
features like duration, pitch, and energy for each
phoneme. Mel frames of all time instants are then
generated simultaneously from these predicted in-
termediate features. Non-autoregressive models are
quicker at inference and robust to word skipping or
repetition errors (Ren et al., 2020).

The quality and quantity of transcribed audio
used in TTS training are known to impact the qual-
ity of speech rendered. Public data with about 24
hours of studio recorded audio is known to train
reasonable quality single-speaker models (Ito and
Johnson, 2017). This becomes more demanding
in a multi-speaker setting requiring sufficient per-
speaker audio to learn all voices well (Veaux et al.,
2017). Speaker conditioning of the decoder is
commonly achieved by one-hot-encoding of those
seen at train time. Alternatively, speaker embed-
dings (Jia et al., 2018) could be used for decoder
conditioning which in theory could render speech
for de novo voices not part of the training set. How-
ever, speech rendered through this method is known
to be of poorer quality and naturalness, especially
for speakers not sufficiently represented in the train
set (Tan et al., 2021).

2.2 Raw-audio for TTS

Unsupervised speech synthesis (Ni et al., 2022)
does not require transcribed text-audio pairs for
the TTS acoustic modeling. They typically employ
unsupervised automatic speech recognition (ASR)
model (Baevski et al., 2021; Liu et al., 2022a) to

transcribe raw speech to generate pseudo labels.
However, their performance tends to be bounded by
the performance of the unsupervised ASR model,
which still has to close a significant gap compared
to supervised counterparts (Baevski et al., 2021).
Furthermore, switching to a multi-speaker setup
worsens quality relative to fully supervised mod-
els (Liu et al., 2022b).

Some prior works have looked at adapting TTS
to novel speakers using untranscribed audio (Yan
et al., 2021; Luong and Yamagishi, 2019; Taigman
et al., 2017). Unlike ours, these methods require a
large amount of paired data from multiple speak-
ers during initial training. Some of these (Luong
and Yamagishi, 2019; Taigman et al., 2017) jointly
train the TTS pipeline and the modules for speaker
adaptation but the model convergence gets tricky.
In contrast, ParrotTTS benefits from the disentan-
glement of linguistic content from speaker infor-
mation, making adaptation easier.

2.3 Self-supervised learning

Self-supervised learning (SSL) methods have be-
come increasingly popular in numerous applica-
tions owing to their ability to leverage copious
amounts of unlabeled data to learn large models
that can be fine-tuned for multiple tasks later. They
are reported to achieve results better than super-
vised models trained on fewer labeled samples and
have found applications in computer vision (He
et al., 2022), natural language processing (Devlin
et al., 2018; Vaswani et al., 2017) and audio pro-
cessing (Schneider et al., 2019). Mask prediction,
temporally contrastive learning, next-step predic-
tion, etc., are some common techniques to train
SSL models. Wav2vec2 (Baevski et al., 2020),
Hubert (Hsu et al., 2021) are popular SSL mod-
els for speech processing and ASR (Baevski et al.,
2020), phoneme segmentation (Kreuk et al., 2020),
and spoken language modeling (Lakhotia et al.,
2021), speech resynthesis (Polyak et al., 2021) are
tasks that gained from leveraging them. In the
same spirit, our work explores SSL, specifically
pre-trained Hubert (Hsu et al., 2021), for TTS. To
the best of our knowledge, there are no known TTS
models trained on SSL, and our efforts fill this gap.

3 ParrotTTS architecture

As mentioned earlier, ParrotTTS has three mod-
ules; two encoders, STE and TTE that map audio
and text respectively to embedding, and a decoder
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Figure 2: Schematic diagram of the proposed model.

ETS that maps the embedding to the speech signal.
Our speech encoder-decoder choices are borrowed
from (Polyak et al., 2021). The speech encoder
STE is HUuBERT (Hsu et al., 2021) that maps input
audio clip to discrete vectors with entries called Hu-
BERT units. Our speech decoder ETS is a modified
version of HiFiGan (Kong et al., 2020). Text en-
coder TTE is an encoder-decoder architecture, and
we experiment with both autoregressive (AR) and
non-autoregressive (NAR) choices for the same.
We give architectural details of these three modules
below.

3.1 Speech encoder STE

The self-supervised HUBERT model we use for
our STE is pre-trained on large raw audio data on
masked prediction task very similar to the BERT
model for text (Devlin et al., 2018) to learn “com-
bined acoustic and language model over the contin-
uous inputs” of speech. It borrows the base archi-
tecture from Wav2vec 2.0 (Baevski et al., 2020)
with convolutions on raw inputs followed by a
few transformer layers, however, replaces its con-
trastive loss with a BERT-like classification. The
“noisy” classes are derived by clustering MFCC
features of short speech signals. Encoder input is
audio signal X = (z1,....x7) sampled at a rate of
16kHz. Let E, denote the raw-audio encoder, and
its output be,

hr = (hlv 7h’j"\) = ET(X)>

Where T' = T/320 indicating downsampling and
each h; € {1,..., K} with K being a number of

clusters in HuBERTs clustering step, set to 100 in
our experiments.

3.2 Speech decoder ETS

We use a modified version of HiFiGAN (Kong
et al., 2020) vocoder for our ETS to decode
from h = (h,, hy) to speech, where h; is the one-
hot speaker embedding. It has a generator G and
a discriminator D. G runs h through transposed
convolutions for upsampling to recover the original
sampling rate followed by residual block with di-
lations to increase the receptive field to synthesize
the signal, X := G(h).

The discriminator distinguishes synthesized X
from the original signal X and is evaluated by
two sets of discriminator networks. Multi-period
discriminators operate on equally spaced samples,
and multi-scale discriminators operate at different
scales of the input signal. Overall, the model at-
tempts to minimize D (X, X ) over all its parame-
ters to train ETS.

3.3 Text encoder TTE

The third module we train, TTE is a text encoder
that maps phoneme sequence P = (p1,...,pN) to
embedding sequence hy, = (h1,...,hg). We train
a sequence-to-sequence architecture to achieve
this h, := FE,(P). E, initially encodes P into
a sequence of fixed dimensional vectors (phoneme
embeddings), conditioned upon which its sequence
generator produces variable dimensional h,,. Em-
bedding h,, is intended to mimic h, = E,(X)
extracted from the audio X corresponding to the
text P. Hence, the requirement of transcribed data
(X, P) to derive the target h, for training TTE by
optimizing over the parameters of F),.

One could model E, to generate h,, autoregres-
sively one step at a time, which we refer to as
AR-TTE model. See Figure 2(b) for an illustra-



tion. Input phoneme sequence is encoded through
a feed-forward transformer block that stacks self-
attention layers (Vaswani et al., 2017) and 1D con-
volutions similar to FastSpeech2 (Ren et al., 2019).
Decoding for h,, uses a transformer module with
self-attention and cross-attention. Future-masked
self-attention attends to ground truth at train and to
previous decoder predictions at inference. Cross-
attention attends to phoneme encoding in both
cases.

Alternatively, for a non-autoregressive choice
of E,, the model NAR-TTE determines the out-
put length N followed by a step to simultaneously
predict all N entries of h,. Figure 2(c) depicts
NAR-TTE where the input phoneme sequence en-
coding is similar to that of AR-TTE. The duration
predictor and length regulator modules are respon-
sible for determining N followed by the decoding
step to generate hy,.

4 [Experiments

We train multiple models of the ParrotTTS under
different settings and benchmark them against com-
parable models in the literature. Specifically, we
train single-speaker and multi-speaker models to
evaluate naturalness, intelligibility, and speaker
adaptability. Naturalness is measured by mean-
opinion scores (MOS) from human judgments. In-
telligibility is measured by word-error rates from an
ASR model on the rendered speech output. Speaker
adaptability is measured using Equal-Error-Rate
from a pre-trained speaker verification system. We
perform these experiments with both autoregres-
sive and non-autoregressive choices of TTE.

4.1 ParrotTTS training

We use two public data sets for our experiments.
LJSpeech (Ito and Johnson, 2017) provides about
13k high-quality English transcribed audio clips
totaling about 24 hours from a single speaker. Data
are split into two, with 512 samples set aside for
validation and the remaining available for model
training. VCTK (Veaux et al., 2017) with about
44 hours of transcribed speech from 108 different
speakers is used for the multi-speaker setup. It has
a minimum, average, and maximum of 7, 22.8, and
31 minutes per speaker speech length, respectively.
All audio samples are resampled to 16kHz before
use.

STE training. We use 12 layer transformer
model for HuBERT trained for two epochs on 960

hour-long LibriSpeech corpus (Panayotov et al.,
2015) as our STE module to extract h,. embeddings.
The model splits each T' seconds long audio into
units of 7'/320 seconds and maps each of the ob-
tained units to a 768 dimensional vector. The vec-
tors are drawn from the network’s activation units
on the sixth layer similar to that of Lakhotia et al.
(2021). Continuous vectors are then discretized
to h, embeddings using a codebook made from
applying k-means (with k set to 100) to 100 hour
subset of the data called LibriSpeech-clean (Panay-
otov et al., 2015).

TTE training. We use LJSpeech to train two
different TTE encoder modules; TTE| j5 that uses
all the data from our LISpeech train set and a sec-
ond, TTE., ;5 with only half the data. This is used
to understand the effect of training data size on our
metrics. All variants of TTE we experiment with
are trained only on samples from the single speaker
in LISpeech data.

Text converted to phoneme sequence as de-
scribed by Sun et al. (2019) are inputs with h,
targets extracted from STE for training. Addition-
ally, NAR-TTE requires phonetic alignment to train
the duration predictor. We use Montreal forced-
aligner (McAuliffe et al., 2017) to generate them
for its training. Unlike standard TTS systems that
predict Mel spectrograms, TTE generates discrete
units. Hence, we replace the mean-square error
loss used in Mels with cross-entropy with as many
classes as clusters in the discretization codebook.

ETS training. We train a single-speaker ETS,
SS-ETS using only speech clips from LISpeech
since its training does not require transcriptions.
Similarly, our multi-speaker ETS, MS-ETS de-
coder model uses only raw audio of all speakers
from VCTK data (Veaux et al., 2017). So only em-
beddings h, extracted from VCTK audio clips are
used along with one-hot speaker vector h;. We em-
phasize that VCTK data were used only in training
the multi-speaker-ETS module, and the TTE has
not seen any from this set.

4.2 Comparison to prior art

Single Speaker TTS. We compare against state-
of-the-art TTS models from the literature of both
kinds; Tacotron2 (Wang et al., 2017) from among
autoregressive models and FastSpeech2 (Ren et al.,
2020) from the non-autoregressive models. Both
models are trained using the ground truth tran-
scripts of LIspeech and referred to as SS-Tacotron2



Model MOSt WER|]
SS-FastSpeech2 3.87 4.52
o SS-Tacotron2 3.90 4.59
Traditional TTS ) peech2-SupASR 378 472
Tacotron2-UnsupASR 3.50 11.3
AR-TTE] js+SS-ETS 3.85 4.80
ParrotTTS NAR-TTELys+SS-ETS 3.86 4.58
3.81 6.14

NAR-TTE ;+SS-ETS

Table 1: Subjective and objective comparison of studied TTS models in the single speaker setting.

and SS-FastSpeech?2.

We additionally trained an unsupervised ver-
sion of FastSpeech2 by replacing the ground truth
transcripts with transcriptions obtained from the
ASR model. FastSpeech2-SupASR uses super-
vised ASR model (Radford et al., 2022) to gener-
ate the transcripts while Tacotron2-UnsupASR (Ni
et al., 2022) alternatively uses unsupervised ASR
Wav2vec-U 2.0 (Liu et al., 2022a). We compare
against three variants of ParrotTTS;

1. AR-TTEp;s+SS-ETS that is autoregressive
TTE trained on full LISpeech with single
speaker ETS,

2. NAR-TTELjs+SS-ETS that pairs TTE with
non-autoregressive decoding trained on full
LJSpeech with single speaker ETS, and

3. NAR-TTE} ;+SS-ETS that uses TTE with
2
non-autoregressive decoding trained on half
LJSpeech with single speaker ETS.

Multi-speaker TTS. In the multi-speaker setting,
we compare against a fully supervised Fastspeech2
baseline trained on VCTK with all its speakers
using the entire paired audio-transcript data that
we refer to as MS-FastSpeech2. We borrow the
TTE module trained on LISpeech and use the raw
audio of VCTK to train the multi-speaker ETS mod-
ule. We refer to this multi-speaker variant of our
ParrotTTS model as NAR-TTE; js+MS-ETS that
uses non-autoregressive decoding for TTE similar
to the FastSpeech?2 baseline trained on LJSpeech
alone and multi-speaker ETS trained on VCTK
alone.

For a fair comparison, we also curate a multi-
speaker TTS baseline using a combination of
single-speaker TTS and a voice cloning model.
We use FastSpeech2 trained on LJspeech with
state-of-the-art voice cloning model (Polyak et al.,
2021) in our experiments and refer to this model as

VC-FastSpeech2. We also compare against multi-
speaker TTS trained by obtaining pseudo labels
from a supervised ASR called MS-FastSpeech2-
SupASR. In all multi-speaker experiments, we use
one-hot encoding for speaker identity. Additionally,
we also report numbers from GT-Mel+Vocoder that
converts ground truth Mels from actual audio clip
back to speech using a vocoder (Kong et al., 2020)
for a perspective of best achievable with ideal Mel
frames.

4.3 Evaluation metrics

Naturalness is measured by mean opinion scores
(MOS) from subjective listening tests on a five-
point Likert scale, with 1 being “completely unnat-
ural” speech to 5 indicating “completely natural”
output. We randomly sample five clips per model
from the validation set for each of our forty sub-
jects who are proficient English speakers. They
are asked to make quality judgments by rating the
naturalness of the synthesized speech samples. The
average rating of MOS is calculated and reported.
Intelligibility is measured by the word error rate
of ASR transcriptions of rendered speech. We use
pre-trained Whisper small model (Radford et al.,
2022) for this.

We validate the speaker adaptability by reporting
Equal Error Rate (EER) from a pre-trained speaker
verification network. Specifically, we use the verifi-
cation model proposed in (Desplanques et al., 2020)
trained on VoxCeleb2 (Chung et al., 2018) with a
0.8% EER on the test split of VoxCelebl (Chung
et al., 2018).

5 Results

Quantitative and qualitative results evaluating the
proposed ParrotTTS system are shown in Tables 1
and 2 for single-speaker and multi-speaker models,
respectively.



Model VCTK Transcripts MOS1T WER| EER|
GT-Mel+Vocoder Yes 4.12 2.25 2.12
MS-FastSpeech2 Yes 3.62 5.32 3.21
MS-FastSpeech2-SupASR No 3.58 6.65 3.85
VC-FastSpeech2 No 341 7.44 8.18
NAR-TTEL j5s+MS-ETS No 3.78 6.53 4.38

Table 2: Comparison of the studied multi-speaker TTS models on the VCTK dataset. The second column suggests
if the corresponding method uses the ground truth VCTK transcripts while training.

5.1 Single-speaker TTS

Naturalness and intelligibility. As shown in Ta-
ble 1, ParrotTTS is competitive to state-of-the-art
in the single-speaker setting. In the autoregressive
case, our AR-TTEp js+SS-ETS has a statistically
insignificant drop (of about 0.05 units) on the MOS
scale relative to the Tacotron2 baseline. The non-
autoregressive case has a similar observation (with
a 0.01 drop) on MOS in our NAR-TTE js+SS-
ETS model relative to FastSpeech2. This empiri-
cally establishes that the naturalness of the speech
rendered by ParrotTTS is on par with the currently
established methods. The WER scores show a sim-
ilar trend with a statistically insignificant drop (of
under 0.2pp!) among the autoregressive and non-
autoregressive model classes.

Supervision and data efficiency. In the study
to understand how the degree of supervision af-
fects TTS speech quality, we see a clear drop by
0.28 MOS units in moving from the FastSpeech2-
SupASR model that employs supervised ASR for
transcriptions to Tacotron2-UnsupASR model us-
ing unsupervised ASR. Despite some modeling
variations, this is generally indicative of the impor-
tance of clean transcriptions on TTS output quality,
given that all other models are within 0.05 MOS
units of each other.

The data requirement for TTS supervision needs
to be understood in light of this impact on output
quality, and we show how ParrotTTS helps cut
down on this dependence. TTE is the only mod-
ule that needs transcriptions to train, and we show
that by reducing the size of the train set by half in
NAR-TTE | ;+SS-ETS the MOS is still compa-
rable to tha% of the model trained on all data NAR-
TTELjs+SS-ETS (with only about 0.04 units MOS
drop). Finally, the MOS numbers of FastSpeech2-
SupASR, need to be read with some caution since
the supervised ASR model used, Whisper, is it-
self trained with plenty of transcriptions (spanning

"Percentage points abbreviated as pp.

over 600k hours) from the web, including human
and machine transcribed data achieving very low
WERSs on various public and test sets. So, the ma-
chine transcriptions used in FastSpeech2-SupASR
are indeed very close to ground truth.

5.2 Multi-speaker TTS

Naturalness and intelligibility. Table 2 summa-
rizes results from our multi-speaker experiments.
Among all methods listed in it, NAR-TTE js+MS-
ETS clearly outperform all other models ranking
only below re-synthesizing from ground truth Mels,
GT-Mel+Vocoder. Interestingly, ParrotTTS fares
even better than MS-FastSpeech2, which is, in turn,
better than other models that ignore transcripts at
the train, namely, MS-FastSpeech2-SupASR and
VC-FastSpeech2. On the WER metric for intelli-
gibility, ParrotTTS is about 1pp behind supervised
MS-FastSpeech? but fares better than the other two
models that discard VCTK transcripts for training.
Speaker adaptability. VC-FastSpeech?2 is the
closest in terms of experimental setup since it is
limited to transcriptions from LJSpeech for train-
ing similar to ours, with VCTK used only for adap-
tation. In this case, EER of NAR-TTE; js+MS-
ETS is about twice as good as that of VC-
FastSpeech2. However, improvements are visible
when VCTK transcripts are part of training data
but remain under 1pp relative to ParrotTTS while
GT-Mel+Vocoder continues to dominate the score-
board leaving room for further improvement.

5.3 Stabler training and faster inference

In Figure 3, we compare training profiles of
Tacotron2 and AR-TTE keeping batch size the
same. As visualized in Figure 3(a), the attention
matrix in Tacotron2 takes about 20k iterations to
stabilize with an anti-diagonal structure and pre-
dict a phoneme-aligned Mel sequence. AR-TTE, in
contrast, is about ten times faster at predicting a dis-
crete HUBERT unit sequence that aligns with input
phonemes taking only about 2k iterations to arrive
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Figure 3: Visualization of attention between output units and phonemes. (a) Evolution of attention matrix with
training steps. (b) Attention loss plotted against training steps.

at a similar-looking attention plot. While the snap-
shots are illustrative, we use the guided-attention
loss described by Tachibana et al. (2018) as a met-
ric to quantify the evolution of the attention matrix
through training steps. As shown in Figure 3(b), the
loss dives down a lot sooner for ParrotTTS relative
to its Tacotron2 counterpart. In a similar compar-
ison, we observe that NAR-TTE converges (20k
steps) about eight times faster than FastSpeech2
(160k steps).

We suppose that the faster convergence derives
from the lower variance of discrete embeddings in
ParrotTTS as opposed to the richness of Mels that
are complete with all acoustic variations, including
speaker identity, prosody, etc. The output speech is
independent of inputs given the Mel-spectrogram
unlike ParrotTTS embeddings that further need
cues like speaker identity in later ETS module. We
hypothesize that segregating content mapping away
from learning acoustics like speaker identity helps
improve training stability, convergence, and data
efficiency for the TTE encoder.

The proposed NAR-TTE system also improves
inference latency and memory footprint, which
are crucial factors for real-world deployment. On
NVIDIA RTX 2080 Ti GPU, we observe Par-
rotTTS serves 15% faster than FastSpeech2, re-
ducing the average per utterance inference time to
11ms from 13 ms. Furthermore, the TTE module
uses 17M parameters in contrast to 3bM parame-
ters of the Mel synthesizer module in Fastspeech?2.

6 Conclusion, limitations and future work

In this work, we proposed ParrotTTS, a fast, high
quality, and efficient to train TTS system. The two-

stage learning process of ParrotTTS is designed to
leverage untranscribed speech data and the corre-
sponding self-supervised embeddings. We show
that even when trained using transcribed data of
a single speaker from the LJSpeech dataset, Par-
rotTTS can synthesize speech in 108 different
voices of the VCTK corpus. In terms of natural-
ness of speech, ParrotTTS outperforms the estab-
lished prior art and alternative baselines by a notice-
able margin in the multi-speaker setup. On single
speaker benchmarks, ParrotTTS provides competi-
tive performance compared to the prior art. Overall,
our work paves the way for further explorations to-
wards exploiting SSL in TTS models.

Our experiments are limited to a single language.
A deeper study exploring multiple languages, ef-
fects of background noise, accents, and other de-
mographic variations is left for future work. The
current pre-trained HuBERT model skips prosody
information (Kharitonov et al., 2021), so the model
has no levers to control these prosodic variations.
We want to study ways to bring prosodic controlla-
bility into ParrotTTS. Further, it would be essential
to improve TTE training to use noisy samples that
the current model does not work well with to lever-
age weak supervision to scale.

7 Ethical Considerations

Our research is founded on ethical considerations.
We are excited about the potential of text-to-speech
synthesis to push the frontier of technology, such
as in accessibility (giving voice to the voiceless),
human-computer interaction, telecommunications,
and education. However, there is the potential for
misuse. Notably, multi-speaker text-to-speech sys-



tems have raised concerns about unethical cloning.
Our experiments limit to publicly available datasets,
and our method is not intended for synthesizing
someone’s voice without their permission. Another
potential misuse is creating an audio file of some-
one supposedly speaking words they never actually
uttered. We are keenly aware of these negative
consequences. While the benefits outweigh the
concerns at this point, we firmly believe that the
research community should proactively continue
to identify methods for detecting and preventing
misuse.

Our approach is trained on western speech data
and has yet to be validated on different languages
or people with speech impediments. As such, the
dataset and results are not representative of the
population. A deeper understanding of this issue
requires future studies in tandem with linguistic
and socio-cultural insights.
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