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ABSTRACT

Continual learning has made significant progress in addressing catastrophic for-
getting in vision and language domains, yet the majority of research has treated
these modalities separately. The exploration of multimodal continual learning
remains sparse, with a few existing works focused on specific applications like
VQA, text-to-vision retrieval, and incremental multi-tasking. These efforts lack
a general benchmark to standardize the evaluation of models in multimodal con-
tinual learning settings. In this paper, we introduce a novel benchmark for Multi-
modal Class-Incremental Learning (MCIL), designed specifically for multimodal
classification tasks. Our benchmark comprises a curated selection of multimodal
datasets tailored to classification challenges. We further adapt a widely used
vision-language model to multiple existing continual learning strategies, provid-
ing crucial insights into the behavior of vision-language models in incremental
classification tasks. This work represents the first comprehensive framework for
MCIL, establishing a foundation for future research in multimodal continual learn-
ing.

1 INTRODUCTION

Continual learning aims to develop models that can learn incrementally, integrating new knowledge
while retaining the one acquired on previous training iterations. This challenge, while being a rep-
resentative scenario of the well known stability-plasticity dilemma (Mermillod et al., 2013), has
gained considerable traction, particularly in vision or language domains, where significant progress
has been made to mitigate catastrophic forgetting. However, despite this progress, the majority of
research has treated them separately. This limitation has hindered the exploration and comparison
of more complex, pure multimodal scenarios where information from multiple modalities must be
processed and retained simultaneously.

Multimodal learning, which combines data from different sources like images, text, or audio, among
others, offers the potential for richer representations and enhanced understanding. Yet, applying
continual learning to such settings has been underexplored. Most existing works in multimodal
continual learning have focused on specific applications, such as Visual Question Answering (VQA)
(Qian et al., 2023), text-to-image retrieval (Wang et al., 2021; Sun et al., 2024), and task-incremental
settings (Srinivasan et al., 2022), whereas classification tasks lack a standardized benchmark for
comparing results and tracking scientific advancements, reducing generalization. This gap has made
it difficult to assess progress systematically and fairly across approaches, leaving the challenge of
developing new solutions and standardizing multimodal continual learning unresolved.

Several recent works have attempted to address continual learning in isolated modalities by intro-
ducing benchmarks for incremental object detection (Han et al., 2021; Verwimp et al., 2023), natural
language understanding (Madotto et al., 2020), and other single-modality tasks (Lin et al., 2021).
However, extending these frameworks to multimodal settings presents unique challenges due to the
added complexity of modality-specific representations and the interactions between them. For exam-
ple, models must learn how to retain visual features while simultaneously updating language-based
understanding—an inherently more challenging scenario than unimodal tasks. Furthermore, the di-
verse nature of multimodal data complicates the design of incremental learning strategies, which
need to balance between modality-specific knowledge retention and cross-modal alignment.
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To address these challenges, we introduce a novel Multimodal Class-Incremental Learning (MCIL)
benchmark tailored for multimodal classification tasks. Our benchmark includes a curated set of
multimodal datasets that span a variety of vision-language classification tasks, providing a compre-
hensive platform for evaluating the performance of continual learning algorithms in a multimodal
setting. To ensure the benchmark’s relevance and utility, we adapt the widely used vision-language
model Flava (Singh et al., 2022) to multiple existing continual learning strategies, offering insights
into how these models behave in incremental classification scenarios. This work serves as the first
systematic framework for multimodal class incremental learning, establishing a foundation that fu-
ture research can build upon.

Our contributions are threefold: (1) We propose the first benchmark specifically designed for multi-
modal class-incremental learning, enabling standardized evaluation and comparison of models. (2)
We adapt a state-of-the-art vision-language model to various continual learning strategies, shedding
light on the strengths and limitations of these methods in a multimodal context. (3) We provide com-
prehensive experimental results that reveal key insights and identify promising directions for future
research in the field. By addressing the need for a standardized evaluation protocol, our benchmark
aims to catalyze research in multimodal continual learning, fostering a deeper understanding of how
to effectively maintain knowledge across evolving multimodal data distributions.

2 RELATED WORK

2.1 INCREMENTAL LEARNING

Incremental learning addresses the challenge of continuously learning new information from dy-
namic, changing data streams (van de Ven et al., 2022; Mai et al., 2022; Qu et al., 2021). The
problem can be framed using various scenarios, such as task-incremental or class-incremental learn-
ing, depending on how task identifiers are provided over time, with these being the most common
settings considered in the literature (Wang et al., 2024). Various strategies tackle these challenges by
enabling learning new tasks while mitigating the forgetting of previously acquired knowledge. For
instance, regularization-based techniques apply constraints to specific parameters related to earlier
tasks, thereby preserving prior knowledge and preventing catastrophic forgetting (Kirkpatrick et al.,
2017; Li & Hoiem, 2017; Zenke et al., 2017). Replay-based methods leverage stored samples by
maintaining data from previously learned tasks in a rehearsal buffer and continuously interleaving
it with the training of new tasks, allowing for ongoing consolidation of past knowledge (Rolnick
et al., 2019; Isele & Cosgun, 2018; Wang et al., 2024; Buzzega et al., 2020). More recently, efficient
prompt-based rehearsal-free methods have emerged, combining powerful pretrained backbones with
learnable prompts. This approach preserves knowledge across tasks without altering the backbone
weights, thereby significantly mitigating forgetting in the entire system (Wang et al., 2022b;c; Smith
et al., 2022; Razdaibiedina et al., 2023).

2.2 VISION-LANGUAGE MODELING

Vision-language modeling is at the intersection of computer vision and natural language processing.
It seeks to develop models capable of understanding and generating multimodal information, where
visual inputs are paired with corresponding linguistic descriptions. Transformer models significantly
improved multimodal learning thanks to the inherent capability of self-attention operations to con-
nect multimodal signals (Nagrani et al., 2021), and to the introduction of self-supervised pretaining
paradigms specifically designed to perform joint representational learning (Singh et al., 2022; Bao
et al., 2022; Wang et al., 2022a). The fusion of information from different modalities has been
modeled adopting different strategies, ranging among early-, mid-, and late-fusion, based on the
information processing stage where the two modalities are combined (Nagrani et al., 2021). These
advancements enable robust multimodal alignment by establishing deep relationships and semantic
correspondences between sub-components of visual and linguistic instances. Such capability allows
vision-language models to succeed in many scenarios such as vision-language reasoning (Antol
et al., 2015; Suhr et al., 2018; Goyal et al., 2017), text generation for image captioning (Chen et al.,
2015), and text-to-image retrieval (Plummer et al., 2015; Lin et al., 2014). Furthermore, the easy
access to foundational pretrained vision-language models, like CLIP (Radford et al., 2021), popu-
larized few-shot classification via image-text contrastive fine-tuning (Zhou et al., 2022b;a; Khattak
et al., 2023).
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2.3 MULTIMODAL CONTINUAL LEARNING

Applications of continual learning strategies in multimodal settings, especially vision-language
ones, are sparse and heterogeneous. A popular approach is to leverage the few-shot capabilities of
vision-language pretrained models to turn a vision class-incremental learning problem into a multi-
modal one, where classification is achieved via contrastive learning (D’Alessandro et al., 2023; Yu
et al., 2024; Thengane et al., 2022). These approaches build upon the strength of vision-language
in leveraging text embeddings to represent visual classes incrementally. This strategy offers an
implicit way to handle new visual categories by extending textual prompts with new concepts, al-
though the task here is still inherently unimodal. Another approach is focused on task-incremental
learning. In this framework, different tasks are learned continuously, where the system is not only
concerned with the representational learning of new categories but also handling completely new
tasks (Srinivasan et al., 2022) . This scenario seeks to mitigate catastrophic forgetting across diverse
tasks by retaining knowledge from previously learned tasks, rather than solely focusing on previous
data samples. Furthermore, a more established multimodal continual learning benchmark is found
in VQA (Zhang et al., 2023; Kane et al., 2022; Zhang et al., 2022), where a system must answer
natural language questions about images. The continual learning challenge in VQA revolves around
the ability to adapt to new visual scenes and linguistic expressions over time, as the model is incre-
mentally exposed to new domains with novel semantics, vocabulary, and visual environments. We
observe that none of these approaches address the need for a benchmark specifically designed for
pure classification tasks in multimodal scenarios.

3 MCIL BENCHMARK

In this section, we present the main components of the MCIL benchmark, namely, the datasets that
constitute the classification challenge, the problem formulation, and the set of continual learning
strategies adapted to vision-language modeling providing a conceptual baseline for the MCIL chal-
lenge.

3.1 DATASETS

The proposed benchmark comprises 3 datasets from distinct semantic domains. In each dataset,
examples are presented as paired images and text that share a common semantic grounding. By
ensuring this alignment between modalities, we emphasize the true strength of a multimodal model,
where both visual and textual information must be jointly leveraged for effective classification.

Caltech-UCSD Birds (CUB). This dataset is built upon the original CUB database (Welinder et al.,
2010) with the addition of model-based captions entailing fine-grained visual descriptions of bird
images (Reed et al., 2016). The dataset contains 11.764 RGB images and 200 well-balanced classes
representing bird species. Captions provide feature-by-feature rich structured information focusing
on body part attributes, rather than generic informal visual descriptions. Paired samples where
textual description might cue the bird species (e.g. the name of the species is contained in the
caption) have been removed.

Oxford Flowers. This dataset is built upon the original Oxford Flowers database (Nilsback &
Zisserman, 2008) with additional fine-grained visual descriptions as image captions (Reed et al.,
2016). The dataset contains 8.189 RGB images and 102 unbalanced classes representing flower
species. As for the previous dataset, textual descriptions provide structured information about body
attributes. Paired samples where textual description might cue the flower species have been removed.

DVM-CAR. This dataset consists of a great database of car models built for marketing research
purposes (Huang et al., 2022). The dataset is already multimodal since it aligns car images with a
set of tabular features that cover various meta-data variables and form a relational database. The
dataset contains more than 1 million samples and 286 heavily unbalanced classes representing car
models. We applied a data transformation procedure to turn 13 variables in the table into a sentence
containing the variable names and their respective value in a semantically consistent structure (e.g.
”the [fuel type] is [diesel]”, where the square brackets contain the original tabular feature name-
value pair). Such sentences are paired with respective car images to gather the image-text paired
sample.
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3.2 PROBLEM FORMULATION

In the MCIL setting, we are given a stream of labeled training sets or experiences E1, E2, . . . , ET ,
where each experience Et = {(xi,t, yi,t)}

NE
t

i=1, consists of NE
t training examples. As in standard

continual learning, classes do not overlap among experiences. In our setting, x = [v, l] is the
multimodal sample with v and l corresponding to the aligned vision and language data, respectively.
For any given experience t, classification takes place via the model:

gt,Θ(ft,Φ([vt, lt])) (1)

where ft,Φ(·) is a multimodal feature extractor parameterized by Φ, and gt,Θ is a proper classifica-
tion head parameterized by Θ, t = 1, 2, . . . , T .

Evaluation Metric. For the evaluation phase, experience-wise performance is computed by con-
sidering all the classes encountered up to the current experience t. Consider the stream of labelled
evaluation sets D1, D2, . . . , DT , and model g(f(·)), then the evaluation accuracy for experience t
is computed as follows:

At =

∑
(xi,yi)∈D1∪D2∪...Dt

[gt(ft(xi = [vi, li])) = yi]

ND
1 +ND

2 + . . .+ND
t

(2)

where ND
t is the number of evaluation examples for experience t, and [·] the indicator function.

More precisely, score At is the balanced accuracy defined as the accuracy score with class-balanced
sample weights (Brodersen et al., 2010), to account for the unbalance of the selected benchmark
datasets.

3.3 MODELS

To evaluate the behavior of vision-language models on the MCIL benchmark datasets, any model
compatible with eq. 1 can be considered—specifically, models capable of producing a joint repre-
sentation of vision and language instances that can later be used by a classification head. In general,
most multimodal fusion paradigms satisfy this requirement.

However, most do not directly yield a compressed multimodal representation; instead, they rely
on additional steps to combine the unimodal representations through mathematical operations such
as concatenation, averaging, or summation of the unimodal hidden states. While these approaches
ensure multimodal alignment, they require additional processing. Models like CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) produce aligned vision and language hidden states separately,
necessitating further adaptation to obtain a final multimodal representation that is compatible with
eq. 1.

In contrast, models such as ViLBERT (Lu et al., 2019) and ViLT (Kim et al., 2021) inherently
perform information fusion through cross-modal attention, although their outputs remain modality-
specific. While these models are generally well-suited for a wide range of use cases and continual
learning strategy adaptations, they may require additional engineering for specific methods—such
as modern rehearsal-free approaches—that demand a single multimodal hidden state extracted from
a frozen backbone. To address this issue, we aim to propose an unbiased vision-language adaptation
that does not involve additional engineering or specialized architectural modifications.

Models such as VL-BEiT (Bao et al., 2022), BEiT3 (Wang et al., 2022a), and Flava (Singh et al.,
2022), are ideal candidates, as they generate a joint multimodal embedding that represents both
modalities during pretraining, without post hoc manipulation of aligned unimodal representations.
Among these, we selected Flava as the primary model for evaluating vision-language continual
learning adaptations on the MCIL benchmark, as it offers a balanced trade-off between complexity
and flexibility while satisfying the constraints of eq. 1. Flava is a hierarchical model where data is
first processed through separate, specialized vision and language encoders before being fed into a
multimodal encoder, which performs attention-based fusion on the resulting unimodal hidden states.
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A multimodal class token is also prepended to the joint hidden state sequence, producing the final
multimodal representation used for classification.

To further enhance the proposed benchmark, we have tested Flava across various continual learning
strategies, providing a comprehensive view of its performance under different scenarios.

Upper Bound (UB). The pretrained Flava model is fine-tuned on all the training sets of all the
experiences up to the current experience.

Lower Bound (LB). The pretrained Flava model is continuously trained on every subsequent ex-
perience. In the first experience, the pretrained model is fine-tuned on the first experience, and the
weights are left to update for subsequent experiences training sets.

Dual Prompt (DP). Pretrained parameters of the Flava model are kept frozen, while two types of
learnable prompts are responsible for learning through experience and preserving previous knowl-
edge (Wang et al., 2022b). In particular, E-Prompts and G-Prompts are responsible for learning
task-invariant and task-specific knowledge, respectively. A different set of E-Prompts is learned for
each experience via prefix-tuning, while G-Prompts are continuously updated through experiences
to represent general knowledge across tasks. Both prompts are mounted on the two unimodal en-
coders, as well as on the multimodal encoder, independently. In this way, experience-wise model
adaptation is modality-specific to account for unimodal data distribution shift, but also multimodal
to account for joint, abstract distribution shift. During the evaluation phase, a query function is
used to select the proper E-Prompts for a given example, from a prompts pool. The query function
consists of learning a mapping between E-Prompts keys and class tokens obtained from a pretrained
frozen static Flava model.

Dual Prompt closed-form (DPcf). This is a variant of the Dual Prompt model, where the mapping
between the class token of a given example and the E-Prompts keys is not learned, but it is com-
puted analytically by solving the optimization problem in closed-form (Appendix A for details).
E-Prompts and G-Prompts are applied and free to be learned as in standard Dual Prompt, but the E-
Prompts keys no longer need to be learned since they are computed analytically for each experience,
independently.

Learning to Prompt (L2P). The Flava model is kept frozen and prompt-tuning is applied to learn
a mapping between experience samples and a preferred set of prompts for that experience (Wang
et al., 2022c). A set of top-N prompts are extracted from a pool of prompts, and prepended to the
hidden states via concatenation before passing to the encoder. The top-N prompts are selected via
a similarity score between the class token of a given example and prompt keys, in order to assign
a likelihood to the most suitable prompts for that experience. As in Dual Prompt, the class token
for computing the similarity score is obtained by extracting the multimodal class token of the data
sample from a frozen static Flava model.

Experience Replay (ER). The pretrained Flava model is fine-tuned on the first experience training
set, and trained on subsequent experience with the aid of a sample buffer containing image-text pairs
from past experiences. We considered two versions of Experience Replay, one where the buffer is
iteratively filled with a subsample of 25% of examples per class of the previous experience, namely,
ER25, and one with a 10% subsampling rate, namely, ER10.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We use the Flava model and its corresponding pretrained weights from the HuggingFace Transform-
ers library (Wolf et al., 2020) as our initial backbone. All models and experimental pipelines are
implemented using a custom PyTorch package with support from the Avalanche library (Lomonaco
et al., 2021). For all continual learning strategies, the training is conducted for 5 epochs using
AdamW optimizer (Loshchilov, 2017). The learning rate is set to 0.005 for L2P, DP, and DPcf, and
1e− 5 for all other strategies. The batch size is uniformly set to 16 for both training and evaluation
across all datasets and models.

All experiments are executed on three GeForce RTX 3090 Ti GPUs. To ensure robust model com-
parison, we report the average evaluation accuracy, as defined in eq. 2, computed over 3 indepen-
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Figure 1: Results.

Table 1: Average balanced accuracy across all experiences (standard errors in parenthesis).

Dataset

Model CUB Flowers DVM Car

DP 67.30± 3.33 83.77± 2.46 56.54± 4.58

DPcf 66.13± 3.61 84.14± 2.45 57.62± 4.82

ER25 65.20± 5.96 79.54± 5.09 83.17± 4.34

ER10 56.23± 6.66 67.22± 6.33 70.93± 5.96

L2P 53.42± 4.75 52.49± 5.51 40.63± 6.11

LB 35.17± 7.77 38.11± 8.48 36.99± 8.08

UB 85.97± 1.39 99.31± 0.12 98.90± 0.10

dent runs. The datasets are split into 10 incremental experiences, each containing an equal number
of classes. However, the total number of samples and class-specific distributions may vary across
experiences.

4.2 RESULTS

In Table 1, we present the evaluation results of the vision-language continual learning adaptations to
the benchmark datasets, as the average across-experience balanced accuracy (Figure 1). A complete
table of results showing evaluation performance for every experience is presented in Appendix B.
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The experimental results indicate that the upper bound performance is notably high, with minimal
accuracy decay across experiences, suggesting that the classification task itself is not inherently
complex. However, all tested continual learning methods experience substantial performance degra-
dation and forgetting, highlighting the difficulty of the setting due to shifts in multimodal data dis-
tribution. The gap between the upper bound and the results achieved by continual learning strategies
underscores the challenge of balancing stability and plasticity over time.

Moreover, the sensitivity of various datasets to different families of methods varies considerably.
Specifically, parameter-efficient approaches that utilize multimodal pretraining knowledge by keep-
ing the backbone frozen tend to exhibit better long-term performance on the CUB and Flowers
datasets. Conversely, the DVM Car dataset demonstrates the opposite pattern, with these strategies
underperforming, emphasizing the need for more specialized adaptation techniques that are able to
efficiently handle multimodal data distributions.

This discrepancy arises from the nature of the image-text relationship in the datasets. In DVM Car,
the language data is represented as sentence-formatted tabular information, which lacks the semantic
richness found in the textual captions of the CUB and Flowers datasets. As a result, prompt-based
methods, which rely on adapting a language backbone, face additional challenges when the semantic
connection between image and text is weak. In this context, experience replay methods have an
inherent advantage, unless further prompt engineering or multimodal adaptations are employed.

The continual learning adaptation of L2P demonstrates suboptimal performance overall, contrasting
with its success in vision-only continual learning tasks (Wang et al., 2022c). A key observation
is that DPcf performs comparably to its non-analytical, and original, variant. DP-like methods,
which utilize a query function to match a class token with a learnable experience-related key, can
be computationally expensive, as they require an additional forward pass to extract the class token
from a frozen pretrained backbone. This computational cost becomes particularly burdensome in
multimodal scenarios, where models tend to be larger and more resource-intensive than in unimodal
tasks. However, DPcf reduces this overhead by requiring the additional forward pass only once per
experience, rather than at every training step. This provides a computational advantage, especially
when dealing with complex models like Flava, which have hierarchical architectures.

This efficiency is one reason why multimodal models that construct a multimodal class token during
pretraining have a natural advantage in parameter-efficient continual learning. By building a unified
representation for vision-language fusion, such models streamline the learning process and reduce
computational costs, making them well-suited for multimodal continual learning scenarios.

5 CONCLUSIONS

In this paper, we introduced the MCIL benchmark, the first multimodal continual learning bench-
mark designed specifically for evaluating multimodal continual learning methods in classification
tasks. Using the Flava architecture as a baseline, we evaluated how vision-language models adapt to
incremental learning scenarios. Our experimental results reveal that the proposed datasets pose vary-
ing challenges to different methods, largely due to differences in the inherent semantic alignment
between image and text instances.

The benchmark also underscores the key challenges of adapting multimodal models to continual
learning scenarios. While vision-language models provide strong representations, their adaptation to
continual learning is complex, particularly in handling multimodal data and shifting distributions. In
this study, we applied basic adaptation schemes of existing continual learning strategies to maintain
consistency with the original methods. However, these often resulted in suboptimal performance,
suggesting that more advanced approaches are required to fully harness the potential of these models
in class-incremental classification tasks.

Future research should focus on more sophisticated prompt engineering, improved multimodal in-
tegration techniques, and parameter-efficient adaptations to enhance both robustness and scalability
in continual learning environments. The proposed benchmark datasets can serve as a common foun-
dation for testing such advancements.
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A ANALYTICAL SOLUTION OF THE E-PROMPTS KEY OPTIMIZATION IN THE
DUAL PROMPT MODEL

The objective function for DP (Wang et al., 2022b) includes a query-key matching term in addition to
the standard cross-entropy loss, where the query is the function extracting the class token of a sample
from a static frozen backbone, and the key is a learnable embedding. The goal of the optimization
problem is to find the key embedding satisfying the following expression:

max
k

N∑
i=1

γ(q(xi), k) = max
k

N∑
i=1

q(xi) · k
∥q(xi)∥∥k∥

(3)

where γ is the cosine similarity function, q(xi) the query function for the i-th sample, k a learnable
key, q(xi) · k indicates the dot product, and N the number of samples in the experience training
set. In the original paper, k is optimized via back-propagation. However, we observe that k has an
analytical solution. Let’s normalize the query vector by defining:

q̃i =
q(xi)

∥q(xi)∥
. (4)

Substituting this into the objective function gives:

max
k

N∑
i=1

q̃i · k =

max
k

(
N∑
i=1

q̃i

)
· k

(5)
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where the second step is guaranteed by the linearity of the dot product. Note that we omit ∥k∥ if we
assume k has a unit form already, that is ∥k∥ = 1. Let Q represent the sum of the normalized query
vectors:

Q =

N∑
i=1

q̃i.

The objective function now becomes:

max
k

Q · k. (6)

Since Q needs to be a unit vector for the cosine similarity operation, maximization is ensured when
k is computed as follows:

k =
Q

∥Q∥

=

∑N
i=1

q(xi)
∥q(xi)∥∥∥∥∑N

i=1
q(xi)

∥q(xi)∥

∥∥∥ .
(7)

The optimal key can be computed with a single forward pass through all the examples of any given
experience training set.
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B FULL RESULTS

The following tables report the dropping rate (PD) metric, which measures the drop in accuracy in
the last experience w.r.t. the accuracy in the first one as a measure of forgetting, and the across-
experience average balanced accuracy as a measure of overall performance.

Table 2: CUB200 results.

Method
Avg Accuracy in each session (%)

Avg. ↑ PD ↓
1 2 3 4 5 6 7 8 9 10

LB 93.80 56.11 45.87 31.99 30.14 23.49 19.60 20.12 17.09 13.52 35.17 58.63

L2P 93.30 60.19 56.04 51.44 47.05 44.88 46.90 46.63 43.59 44.22 53.42 39.87

ER10 93.84 86.04 70.83 59.53 52.85 46.53 41.86 42.04 34.01 34.78 56.23 37.61

ER25 93.84 88.00 82.84 74.58 65.96 58.72 52.85 49.95 44.87 40.40 65.20 28.64

DPcf 91.15 78.46 71.49 67.11 63.56 60.88 58.99 57.76 56.39 55.49 66.13 25.02

DP 90.82 78.26 72.62 67.42 64.32 62.90 60.87 59.13 59.07 57.54 67.30 23.52

UB 95.18 90.28 88.06 86.95 86.21 84.34 83.57 82.37 81.96 80.75 85.97 9.21

Table 3: Flowers results.

Method
Avg Accuracy in each session (%)

Avg. ↑ PD ↓
1 2 3 4 5 6 7 8 9 10

LB 99.90 67.42 44.31 39.44 24.19 30.51 21.64 19.96 16.47 17.26 38.11 61.79

L2P 99.53 61.25 48.66 40.90 47.80 48.01 45.64 45.66 45.40 42.02 52.49 47.05

ER10 99.90 97.75 82.68 71.48 63.67 52.78 53.53 56.24 49.57 44.60 67.22 32.68

ER25 99.90 98.44 95.93 90.38 82.39 75.78 69.79 64.40 59.40 58.94 79.54 20.37

DP 99.31 94.73 87.96 82.84 81.89 79.20 79.28 78.21 78.17 76.08 83.77 15.55

DPcf 99.85 94.52 87.69 85.42 81.73 79.56 78.50 78.49 78.33 77.34 84.14 15.71

UB 100.0 99.79 99.68 99.37 99.32 98.94 99.16 99.06 98.89 98.91 99.31 0.69

Table 4: DVM cars results.

Method
Avg Accuracy in each session (%)

Avg. ↑ PD ↓
1 2 3 4 5 6 7 8 9 10

LB 99.33 58.87 46.09 32.94 29.05 24.66 20.83 17.77 21.31 19.09 36.99 62.34

L2P 87.59 55.88 49.30 38.85 33.53 30.16 29.73 29.24 23.90 28.15 40.63 46.96

DP 92.99 67.74 59.58 54.29 52.19 49.39 48.92 47.51 47.41 45.43 56.54 36.44

DPcf 92.74 73.85 62.54 57.46 52.62 50.43 47.08 44.40 47.15 47.93 57.62 35.12

ER10 98.86 96.90 89.02 78.28 71.55 62.15 55.68 53.51 50.67 52.64 70.93 27.93

ER25 99.13 97.99 96.28 93.08 88.53 82.28 75.67 67.86 66.94 63.94 83.17 15.96

UB 99.39 98.81 99.13 99.07 98.81 98.97 99.00 99.00 98.31 98.47 98.90 0.49
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