
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAACL: FEDERATED ADAPTIVE ASYMMETRIC CLUS-
TERED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Asymmetric clustering has remained an unexplored problem in Clustered Federated
Learning (CFL), diverging from the traditional approach of forming independent,
non-interacting clusters. Previous methodologies have been limited to either sepa-
rating devices with different data quality into distinct clusters or merging all devices
into a single cluster, both of which compromise either data utilization or model
accuracy. We propose a new federated learning technique where some devices may
contribute to the training of the models of other devices, but without enforcing
reciprocity, leading to a form of asymmetric clustering. This is beneficial in a
variety of situations including scenarios where it is desirable for a device with high
quality data to help train the model of a device with low quality data, but not vice-
versa. This method not only enhances data utilization across the devices, but also
maintains the integrity of high-quality data. Through a rigorous theoretical analysis
and empirical evaluations, we demonstrate that our approach can efficiently find
high quality (asymmetric) clusterings for numerous devices, achieving competitive
performance metrics on existing CFL benchmarks.

1 INTRODUCTION

Federated learning (McMahan et al., 2017) is a machine learning technique designed to train algo-
rithms across decentralized devices while keeping data localized, thus addressing privacy, security,
and data access challenges. Unlike traditional centralized machine learning methods where all data
is uploaded to one server, federated learning allows for the model to be brought to the data source
where training occurs. This approach is particularly valuable in scenarios where data privacy is im-
portant, such as in healthcare, finance, and mobile computing. For example, smartphones that utilize
predictive text input features can improve their models using federated learning by learning from
user interactions without ever needing to upload individual typing data to a central server. However,
federated learning introduces complexities such as handling non-IID (independently and identically
distributed) data across various devices, dealing with devices that have varying computational and
storage capacities, and managing communication costs and efficiencies.
In practice, it is common for devices to encounter data from diverse distributions. Since heterogeneous
data may induce different optimal predictors at different devices, this has led to the development
of personalized federated learning techniques (Fallah et al., 2020). A popular approach consists of
training a global predictor that is adapted or fine-tuned for each device. However, this assumes that the
optimal predictors at each device are similar enough that fine-tuning / adapting a global predictor will
be sufficient. In cases where some optimal predictors are very different and fine-tuning is insufficient,
then clustered federated learning (Sattler et al., 2020; Mansour et al., 2020) becomes attractive. For
instance, in mobile keyboard prediction, where users from different regions have distinct linguistic
preferences and slang, fine-tuning a single global model may not be effective; clustered federated
learning, on the other hand, allows for creating separate models for different linguistic groups to
ensure that predictions remain relevant and accurate. In clustered FL, devices are partitioned in
clusters such that devices share models only with the other devices in their cluster. When clusters
combine devices with similar data while making sure that devices with very different data are in
different clusters, then learning will be more effective. Existing techniques for clustered FL (Sattler
et al., 2020) can learn clusters dynamically. However, most existing techniques assume a fixed number
of clusters that is known a priori and all existing techniques assume that each device contributes to a
single cluster. As we will explain later, this last assumption is suboptimal in asymmetric situations
where training with the data of a device could help improve the prediction accuracy of other clusters
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in addition to the cluster that this device belongs to. We describe a technique that relaxes those two
assumptions.
Determining the correct number of clusters beforehand can be challenging. This is particularly true in
federated learning environments where data is distributed across numerous devices with potentially
diverse data distributions. Static clustering methods that assume a fixed number of clusters can lead
to inefficiencies and inaccuracies, as they might not accommodate the dynamic nature of real-world
data, which can vary in terms of volume, variety across different devices.
Adaptive clustering addresses this limitation by employing algorithms that dynamically adjust the
number of clusters based on the evolving characteristics of the data. Instead of pre-defining a cluster
count, adaptive clustering methods continuously analyze the incoming data and modify the cluster
count in real-time. This flexibility allows the learning process to maintain high levels of efficiency
and adaptability.
In federated learning, asymmetric scenarios often arise where the benefits of model sharing are not
reciprocal between devices. For instance, consider a situation involving two devices, device A and
device B. Device A has a large dataset characterized by the underlying conditional distribution
pA(y | x), whereas Device B has a smaller dataset with a similar conditional distribution pB(y | x)
that matches pA(y | x) for 90% of the inputs x. For device A, incorporating device B’s data could
potentially introduce a bias that might degrade the accuracy of its own model because of the 10%
divergence in their data distributions. Thus device A would not wish to train on data from device
B. On the other hand, for device B, clustering with device A could significantly reduce variance
owing to the greater volume of data it would benefit from, thereby enhancing its overall performance
(reduction in variance outweighs the bias introduced). For example, regarding keyboard prediction,
smartphone users of a rare dialect may benefit from the model trained with a large user base of a
similar common dialect, but not vice-versa.
The key contributions of our research are outlined as follows:

• Introduction of Asymmetric Clustering: We propose the novel concept of asymmetric
clustering, enabling a more flexible and dynamic cluster formation that better reflects the
diversity of data quality and distribution among devices.

• Development of FAACL: We implement asymmetric clustering within the framework of
clustered federated learning, which not only groups non-reciprocal devices into distinct
clusters but also establishes inter-cluster relationships.

• Integration of statistical tests and bounds: We incorporate a robust statistical test, the
Wilcoxon signed rank test (Wilcoxon, 1992) and Hoeffding’s bound (Hoeffding, 1994) to
guide the cluster formation process.

• Empirical Validation: Through extensive experiments, we demonstrate FAACL’s competi-
tive performance compared to traditional baselines, and its effectiveness and scalability in
diverse federated environments.

The paper is structured as follows. Section 2 provides some background about Clustered Federated
Learning. Section 3 describes related work in clustered federated learning. Section 4 describes
the proposed technique FAACL. Section 5 demonstrates FAACL empirically on some benchmarks.
Finally, Section 6 concludes our work.
2 BACKGROUND AND NOTATION
Consider a set of n devices denoted as D={d1, ..., dn}. For each device d in this set, we denote its
associated dataset as Zd. Each data point within this dataset, represented as z=(x, y), is assumed to
be sampled from an underlying distribution, which we denote as Pd(z), where z ∈ Zd. Additionally,
we partition the dataset Zd for each device into three subsets: the training set Ztrain

d , the validation
set Zval

d , and the test set Ztest
d .

In Federated learning, the goal is to train predictors in a distributed way without the data leaving each
device. Consider the loss function ℓ(θ, z) of the model parameterized by θ on data point z = (x, y).
In global federated learning, the objective objective is to train a global model θ by minimize the
population loss L(θ) represented as follows.

L(θ) =
∑
d∈D

Ez∼Pd(z)[ℓ(θ, z)] (1)

For example, in FedAvg (McMahan et al., 2017), a global model θ is trained in a distributed way
by computing local gradients of the loss function at each device (δd ←

∑
z∈Ztrain

d
∇ℓ(θ, z)), which
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are then sent to a server that aggregates them (δ ←
∑

d∈D
|Ztrain

d |δd∑
d∈D |Ztrain

d | ) before returning them to
the devices that each update their copy of the global model (θ ← θ − δ). This approach (as well as
other global FL techniques (Zhang et al., 2021)) work well when the data at each device comes from
similar distributions (i.e., homogeneous case). Personalized federated learning can deal with a small
degree of data heterogeneity by tuning the global model into personalized models (Kulkarni et al.,
2020).

In the case of high heterogeneity, clustered federated learning (Sattler et al., 2020; Ghosh et al., 2020)
clusters devices with similar data distributions and learns a separate model for each cluster. We define
Cj as the jth cluster. Each cluster Cj consists of two primary components:

• Component 1: A set of devices, Cj .D.
• Component 2: A cluster model parameterized by Cj .θ.

We define a clustering, denoted as C, as a collection of clusters. For example, a possible clustering
of size k for a set of devices D might be represented as C={C1, C2, . . . , Ck}. This setup partitions
the entire device set D into distinct subsets, where the combination of individual device set Ci.D
collectively covers D without overlap. The objective of clustered federated learning is to construct a
clustering C that minimizes the population loss L(C) represented as follows.

L(C) =
∑
C∈C

∑
d∈C.D

Ez∼Pd(z)[ℓ(C.θ, z)] (2)

This equation encapsulates the total loss across all clusters within the clustering C, where each
cluster’s contribution to the loss is determined by its assigned model parameters and the data from
devices within that cluster. CFL techniques generally alternate between updating the clustering and
performing federated learning within each cluster to estimate the cluster model with the devices in it.

To enable asymmetric clustering, we propose to add a third component to the definition of each
cluster Cj :

• Component 3: A set of supportive clusters, Cj .sup.

Supportive clusters are designed to establish inter-cluster relationships. Suppose that cluster CA

requires help from another cluster, CB , to train its model, then CB becomes a supportive cluster to
CA, indicated by CB ∈ CA.sup. Both members of Cj .D and members of supportive clusters in
Cj .sup contribute to training the model Cj .θ, though only the members of Cj .D will use model
Cj .θ for prediction. For instance, Cluster A may benefit from being grouped with Cluster B, while
Cluster B prefers to remain separate. Forcing a merger between Clusters A and B could reduce the
accuracy of Cluster B’s model. Conversely, keeping both clusters separate does not fully utilize the
available data. To address this challenge, supportive clusters are introduced. By designating Cluster
B as a supportive cluster to Cluster A, members of Cluster B can assist in training Cluster A’s model
without directly using it for their own predictions. This approach enhances data utilization and model
accuracy through inter-cluster collaboration.

3 RELATED WORK

Clustered Federated Learning (CFL) represents a significant advancement in managing distributed
data across various devices. This subsection reviews key methodologies and their respective contribu-
tions to the field.

• Iterative Federated Clustering Algorithm (IFCA) (Ghosh et al., 2020) starts with a
predefined number of cluster models at the server. Devices determine their cluster identity
based on which models minimize their local loss.

• Federated Stochastic Expectation Maximization (FeSEM) (Xie et al., 2021) begins with
a fixed number of clusters and iteratively assigns devices to the nearest cluster based on
the L2 distance of the model parameters. Each cluster updates its model by averaging the
models of the assigned devices.

• FedGroup (Duan et al., 2021) clusters devices according to their gradient cosine similarity
and facilitates both inter-cluster and intra-cluster training alongside device migration.

• FedSoft (Ruan & Joe-Wong, 2022) operates similarly to IFCA but introduces flexibility by
allowing devices to belong to multiple clusters. Each cluster’s importance is determined
based on the local loss for each data point.

3
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• FedDrift (Jothimurugesan et al., 2023) is designed for continual learning. It starts with an
assumption of homogeneous data distribution but can adapt to changes by initiating new
clusters when significant shifts in data distribution are detected through loss comparison.

• CFL-GP (Kim et al., 2024) partitions devices into groups with similar accumulated gradi-
ents by spectral clustering.

• SR-FCA (Vardhan et al., 2024) successively refines a clustering of devices by bottom up
aggregation based on a cross-model loss.

Despite these advancements, two primary limitations persist in CFL:

• Fixed Number of Clusters: Except for FedDrift and SR-FCA, most of the previous
approaches use a fixed number of clusters for device grouping. This fixed cluster count
presents a challenge, as it requires certain prior knowledge and needs to be accurate. If the
initial guess for the number of clusters is too low, devices with varying data distributions
may be incorrectly grouped together, leading to suboptimal predictors for those devices.
Conversely, an excessive number of clusters can scatter devices with similar data distributions
across different clusters, resulting in suboptimal predictors due to a reduced amount of data
for cluster model training.

• Symmetric Clustering Limitations: There is no natural extension from symmetric cluster-
ing to asymmetric clustering. Devices either support each other or they do not. Traditional
CFL approaches typically restrict each device to a single cluster (e.g., IFCA, FeSEM), or, as
seen in soft clustering methods like FedSoft, allow devices to influence multiple clusters
without adequately considering the overall impact on cluster integrity. In environments
where data quality varies considerably, such strategies may compromise the robustness of
clusters initially dominated by high-quality data, thus failing to balance individual benefits
with collective goals effectively.

4 METHOD

We propose a new method called Federated Adaptive Asymmetric Clustering (FAACL) that addresses
the two limitations identified in the previous section. We first describe how to initialize clusters
(Sec. 4.1), merge clusters (Sec. 4.2) and train the model of each cluster (Sec. 4.3). These procedures
are then combined into "flaat" and "hierarchical" versions of the FAACL algorithm (Sec. 4.4). Finally,
we provide a theoretical analysis (Sec. 4.5) and discuss an approach to enhance privacy (Sec. 4.6).

4.1 CLUSTERING INITIALIZATION

Our approach to clustering initialization in Clustered Federated Learning adopts an intuitive strategy.
In the initial phase, we create a unique cluster for each device, denoted as Ci.D={di}, effectively
forming singleton clusters (i.e., clusters containing only a single device). This is illustrated Algorithm
2 in Appendix A. Upon completion of the initialization, we obtain a total of n such singleton clusters.
Given the isolated nature of these initial clusters, the subsequent phase of our methodology focuses
on the inter-device communication. This is achieved by merging similar clusters to reduce the total
number of clusters, thereby enhancing the collaborative learning process among the devices.

4.2 CLUSTER MERGE

Following the initialization phase, which results in n distinct clusters, we employ an iterative process
to merge similar clusters based on support evaluations. The merging process and support evaluations
are outlined in Algorithms 3 to 5 in Appendix A. Each cluster’s supportive connections are updated
by exchanging models among devices from different clusters.

Model Evaluation and Support Determination: For each pair of clusters, we assess if cluster C2

supports cluster C1 based on their model performances across all devices in cluster C1. This is
determined by comparing the model parameters C2.θ and C1.θ. Specifically, we calculate losses for
each data point z in the validation set Zval

d for a given device d: ℓ(θC1 , z
val
d ) and ℓ(θC2 , z

val
d ), where

ℓ(θC , z) denotes the loss of model parameters θC on data point z. To assess whether cluster C2 is
supportive of cluster C1, we implement two alternative approaches: direct mean comparison and the
application of a statistical test.

Version 1: Statistical Test Approach: The Wilcoxon signed-rank test is employed as a non-
parametric method to compare the loss distributions of C1.θ and C2.θ. Shown in Algorithm 3, this
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Figure 1: Flowchart for Flat FAACL (a) and hierarchical FAAL (b).

test does not require the assumption of normal distribution and is suited for paired samples:

H0 : ℓ(C1.θ, z) + ϵ < ℓ(C2.θ, z)

where ϵ is the margin of error acceptable within the hypothesis testing framework, and p-values
smaller than a preset significance level α indicate significant differences between the clusters. While
this method provides a practical approach to evaluate differences in model performance, it lacks the
theoretical guarantees that Hoeffding’s inequality provides to the direct comparison method.

Version 2: Direct Comparison Approach: The direct comparison approach involves calculating
the average losses for model parameters C1.θ and C2.θ across the validation dataset for each device
d: ℓ(θC1

, zvald ) and ℓ(θC2
, zvald ). If the mean difference in losses does not exceed a predetermined

threshold ϵ, cluster C2 is considered supportive of C1, illustrated in Algorithm 4. This method
benefits from a theoretical guarantee provided by Hoeffding’s inequality, which bounds the estimation
error based on the amount of data. In Section 4.5, the application of Hoeffding’s bound ensures that
the direct comparison yields statistically significant results under specific conditions, providing a
strong theoretical foundation for this approach.

Cluster Merging: Clusters that are mutually supportive are merged into a new cluster. As shown in
Algorithm 5, this new cluster is formed by taking the union of the devices of the original clusters,
taking the intersection of the supportive members of the original clusters and setting the parameters
of the new cluster model to the parameters of any of the original cluster models.

4.3 CLUSTER TRAINING

During the training phase, each cluster Cj engages in a series of training iterations to refine and
optimize its model parameters. This optimization process is aimed at minimizing the collective loss
calculated from all the data available from devices that are part of the cluster Cj .D as well as data
from devices belonging to supportive clusters Cj .sup. Any federated learning technique can be used
as a subroutine to train a cluster model with its member devices and supportive devices. Algorithm 6
illustrates how to do this with the FedAvg algorithm (McMahan et al., 2017).

4.4 PROPOSED FEDERATED CLUSTERING METHOD

In this section, we introduce two advanced approaches for federated clustering under the FAACL
framework: Flat FAACL and Hierarchical FAACL. These strategies are designed to handle the
clustering of devices effectively while balancing computational efficiency and clustering performance.
The runtime complexity is analyzed in Appendix A.3.

Flat FAACL (Figure 1a): Flat FAACL integrates the previous algorithms into a cohesive approach.
The term “flat” in this context indicates that the clustering approach treats all devices on the same
level. This flat clustering processes all devices simultaneously, directly compares and merges clusters.
It starts with cluster initialization, and repeatedly trains each cluster, identify support relationships
and attempts to merge mutually supportive clusters. When the clustering stabilizes, further training

5
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continues with the fixed cluster allocation, shown in Algorithm 7. This approach involves extensive
pairwise interactions between clusters, leading to a computational complexity of O(n2) per iteration,
where n denotes the number of devices.

Algorithm 1 Hierarchical FAACL
Input: Device set D, significance level α, threshold ϵ, number of epochs epochs
Output: Clustering C

Initialize partition set P={}
for each device di ∈ D do

Initialize partition P with P.D={di} and P.C=None
P.add(P )

while |P| > 1 do
for each partition P ∈ P do
P.C←Flat FAACL(P.D, α, ϵ, P.C, 0)

Initialize a new set of partitions P∗={}
for Pi, Pj sampled non-repeatedly from P do

Create new partition P ′ with P ′.D=Pi.D ∪ Pj .D and P ′.C=P1.C ∪ P2.C
P∗.add(P ′)

P←P∗

Let P be the only remaining partition in P , C←P.C
while epochs > 0 do

Train clusters C←Cluster Train(C)
epochs←epochs− 1

Return Final clustering C

Hierarchical FAACL (Figure 1b): To optimize the computational demands by Flat FAACL, we
propose the Hierarchical FAACL method. This approach introduces a tiered clustering strategy, where
devices are initially grouped into smaller clusters that are progressively merged to form larger clusters.
This hierarchical structure significantly reduces the computational overhead by limiting the number
of direct comparisons and mergers required at each stage of the process. Each level of the hierarchy
forms an intermediate clustering that refines the grouping of devices, enhancing the efficiency and
potentially improving the adaptability of the model to changes in device data distributions.

Partitioned Strategy for Enhanced Efficiency (Hierarchical FAACL): To further enhance the
efficiency of the clustering process, we employ a strategic partitioning approach, where each partition
P consists of a subset of devices and their associated clusterings.

• Set of devices (P.D): This subset may include devices like {d1, d2, d3}, indicating the
devices included in the partition.

• Clustering formed by its device set (P.C): Each partition also has its own clustering, such
as {C1, C2}, where C1.D = {d1} and C2.D = {d2, d3}.

The partition merging process is systematically detailed in Algorithm 1, starting with n initial
partitions, each containing a single device. During each iteration, two partitions, Pi and Pj are
selected and merged to form a new partition P ′. This new partition combines the device sets and
clustering from Pi and Pj . The combined clustering P ′.C is then used as initial parameters Cinit
for the subsequent application of Flat FAACL. This iterative merging continues until only one
comprehensive partition remains, effectively simplifying the clustering process while aiming to
retain the efficacy of the ultimate clustering outcome. See Section A.3 for a comparison of the
computational complexity of Hierarchical and Flat FAACL.

In practice, devices may enter and leave the federation at any time. When a new device appears, it is
simply initialized as a singleton cluster whose model is the local model of that device. Then this new
cluster participates in subsequent iterations of cluster merging and cluster updating as usual. When a
device leaves the federation, it is simply removed from the support and membership of each cluster it
used to contribute to. If this device was part of a singleton cluster, that cluster is deleted. Subsequent
iterations of cluster merging and cluster updating proceed as usual.

6
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4.5 THEORETICAL GUARANTEE

As previously discussed in the cluster support section, the Direct Comparison Approach can utilize
Hoeffding’s inequality to lower bound the probability of correctly clustering devices with the same
data distribution.
Theorem 4.1. Consider a universe of M devices such that m devices d1, ..., dm each receive n data
points from the same underlying distribution D (i.e., ∀i ∈ [m], Zdi ∼ D). Let error(θ(D1), D2)
denote the error of the model trained on distribution D1 and inferenced on D2, where error is defined
as 1 − accuracy. Let a and b be lower and upper bounds respectively on the difference between
the predicted and actual label of each data point. Let also all other M −m devices receive data
from other distributions D′ with separation error(θ(D′),D)− error(θ(D),D) ≥ gap. When flat
FAACL uses ϵ as the threshold to determine support relations, then flat FAACL will cluster d1, ..., dm
together (i.e., ∃C such that ∀i ∈ [m], di ∈ C.D) with probability at least 1− δ.

Pr(∃C such that ∀i ∈ [m], di ∈ C.D | ∀i ∈ [m], Zdi
∼ D) ≥ 1− δ (3)

where δ ≤ m

[
2exp

(
− 2(nϵ)2

n(b− a)2

)
+ (M −m)exp

(
−2(n(gap− ϵ))2

n(b− a)2

)]
(4)

A proof of this theorem is provided in the appendix A.2.

4.6 PRIVACY

Although data does not leave each device in federated learning, the models that are shared may leak
information about the data used to train them (Mothukuri et al., 2021; Boenisch et al., 2023). Hence
it is common to combine federated learning with a differential privacy (DP) mechanism (Wei et al.,
2020) and secure multi-party computation (MPC) (Bonawitz et al., 2017; Li et al., 2020). MPC is
typically used to secure the aggregation step at the server, but the resulting aggregated model may still
leak data information, especially if it memorizes some of the data. Hence, to provably ensure privacy,
DP is often the preferred mechanism. FAACL can be combined with a local DP mechanism (Shokri
& Shmatikov, 2015) by adding noise to the weights of each model before sharing. In Algorithm 6,
each device can add Gaussian noise as a function of sensitivity to achieve a desired degree of privacy
at the end of each round of training. Models can then be shared with clusters and other devices while
statistically preventing membership attacks at the cost of a reduction in accuracy.

5 EXPERIMENTS

In this section, we present empirical results that validate our proposed methods within two distinct
experimental scenarios: asymmetric and symmetric.

• Asymmetric Scenario: This scenario addresses the complexity arising from the diversity in
device data distributions. It explores situations where devices are not reciprocal.

• Symmetric Scenario: Devices either share identical data distributions or possess completely
contrasting distributions. The formation of clusters is such that devices within the same
cluster either mutually benefit or detrimentally affect each other’s model training outcomes.
Optimal performance is achieved when devices with similar distributions are clustered
together, and those with divergent distributions are separated.

This section is structured as follows: We start by describing the baselines and datasets in Section 5.1,
explore asymmetric and symmetric settings in Section 5.2, 5.3. Finally, we synthesize our findings
and discuss their implications in Section 5.4.

5.1 BASELINES AND DATASETS

In our empirical evaluation, we compare our algorithms against well-established methods in Federated
Learning: Centralized FL, FedAvg (McMahan et al., 2017), FedGroup(Duan et al., 2021), IFCA
(Ghosh et al., 2020), FeSEM (Xie et al., 2021), FedDrift (Jothimurugesan et al., 2023), CFL-GP (Kim
et al., 2024) and SR-FCA (Vardhan et al., 2024).
Our experiments span several datasets known for their applicability in federated learning research:
MNIST (Deng, 2012), Extended MNIST (EMNIST) (Cohen et al., 2017), Fashion MNIST (FASH-
ION) (Xiao et al., 2017), Federated Extended MNIST (FEMNIST) (Caldas et al., 2018), CIFAR10
(Krizhevsky et al., 2009) and Sentiment140 (SENT140) (Caldas et al., 2018). These datasets provide
a diverse set of challenges and allow for a rigorous assessment of our algorithm’s performance across
both image and text classification tasks.

7
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In our experiments, we implemented the hierarchical version of our FAACL algorithm. This choice
was made because, while the hierarchical and flat versions theoretically converge to the same clus-
tering outcomes (in the limit of infinite data), the hierarchical approach is more computationally
efficient as shown in Table 10 of Appendix C.7. The details of the baseline methodologies, the
datasets employed, and the hyperparameters used in our experiments, are provided in Appendix C.
This supplementary section contains detailed information that supports the reproducibility of our
experimental procedures. We propose two versions of the FAACL method for cluster support:

Version 1 employs the Wilcoxon signed-rank test to evaluate support between clusters, making it
suitable for data with non-normal loss distributions. It leverages statistical testing to ensure that
differences in model performance are statistically insignificant before considering clusters supportive.

Version 2 utilizes direct comparison of mean losses between clusters, applying Hoeffding’s bound
to provide error estimation guarantees. It is beneficial when theoretical robustness is required,
determining support based on if mean loss differences fall within a predefined acceptable range.

5.2 ASYMMETRIC SETTING

In the asymmetric setting, we explore a more complex scenario where devices’ data distributions are
not entirely contradictory, and some devices may benefit from collaborating with others from different
distributions. This setting is designed to showcase the adaptability and performance advantages of
our proposed federated learning technique in creating asymmetric clusters. We design experiments
with both natural and synthetic partitions with respect to data quality and quantity.
Natural Data Partition (A0) Utilizing the FEMNIST subset of the LEAF dataset, we simulate a
realistic asymmetric scenario. For instance, in the FEMNIST dataset, each device corresponds to a
unique writer, allowing us to simulate a realistic asymmetric scenario. Given that different writers
produce images of varying quality for classification, asymmetric clustering becomes beneficial. In
such a setup, devices associated with high-quality writers can lend support to those linked to lower-
quality writers, demonstrating the utility of asymmetric clusters in enhancing overall performance.
Synthetic Image Partition (A1) In this setup, one group of devices receives data with pristine
quality (no noise), while another group handles data contaminated with Gaussian (Shannon, 1948)
and salt & pepper noise (Castleman, 1996). This partition serves to illustrate the need for asymmetric
clustering, where devices with noisy data can benefit from the cleaner inputs of other devices. It tests
the algorithm’s ability to optimize learning outcomes in the presence of varying data quality.
Synthetic Data Amount Partition (A2) We construct a scenario where one set of devices has access
to abundant data, while another set is limited in data quantity and exhibits slightly different predictors.
Asymmetric clustering plays a crucial role in such environments. Devices with enough data, although
reluctant to merge due to predictor discrepancies, can still offer valuable insights to devices with
sparse data. Conversely, devices with limited data can leverage the more extensive datasets of others
to reduce variance, even at the risk of introducing some bias.

5.3 SYMMETRIC SETTING

In the symmetric setting, our objective is to evaluate the adaptability and effectiveness of our proposed
federated learning technique under conditions of either homogeneous or extremely heterogeneous
data distributions among devices. We conduct these evaluations using both natural and synthetic data
partitions to simulate various distribution scenarios.
Natural Data Partition (S0): This setup simulates a scenario where each device’s data is indepen-
dently and identically distributed. This setup tests the algorithm’s ability to recognize and maintain
uniformity across devices in a federated environment.
Synthetic Label Partition (S1): In this setup, the dataset is allocated among devices based on
distinct label ranges. For example, one set of devices might exclusively receive data corresponding to
labels 0-4, while another set of devices receives data with labels 5-9. In this scenario, since devices
with different label distributions are less likely to benefit each other, forming separate clusters for
each label distribution is considered optimal.
Synthetic Predictor Partition (S2): In this partition, datasets of devices from different distributions
have different underlying predictors. For instance, in the MNIST dataset, one group of devices (set 1)
may map images directly to their corresponding labels, while another group (set 2) maps images to
shifted labels (e.g., mapping the image of digit 0 to label 1). This setup challenges the algorithm’s
ability to handle scenarios with significant variations in data mappings across devices. In such cases,
combining data from different distributions can be harmful, indicating the need for distinct clusters to
maintain the integrity of each device’s predictive model.
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5.4 EXPERIMENTAL RESULTS

The outcomes of our experiments are presented across Tables 1-4, and the full tables with standard
error are presented in Appendix C.7. In both asymmetric and symmetric settings, we conducted
experiments under both natural and synthetic data distribution scenarios. For the baseline setups, we
begin with an initial allocation of five clusters, which is chosen based on the anticipated diversity
within each dataset’s data distributions. We set this number as an upper bound for the potential
number of clusters, ensuring that the model has the capacity to accurately represent all possible
clusters. This setup mirrors conditions in real-world federated learning scenarios, where the exact
number of natural data clusters is unknown. By initializing more clusters, the baseline algorithms
retain the flexibility to achieve accurate clustering by potentially leaving some clusters empty.

Table 1: Test accuracies ± stderr with [number of clusters] in A0.

Dataset FEMNIST SENT140

IFCA 51.21±0.38 [5] 72.86±0.24 [5]
FeSEM 47.52±3.92 [1] 63.69±1.83 [2]
FedGroup 65.47±1.02 [5] 72.38±0.43 [5]
FedDrift 62.28±0.39 [8] 73.86±0.68 [14]
FedSoft 67.87±0.91 [5] 72.26±1.12 [5]
CFL-GP 66.38±0.73 [5] 73.21±0.48 [5]
SR-CFA 68.32±0.28 [7] 74.12±0.62 [9]

FAACL(version 1) 71.34±0.07 [15] 76.24±0.83 [10]
FAACL(version 2) 70.35±0.32 [7] 76.38±0.52 [6]

Asymmetric Natural Distribution (A0): In the natural distribution, the FEMNIST and SENT140
dataset from the LEAF benchmark are used to construct each device to represent a writer / user. In
this natural distribution, the true number of clusters is unknown, we train the centralized method with
all devices in one cluster. In this experiment with real data (Table 1), our methods achieved higher
accuracy by at least 5% compared to other clustered baselines, including FedDrift and SR-CFA which
can form adaptive clusters. This improvement in the real-world datasets underscores the advantage of
asymmetric clustering.
Asymmetric Synthetic Distribution (A1,A2): In the synthetic experiments (Table 2), we first
report upper bounds for a centralized technique and a decentralized technique (FedAvg optimal)
that is given the true underlying clusters. Since all techniques use FedAvg internally to aggregate
models, but differ in how they estimate clusters, the gap in performance between each technique
and FedAvg optimal corresponds to the loss in accuracy due to suboptimal clustering. Furthermore,
the gap between FedAvg optimal and Centralize is the loss due to decentralize learning. Our
approach consistently outperforms the other clustered FL techniques since constructing an asymmetric
clustering consistently maintains a cluster for each device for prediction purposes. Each device can
contribute to the training of other clusters without worrying about hurting its performance.
Symmetric Natural Distribution (S0): In scenarios with natural data distributions (Table 3), our
method, FAACL, demonstrates performance that is comparable to other baselines. It is important to
note that other clustered federated learning methods, including IFCA, FeSEM, FedSoft, FedGroup
and CFL-GP are initialized with a fix number (5) of clusters, but may converge to a smaller number of
clusters (number in brackets) by leaving some clusters empty. This can lead to under-trained models
due to data dilution across too many clusters, especially when the final number of utilized clusters
does not align with the optimal cluster count for the given data distribution. Although FedDrift is
capable of dynamically determining the number of clusters during training, it still tends to output
more clusters.
Symmetric Synthetic Distribution (S1,S2): In the synthetic distribution (Table 4) (i.e., synthetic
labels and synthetic predictors), our method still outperforms other baselines in most datasets due to
its adaptive number of clusters.
A challenge in the asymmetric setting is determining the threshold between different distributions.
Given the divergence in data distributions and the varying impact of clustering on different devices,
finding the ideal number of clusters can be non-trivial. However, the experiments show that our
method’s capability to perform asymmetric clustering, while not necessarily finding the number of
correct clusters, consistently delivers the best accuracy in various settings.

6 CONCLUSION

In this study, we introduced the novel concept of asymmetric clustering to address scenarios in
federated learning where clustering benefits are unevenly distributed—some devices benefit from
joining a new cluster, while others may experience detrimental effects. To tackle this challenge,

9
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we developed the Federated Adaptive Asymmetric Clustering Learning (FAACL) method, which
facilitates the formation of asymmetric clusters.
We adopted a partition-based strategy to circumvent the complexities associated with determining
adaptive clustering, effectively reducing the device complexity to O(n2) for the entire process
within O(log n) iterations. Our empirical evaluations underscore FAACL’s superior performance in
comparison to conventional “symmetric" clustering approaches, particularly with real-world datasets.
The results not only validate the effectiveness of FAACL, but also spotlight the promising potential
of asymmetric clustering in practical federated learning applications, setting the stage for future
advancements in the field.

Table 2: Test accuracies for A1, A2 with [number of clusters]. Centralize and FedAvg (optimal) are
upper bounds that use the true underlying clusters. Stderr is reported in Tables 11, 12.

Dataset MNIST EMNIST FASHION CIFAR10

A1 A2 A1 A2 A1 A2 A1 A2

Centralize 78.39[2] 97.32[2] 62.39[2] 97.67[2] 73.43[2] 86.90[2] 58.51[2] 64.16[2]
FedAvg (optimal) 77.58[2] 97.10[2] 60.25[2] 97.38[2] 73.32[2] 86.72[2] 57.81[2] 64.04[2]

IFCA 69.90[5] 95.35[3] 50.50[5] 95.98[2] 69.09[4] 85.70[4] 53.29[5] 59.17[5]
FeSEM 65.79[4] 74.65[1] 46.31[1] 88.02[1] 64.56[1] 81.27[1] 48.72[1] 52.84[5]
FedGroup 74.65[5] 95.44[5] 51.88[5] 95.42[5] 70.93[5] 86.31[5] 54.26[5] 60.27[5]
FedDrift 70.34[7] 95.34[3] 51.63[4] 91.70[4] 72.96[3] 84.15[2] 54.58[1] 60.28[8]
FedSoft 71.28 [5] 95.73 [5] 52.38[5] 95.73 [5] 71.01 [5] 84.29 [5] 53.38[5] 60.25[5]
CFL-GP 72.16 [5] 94.36 [5] 52.31 [5] 94.24 [5] 70.39 [5] 83.25 [5] 52.14[5] 61.17 [5]
SR-CFA 74.27 [4] 95.38 [2] 53.84 [6] 96.48 [5] 70.04 [8] 84.57 [5] 51.62[4] 61.09 [5]

FAACL(version 1) 76.31[4] 96.40[5] 57.28[9] 96.95[4] 73.21[3] 86.53[2] 56.31[6] 62.74[8]
FAACL(version 2) 75.12[4] 96.06[4] 55.85[3] 97.02[3] 73.19[3] 86.50[2] 55.42[4] 62.43[4]

Table 3: Test accuracies ± stderr with [number of clusters] in S0. Centralize and FedAvg (optimal)
are upper bounds that use the true underlying clusters.

Dataset MNIST EMNIST FASHION CIFAR10

Centralize 97.64±0.02 [1] 98.08±0.05 [1] 89.21±0.07 [1] 76.42±0.06 [1]
FedAvg (optimal) 96.24±0.10 [1] 97.71±0.08 [1] 88.63±0.21 [1] 73.28±0.13 [1]

IFCA 95.05±0.23 [3] 94.54±0.83 [1] 85.67±0.38 [4] 71.46±0.37 [5]
FeSEM 94.29±0.44 [3] 94.20±1.13 [1] 86.33±0.18 [1] 68.43±0.16 [3]
FedGroup 95.78±0.23 [5] 96.09±0.20 [5] 86.19±0.08 [5] 72.27±0.14 [5]
FedDrift 95.66±0.82 [2] 97.07±0.26 [3] 86.98±0.67 [3] 71.47±0.50 [2]
FedSoft 96.03±0.21 [5] 93.21±0.19 [5] 83.58±0.22 [5] 72.74±0.18 [5]
CFL-GP 96.28±0.43 [5] 97.29±0.35 [5] 86.39±0.63 [5] 71.08±0.25 [5]
SR-CFA 95.89±0.74 [1] 96.36±0.52 [1] 84.38±0.71 [1] 70.49±0.18 [1]

FAACL(version 1) 96.14±0.99 [1] 97.22±0.28 [1] 88.25±0.44 [1] 72.57±0.23 [1]
FAACL(version 2) 96.07±0.28 [1] 97.31±0.72 [1] 87.73±0.81 [1] 72.60±0.60 [1]

Table 4: Test accuracies for S1, S2 with [number of clusters]. Centralize and FedAvg (optimal) are
upper bounds that use the true underlying clusters. Stderr is reported in Tables 13, 14.

Dataset MNIST EMNIST FASHION CIFAR10

S1 S2 S1 S2 S1 S2 S1 S2

Centralize 94.85[2] 97.06[2] 97.11[2] 96.93[2] 90.82[2] 88.95[2] 74.68[2] 73.57[2]
FedAvg (optimal) 94.39[2] 96.73[2] 97.09[2] 96.80[2] 90.47[2] 88.74[2] 74.50[2] 73.18[2]

IFCA 91.16[5] 94.36[4] 94.28[4] 95.17[2] 86.88[4] 85.42[5] 69.36[5] 71.11[4]
FeSEM 50.24[3] 49.35[3] 42.44[1] 43.94[1] 50.57[1] 43.65[1] 54.20[1] 64.76[3]
FedGroup 93.73[5] 95.55[5] 96.18[5] 95.79[5] 88.50[5] 85.98[5] 71.62[5] 70.81[5]
FedDrift 91.76[8] 93.37[6] 96.35[3] 96.12[3] 85.52[7] 85.77[4] 70.53[3] 71.30[3]
FedSoft 90.49 [5] 93.92 [5] 94.39 [5] 94.78 [5] 84.29 [5] 85.11 [5] 72.49[5] 71.58[5]
CFL-GP 92.31 [5] 94.92 [5] 96.73 [5] 95.75 [5] 88.29 [5] 86.02 [5] 70.35[5] 71.21[5]
SR-CFA 92.16 [2] 95.06 [2] 96.01 [2] 95.88 [2] 89.26 [2] 86.69 [2] 70.23[2] 71.47[2]

FAACL(version 1) 93.45[2] 95.89[2] 96.82[2] 96.54[2] 90.23[2] 87.82[2] 71.48[2] 71.47[2]
FAACL(version 2) 93.27[2] 95.71[2] 96.44[2] 96.62[2] 89.64[2] 87.31[2] 71.27[2] 71.43[2]
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A ALGORITHM ANALYSIS

A.1 ALGORITHM PSEUDOCODE

Algorithm 2 Clustering Initialization
Input: Device set of size n, D = {d1, . . . , dn}
Output: Initial clustering C

Server: Initialize C = {} and random parameters θ
Server: Distribute θ to all devices in D
for each device di ∈ D do

Device: Form a new cluster Ci with Ci.D = {di}, Ci.sup = {}
Device: Initialize parameters Ci.θ = θ and Ci.θ = argminθ

∑
z∈Ztrain

di

ℓ(θ, z)

Device: Send the cluster Ci to server
Server: C←{Ci}ni=1
Return Initial clustering C

Algorithm 3 Cluster Support (Version 1)
Input: Clustering C, significance level α, threshold ϵ
Output: Updated Clustering C

for each cluster C1 ∈ C do
for each distinct cluster C2 ∈ C do

Server: Initialize support_flag←True
for each device d ∈ C1.D do

Server: Send parameters C1.θ, C2.θ to device d
Device: L←{(ℓ(C1.θ, z), ℓ(C2.θ, z))|z∈Zval

d }
Device: Computes p←Wilcoxon(L, ϵ)
if p > α then

Server: support_flag←False and break
if support_flag is True then

Server: C1.sup.add(C2)
Return Updated clustering C

Algorithm 4 Cluster Support (Version 2)
Input: Clustering C, significance level α, threshold ϵ
Output: Updated Clustering C

for each cluster C1 ∈ C do
for each distinct cluster C2 ∈ C do

Server: Initialize support_flag ← True
for each device d ∈ C1.D do

Server: Send parameters C1.θ, C2.θ to device d
Device: L1

d ← {ℓ(C1.θ, z)|z∈Zval
d }, L2

d ← {ℓ(C2.θ, z)|z∈Zval
d } uploaded to server

Server: Combine L← {L1, L2}, where L1 = {L1
d : d ∈ C1.D}, L2 = {L2

d : d ∈ C1.D}
Server: Compute p = Wilcoxon(L)
if p > α then

Server: support_flag ← False and continue
if support_flag is True then

Server: C1.sup.add(C2)
Return Updated clustering C
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Algorithm 5 Cluster Merge
Input: Clustering C
Output: Refined Clustering C

Server: Let Cnew and Cold be empty
for each cluster C1 ∈ C not in Cold do

for each distinct cluster C2 ∈ C not in Cold do
if C1 ∈ C2.sup and C2 ∈ C1.sup then

Server: Form new cluster C ′

C ′.D=C1.D∪C2.D, C ′.sup=C1.sup∩C2.sup, C ′.θ=random(C1.θ, C2.θ)
Server: Cnew.add(C ′), Cold.add(C1, C2)

Server: C←C − Cold + Cnew
Return Refined clustering C

Algorithm 6 Cluster Train
Input: Clustering C
Output: Updated Clustering C

for each cluster C ∈ C do
for each device d ∈ C.D do

Server: Send cluster model parameters C.θ to d
Device: Cd.θ ← C.θ − λ∇(

∑
z∈Ztrain

d
loss(C.θ, z)) (gradient descent)

Device: Send Cd.θ and |Ztrain
d | to server

for each supportive cluster C ′ ∈ C.sup do
for each device d′ ∈ C ′.D do

Server: Send cluster model parameters C.θ to d′

Device: Cd′ .θ ← C.θ − λ∇(
∑

z∈Ztrain
d′

loss(C.θ, z)) (gradient descent)

Device: Send Cd′ .θ and |Ztrain
d′ | to server

Server: C.θ ←
∑

d∈C.D(|Ztrain
d |×Cd.θ)+

∑
C′∈C.sup

∑
d′∈C′.D(|Ztrain

d′ |×Cd′ .θ)∑
d |Ztrain

d |+
∑

C′∈C.sup

∑
d′∈C′.D |Ztrain

d′ | (weighted average)
Return Updated clustering C

Algorithm 7 Flat FAACL
Input: Device set D, significance level α, threshold ϵ, initial clustering Cinit, number of epochs
epochs
Output: Optimized Clustering C

Initialize C={}
if Cinit are given then
C∗=Cinit

else
C∗=Cluster Initialization(D)

while C ̸= C∗ do
Update C←C∗
Train clusters C∗←Cluster Train(C∗)
Update cluster support C∗←Cluster Support(C∗, α, ϵ)
Merge clusters C∗←Cluster Merge(C∗)

while epochs > 0 do
Train clusters C←Cluster Train(C)
epochs←epochs− 1

Return Final clustering C

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 4.1

For convenience we repeat the statement of Theorem 4.1 and then describe its proof.

Theorem 4.1 Consider a universe of M devices such that m devices d1, ..., dm each receive n data
points from the same underlying distribution D (i.e., ∀i ∈ [m], Zdi ∼ D). Let error(θ(D1), D2)
denote the error of the model trained on distribution D1 and inferenced on D2, where error is defined
as 1 − accuracy. Let a and b be lower and upper bounds respectively on the difference between
the predicted and actual label of each data point. Let also all other M −m devices receive data
from other distributions D′ with separation error(θ(D′),D)− error(θ(D),D) ≥ gap. When flat
FAACL uses ϵ as the threshold to determine support relations, then flat FAACL will cluster d1, ..., dm
together (i.e., ∃C such that ∀i ∈ [m], di ∈ C.D) with probability at least 1− δ.

Pr(∃C such that ∀i ∈ [m], di ∈ C.D | ∀i ∈ [m], Zdi
∼ D) ≥ 1− δ (5)

where δ ≤ m

[
2exp

(
− 2(nϵ)2

n(b− a)2

)
+ (M −m)exp

(
−2(n(gap− ϵ))2

n(b− a)2

)]
(6)

Proof. Let X1, . . . , Xn denote the random variables that represent the error difference between
model A and model B on each datapoint of B. When the error difference exceeds ϵ (i.e., Xi > ϵ)
then A does not support B, otherwise, denote A support B

Consider Hoeffding’s inequality:

P (Sn − E[Sn] > t) ≤ exp

(
− 2t2

n(b− a)2

)
(7)

P (E[Sn]− Sn > t) ≤ exp

(
− 2t2

n(b− a)2

)
(8)

where Sn is the sum of n i.i.d. random variables, each lower bounded by a and upper bounded by
b. We can use Hoeffding’s inequality to bound the probability with which we will make an error
regarding each support relation. Consider two models A and B for which we would like to test
whether A supports B.

Suppose that A supports B. This means that E[Sn]/n ≤ ϵ. The probability that flat FAACL makes a
mistake (i.e., Sn/n ≥ ϵ) can be computed using Hoeffding’s bound as follows:

P (
Sn

n
= ϵ+ t|A supports B) (9)

= P (
Sn

n
= ϵ+ t|E[Sn]

n
≤ ϵ) (10)

= P (
Sn

n
− E[Sn]

n
≥ t|E[Sn]

n
≤ ϵ) (11)

≤ exp

(
− 2(nt)2

n(b− a)2

)
(12)

Suppose that A does not support B. This means that E[Sn]/n ≥ ϵ. The probability that FAACL
makes a mistake (i.e., Sn/n ≤ ϵ) can be computed using Hoeffding’s bound as follows:

P (
Sn

n
= ϵ− t|A does not supports B) (13)

= P (
Sn

n
= ϵ− t|E[Sn]

n
≥ ϵ) (14)

= P (
E[Sn]

n
− Sn

n
≥ t|E[Sn]

n
≥ ϵ) (15)

≤ exp

(
− 2(nt)2

n(b− a)2

)
(16)
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Note that Flat FAACL constructs clusters in stages. Initially, each device is its own cluster. Then at
each stage, Flat FAACL checks support relations between every pair of clusters and merges a pair
of clusters when the two clusters support each other. Suppose that di, dj ∈ C are compared. The
probability that Flat FAACL makes a mistake can be bounded as follows:

P (di, dj are not clustered |di, dj ∈ C) (17)
= P (di does not support dj or dj does not support di|di, dj ∈ C) (18)
≤ P (di does not support dj |di, dj ∈ C) + P (dj does not support di|di, dj ∈ C) (19)

≤ 2exp

(
− 2(nϵ)2

n(b− a)2

)
(20)

Similarly, consider di ∈ C and dj /∈ C. Then the probability that Flat FAACL makes a mistake by
clustering them together is:

P (di, dj are clustered |di ∈ C, dj /∈ C) (21)
= P (di supports dj and dj supports di|di ∈ C, dj /∈ C) (22)
≤ max{P (di supports dj |di ∈ C, dj /∈ C), P (dj supports di|di ∈ C, dj /∈ C)} (23)

≤ exp

(
−2(n(gap− ϵ))2

n(b− a)2

)
(24)

At every iteration, Flat FAACL may mistakenly cluster di ∈ C with some dj /∈ C with the following
probability

P (∃j such that di, dj are clustered |di ∈ C, dj /∈ C) (25)
= P (∃j such that di supports dj and dj supports di|di ∈ C, dj /∈ C) (26)

≤
∑

j∈{m+1,M}

P (di supports dj and dj supports di|di ∈ C, dj /∈ C) (27)

≤ (M −m)exp

(
−2(n(gap− ϵ))2

n(b− a)2

)
(28)

At every iteration, Flat FAACL may miss the opportunity to cluster di ∈ C with some dj ∈ C with
the following probability:

P (∀j ̸= i such that di, dj are not clustered |di, dj ∈ C) (29)
≤ max

j ̸=i
P (di, dj are not clustered |di, dj ∈ C) (30)

= P (di, dj are not clustered |di, dj ∈ C) (31)

≤ 2exp

(
− 2(nϵ)2

n(b− a)2

)
(32)

Overall, the probability that Flat FAACL will make a mistake with respect to di ∈ C by not clustering
it with any other dj ∈ C or clustering it with any dj /∈ C is:

P (mistake regarding di|di ∈ C) ≤ 2exp

(
− 2(nϵ)2

n(b− a)2

)
+ (M −m)exp

(
−2(n(gap− ϵ))2

n(b− a)2

)
(33)

Since it will take logm iterations to form C and the number of subclusters of C for which Flat
FAACL may make a mistake at each iteration is m/2i then the overall probability δ of making a
mistake is:

δ ≤

(
logm∑
i=1

m

2i

)[
2exp

(
− 2(nϵ)2

n(b− a)2

)
+ (M −m)exp

(
−2(n(gap− ϵ))2

n(b− a)2

)]
(34)

≤ m

[
2exp

(
− 2(nϵ)2

n(b− a)2

)
+ (M −m)exp

(
−2(n(gap− ϵ))2

n(b− a)2

)]
(35)
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A.3 COMPLEXITY ANALYSIS

The complexity of each clustering algorithm within our framework is analyzed to understand the
computational demands of the process.

Proposition A.1. The Cluster Initialization algorithm operates with a complexity of O(n).

Proof. Creating one cluster per device for n devices directly results in a complexity of O(n), as
detailed in Algorithm 2.

Proposition A.2. The Cluster Support algorithm operates with a complexity of O(n2).

Proof. With m=O(n) clusters, each cluster’s potential supportive clusters are assessed among all
others, resulting in a complexity bounded by the product of the number of clusters m=O(n) and the
maximum number of devices per cluster O(n), yielding O(n2).

Proposition A.3. The Cluster Merge algorithm operates with a complexity of O(n2).

Proof. With m=O(n) clusters, ths algorithm goes through each pair of cluster, resulting in a com-
plexity O(m2)=O(n2).

Proposition A.4. The Cluster Training algorithm operates with a complexity of O(n2).

Proof. Given m=O(n) clusters, the training process for a cluster model involves all devices in
the cluster, along with all devices from its supportive clusters. For a cluster C, the number of
devices participating its training process is at most |C.D| +

∑
C′∈C.sup |C ′.D|, thus the overall

complexity is
∑m

i=1(|Ci.D|+
∑

C′∈Ci.sup
|C ′.D|)=

∑m
i=1 |Ci.D|+

∑m
i=1

∑
C′∈Ci.sup

|C ′.D|=n+

mn=O(n2).

Proposition A.5. The Flat FAACL algorithm operates with a per-iteration complexity of O(n2).
When provided with an initial clustering of size O(1), the total computational complexity remains
O(n2). When not provided with initial clustering, the total computational complexity is O(n3).

Proof. Starting with an initialization phase of O(n) complexity, Flat FAACL involves training and
merging phases within each iteration, both of which contribute to a per-iteration complexity of O(n2)
from the Proposition A.1, A.2, A.3, A.4. Given that the algorithm’s convergence criteria are met
within a finite number of iterations, and assuming the initial clustering involves a minimal number
of clusters (O(1)), Flat FAACL effectively operates with an overall complexity of O(n2). This is
due to the fact that the number of iterations required for convergence does not significantly alter the
computational load, which is dominated by the costs of training and merging operations within each
iteration. When the initial clustering is not provided, as the initial clustering has size of O(n), the
total iteration is O(n), therefore the total complexity is O(n3).

Theorem A.6. Hierarchical FAACL reduces the overall complexity to O(n2), in log n iterations of
O(n2/ log n) complexity each.

Proof. Starting from n initial partitions, the algorithm progressively merges these partitions, halving
their number each iteration, requiring a total of log n iterations. At the iteration i, there are n

2i

partitions, each potentially containing up to 2i devices. A merged partition P ′ would have set of
devices of size 2i+1, and initial clustering of size O(1). By Proposition A.5, the overall complexity
of applying Flat FAACL to a new partition is O(2i)2. As there are total of n

2i partitions, the per-
iteration complexity is O(2i)2 × n

2i=O(2i · n). Then the overall complexity until convergence is∑logn
i=1 O(2i · n)=O(n2).

In summary, the complexity analysis underscores Hierarchical FAACL’s efficiency at managing
computational resources and adapting to the scale of federated learning environments. In contrast
to Flat FAACL, which faces a potential complexity of up to O(n3) due to its O(n) iterations,
Hierarchical FAACL reduces this complexity to O(n2), ensuring completion within just log n
iterations. By reducing the complexity and leveraging a logarithmic number of iterations, Hierarchical
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FAACL offers a scalable and efficient solution to clustering in large, distributed networks. In
comparison, all clustered federated learning techniques have a complexity of least O(n|C|) since
each of the n devices must repeatedly interact with each of the |C| clusters to determine which cluster
to join. Since the number of clusters |C| may be as large as the number of devices n, then hierarchical
FAACL has a computational complexity that is at least as good as any other clustered federated
learning technique.

B SYNTHETIC DATA GENERATION AND DATA PARTITION

Here, we provide a breakdown of how synthetic data is created for each setting.

Asymmetric Image Partition (A1): The devices are partitioned equally into two clusters. The
dataset is split equally and uniformly at random into the devices of the first cluster. The devices of
the second cluster receive copies of the data splits as for cluster 1, but each image is perturbed with
Gaussian, and salt and pepper noise. This configuration simulates scenarios where data quality or
noise levels vary among devices.

Asymmetric Data Amount Partition (A2): The devices are partitioned equally into two clusters.
Devices in the first cluster receive abundant data while devices in the second cluster receive limited
data. The dataset is split equally and uniformly at random into the devices of the first cluster. For the
second cluster, one fifth of the dataset is sampled and partitioned equally and uniformly at random
among the devices. In addition, for the devices of the second cluster, the labels of digits 1, 2, and
3 are aggregated into a single class with label 2. This partitioning mimics scenarios where devices
receive varying amounts of data and varying label granularity.

Symmetric Label Partition (S1): The devices are partitioned equally into two clusters. The data
with labels 0 to 4 is split equally and uniformly at random into the devices of the first cluster. The
data with labels 5 to 9 is split equally and uniformly at random into the devices of the second cluster.
This design simulates scenarios where devices have access to data with distinct label ranges.

Symmetric Predictor Partition (S2): The devices are partitioned equally into two clusters. The
dataset is split equally and uniformly at random into the devices of the first cluster. The devices of
the second cluster receive data with shifted labels (i.e., class 0 is relabeled as 1, class 1 is relabeled as
2, ..., class 9 is relabeled as 0). The shifted version of the data set is split equally and uniformly at
random into the devices of the second cluster. This partitioning aims to simulate situations where
devices have different underlying predictors for the same inputs.

C CODE, EXPERIMENTAL PARAMETERS AND ENVIRONMENT

C.1 CODE

The code for FAACL is available for review in an anonymized github repository:
https://github.com/FAACL/FAACL

C.2 EXPERIMENTAL SETUP (SOFTWARE, HARDWARE, RANDOMIZATION)

The implementation was coded in Python. Randomization was done by using three seeds in Numpy.
The seeds were set to 10, 55 and 2077 for all the algorithms and datasets. Experiments were run on a
single Nvidia GPU (either T4 or A40).

C.3 BASELINES

We evaluate the performance of our algorithm with the following baselines:

• Centralized FL: This Oracle method aggregates data from all devices centrally to train a
global model. It serves as an idealized benchmark, assuming perfect data availability and no
distributional discrepancies.
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• FedAvg (McMahan et al., 2017): A foundational Federated Learning (FL) approach that
updates a global model through the aggregation of local model updates from all participating
devices, without employing any clustering strategy.

• FedGroup (Duan et al., 2021): A clustered federated learning method that organizes devices
into clusters based on the cosine similarity of their gradients.

• IFCA (Ghosh et al., 2020): A clustered federated learning approach that dynamically assigns
each device to clusters that minimize the local loss.

• FeSEM (Xie et al., 2021): A clusters federated learning method that minimize the l2 norm
distance between individual device models and their respective cluster models.

• FedDrift (Jothimurugesan et al., 2023): Designed to adapt to concept drift in federated con-
tinual learning environments, FedDrift assumes initial data homogeneity across devices. For
our experiments, we adapt FedDrift to start with one initial cluster per device, implementing
its clustering merge strategy iteratively.

• CFL-GP (Kim et al., 2024) partitions devices into groups with similar accumulated gradi-
ents by spectral clustering.

• SR-FCA (Vardhan et al., 2024) successively refines a clustering of devices by bottom up
aggregation based on a cross-model loss.

C.4 DATASETS

We use the following datasets for our experiments:

• MNIST (Deng, 2012) A benchmark dataset comprising 28× 28 pixel grayscale images of
handwritten digits, categorized into 10 classes.

• Extended MNIST (EMNIST) (Cohen et al., 2017) An extension of MNIST to handwritten
characters, offering a 62-class image classification challenge. For our experiments, we focus
on the first ten characters from ’a’ to ’j’.

• Fashion MNIST (FASHION) (Xiao et al., 2017) Similar in structure to MNIST, this dataset
features 28× 28 pixel grayscale images of fashion items, divided into 10 categories.

• Federated Extended MNIST (FEMNIST) (Caldas et al., 2018) A federated learning-
specific version of EMNIST, where each device’s data originates from a unique writer,
featuring a total of 3550 users. We utilize a subset comprising 5% of the data from 197
users.

• CIFAR10 (Krizhevsky et al., 2009): A popular benchark dataset consisting of 32×32 pixel
color images, divided into 10 classes, each representing different objects such as animals
and vehicles.

• Sentiment140 (SENT140) (Caldas et al., 2018): A federated version of Text Dataset of
Tweets. It contains 1,600,000 tweets extracted using Twitter.

An overview of the Datasets and model parameters is shown in Table 5

Table 5: Summary of datasets and models parameters.

Dataset Devices Samples Parameters
MNIST 100 69,035 101,770

EMNIST 20 18,345 407,050
FASHION 50 72,505 407,050
FEMNIST 197 40,875 434,752
CIFAR10 100 60,000 2,074,260
SENT140 772 40,783 232,386

C.5 MODEL ARCHITECTURE

The neural architecture used for dataset MNIST, EMNIST, FASHION, and FEMNIST is the Multi-
layer Perceptron, a feedforward neural network with two hidden layers for FEMNIST and one hidden
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layer for the other datasets. We also performed L2 regularization and utilized a ReLU activation
function and a softmax output layer with a Sparse Categorical Cross-Entropy loss, that is trained
using Stochastic Gradient Descent. For the dataset of SENT140, we use the sequential model, starting
with an input layer that expects sequences of length 25 with 300 features each. The model uses
two bidirectional LSTM (Long Short-Term Memory) layers, which are a type of recurrent neural
network (RNN) layer suited for learning from sequences. The first LSTM layer has 64 units and
returns sequences, feeding into another bidirectional LSTM layer with 32 units that does not return
sequences. This is followed by a dense layer with 64 neurons and ReLU activation, a dropout layer
with a rate of 0.5 to prevent overfitting, and finally, a dense output layer with 2 neurons and softmax
activation for binary classification.

C.6 HYPERPARAMETERS

Table 6: Hyperparameter Summary Table for Scenario S0, S1, S2, A1, A2

Parameter Dataset S0 S1 S2 A1 A2

Epochs
MNIST 300 300 300 300 300
EMNIST 300 300 300 300 300
FASHION 300 300 300 300 300
CIFAR10 300 300 300 300 300

Learning rate
MNIST 0.01 0.01 0.01 0.01 0.01
EMNIST 0.003 0.003 0.003 0.003 0.003
FASHION 0.005 0.005 0.005 0.005 0.005
CIFAR10 0.002 0.002 0.002 0.002 0.002

δ
MNIST 3 3 3 3 3
EMNIST 2 2 3 3 3
FASHION 2 3 3 3 3
CIFAR10 2 3 3 3 3

ϵ
MNIST 0.7 0.7 0.7 0.5 0.4
EMNIST 0.7 0.7 0.7 0.4 0.1
FASHION 0.7 0.7 0.7 0.5 0.1
CIFAR10 0.6 0.6 0.6 0.4 0.2

In our methodology for identifying potential mergers between clusters C1 and C2, we employ
a statistical approach where the significance threshold α is compared against the p-value from a
statistical test. This test evaluates the null hypothesis ℓ(C1.θ, z)+ϵ < ℓ(C2.θ, z), aiming to determine
the likelihood of a merge based on the model parameters θ and data point z.

For the implementation of FedDrift, we introduce a distance metric Dij representing the proximity
between cluster i and cluster j. A merge is considered when Dij falls below a predefined threshold δ,
indicating a significant overlap in the data representation of both clusters.

Table 7: Hyperparameter Summary Table for Scenario A0

Parameter FEMNIST SENT140

Epochs 300 300
Learning rate 0.005 0.005
δ 4 4
ϵ 0.5 0.7

The number of Epochs, learning rate, δ, and ϵ are summarized in Table 6 and 7 for different
experimental scenarios.

Our experiments incorporate both Gaussian and Salt & Pepper noise to construct the experiments
with devices having different data quality. Gaussian noise, characterized by its variance and mean,
introduces a continuous perturbation, while salt & pepper noise, specified by a density parameter,
simulates random pixel corruptions. The configurations for these noise parameters are outlined in
Table 8.
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Table 8: Noise Parameters Summary Table
Parameter MNIST EMNIST FASHION CIFAR10

Gaussian Noise variance 0.4 1.0 0.9 0.6
Gaussian Noise mean 0.0 0.0 0.0 0.0
Salt & Pepper Noise density 0.7 0.6 0.7 0.4

C.7 ADDITIONAL RESULTS

The table below presents the communication costs observed during the MNIST experiment, which
incorporated 20 devices per iteration. This table compares the communication overhead associated
with our approach relative to conventional federated learning methods. Although our method initially
result in increased communication demands in the first log n iterations due to forming clusters, he
overhead in subsequent iterations reduces to levels comparable to other baselines.

Table 9: Communication Overhead (combined size of all messages between the server and the devices
in one communication round) in MNIST Experiments

S0 S1 S2 A1 A2

FedAvg 16.3 MB 16.3 MB 16.3 MB 16.3 MB 16.3 MB
IFCA 48.9 MB 48.9 MB 48.9 MB 48.9 MB 48.9 MB
FeSEM 48.9 MB 48.9 MB 48.9 MB 48.9 MB 48.9 MB
FedGroup 16.3 MB 16.3 MB 16.3 MB 16.3 MB 16.3 MB
FedDrift 24.5 MB 73.4 MB 57.1 MB 65.2 MB 32.6 MB
FedSoft 81.5 MB 81.5 MB 81.5 MB 81.5 MB 81.5 MB
CFL-GP 48.9 MB 48.9 MB 48.9 MB 48.9 MB 48.9 MB
SR-CFA 16.3 MB 48.9 MB 48.9 MB 36.2 MB 24.5 MB
FAACL(first log 20 ≈ 5 rounds) 70.1 MB 70.1 MB 70.1 MB 101.1 MB 101.1 MB
FAACL(after log 20 ≈ 5 rounds) 16.3 MB 16.3 MB 16.3 MB 20.4 MB 20.4 MB

The following table, which compares the performance metrics, including accuracies and execution
times, of both the hierarchical and flat versions. This comparison demonstrates the efficiency and
effectiveness of the hierarchical approach in achieving the desired clustering results with reduced
computational costs.

Table 10: Test accuracies ± stderr [ of clusters for seed 1, of clusters for seed 2, of clusters for
seed 3] and execution time (per device in one iteration) comparison between Hierarchical FAACL
(H-FAACL) and Flat FAACL (F-FAACL). Standard error for execution time is omitted since it is
always less than 1e-5.

Experiment H − FAACL accuracy H − FAACL time F − FAACL accuracy F − FAACL time

MNIST-S0 96.12± 0.99 [1, 1, 1] 6.3 s 96.32± 0.31[1, 1, 1] 43.8 s
MNIST-S1 93.44± 0.05 [2, 2, 2] 4.3 s 93.72± 0.18 [2, 2, 2] 34.2 s
MNIST-S2 95.73± 0.02 [2, 2, 2] 3.9 s 95.60± 0.63 [2, 2, 2] 36.9 s
MNIST-A1 75.12± 0.23 [4, 4, 4] 8.6 s 74.71± 0.83 [4, 4, 4] 69.4 s
MNIST-A2 96.01± 0.52 [5, 5, 5] 10.5 s 96.14± 0.39 [5, 5, 5] 76.6 s
EMNIST-S0 97.09± 0.28 [1, 1, 1] 15.2 s 96.83± 0.47 [1, 1, 1] 174.0 s
EMNIST-S1 96.86± 0.11 [2, 2, 2] 9.7 s 97.06± 0.06 [2, 2, 2] 146.7 s
EMNIST-S2 96.48± 0.02 [2, 2, 2] 8.9 s 95.60± 0.63 [2, 2, 2] 167.1 s
EMNIST-A1 53.08± 0.33 [9, 9, 9] 43.1 s 52.89± 0.35 [9, 9, 9] 783.4 s
EMNIST-A2 96.95± 0.18 [4, 4, 4] 29.2 s 96.42± 0.38 [4, 4, 4] 272.2 s
FASHION-S0 88.24± 0.44 [1, 1, 1] 15.4 s 88.31± 0.27 [1, 1, 1] 157.0 s
FASHION-S1 90.22± 0.18 [2, 2, 2] 10.2 s 90.10± 0.47 [2, 2, 2] 126.7 s
FASHION-S2 87.24± 0.08 [2, 2, 2] 9.3 s 86.89± 0.76 [2, 2, 2] 149.3 s
FASHION-A1 73.19± 0.06 [3, 3, 3] 13.7 s 72.85± 0.37 [3, 3, 3] 224.9 s
FASHION-A2 86.52± 0.01 [2, 2, 2] 11.6 s 86.63± 0.14 [2, 2, 4] 200.3 s
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Table 11: Test accuracies ± stderr for A1 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10
Centralize 78.39±0.05[2] 62.39±0.32[2] 73.43±0.13[2] 58.51±0.04[2]
Fedavg(optimal) 77.58±0.11[2] 60.25±0.13[2] 73.32±0.20[2] 57.81±0.07[2]

IFCA 69.90±0.41[5] 50.50±0.84[5] 69.09±0.61[4] 53.29±0.51[5]
FeSEM 65.79±0.82[4] 46.31±2.24[1] 64.56±1.32[1] 48.72±0.92[1]
FedGroup 74.65±0.16[5] 51.88±0.24[5] 70.93±0.52[5] 54.26±0.58[5]
FedDrift 70.34±0.43[7] 51.63±0.11[4] 72.96±0.17[3] 54.58±0.46[1]
FedSoft 71.28±0.31 [5] 52.38±0.56[5] 71.01±0.47 [5] 53.38±0.75[5]
CFL-GP 72.16±0.64 [5] 52.31±0.56[5] 70.39±0.60 [5] 52.14±0.83[5]
SR-CFA 74.27±0.84 [3] 53.84±0.29[6] 70.04±0.89 [8] 51.62±0.59[4]

FAACL(version 1) 76.31±0.13[4] 57.28±0.58[9] 73.21±0.10[3] 56.31±0.48[6]
FAACL(version 2) 75.12±0.34[4] 55.85±0.43[3] 73.19±0.32[3] 55.42±0.68[4]

Table 12: Test accuracies ± stderr for A2 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10
Centralize 97.32±0.03[2] 97.67±0.29[2] 86.90±0.24[2] 64.16±0.09[2]
Fedavg(optimal) 97.10±0.17[2] 97.38±0.25[2] 86.72±0.14[2] 64.04±0.08[2]

IFCA 95.35±0.28[3] 95.98±0.18[2] 85.70±0.32[4] 59.17±0.62[5]
FeSEM 74.65±0.20[1] 88.02±1.27[1] 81.27±0.30[1] 52.84±1.28[5]
FedGroup 95.44±0.26[5] 95.42±0.18[5] 86.31±0.28[5] 60.27±0.61[5]
FedDrift 95.34±0.16[3] 91.70±0.45[4] 84.15±0.35[2] 60.28±1.14[8]
FedSoft 95.73±0.09 [5] 95.73±0.09 [5] 84.29±0.58 [5] 60.25±0.79[5]
CFL-GP 94.36±0.36 [5] 94.24±0.37[5] 83.25±0.60 [5] 61.17±1.02[5]
SR-CFA 95.38±0.25 [2] 96.48±0.92[5] 84.57±0.29 [5] 61.09±0.77[5]

FAACL(version 1) 96.40±0.37[5] 96.95±0.23[4] 86.53±0.14[2] 62.74±0.43[8]
FAACL(version 2) 96.06±0.26[4] 97.02±0.39[3] 86.50±0.07[2] 62.43±0.52[4]

Table 13: Test accuracies ± stderr for S1 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10
Centralize 94.85±0.16[2] 97.11±0.09[2] 90.82±0.12[2] 74.68±0.11[2]
FedAvg(optimal) 94.39±0.18[2] 97.09±0.06[2] 90.47±0.14[2] 74.50±0.26[2]

IFCA 91.16±0.38[5] 94.28±0.46[4] 86.88±0.24[4] 69.36±0.31[5]
FeSEM 50.24±3.80[3] 42.44±3.88[1] 50.57±1.55[1] 54.20±0.71[1]
FedGroup 93.73±0.13[5] 96.18±0.14[5] 88.50±0.44[5] 71.62±0.29[5]
FedDrift 91.76±0.11[8] 96.35±0.20[3] 85.52±0.24[7] 70.53±0.79[3]
FedSoft 90.49±0.25 [5] 94.39±0.71 [5] 84.29±0.36 [5] 72.49±0.33[5]
CFL-GP 92.31±0.48 [5] 96.73±0.65[5] 88.29±0.58 [5] 70.35±0.64[5]
SR-CFA 92.16±0.24 [2] 96.01±0.43[2] 89.26±0.79 [2] 70.23±0.71[2]

FAACL(version 1) 93.45±0.03[2] 96.82±0.13[2] 90.23±0.11[2] 71.48±0.27[2]
FAACL(version 2) 93.27±0.06[2] 96.44±0.21[2] 89.64±0.22[2] 71.27±0.23[2]
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Table 14: Test accuracies ± stderr for S2 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10
Centralize 97.06±0.04[2] 96.93±0.13[2] 88.95±0.68[2] 73.57±0.11[2]
FedAvg (optimal) 96.73±0.29[2] 96.80±0.37[2] 88.74±0.49[2] 73.18±0.22[2]

IFCA 94.36±0.52[4] 95.17±0.05[2] 85.42±0.48[5] 71.11±0.23[4]
FeSEM 49.35±4.17[3] 43.94±3.05[1] 43.65±1.65[1] 64.76±1.32[3]
FedGroup 95.55±0.22[5] 95.79±0.22[5] 85.98±0.09[5] 70.81±0.41[5]
FedDrift 93.37±0.35[6] 96.12±0.17[3] 85.77±0.28[4] 71.30±0.55[3]
FedSoft 93.92±0.41[5] 94.78±0.63[5] 85.11±0.26[5] 71.58±0.57[5]
CFL-GP 94.92±0.61[5] 95.75±0.82[5] 86.02±0.73[5] 71.21±0.88[5]
SR-CFA 95.06±0.73[2] 95.88±0.46[2] 86.69±0.40[2] 71.47±0.64[2]

FAACL(version 1) 95.89±0.11[2] 96.54±0.07[2] 87.82±0.17[2] 71.47±0.27[2]
FAACL(version 2) 95.71±0.04[2] 96.62±0.09[2] 87.31±0.13[2] 71.43±0.29[2]
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