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ABSTRACT

Document Visual Question Answering (DocVQA) has introduced a new paradigm
for end-to-end document understanding, and quickly became one of the standard
benchmarks for multimodal LLMs. Automating document processing workflows,
driven by DocVQA models, presents significant potential for many business sec-
tors. However, documents tend to contain highly sensitive information, raising
concerns about privacy risks associated with training such DocVQA models. One
significant privacy vulnerability, exploited by the membership inference attack, is
the possibility for an adversary to determine if a particular record was part of the
model’s training data. In this paper, we introduce two novel membership inference
attacks tailored specifically to DocVQA models. These attacks are designed for
two different adversarial scenarios: a white-box setting, where the attacker has full
access to the model architecture and parameters, and a black-box setting, where
only the model’s outputs are available. Notably, our attacks assume the adver-
sary lacks access to auxiliary datasets, which is more realistic in practice but also
more challenging. Our unsupervised methods outperform existing state-of-the-art
membership inference attacks across a variety of DocVQA models and datasets,
demonstrating their effectiveness and highlighting the privacy risks in this domain.

1 INTRODUCTION

Automated document processing fuels a significant number of operations daily, ranging from fintech
and insurance procedures to interactions with public administration and personal record keeping. Up
until a few years ago, document processing services relied on template-based information extraction
models, which were created ad-hoc for each client. Although these approaches allowed for good
control of client data and could be extended to new documents with a few examples, they were
limited in scalability and difficult to maintain. Consequently, the introduction of Document Visual
Question Answering (DocVQA) (Mathew et al., 2020) in 2019 has resulted in a paradigm shift in
document processing services, enabling end-to-end generic solutions to be applied in this domain.
DocVQA leverages multi-modal large language models to streamline business workflows and pro-
vide clients with novel ways to interact with the document processing pipeline.

However, as cloud-based DocVQA solutions become more prevalent, significant privacy risks
emerge, particularly concerning the potential leakage of sensitive information through model vul-
nerabilities. Indeed, during the training of a DocVQA model, each document can have several
associated question-answer pairs, with each pair considered a unique data point. As a result, a
single document can appear multiple times, which significantly raises the risks associated with pri-
vacy vulnerabilities. This repeated exposure enhances the likelihood of the model memorizing spe-
cific details, thereby increasing the potential for data leakage during privacy attacks. Furthermore,
scanned document images often have high resolutions necessary for posterior analysis, but need to
be rescaled for processing by image encoders, potentially rendering content unreadable. To mitigate
this issue, many DocVQA models (Huang et al., 2022; Tang et al., 2023) utilize a dual representation
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Figure 1: The General Scheme of Document-level Membership Inference Attacks. Training: A DocVQA
model is trained on a dataset of documents, each associated with multiple questions/answers. Deployment:
An adversary exploits this structure by querying the model with questions related to a target document. By
aggregating the model’s responses, the adversary can infer the membership of the document in the training set.

of the document, comprising both a reduced-scale image and OCR-recognized text. This approach
introduces further challenges, as sensitive information may leak through multiple modalities.

Membership inference attacks (MIAs) are among the most prominent techniques for assessing pri-
vacy vulnerabilities in machine learning models. These attacks enable an adversary to determine
whether a specific data point is included in the training dataset. However, there is limited research
on membership inference risks in the context of multi-modal models. Among the few studies, Ko
et al. (2023); Hu et al. (2022b) utilize powerful pre-trained models on large datasets to construct
an aligned embedding space for the two modalities—image and text—allowing for the inference of
membership information. Unfortunately, the reliance on these pre-trained models poses challenges
for document-based tasks, particularly in DocVQA scenarios, where an alignment model capable
of aligning the (document, question) as input and the answer as output is currently unavailable.
Recently, Tito et al. (2024) introduced a provider-level MIAs against DocVQA models aimed at
determining whether a provider (group) that may supply multiple invoice documents is part of the
training set. In contrast, our research focuses on membership information at a finer granularity,
specifically targeting the inference of whether a single document is included in the training dataset.
Current MIA solutions that exploit standard features such as output logits, probabilities, or loss are
difficult to adapt to the DocVQA context, where outputs are generated in an auto-regressive manner.
Additionally, legal constraints surrounding copyright and private information complicate central-
ized model training, making it challenging to create auxiliary datasets that capture the variability
and richness of real-world data. As a result, shadow training of proxy models becomes infeasible.

In this work, we take a structured approach to privacy testing for DocVQA models. We design
a novel Document-level Membership Inference Attack (DocMIA) that deals with the multiple oc-
currences of the same document in the training set, as demonstrated in Figure 1. To address the
challenge of extracting typical metrics (e.g. logit-based) from auto-regressive outputs, we propose a
new method based on model optimisation for individual samples that generates discriminative fea-
tures for DocMIA. We design attacks both for white-box and black-box settings without requiring
auxiliary datasets. In the black-box setting, we propose an alternative knowledge transfer mecha-
nism from the attacked model to a proxy. Evaluating our attacks on three multi-modal DocVQA
models and two datasets, we achieve state-of-the-art performance against multiple baselines.

To summarize, we make the following contributions:

1. We present DocMIA, the first Document-level Membership Inference Attacks specifically
targeting multi-modal models for DocVQA.

2. We introduce two novel auxiliary data-free attacks for both white-box and black-box set-
tings, leveraging novel discriminative metrics for DocMIA.

3. We explore three distinct approaches to quantify these metrics: vanilla layer fine-tuning
(FL), fine-tuning layer with LoRA (Hu et al., 2021) (FLLoRA), and image gradients (IG).

4. Our attacks1, evaluated on two DocVQA datasets across three different models, outperform
existing state-of-the-art membership inference attacks as well as baseline attacks.

1Code is available at https://github.com/khanhnguyen21006/mia_docvqa
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2 RELATED WORK

Membership Inference Attack. Membership inference attacks have been extensively explored in
various applications to highlight privacy vulnerabilities in deep neural networks or to audit model
privacy (Shokri et al., 2017). These attacks are categorized into two types: white-box and black-box
settings. In white-box settings, the adversary has full access to the target model’s internal param-
eters and computations (Carlini et al., 2022; Yeom et al., 2018; Nasr et al., 2019; Rezaei & Liu,
2021; Sablayrolles et al., 2019; Li & Zhang, 2021), enabling the use of informative features like loss
values, logits, and gradient norms. Conversely, in black-box settings, the adversary is limited to the
model’s outputs, such as predicted labels or confidence scores (Choquette-Choo et al., 2021; Shokri
et al., 2017; Salem et al., 2018; Sablayrolles et al., 2019; Song & Mittal, 2021; Hui et al., 2021). The
literature indicates that white-box attacks tend to be more effective due to the availability of richer
features (Song et al., 2019; Nasr et al., 2019). In this paper, we propose tailored attacks for both
settings, considering a more challenging scenario where the adversary lacks an auxiliary dataset
–which is used to train shadow models that mimic the behavior of the target model and are subse-
quently exploited to enhance attack performance– and is restricted to a limited number of queries.
Regarding gradient-based membership inference attacks, research on using gradients as features has
been limited. Nasr et al. (2019) leveraged the L2-norm of gradients with respect to model weights
for membership inference. Rezaei & Liu (2021) suggested using the distance to the decision bound-
ary as a metric but found it ineffective for this purpose. In contrast, we introduce novel strategies
called FL, FLLoRA, and IG, demonstrating that the L2-norm of the cumulative gradient—computed
using these methods—provides a robust signal for membership inference. While Maini et al. (2021)
and Li & Zhang (2021) also explored distance metrics, but from input points for membership infer-
ence in image classification tasks, their approaches lack scalability and applicability in our context,
which involves larger-scale models with a wider vocabulary of tokens.

Membership Inference Attack Against Multi-modal Models. Research works into the privacy
vulnerabilities of multi-modal models is still in its early stages. Recently, Tito et al. (2024); Pinto
et al. (2024) proposed reconstruction attacks that exploit DocVQA model memorization to recover
hidden values in documents. They black out specific target values in documents and query the model
with questions about the modified documents. Since the model memorizes training data, it often
reconstructs the hidden target values. Tito et al. (2024) also introduced a membership attack against
DocVQA models to infer whether a document provider, with multiple documents, is included in the
training dataset. However, as far as we know, no research has yet explored membership inference
attacks at document-level granularity. Additionally, Ko et al. (2023); Hu et al. (2022b) leverage
powerful pre-trained models on large datasets to create an aligned embedding space for the two
modalities to infer membership. Unfortunately, the reliance on these pre-trained models introduces
difficulties for document-based tasks, especially DocVQA, where an appropriate alignment model
for aligning (document, question) inputs to corresponding answers is not yet available. Furthermore,
the success of both attacks hinges on the availability of auxiliary datasets leveraged by the adversary,
which are key to executing the attack effectively. In this paper, we present two membership inference
attacks specifically tailored to tackle the unique characteristics of DocVQA models.

3 BACKGROUND

3.1 DOCUMENT-BASED VISUAL QUESTION ANSWERING

DocVQA is a multi-modal task where natural language questions are posed based on the content
of document images. Notably, it establishes a unified query-response framework applicable across
various document understanding tasks, such as document classification and information extraction.

Formally, the DocVQA task is defined as follows: given a question-answer pair (q, a) related to a
document image x, the method F must generate an answer â = F(x, q) such that â closely matches
the correct answer a. More concretely, given Dt = {(xi, qi, ai)}Nt

i=1 as a set of valid training
examples, a model F , parameterized by θ, is trained to maximize the conditional log-likelihood:

L(θ) = − log pθ(ai|xi, qi) (1)
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Standard metrics for DocVQA include Accuracy (ACC) and Normalized Levenshtein Similarity
(NLS) (Biten et al., 2019), which measure the similarity between the predicted and correct answer:

ACC = 1â=a; NLS =

{
1− NL(â, a) if NL(â, a) < 0.5,

0 if NL ≥ 0.5
(2)

where NL(·, ·) denotes the normalized Levenshtein distance.

In the following sections, for clarity, we often omit the data example index i from the notation.

3.2 DOCUMENT-LEVEL MEMBERSHIP INFERENCE ATTACK

Membership inference attacks (Shokri et al., 2017) exploit privacy vulnerabilities to determine if a
specific data point was included in the training set of a machine learning model. We extend this
definition to the Document-level MIA, which is particularly suited in the DocVQA context.

Given access to a trained DocVQA model F and a document x drawn from its data distribution
D, along with a set of question-answer pairs Q = {(qi, ai)}Mi=1 related to the information in the
document, an adversary A designs a decision rule fA(x,Q;F) to classify the membership status
of x, aiming for fA(x,Q;F) = 1 if x is a member of the training set, otherwise a non-member.
It is important to note that the adversary is focused solely on the membership of the document x,
rather than the entire DocVQA data point (x, q, a), which is typically the target of prior MI attacks.
Moreover, since a single document is associated with many question-answer pairs, this allows the
adversary to query the same document using multiple questions for various pieces of information.

4 DOCMIA AGAINST DOCVQA MODELS

In Section 4.1, we elaborate on the threat model relevant to DocMIA on two scenarios: white-box
and black-box access. We first explain our intuition behind our optimization-based attacks in the
white-box setting (Section 4.2), then adapt this approach to our black-box attacks (Section 4.3).

4.1 THREAT MODEL

DocMIA can be either a useful or harmful tool in various real-world scenarios. On the positive side,
DocMIA can act as a privacy auditing tool. For instance, in legal document processing, law firms
may use these attacks to evaluate whether proprietary or confidential documents, such as contracts
or court filings, were included in model training, thereby identifying potential privacy risks. Con-
versely, DocMIA can be maliciously leveraged. As an example, a business competitor could exploit
these attacks on an invoice-processing system to infer the presence of specific invoices in the training
data, exposing confidential business relationships and leading to risks such as supplier poaching.

In both scenarios, we assume that the adversary aims to infer membership information for a set of
documents, determining whether each document is included in the training dataset. These docu-
ments may or may not be part of the target model’s training data. Crucially, we further assume the
adversary lacks access to an auxiliary data Daux that reflects the characteristics of these documents.
This assumption is realistic, as obtaining real-world documents at scale is often prohibitively difficult
due to their confidential nature and regulatory restrictions. Consequently, this negates the applica-
tion of MI attack techniques that require training shadow models (Shokri et al., 2017; Carlini et al.,
2022). Even if auxiliary documents were available, training numerous shadow document-based
models—typically designed with a large number of parameters—would be prohibitively expensive.

Based on the previous examples, we refer to the owner of the document model as the trainer and
the law firms or competitors as the adversary. Given the document distribution D, the trainer trains
a document-based model Ft with private access to Dt ∼ D, following a training algorithm T , that
defines the model architecture, optimization process, and related details. The adversary owns the set
of sensitive documents Dtest ∼ D, where Dt ∩Dtest ̸= ∅, |Dtest| = Ntest; but does not know which
documents are in Dt. Given a document x ∈ Dtest with a set of related queries Q = {(qi, ai)}Mi=1,
the adversary’s goal is to determine whether x ∈ Dt or x /∈ Dt. We formulate two attack settings,
which specify the adversarial knowledge about the model Ft and its data distribution D:

White-box Setting. In this scenario, the adversary has full access to the internal workings of the
target model, including the model’s architecture, weights, gradients from any further training and
other internal details. However, the adversary does not have access to the training algorithm T .
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Black-box Setting. Here, the adversary can only interact with the target model through an API,
which only returns a prediction â for each question q on x. In addition, the adversary is constrained
by a limited number of queries. As in the white-box setting, the adversary has no information about
T . This setting reflects the most challenging case (Nasr et al., 2019; Song et al., 2019).

We assume the adversary has full knowledge of the DocVQA task to train the model, including the
training objective, document type and exact training questions. This assumption is reasonable, as
task-level information such as document type, is often publicly available to guide users, making
it accessible to adversaries. The assumption of the exact question knowledge is also plausible, as
an adversary can approximate questions based on the document type. Further discussion of this
assumption and experiments in the setting without exact questions are provided in Appendix F.2.

4.2 WHITE-BOX DOCMIA

In the white-box setting, where the adversary has access to the trained model, shadow training is
impractical due to the lack of auxiliary data and high computational cost. To this end, our strategy
is to develop unsupervised metric-based attacks (Hu et al., 2022a). For each document, we extract
a set of features from individual question-answer pairs and aggregate them across all pairs. We
then cluster the resulting feature vectors to distinguish member from non-member documents. A
key challenge is to design discriminative features, as standard metrics (e.g., logit and loss) may be
ineffective in this setting (Section 6). To address this, we propose new features that enhance the
informativeness of our membership inference vectors.

4.2.1 OPTIMIZATION-BASED DISCRIMINATIVE FEATURES

In this section, we introduce two novel discriminative membership features derived from an opti-
mization process for our attacks against DocVQA models.

x is in of the training set

x is out of the training set

Figure 2: Visualization of our
fine-tuning strategy in the pa-
rameters space. Each contour
plot represents the optimization
landscape w.r.t each pair (ai, qi)
from document x. In general, the
average ∆ computed on a mem-
ber document xin is smaller than
non-member document xout.

Intuition. Since DocVQA models are typically trained on multiple
question-answer pairs per document, the model parameters likely
converge to minimize the average distance to the ground-truth an-
swers after training. As a result, fine-tuning the model on one
question-answer pair through an iterative process is necessary to ex-
tract more reliable membership signals. More importantly, this op-
timization on training documents may converge faster than to non-
training documents, due to the lower generalization error. Figure 2
illustrates our reasoning.

We provide a formal definition of the distance feature.
Definition 4.1 (Optimization-based Distance Feature). Given a
model F parameterized by θ, let the model be initialized with θ0.
After undergoing a gradient-based optimization process O, the pa-
rameters converge to θ∗ according to a specified training objec-
tive L. The distance feature is then defined as the L2-norm of the
change in parameters:

∆(θ0, θ
∗) = ||θ0 − θ∗||2 (3)

This feature measures the difference between the initial parameters
θ0 and the converged parameters θ∗, as an approximation of the
optimization trajectory toward the optimal solution.

Specifically, we fine-tune the target DocVQA model on an individ-
ual document/question-answer pair and compute the distance re-
quired to reach the optimal answer. A small average distance indi-
cates the document is likely part of the training set, while a larger
distance suggests a non-training document. In addition, the number
of optimization steps serves as an orthogonal feature that reflects
the efficiency of the optimization process. With an optimal learning
rate and a good initialization provided from the target model, optimization for training documents
typically converges in fewer steps compared to non-training documents. Consequently, we include
both the distance and the number of optimization steps in our feature set for white-box attacks.
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Algorithm 1 DocMIA Assignment

1: Input: model Fθt , document x ∈ Dtest, question-answer pairs {(qi, ai)}Mi=1, utility U , aggregation Φ.
2: Hyperparameters: optimizer OPT, optimization steps S, learning rate α, threshold τ .
3: for i = 1 to M do
4: Set θ.requires grad = True // Change θ to: θL or LORA(θL) or x and Freeze θ.
5: Initialize: si = 0, ui = {}; li ← 0, θ0 ← θt
6: while si < S do
7: ui ← ui ∪ U(Fθ(x, qi), ai)
8: if (L(θ)− l) < τ then break; // Early stopping
9: end if

10: θ ← OPT(α,∇θ(L(θ))
11: li ← L(θ), si ← si + 1
12: end while
13: ∆i ← ∥θ0 − θ∥2 // Compute distance metric
14: end for
15: ∆M = Φ(∆i=1,...,M ); sM = Φ(si=1,...,M );uM = Φ(ui=1,...,M ) // Aggregating over M questions
16: Output: Fx = [∆M , sM , uM ] // Assign membership feature vector

4.2.2 METHODOLOGY

We now formally present our attack strategy, assuming white-box access to the target model Ft.
For any document x ∈ Dtest and a set of question-answer pairs Q, the goal is to assign a features
descriptor Fx. This is achieved by first extracting a set of features through the optimization process
O on a single question-answer pair. These features are aggregated across multiple questions then
concatenated to construct Fx. Repeating this process over Dtest, we apply an unsupervised clustering
algorithm to differentiate member documents from non-members based on their features descriptors.

Following our intuition, for each question-answer pair (q, a), we fine-tune the target model parame-
ter θt via gradient descent to maximize pθ(a|x, q) (Eq. 1). Starting from θt, optimization proceeds
with learning rate α, querying the model at each step s using q and evaluating prediction â via utility
function U , either ACC or NLS (Eq. 2). The process stops when no further improvements is ob-
served, governed by threshold τ or max S steps. We then evaluate the distance ∆ (Eq. 3), record the
number of steps s, and aggregate the utility evolution to obtain the overall DocVQA score u. These
features serve as membership signals for the current (q, a) pair in relation to the target document x.

Since each document is associated with a varying number of question-answer pairs M , we aggregate
features across all pairs using Φ, optionally employing multiple aggregation functions to enrich the
feature set. The aggregated features are then normalized onto a consistent scale and concatenated to
form the document descriptor Fx. The assignment algorithm is outlined in Algorithm 1. Finally, we
cluster descriptors from Dtest, identifying the cluster with the larger ∆ as non-member documents.

4.2.3 IMPROVING EFFICIENCY

Fine-tuning Ft on a single (q, a) enables membership inference but is computationally expensive
due to model size and data pre-processing overhead. To improve the attack efficiency, we introduce
three variants of the method, as illustrated in Figure 3:

Optimize One Layer (FL). Instead of updating all parameters, we optimize a single layer, assuming
its gradients provide sufficient signal for membership classification. In this variant, we select one
specific layer L to optimize, keeping the other parameters fixed. We ablate the choice of L for this
method in Appendix C. In addition, we propose FLLoRA, a variant using LoRA (Hu et al., 2021),
where the LoRA parameters are initialized with Kaiming initialization (He et al., 2015). From
Algorithm 1, we replace θ to θL or the LORA parameters of L, denoted as LORA(θL), respectively.

Optimize the Document Image (IG). This variant shifts the focus to the input space by directly
optimizes the pixel values of the document image x. The intuition remains the same: training doc-
uments require less self-tuning, enabling the model to converge faster than non-trainings. However,
this assumes the target model allows differentiation of the document image through its architecture.
Accordingly, we replace θ with x from Algorithm 1 while freezing the target model parameters θ.
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White-box
Model

question

document

predicted 
answer

(a) Optimize the Document (b) Optimize One Layer (c) Distill the Black-box

Figure 3: Variants of our proposed DocMIA. Left: (a) (b) illustrate three white-box attack strategies: optimiz-
ing either the Document Image or a single Layer (LoRA). Dashed arrows indicate back-propagated gradients.
Right: We distill the black-box model into a proxy, which is then attacked using the white-box strategies.

These variants reduce computational costs while maintaining attack performance, providing more
practical options when the size of Dtest increases.

4.3 BLACK-BOX DOCMIA

In the black-box setting, the attack model’s access is restricted to Dtest and the predicted answers. To
address this, we propose a distillation-based attack that transfers knowledge about the private data
Dt from the black-box model Ft to a proxy model Fp, parameterized by ω. With full control over
Fp, we can apply white-box attack strategies without modification.

First, the black-box model generates labels for each question in Dtest, creating a query dataset
Dquery = {(xi, Qi)}Ntest

i=1 where Qi = {(qj ,Fθt(xi, qj))}Mj=1. The proxy model Fp is then trained on
this dataset to maximize the likelihood of the predicted answer pω(Fθt(xi, qj)|xi, qj). In essence,
the goal is to replicate the black-box model’s predictions and transfer its output structure to the proxy
model, thereby transferring the embedded membership features and validating the white-box attack
assumptions. Figure 3(c) illustrates the scheme of our proposed attack.

Since our focus is on the document domain, we initialize Fp using a publicly available checkpoint
ωpt, pre-trained on an unlabeled document dataset Dpt, which is inaccessible and assumed to be
disjoint from the private dataset Dt. This initialization equips the proxy model with document
understanding capabilities without prior knowledge of Dt. As a result, it enables the proxy Fp to
better mimic the prediction behavior and internal dynamics of the black-box Ft after fine-tuning.

It is important to note that the adversary lacks information of the black-box training algorithm T ,
meaning there is no advantage regarding model architecture or training details when constructing the
proxy model. Thus, the choice of the proxy model, optimizer, learning rate, etc., is independent of
the target model. However, as empirically shown in Section 6.1, while using a proxy model with the
same architecture as the black-box model can offer benefits, our attack strategies remain effective
even with different architectures. This demonstrates the robustness of our approach, which does not
rely on specific model classes or requiring detailed knowledge of the black-box model.

5 EXPERIMENTAL SETUP

5.1 TARGET DATASET AND MODEL

Target Dataset. We study two established DocVQA datasets in the literature for our analysis:
DocVQA (DVQA) (Mathew et al., 2021) and PFL-DocVQA (PFL) (Tito et al., 2024). Both
datasets are designed for extractive DocVQA task, where the answer is explicitly found within the
document image. Each document in these datasets is accompanied by varying number of questions.

Target Model. We consider three state-of-the-art models which are designed for document under-
standing tasks: (1) Visual T5 (VT5) (Tito et al., 2024) (250M parameters) follows the traditional
design by utilizing OCR module to facilitate the reasoning process. It leverages the T5 model pre-
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Model SCORE-TA SCORE-UA SCORE-UAall LOSS-TA GRADIENT-UA SCORELOSS-UAall

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

PF
L VT5 62.33 64.13 61.000.0 68.800.0 60.670.0 60.670.0 57.83 62.81 60.670.0 60.670.0 60.670.0 60.670.0

Donut 73.33 75.14 68.330.0 75.770.0 71.170.67 71.333.32 73.67 78.99 70.670.0 69.550.0 70.830.0 69.670.0
D

V
Q

A VT5 75.67 75.75 72.170.0 76.180.0 75.170.0 75.130.0 73.67 77.99 71.170.0 67.540.0 75.500.0 76.020.0
Donut 79.67 79.53 75.970.07 79.570.07 80.500.0 81.100.0 51.83 53.46 77.170.0 75.920.0 80.500.0 81.100.0
Pix2Struct-B 67.33 67.97 68.170.0 71.360.0 69.130.07 67.670.09 59.33 64.63 66.00.0 68.320.0 69.000.0 67.480.0

Table 1: Results from Baseline Attacks. Gray color indicate attacks conducted in the black-box setting. All
results are reported based on five random seeds for KMEANS. The methods with the best average performance
across the two metrics are highlighted in bold. See Appendix E for the complete results.

trained on the C4 corpus (Raffel et al., 2020), along with a ViT backbone pre-trained on document
data (Li et al., 2022). (2) Donut (Kim et al., 2022) (201M parameters) is one of the first end-to-
end DocVQA models capable of achieving competitive performance without relying on OCR. It is
pre-trained on a large collection of private synthetic documents. (3) Pix2Struct (Lee et al., 2023) is
another OCR-free document model with two versions: Base (282M) and Large (1.3B parameters).
This model is pre-trained to perform semantic parsing on an 80M subset of the C4 corpus.

For the PFL-DocVQA dataset, we consider two targets: VT5, using the public checkpoint provided
by the authors2, and Donut, which we successfully trained to achieve strong performance following
the training procedure from the authors. For the DocVQA dataset, we attack four targets: VT5,
Donut, and Pix2Struct (Base and Large), all with publicly available checkpoints from Hugging-
Face3 (Wolf et al., 2020). In the black-box setting, we use VT5 and Donut as proxy models. To train
the proxy models on the query set Dquery, we initialize them with their public pre-trained check-
points—the same checkpoints used to fine-tune the target models on the respective target datasets,
as outlined in the original papers. For more details on datasets and models, see Appendix A and D.

5.2 IMPLEMENTATION

We tune the hyperparameters in the optimization process to ensure our attacks are effective against
each target model in the white-box setting, then apply the best set to black-box attacks. Assuming
no access to the training algorithm T , we use Adam (Kingma, 2014) as the optimizer OPT across all
attack experiments. We explore the impact of learning rate α, the selected layer L, and we carefully
tune the values of threshold τ in the ablation study (Appendix C). Subsequently, the optimal set
of hyperparameters for each model is then applied in all black-box experiments. For aggregation
Φ, we consider 4 aggregation functions {AVG; MIN; MAX; MED} for each feature, denoted as Φall.
Throughout our experiments, we employ KMEANS as the clustering algorithm. See Appendix D for
more implementation details.

5.3 EVALUATION METRIC

From the official splits of each target dataset, we sample 300 member documents from the training
set and 300 non-member documents from the test set, yielding Ntest = 600 test documents. We
evaluate attack performance using Balanced Accuracy and F1 score in the balanced setting, as in
prior works (Salem et al., 2018; Watson et al., 2022; Ye et al., 2022). In addition, we report True
Positive Rate (TPR) at 1% and 3% False Positive Rate (FPR), as in recent MIA literature (Carlini
et al., 2022). For unsupervised attacks using KMEANS, the membership score of each document is
computed as the Euclidean distance between its feature vector and the member cluster centroid.

5.4 BASELINE

In the black-box setting, we evaluate three MI attacks that only requires the predicted answer to
determine membership: Score-Threshold Attack (SCORE-TA), Unsupervised Score-based Attack
with AVG (SCORE-UA) (Tito et al., 2024) and Φall (SCORE-UAall).

For the white-box setting, where loss or gradient is accessible, we evaluate three base-
lines: Loss-Threshold Attack (LOSS-TA) (Yeom et al., 2018), Unsupervised Score+Loss Attack
(SCORELOSS-UAall) and Unsupervised Gradient Attack (GRADIENT-UA)(Nasr et al., 2019). In

2https://benchmarks.elsa-ai.eu/?ch=2
3https://huggingface.co/models
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Figure 4: White-box Setting: Our proposed at-
tacks consistently achieve high performance, gen-
erally outperforming the considered baselines.

DVQA PFL
VT5 Donut Pix2Struct-B VT5 Donut

LOSS-TA 14.00 7.67 5.33 3.00 14.67
GRADIENT-UA 9.33 6.00 5.00 3.00 8.33
SCORELOSS-UAall 4.67 8.67 6.67 4.00 6.33

Min-K% Prob† 10.67 1.33 5.33 5.67 0.00
Min-K%++† 7.00 9.33 10.33 8.00 2.00

FL 5.67 10.67 11.00 8.67 7.00
FLLoRA 11.33 5.33 6.33 3.33 10.00
IG 5.67 8.00 10.33 2.33 11.00

Table 2: White-box Setting: TPR at 3% FPR. Com-
parison across all white-box methods, with the best-
performing method for each metric highlighted in bold.
† indicates baselines with grey-box access. We refer the
readers to Appendix E for the complete results.

addition, we include two grey-box attacks designed for LLMs: Min-K% Prob (Shi et al., 2023) and
Min-K%++ (Zhang et al., 2024), assuming access to token-level probabilities of the generated an-
swer to compute the membership score of each document. See Appendix B for detailed descriptions.

6 EVALUATION

6.1 WHITE-BOX SETTING

Baseline Performance Evaluation. Table 1 (right) shows the performance of baseline attacks in the
white-box setting. LOSS-TA, akin to the thresholding loss attack in (Yeom et al., 2018), performs
poorly on complex DocVQA models, achieving under 60% accuracy for most targets. In contrast,
SCORELOSS-UAall, which combines utility scores and loss features, achieves stronger results: 81%
F1 on Donut, 75% on VT5, and 69% on Pix2Struct on DocVQA dataset. However, it underperforms
LOSS-TA on PFL-DocVQA, with a 3% drop in Accuracy and 8% in F1, likely due to high loss
variance in this dataset. GRADIENT-UA, which incorporates one-step gradient information, matches
the performance of score-based attacks, suggesting that the gradient serves as a useful signal for
membership inference. However, none of the baselines generalizes well across all target models.

Our Proposed Attacks outperform the Baselines. We evaluate our attacks—FL, FLLoRA, and IG
—in the white-box setting against different targets. As shown in Figure 4, our methods consistently
achieve high performance, indicating that optimization-based features generalize well across various
models. Compared to all baselines, our attacks achieve either the best or near-best performance on
both target datasets, with notable F1 scores of 72% against VT5 and Pix2Struct, and 82.5% against
Donut. Against GRADIENT-UA, our proposed features yield up to a 10% improvement in F1 on
Donut, indicating that single-step gradients are insufficient for reliable membership inference.

From Table 2, our attacks consistently perform well in the low-FPR regime, often surpassing or
matching the strongest baselines. For instance, FL achieves a TPR of 8.67% at 3% FPR against VT5
on PFL, despite minimal overfitting, and a TPR of 11.00% against Pix2Struct-B on DocVQA. Addi-
tionally, our methods outperform both Min-K% Prob (Shi et al., 2023) and Min-K%++ (Zhang et al.,
2024) across target models, underscoring their effectiveness, particularly in DocMIA setting. These
results highlight the privacy risks posed by optimization-based features in membership inference.

Why are Our Attacks more effective? We evaluate our optimization-based features against stan-
dard metrics from prior MI attacks such as loss and single-step gradient. The loss-based attack
LOSS-TA (Yeom et al., 2018) assumes that member documents exhibit lower loss values than non-
members after training the target model Ft. While this exploits the generalization gap, it is overly
simplistic for large-scale models that are trained with techniques to minimize overfitting. Conse-
quently, the strong generalization capability of DocVQA models often reduces the sensitivity of
the loss as a membership indicator. In contrast, our attacks leverage the optimization process with
respect to the model parameters, conditioned on each question-answer pair. We hypothesize that
the distance resulting from parameter updates (Eq. 3) is smaller for member documents than for
non-members, as depicted in Figure 2. This fine-grained signal, which captures the model’s internal
response to optimization, provides a more discriminative membership feature.
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Proxy Model VT5

Black-box FL FLLoRA IG

ACC F1 ACC F1 ACC F1

PF
L VT5 63.330.0(+2.33) 69.510.03(+0.71) 63.330.0(+2.33) 69.010.0(+0.21) 62.000.16(+1) 69.350.2(+0.55)

Donut 70.830.0(−0.34) 76.640.0(+0.87) 70.830.0(−0.34) 76.700.0(+0.93) 70.670.0(−0.5) 76.720.0(+0.95)
D

V
Q

A
VT5 74.330.01(−0.84) 75.080.0(−1.1) 74.330.0(−0.84) 74.670.0(−1.51) 73.830.08(−1.34) 75.810.0(−0.37)
Donut 81.670.0(+1.17) 82.540.0(+1.44) 81.170.0(+0.67) 82.090.0(+0.99) 80.170.0(−0.33) 81.890.0(+0.79)
Pix2Struct-B 70.170.0(+1.04) 69.710.0(−1.65) 70.270.23(+1.14) 70.850.07(−0.51) 71.170.0(+2.04) 72.140.0(+0.78)

Pix2Struct-L 71.670.01(+0.84) 72.130.0(+1.30) 70.170.0(−0.66) 71.270.0(+0.44) 71.000.05(+0.17) 73.150.0(+2.32)

Proxy Model Donut

PF
L VT5 61.730.08(+0.73) 64.040.10(−4.76) 61.670.08(+0.67) 63.490.0(−5.31) 55.170.17(−5.83) 57.370.3(−11.43)

Donut 72.170.0(+2.33) 76.240.0(−0.19) 72.670.0(+1.5) 77.470.0(+1.7) 74.500.0(+3.33) 76.430.0(+0.66)

D
V

Q
A

VT5 73.500.0(−4.34) 75.580.0(−4.36) 74.170.0(−1) 76.040.0(−0.14) 74.00.0(−1.17) 75.930.01(−0.25)
Donut 79.500.0(−1) 81.500.0(+0.4) 80.00.0(−0.5) 81.820.0(+0.72) 80.270.0(−0.23) 81.960.0(+0.86)
Pix2Struct-B 70.830.0(+3.04) 71.820.0(+4.88) 70.830.06(+1.70) 71.730.14(+0.37) 71.00.01(+1.87) 71.940.0(+0.58)

Pix2Struct-L 70.830.0(0) 72.950.0(+2.12) 71.00.0(+0.17) 72.980.0(+2.15) 71.00.03(+0.17) 72.810.01(+1.98)

Table 3: Black-Box Setting: Main Results of Black-Box
DocMIA using Donut and VT5 as proxy models. The check-
points for the black-box models are trained on the respective
datasets. Values in parentheses indicate the improvement (pos-
itive/negative) compared to the best number from SCORE-UA-
based baselines. Results are reported over five random seeds.

DVQA PFL
VT5 Donut P2S-B P2S-L VT5 Donut

SCORE-TA 9.33 11.00 8.00 9.00 5.00 2.67
SCORE-UA 7.67 15.67 6.33 6.67 3.33 3.33
SCORE-UAall 9.33 11.00 8.00 9.00 5.00 2.67

VT5
FL 12.33 23.00 16.67 5.33 2.00 8.00
FLLoRA 11.33 16.33 9.33 4.67 3.33 2.00
IG 8.33 7.00 7.67 7.00 3.67 6.67

Donut
FL 6.33 4.00 4.67 7.33 1.33 4.00
FLLoRA 6.33 5.00 6.33 8.00 5.33 5.33
IG 5.00 11.00 9.33 6.33 6.33 4.33

Table 4: Black-box Setting: TPR at 3%
FPR using Donut and VT5 as proxy
models. Comparison across all black-box
methods, with the best-performing method
for each metric highlighted in bold. The
complete results can be found in the Ap-
pendix E.

As illustrated Figure 8, our distance feature better separates between members and non-members
compared to loss-based methods (Figure 7 (top)). The t-SNE visualization (van der Maaten &
Hinton, 2008) from Figure 7 (bottom) further show that features derived from our attacks create
more distinct clusters in high-dimensional space across all target models, outperforming loss-based
approaches. For further analysis on the impact of our selected features, see Appendix F.

6.2 BLACK-BOX SETTING

Baseline Performance Evaluation. Table 1 (left) presents the results of our black-box baseline
attacks, all of which rely on the DocVQA score as the only source of information in this setting.
Similar to the loss metric, the score metric is directly correlated with the generalization gap, making
attacks more effective when there is a higher degree of overfitting. This trend is illustrated in Figure
9, where we observe strong MI performance, particularly for the Donut model with 75% in PFL
and 79% F1 score in DocVQA. Meanwhile, both SCORE-UA-based baselines (Tito et al., 2024)
show comparable performance, especially effective against models trained on DocVQA. Overall, no
single method emerges as the clear winner across all target models.

Attacking via Proxy Model. Table 3 and Table 4 present the key results of our black-box attacks.

First, we observe a clear advantage of attacking the proxy models distilled with our proposed tech-
niques. Across a wide range of black-box architectures trained on both target datasets, attacks
leveraging the proxy models outperform the black-box baselines in most cases, demonstrating better
MI performance. This suggests that, even without knowledge of the black-box model architecture,
one chosen proxy model still effectively distills certain behaviors from the black-box models which
are membership-indicative, enabling our attacks to infer membership with high accuracy.

When the black-box model architecture matches that of the proxy, we consistently observe improve-
ments in MI performance, especially when targeting the PFL-DocVQA dataset. Among the target,
Pix2Struct is the most vulnerable (both Base and Large). Both VT5 and Donut proxies gains of
+3.04% in Accuracy and +4.88% in F1 score over the best baseline, even against the Pix2Struct-L
model, which exhibits strong generalization and a minimal Train-Test gap (Figure 9). Furthermore,
proxy VT5 can achieve TPRs of 23.00% and 16.67% against Donut and Pix2Struct-B, respectively,
at 3% FPR on DocVQA. We also provide an analysis of the proxy model in Appendix F.3.

These results suggest that privacy vulnerabilities can be exploited using simple distillation-based
strategies applied to the model’s output space.

7 CONCLUSION

In this paper, we introduce the first document-level membership inference attacks for DocVQA mod-
els, highlighting privacy risks in multi-modal settings. By leveraging model optimization techniques,
we extract discriminative features that address challenges posed by multi-modal data, repeated doc-
ument occurrences in training, and auto-regressive outputs. This enables us to propose novel, aux-
iliary data-free attacks for both white-box and black-box scenarios. Our methods, evaluated across
multiple datasets and models, outperform existing membership inference baselines, emphasizing the
privacy vulnerabilities in DocVQA models and the urgent need for stronger privacy safeguards.
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Farinella, and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 498–517, Cham, 2022.
Springer Nature Switzerland. ISBN 978-3-031-19815-1.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Myeongseob Ko, Ming Jin, Chenguang Wang, and Ruoxi Jia. Practical membership inference at-
tacks against large-scale multi-modal models: A pilot study. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4871–4881, 2023.

Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khan-
delwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: screenshot pars-
ing as pretraining for visual language understanding. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. Dit: Self-supervised
pre-training for document image transformer. In Proceedings of the 30th ACM International
Conference on Multimedia, pp. 3530–3539, 2022.

Zheng Li and Yang Zhang. Membership leakage in label-only exposures. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, pp. 880–895, 2021.

Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset inference: Ownership resolu-
tion in machine learning. 2021.

Minesh Mathew, Ruben Tito, Dimosthenis Karatzas, R Manmatha, and CV Jawahar. Document
visual question answering challenge 2020. arXiv preprint arXiv:2008.08899, 2020.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200–2209, 2021.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In 2019
IEEE symposium on security and privacy (SP), pp. 739–753. IEEE, 2019.

Francesco Pinto, Nathalie Rauschmayr, Florian Tramèr, Philip Torr, and Federico Tombari. Extract-
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A DOCVQA DATASETS

DocVQA (Mathew et al., 2021) This dataset contains high-quality human annotations and is widely
used as a benchmark for document understanding. It comprises of real-world administrative docu-
ments across a diverse range of types, including letters, invoices, and financial reports.

PFL-DocVQA (Tito et al., 2024) A large-scale dataset of real business invoices, often containing
privacy-sensitive information such as payment amounts, tax numbers, and bank account details. This
dataset is specifically designed for DocVQA tasks in a federated learning and differential privacy
setup, supporting different levels of privacy granularity. The dataset is accompanied by a variant of
MI attacks, where the goal is to infer the membership of the invoice’s owner (i.e., the provider) from
a set of their invoices that were not used during training.

DocVQA PFL-DocVQA

Split Num. Docs Num. Questions Num. Docs Num. Questions

Train 69894 221316 10194 39463
Val 9150 30491 1286 5349
Test 13463 43591 1287 5188

Table 5: Statistics from PFL and DocVQA dataset.

In Table 5, we present statistics for both the DocVQA and PFL-DocVQA datasets. Additionally,
Figure 5 shows the distribution of questions per document: (1) while a small subset of documents
have more than 10 questions, most contain fewer, and (2) a fraction of documents have only a single
question. These trends hold across both datasets.
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Figure 5: The distribution of number per-document questions from PFL and DocVQA dataset.

B BASELINES

For the black-box setting, we evaluate three MI attacks as baselines, which only requires generated
text to infer the membership of the target document:

Score-Threshold Attack (SCORE-TA) assumes that training documents should achieve higher
scores than non-training ones. This attack, adapted from Yeom et al. (2018), evaluates the pre-
diction â for each question q using the utility function U and computes the average score ū. A
document is then predicted as a member ū ≥ κ, and non-member otherwise. The threshold κ is set
as the average value of ū across Dtest.

Unsupervised Score-based Attack (SCORE-UA) (Tito et al., 2024). This attack applies an unsu-
pervised clustering algorithm over the set of average score ū from test documents in Dtest, documents
within the cluster with higher average score are predicted as members.

Unsupervised Score-based Attack - An Extension (SCORE-UAall). This attack extends
SCORE-UA by considering multiple aggregation functions Φall to form the feature vector.

For the grey-box setting, we consider two additional baselines which assumes access to token-level
probabilities of the generated answers a to compute the membership score of each document:

Min-K% Prob (Shi et al., 2023) computes the average log probability of the lowest-K% answer
tokens as the membership score: Min-K% Prob = 1

|Min-K%(a)|Σai∈Min-K(a) log p(ai|a<i). Intu-
itively, training documents are less likely to contain low-probability answer tokens, resulting in
higher scores.

Min-K%++ (Zhang et al., 2024) also averages scores from the lowest-K% probability tokens but
assumes that tokens in the predicted answers for training documents have high probabilities or often
form the mode of the conditional distribution. Thus, for each token, the score is computed as:
Min-K%++(a<i, ai) =

log p(ai|a<i)−µa<t

σa<t
with µa<t and σa<t are the expectation and standard

deviation of p(ai|a<i) respectively.

We adapt these baselines to DocMIA by using an AVG aggregation function to combine scores
across question-answer pairs within a document. We evaluated K ∈ [0.6, 0.7, 0.8, 0.9, 1.0], which
correspond to corresponds to 60% to 100% the length of the answer and reported the best result.

In the white-box setting, where loss information is available, we consider three additional baselines:

Loss-Threshold Attack (LOSS-TA) (Yeom et al., 2018) Similar to SCORE-TA, this attack com-
putes the average loss l̄ = 1

MΣM
i L(F(x, qi)). A document is predicted as a member if l̄ ≤ κ and

otherwise non-member, where κ is selected as the average value of l̄ across Dtest.

Unsupervised One-step Gradient Attack (GRADIENT-UA) Inspired from Nasr et al. (2019), this
attack utilizes the average norm of the gradient of the loss ∇θL from a single optimization step. It
also incorporates the average score ū, both aggregated with Φall as the features to perform clustering.

Unsupervised Score+Loss Attack (SCORELOSS-UAall) This attack extends SCOREUAall, com-
bining the average loss l̄ with the average utility score ū, then aggregating with Φall.
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Figure 6: Ablation Study on Learning Rate α and Threshold τ . The best value for each model across all
datasets is used as the hyperparameters in our black-box attacks.

Layer VT5(PFL) Donut(DocVQA) Pix2Struct-B(DocVQA)

Embedding Projection Layer 67.0 71.33 68.66
Embedding Layer Norm 65.33 76.0 64.67

Last Decoder Block FC1 68.33 78.0 68
Last Decoder Block FC2 68.17 77.33 68.83
Last Decoder Block Layer Norm 61.83 76.83 67.5

Random Decoder Block FC1 61.33 72.0 67.5
Random Decoder Block FC2 64.0 73.0 65.17

Table 6: Effect of selected layer to tune from each target model. Attack performances are reported in terms
of Accuracy.

C ABLATION STUDY

In this section, we provide a detailed analysis of the hyperparameter tuning process for DocMIA in
the white-box setting, targeting all the considered models. Given the high computational cost due to
the numerous factors involved, we focus on the key parameters that may potentially affect the attack
performance. Our intuition behind this tuning process is that: achieving a reliable estimate of the
distance ∆ requires the optimization process to converge effectively, which in turn correlates with
higher attack accuracy. Thus in all of our experiments, to increase the likelihood of convergence,
we set the maximum number of optimization steps to S = 200. We fix the maximum number of
questions per document M to 10.

Learning Rate α. We first study the effect of α, which controls the speed of the optimization
process in our attacks. This threshold τ is empirically set to be the average loss change observed
when performing one optimization step after reaching the correct answer. Only the distance ∆
and the number of steps s are used as the features. For FL and FLLoRA attacks, we perform a
hyperparameter search over a grid of learning rates, α ∈ {10−4, 0.001, 0.01, 0.1, 0.5, 1.0}, and α ∈
{0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 20.0} for the IG attacks. For FL and FLLoRA, we specifically
tune the embedding projection layer, which projects the final hidden states into the vocabulary space,
a common design choice across all the target models considered.

As shown in Figure 6(a), setting a high learning rate can cause the optimization process to overshoot,
while lower values lead to a more stable but slower convergence. We find that a learning rate of
α = 10−3 consistently delivers the best attack performance across most of the settings.

The layer to tune L. We now investigate the impact of layer selection on the performance of our
FL and FLLoRA attacks. All target models in our study follow the transformer encoder-decoder
architecture (Vaswani, 2017), where each component consists of a stack of attention layers, and a
shared embedding projection layer maps the hidden states to logit vectors for prediction. Given this
common structure, we examine the effect of tuning similar layers across all models, with results for
attack accuracy presented in Table 6.

Our findings reveal that layers closer to the final output exhibit higher privacy leakage in terms of MI
compared to (randomly selected) intermediate layers, likely due to receiving larger gradient updates.
Specifically, fine-tuning the final fully connected layer alone leads to strong attack performance
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Model αFL αIG S L τFL τIG

VT5
0.001

1.0
200 last FC layer

10−6 10−5

Donut 0.001 1.0 5.0
Pix2Struct-B 0.001 10−4 10−3

Table 7: Best Hyperaremeters from our tuning process with consistent performance across both PFL and
DocVQA dataset.

while also being more efficient in terms of the number of parameters that need to be optimized. This
suggests that focusing on the last layers can achieve both high privacy leakage and computational
efficiency in our MI attacks.

Threshold τ . With the optimizer OPT and learning rate α fixed, the threshold τ emerges as the
most critical hyperparameter that requires careful tuning for each attack. We experiment with a
wide range of τ values, spanning from 10−6 to 10.0, and select the optimal value based on attack
performance, as demonstrated in Figure 6(b). This optimal τ is then applied consistently in all
subsequent experiments. Careful selection of this threshold is crucial, as it directly influences the
stability and success of the optimization process.

We summarize the set of tuned hyperparameters for our approach in Table 7.

D MORE ON ATTACK IMPLEMENTATION

D.1 TARGET MODEL TRAINING

For all target models, whenever feasible, we utilize the public checkpoint fine-tuned on the consid-
ered private dataset from Hugging Face library and adhere to the data processing guidelines, such
as document resolution, as recommended by the authors. We deliberately opt for public checkpoints
for two reasons: (1) to make it consistent to further research in privacy attacks that use the same
trained models, and (2) to minimizing the biases in model training that affect the final results, given
the complexity of the original training process and our limited resources. Table 8 summarizes the
details of the process from which public checkpoints for the target models considered in this work
are obtained. This includes the datasets the models were pre-trained on, before by fine-tuning on
target DocVQA datasets, along with the corresponding download URLs for these checkpoints.

Model Num. Params Downstream Task Data Checkpoint

Pretrain Finetune Pretrain Finetune

VT5 250M DocVQA C4+IIT-CDIP PFL https://benchmarks.elsa-ai.eu/?ch=2DocVQA

Donut 200M DocVQA CDIP 11M + 0.5M synthesized Docs PFL Ours
DocVQA naver-clova-ix/donut-base† naver-clova-ix/donut-base-finetuned-docvqa†

Pix2struct-B 282M DocVQA BooksCorpus + C4 Web HTML DocVQA google/pix2struct-base† google/pix2struct-docvqa-base†

Pix2struct-L 1.33B google/pix2struct-large† google/pix2struct-docvqa-large†

Table 8: Details of the public checkpoints used as target models in this work. † denotes checkpoint from
Hugging Face.

Model Optimizer Learning Rate Weight Decay Batch Size Scheduler Iteration

VT5 AdamW 2e-4 - 16 - 200k
Donut Adam 3e-5 0.01 4 linear warmup 10% 800k

Pix2Struct-B AdaFactor 1e-5 - 4 warmup 1000 steps, cosine decay to 0 800k

Table 9: Details of the training hyperparameter for each target model in this work.

If public checkpoints are unavailable, we fine-tune the selected model on the respective private
dataset, using the pre-trained checkpoint as the initialization, with the training procedure outlined
by the respective authors. To prevent overfitting, we perform early stopping based on validation
performance, ensuring that all evaluated models generalize well to unseen data. We also use the
pre-trained checkpoint to initialize the proxy model Fp to train it on Dquery. We provide an overview
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Dataset Model Test Set ACC ANLS Train-Test Gap

PFL

VT5
Original 81.4 90.17 -

MIA 82.74 90.91 11.44
MIA-rephrased 77.59 85.84 -

Donut
Original 74.73 88.66 -

MIA 80.15 91.64 22.2
MIA-rephrased 70.46 80.96 -

DVQA

VT5
Original 60.1 69.33 -

MIA 75.54 81.69 36.22
MIA-rephrased 73.57 79.89 -

Donut
Original 59.26 66.91 -

MIA 78.55 83.42 39.78
MIA-rephrased 72.57 77.12 -

Pix2Struct-B
Original 57.11 68.13 -

MIA 64.42 79.95 25.8
MIA-rephrased 63.81 74.06 -

Pix2Struct-L
Original 64.53 74.12 -

MIA 73.91 82.71 22.11
MIA-rephrased 69.93 79.15 -

Table 10: DocVQA Performance of the target models on PFL and DocVQA dataset. Train-Test Gap is
computed as the different of DocVQA Accuracy between member/non-member documents. MIA denotes the
attack evaluation set, which is a subset randomly sampled from the original train/test set, MIA-rephrased is its
variants with rephrased questions by LLM.

of the training procedure for each target model, based on the respective papers. These procedures
were adapted to fit our computational resources, as outlined in Table 9.

D.2 TARGET MODEL PERFORMANCE ON DOCVQA

To ensure the utility of the target models for our experiments, we validated that the DocVQA per-
formance of each model checkpoint closely matched the results reported in the respective papers.
Table 10 presents the target models’ performance across both DocVQA datasets. We observe a clear
train-test performance gap, particularly in smaller models, while the gap tends to narrow for more
generalized models or with increased dataset size.

Model SCORE-TA SCORE-UA SCORE-UAall LOSS-TA GRADIENT-UA SCORELOSS-UAall Min-K%† Min-K%++†

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

PF
L VT5 62.33 64.13 61.000.0 68.800.0 60.670.0 60.670.0 57.83 62.81 60.670.0 60.670.0 60.670.0 60.670.0 57.17 64.84 61.33 72.16

Donut 73.33 75.14 68.330.0 75.770.0 71.170.67 71.333.32 73.67 78.99 70.670.0 69.550.0 70.830.0 69.670.0 36.5 32.09 50.5 60.35

D
V

Q
A VT5 75.67 75.75 72.170.0 76.180.0 75.170.0 75.130.0 73.67 77.99 71.170.0 67.540.0 75.500.0 76.020.0 71.0 76.16 66.67 74.56

Donut 79.67 79.53 75.970.07 79.570.07 80.500.0 81.100.0 51.83 53.46 77.170.0 75.920.0 80.500.0 81.100.0 47.0 48.38 53.33 59.89
Pix2Struct-B 67.33 67.97 68.170.0 71.360.0 69.130.07 67.670.09 59.33 64.63 66.00.0 68.320.0 69.000.0 67.480.0 73.67 76.97 54.50 66.99

Table 11: Results from Baseline Attacks.. Gray color indicate attacks conducted in the black-box setting. †
indicates methods requiring grey-box access. Results are reported based on five random seeds for KMEANS, if
any. The methods with the best average performance across the two metrics are highlighted in bold.

White-box FL FLLoRA IG

ACC F1 ACC F1 ACC F1

PF
L VT5 66.630.07(+5.96) 72.400.1(+11.73) 65.170.0(+4.50) 70.520.0(+9.85) 61.830.0(+1.16) 69.180.0(+8.51)

Donut 72.670.0(+1.5) 77.960.0(+6.63) 72.830.0(+1.66) 77.940.0(+6.61) 75.170.0(+4) 79.390.0(+8.06)

D
V

Q
A VT5 75.670.0(+0.5) 76.600.0(+1.47) 75.570.08(+0.4) 77.310.13(+2.18) 74.830.0(−0.34) 76.880.0(+1.75)

Donut 80.330.0(−0.17) 82.180.0(+1.08) 80.00.0(−0.5) 81.930.0(+0.83) 80.330.0(−0.17) 82.340.0(+1.24)
Pix2Struct-B 71.670.0(+2.54) 72.220.0(+4.55) 70.500.0(+1.37) 71.950.0(+4.28) 72.000.0(+2.87) 72.820.0(+5.15)

Table 12: White-Box: Main Results of DocMIA. Values in parentheses indicate the improvement (posi-
tive/negative) of our proposed attacks compared to the SCORELOSS-UAall. Compared to all baselines, the
methods with the best average performance across the two metrics are highlighted in bold. Results are re-
ported over five random seeds.
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Figure 9: MI performance versus the Train-Test gap. The target models exhibit varying Train-Test gaps,
measured by the difference in DocVQA scores between member/non-member documents. Our attacks remain
effective even when the gap is small, with performance improving as the gap increases across most target
models and datasets. In contrast, baseline methods show more variable performance under these conditions.

D.3 COMPUTATION AND RUNTIME

All attack methods are implemented using PyTorch and executed on an NVIDIA GeForce A40 GPU
with 45 GB of memory. The maximum runtime for each attack does not exceed 10 hours per run,
depending on the target model’s size and the pre-processing steps required for the data. This runtime
reflects the efficiency of our approach, especially when compared to methods based on shadow
training, which require retraining of large-scale models many times to be effective (Carlini et al.,
2022). Our results demonstrate that the proposed attacks are both efficient and scalable, making
them practical for large-scale models in real-world applications.

E MORE ON ATTACK RESULTS

In this section, we provide the full results of all evaluated attacks in terms of Accuracy and F1
Score, summarized in Tables 11 and 12. In addition, we evaluate our attacks using TPR@1%FPR
and TPR@3%FPR, following standard practices in recent MIA literature, as shown in Table 13 and
20.

An interesting observation is the high performance of the LOSS-TA method for VT5 on DocVQA
and Donut on PFL in Table 13. This performance can be attributed to the clear separation in the
loss distribution between member and non-member samples (Figure 7), which indicates overfitting
behavior in these cases.

F MORE ON ANALYSIS

In this section, we provide a deeper analysis of the effectiveness of our proposed white-box and
black-box attacks, highlighting their performance relative to the baseline approaches.
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DVQA PFL

VT5 Donut Pix2Struct-B VT5 Donut

1% 3% 1% 3% 1% 3% 1% 3% 1% 3%

LOSS-TA 7.67 14.00 0.67 7.67 2.33 5.33 0.67 3.00 1.67 14.67
GRADIENT-UA 2.33 9.33 3.67 6.00 1.00 5.00 0.33 3.00 1.00 8.33
SCORELOSS-UAall 1.33 4.67 2.67 8.67 2.00 6.67 0.33 4.00 0.67 6.33

Min-K% 2.67 10.67 0.33 1.33 0.33 5.33 1.67 5.67 0.00 0.00
Min-K%++ 1.00 7.00 4.33 9.33 0.67 10.33 1.00 8.00 0.33 2.00

FL 2.33 5.67 3.33 10.67 6.00 11.00 3.67 8.67 0.33 7.00
FLLoRA 3.33 11.33 2.67 5.33 3.67 6.33 1.33 3.33 0.33 10.00
IG 0.67 5.67 1.33 8.00 3.00 10.33 1.00 2.33 5.67 11.00

Table 13: White-box: TPR at fixed FPR. Comparison across all white-box methods, with the best-
performance highlighted in bold. 1% and 3% indicate TPR@1%FPR and TPR@3%FPR respectively.

F.1 IMPACT OF SELECTED FEATURES

As outlined in the main paper, we fix the set of selected features across all experiments. These
features include the DocVQA score u, the optimization-based distance ∆, and the number of opti-
mization steps s, aggregated using the set of aggregation functions Φall = {AVG; MIN; MAX; MED} .
We first evaluate the impact of individual features and their combinations on attack performance in
the white-box DocMIA setting, using AVG as the aggregation function Φ. The analysis employs the
best hyperparameters identified during the tuning process described in Section C.

VT5

AVG(NLS) AVG(∆) AVG(s) F1

✓ 68.88
✓ 71.45

✓ 70.92

✓ ✓ 71.09
✓ ✓ 71.11

✓ ✓ 71.22

✓ ✓ ✓ 71.53

Donut

AVG(NLS) AVG(∆) AVG(s) F1

✓ 67.58
✓ 71.36

✓ 73.16

✓ ✓ 72.87
✓ ✓ 73.67

✓ ✓ 73.86

✓ ✓ ✓ 73.89

Table 14: Impact of Selected Features on PFL-DocVQA Models.

PFL DVQA

VT5 Donut VT5 Donut Pix2Struct-B

AVG(ℓ) 67.53 67.80 73.43 56.79 69.97
AVG(||∇θL||2) 70.53 71.51 71.91 71.53 66.14

AVG(∆) 71.45 71.36 72.86 57.34 70.57
AVG(s) 70.92 73.16 74.34 60.32 69.00

PFL DVQA

VT5 Donut VT5 Donut Pix2Struct-B

Φ = AVG 71.53 73.89 74.96 72.94 73.22
Φ = Φall 72.4(+0.87) 77.96(+4.07) 76.6(+1.67) 82.18(+9.24) 72.22(-1.0)

Table 15: Comparisons in Attack
Performance in terms of F1 Score:
(Top) between our Optimization-based
Features with the loss value ℓ (Eq. 4)
and the gradient norm ||∇θL||2. (Bot-
tom) between AVG and Φall as the ag-
gregation functions.

VT5

AVG(NLS) AVG(∆) AVG(s) F1

✓ 72.73
✓ 72.86

✓ 74.34

✓ ✓ 75.81
✓ ✓ 75.04

✓ ✓ 74.19

✓ ✓ ✓ 74.96

Donut

AVG(NLS) AVG(∆) AVG(s) F1

✓ 76.88
✓ 57.34

✓ 60.32

✓ ✓ 65.94
✓ ✓ 72.17

✓ ✓ 60.29

✓ ✓ ✓ 72.94

Pix2Struct-B

AVG(NLS) AVG(∆) AVG(s) F1

✓ 72.60
✓ 70.57

✓ 69.00

✓ ✓ 73.20
✓ ✓ 72.87

✓ ✓ 70.17

✓ ✓ ✓ 73.22

Table 16: Impact of Selected Features on DocVQA Target Models. Only AVG is used as the aggregation
function Φ. Attack performances are obtained with our FL method using the best hyperparameters.

Table 14 and Table 16 summarize the attack performance when individual features or their combina-
tions are used. Additionally, Table 15 (Top) compares the attack performance of our optimization-
based features with the loss value ℓ and the gradient norm of the loss with respect to the model
parameters θ. Here, the loss value ℓ is computed uniformly across all target models over K genera-
tion steps, given a (document, question, answer) example (x, q, a) as:

ℓ = −
K∑

k=1

log pθ(ak|a<k, x, q) (4)
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When used individually, our proposed optimization-based features outperform the DocVQA score
and the loss in most cases. Our attack methods are particularly effective against target models like
VT5 and Donut trained on PFL-DocVQA, which exhibit lower overfitting and small Train-Test gaps
(as shown in Table10). These results highlight that our attacks provide more discriminative features
than the commonly used MIA features.

When combined, our selected features achieve the best or near-best performance across all cases.
Furthermore, extending aggregation functions from AVG to Φall adds notable improvements in attack
effectiveness, as shown in Table 15 (Bottom). These results demonstrate that our proposed feature
set is robust across different target models, making it a reliable choice for DocMIA.

F.2 IMPACT OF THE TRAINING QUESTIONS KNOWLEDGE

So far, our document MI attacks against DocVQA models have assumed complete knowledge of the
original training questions. We now relax this assumption and investigate how the lack of access
to the exact training questions affects attack performance. In practice, an adversary may not have
access to the exact training questions but can approximate them. For example, documents like
invoices often follow standard layouts, and biases in human annotation may lead to predictable
patterns in the types of questions asked during the creation of DocVQA datasets (Tito et al., 2024;
Mathew et al., 2021). It is important to note that the original training questions tend to be simple,
natural questions designed to extract specific information from the document. Moreover, the type
of question is inherently linked to the type of document on which the DocVQA model is trained.
For instance, if the target model is trained on invoices, the natural type of question would focus
on extracting essential details from the invoice, such as the “total amount”, framed in a clear and
straightforward manner e.g., ”What is the total?”. This makes it possible for an adversary to generate
approximate versions of the training questions, simulating a more realistic attack setting.

Model SCORE-TA SCORE-UAall LOSS-TA SCORELOSS-UAall OURS (FL)

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

PF
L VT5 60.67 64.13 55.830.0 46.890.0 54.50 59.19 55.830.0 46.890.0 64.000.0 69.140.0

Donut 69.17 69.72 59.330.0 51.590.0 68.50 66.67 59.170.0 51.490.0 71.130.08 72.070.0

D
V

Q
A VT5 73.67 75.01 74.830.0 74.360.0 71.67 74.06 75.170.0 74.960.0 74.830.0 75.680.0

Donut 69.17 71.23 65.170.0 62.210.0 52.33 53.57 65.170.0 62.210.0 67.670.0 68.510.0

Table 17: Results with Rephrased Questions. Gray color indicate attacks conducted in the black-box setting.
All results are reported based on five random seeds. The methods with the best average performance across the
two metrics are highlighted in bold.

DVQA PFL
VT5 Donut VT5 Donut

1% 3% 1% 3% 1% 3% 1% 3%

Min-K% 3.00 4.33 0.33 1.00 6.33 20.33 2.00 2.33
Min-K%++ 3.00 4.67 0.00 2.67 6.33 10.00 0.00 7.00

FL 0.67 5.00 3.33 8.00 3.67 17.33 3.00 4.67
FLLoRA 5.00 9.33 0.67 3.67 5.00 9.33 4.33 10.00
IG 5.33 8.00 1.00 5.00 5.33 8.00 1.67 10.00

Table 18: White-box Results: TPR at 1% and 3% FPR
with Rephrased Questions. Comparison to white-box meth-
ods: Min-K% and Min-K%++ methods, with the best method
in bold.

PFL DVQA
VT5 Donut Pix2Struct-B

1% 3% 1% 3% 1% 3%

SCORE-TA 0.33 2.67 3.33 9.67 3.00 8.67
SCORE-UAall 0.33 2.67 2.33 9.33 4.67 8.67

FL 0.33 1.33 0.33 4.00 1.33 4.67
FLLoRA 1.00 5.33 1.67 5.00 2.33 6.33
IG 2.67 6.33 1.67 11.00 3.67 9.33

Table 19: Black-box Results: TPR at 1% and
3% FPR with Rephrased Questions. Donut is
used as The Proxy Model.

To explore this scenario, we conduct experiments where we paraphrase the original training ques-
tions using Mistral (Jiang et al., 2023), and use these rephrased questions as inputs for the MI attacks.
As illustrated in Table 17, the performance of all MI attacks declines when rephrased questions are
used, mirroring the drop in DocVQA model performance (Table 10), which is expected due to the
increased uncertainty introduced by question rephrasing.

Among the baselines, the SCORE-TA attack proves particularly to be robust, especially against
models trained on DocVQA, which show a higher degree of overfitting. In contrast, attacks incorpo-
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Target DVQA PFL

VT5 Donut Pix2Struct-B Pix2Struct-L VT5 Donut

Proxy 1% 3% 1% 3% 1% 3% 1% 3% 1% 3% 1% 3%

SCORE-TA 4.00 9.33 5.00 11.00 5.33 8.00 3.33 9.00 1.00 5.00 0.67 2.67
SCORE-UA 3.67 7.67 4.33 15.67 4.00 6.33 4.33 6.67 0.67 3.33 0.33 3.33
SCORE-UAall 4.00 9.33 5.00 11.00 5.33 8.00 3.33 9.00 1.00 5.00 0.67 2.67

VT5
FL 0.67 12.33 11.67 23.00 2.00 16.67 2.00 5.33 0.67 2.00 5.00 8.00
FLLoRA 4.67 11.33 6.34 16.33 2.33 9.33 1.00 4.67 2.00 3.33 0.00 2.00
IG 1.00 8.33 2.00 7.00 4.67 7.67 2.33 7.00 0.33 3.67 1.33 6.67

Donut
FL 0.33 6.33 0.33 4.00 1.33 4.67 3.00 7.33 0.33 1.33 1.33 4.00
FLLoRA 1.00 6.33 1.67 5.00 2.33 6.33 3.00 8.00 0.00 5.33 2.00 5.33
IG 1.67 5.00 0.67 11.00 3.67 9.33 4.67 6.33 2.67 6.33 1.67 4.33

Table 20: Black-box: TPR at fixed FPR. Comparison across all black-box methods, with the best-performing
method highlighted in bold. 1% and 3% indicate TPR@1%FPR and TPR@3%FPR respectively.

rating loss-based signals introduce additional noise due to uncertainty, leading to a noticeable drop
in performance.

Despite the rephrasing, our attacks remain effective, maintaining performance levels comparable to
those observed with the original questions, especially against the two PFL models, which demon-
strate a lower degree of overfitting.

We also evaluate our proposed attacks against other methods in this setting, focusing on TPR at 1%
and 3% FPR, with the results summarized in Table 18 and 19.

F.3 THE RESULTING PROXY MODEL

The purpose of training the Proxy Model on Dquery, with labels generated by the black-box model,
is to mimic the prediction patterns of the black-box model. The expectation is that the proxy model
can capture internal decision-making patterns by following the black-box’s prediction strategies.
Instead of optimizing for ground-truth labels, we train the proxy to maximize the likelihood of the
generated labels. The training process concludes when the proxy achieves near-zero training loss, at
which point the final checkpoint is used for the attack.
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Figure 10: The resulting Proxy Model against Pix2Struct-B in the black-box setting. (a) The attack accuracy
improves quickly once the loss reaches near zero. (b) The optimization distance values between member and
non-member documents exhibit a separation similar to that seen in the white-box setting.

As illustrated in Figure 10(a), the attack performance quickly improves as training progresses. The
model overfits quickly, with attack performance reaching its peak early—after just a quarter of
the training process—demonstrating the efficiency of our approach. This suggests that once the
proxy model converges, it has effectively captured informative membership signals from the black-
box model, making it ready for the attack. Moreover, we compare the distribution of optimization
distances between the proxy model and the same model in the white-box setting, as shown in Figure
10(b). The results show a similar degree of separation between the two clusters in both cases,
indicating the proxy model’s effectiveness in approximating the black-box model’s behavior to a
certain extent.
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F.4 ATTACK PERFORMANCE AGAINST MINIMAL-TRAINING DOCUMENTS

DocVQA models typically process each question-answer pair independently, resulting in multiple
exposures of each document during training. This increases the likelihood of being memorized by
the model, making such documents more vulnerable to MIAs. Intuitively, documents associated
with fewer training questions should be less exposed and therefore be less vulnerable.

FL IG

PF
L Model m = 1(1) m = 2(1) m = 3(85) ALL(300) m = 1(1) m = 2(1) m = 3(85) ALL(300)

VT5 0 0 83.53 87.67 100 100 85.88 86.33
Donut 100 100 100 97.67 100 100 97.65 97

D
V

Q
A

Model m = 1(51) m = 2(60) m = 3(52) ALL(300) m = 1(51) m = 2(60) m = 3(52) ALL(300)

VT5 86.27 71.67 84.62 77.00 90.2 85 86.54 80.67
Donut 88.24 73.33 76.92 77.33 56.86 68.33 55.77 61.33
Pix2Struct-B 90.2 93.33 90.38 87 88.24 88.33 76.92 73

Table 21: Membership Prediction Accuracy on Member Documents with minimal repetition. m denotes
the subset of testing documents with m training questions, with subset sizes shown in parentheses. Compared
to the performance measured on the entire member set (denoted as ALL), our attacks are still robust against
documents with the low risk of memorization.

To evaluate this, we measure the accuracy of membership predictions from our attacks on a subset
of member documents in Dtest associated with only a few training questions. These documents
represent a minimal memorization risk, posing a more challenging evaluation scenario. Results
in Table 21 show that our attacks remain effective on these subsets, achieving high accuracy even
for documents m = 1 training question. This demonstrates the robustness of our attacks under
conditions of minimal repetition.

G DEFENSES

To mitigate the privacy vulnerabilities associated with membership inference attacks in Document
Visual Question Answering (DocVQA) systems, we can employ Differential Privacy (DP) tech-
niques (Dwork et al., 2014), specifically through the use of differentially private stochastic gradient
descent (DP-SGD) introduce by Abadi et al. (2016). DP is a robust framework that ensures an in-
dividual’s data contribution cannot be inferred, even when an adversary has access to the model’s
outputs. DP-SGD achieves this by adding calibrated noise to the model’s gradients during train-
ing, thus providing strong theoretical privacy guarantees. However, this approach is not without
its drawbacks; the necessity of noise injection can adversely affect the utility of the trained model,
leading to reduced performance in answering queries accurately. Alternatively, we can consider
ad-hoc solutions such as limiting the number of queries to one question per document in black-box
setting, which would inherently reduce the model’s usability and flexibility in practical applications.
While these measures can enhance privacy, they also necessitate careful consideration of the balance
between privacy protection and the functionality of DocVQA systems.

ε = 8 ε = 32 ε =∞
ANLS F1 TPR@3%FPR ANLS F1 TPR@3%FPR ANLS F1 TPR@3%FPR

FL
19.16

55.09 2.33
21.81

58.84 4.33
50.12

73.81 7.33
FLLoRA 54.94 2.00 58.94 3.67 73.81 7.33
IG 56.29 1.67 59.35 5.00 73.52 8.67

Table 22: DocMIA Results for Donut trained with DP-SGD on DocVQA dataset. We report the attack
performance of our FL method in terms of F1 score and TPR3%FPR.

To evaluate the robustness of our proposed membership inference attacks against Differential Pri-
vacy (DP), we implemented the well-known DP-SGD algorithm. We considered five privacy budget
ε ∈ {8, 32}, with corresponding noise multiplier σ ∈ {0.5767822266, 0.3824234009}, respectively.
The composition of the privacy budget over multiple iterations was calculated using Rényi Differ-
ential Privacy (RDP). We then converted the RDP guarantees into the standard (ε, δ)-DP notion
following the conversion theorem from (Balle et al., 2020).
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We trained the Donut model on the DocVQA dataset with DP-SGD to provide theoretical privacy
guarantees for individual training documents. Due to resource constraints, we resized document
resolution to a smaller size (1280, 960) compared to (2560, 1920) in the public checkpoint provided
by the original authors, which slightly reduced the model’s DocVQA performance. For additional
details on the effects of document resolution, we refer readers to the original model’s paper(Kim
et al., 2022). The model was trained using the Adam optimizer with a learning rate of 1e − 4, for
10 epochs, and with a batch size of 16. DocVQA performance was evaluated using the Average
Normalized Levenshtein Similarity (ANLS) metric.

Table 22 summarizes the results. As expected, introducing DP into model training significantly
reduces the attack performance, for example from 73.81% F1 score with non-DP model to 55.09%
at ε = 8, but this comes at the cost of substantial utility degradation, with the DP model achieving
less than half of the performance of the non-DP model, 21.81 of ANLS at ε = 8 compared to 50.12
of ANLS from non-DP checkpoint. For higher privacy budgets (ε = 32), our attacks demonstrate
improved effectiveness, achieving notable gains, +3.75 in F1 and +2 in TPR3%FPR scores compared
to ε = 8, as the model becomes less privacy-constrained.

24


	Introduction
	Related Work
	Background
	Document-based Visual Question Answering
	Document-level Membership Inference Attack

	DocMIA against DocVQA models
	Threat Model
	White-box DocMIA
	Optimization-Based Discriminative Features
	Methodology
	Improving Efficiency

	Black-box DocMIA

	Experimental Setup
	Target Dataset and Model
	Implementation
	Evaluation Metric
	Baseline

	Evaluation
	White-box Setting
	Black-box Setting

	Conclusion
	DocVQA Datasets
	Baselines
	Ablation Study
	More on Attack Implementation
	Target Model Training
	Target Model Performance on DocVQA
	Computation and Runtime

	More on Attack Results
	More on Analysis
	Impact of Selected Features
	Impact of the Training Questions Knowledge
	The resulting Proxy Model
	Attack Performance against Minimal-Training Documents

	Defenses

