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Abstract

Visual Prompt Tuning (VPT) of pre-trained Vision Transformers (ViTs) has proven highly
effective as a parameter-efficient fine-tuning technique for adapting large models to down-
stream tasks with limited data. Its parameter efficiency makes it particularly suitable for
Federated Learning (FL), where both communication and computation budgets are often
constrained. However, global prompt tuning struggles to generalize across heterogeneous
clients, while personalized tuning overfits to local data and lacks generalization. We propose
PEP-FedPT (Prompt Estimation from Prototypes for Federated Prompt Tuning), a unified
framework designed to achieve both generalization and personalization in federated prompt
tuning of ViTs. Within this framework, we introduce the novel Class-Contextualized Mixed
Prompt (CCMP) — based on class-specific prompts maintained alongside a globally shared
prompt. For each input, CCMP adaptively combines class-specific prompts using weights
derived from global class prototypes and client class priors. This approach enables per-sample
prompt personalization without storing client-dependent trainable parameters. The prompts
are collaboratively optimized via traditional federated averaging technique on the same.
Comprehensive evaluations on CIFAR-100, TinylmageNet, DomainNet, and iNaturalist
datasets demonstrate that PEP-FedPT consistently surpasses the state-of-the-art baselines
under diverse data heterogeneity scenarios, establishing a strong foundation for efficient and
generalizable federated prompt tuning of Vision Transformers.

1 Introduction

Federated learning (FL) (McMahan et all 2017)) is a collaborative machine learning approach in which a
central server coordinates multiple clients to jointly train a global model, while preserving the privacy of the
client’s data by keeping the local data decentralized. A major challenge in FL is data heterogeneity: datasets
on each client can differ significantly in distribution, resulting in non-identically distributed (non-iid) data
across the network. These discrepancies often cause client models to converge to different local minima, a
phenomenon known as “client drift” (Karimireddy et al., [2020)), which in turn degrades the generalization
performance of the global model. To address this issue, personalized FL methods (Chen & Chao; Mal
et al 12022 |Shamsian et al., |2021)) have been proposed, aiming to better accommodate diverse local data
distributions. However, a key drawback of personalized methods is their reduced generalization performance
on new or unseen clients (Deng et al., [2024)).

Inspired by their success in centralized learning, large foundation models (FMs) are increasingly adopted in
FL to mitigate data heterogeneity (Bommasani et al., [2021} Dosovitskiy et al., |2021; [Radford et al.l 2021)).
FMs demonstrate enhanced robustness in non-iid data settings (Qu et al.l [2022]). Yet, their substantial
computational demands for tuning on resource-constrained edge devices and high communication costs
present major hurdles. Parameter-efficient tuning methods, such as Visual Prompt Tuning (VPT) (Jia et al.l
2022)), offer a promising solution for efficient FM adaptation within FL, significantly reducing communication
overhead while harnessing the power of large models.

Prompt tuning has recently gained attention in Federated Learning (FL), with methods like FedPR (Feng
et all [2023) and pFedPG (Yang et al., 2023)) exploring its potential. However, each comes with notable
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limitations. FedPR employs global prompts and is primarily suited for cross-silo FL. This design struggles
in highly heterogeneous client settings, where shared global prompts fail to adapt to diverse local data
distributions (Li et al.| 2020; [Deng et al., 2024). pFedPG, on the other hand, generates client-specific prompts
at the server and sends them to clients for local fine-tuning. Although personalized, this approach implicitly
assumes full client participation in every round—an impractical assumption in many real-world FL systems.
Moreover, such personalized strategies risk fitting to local data (Wu et al.; Deng et all [2024), limiting
their generalization to unseen or non-participating clients (as seen in Table [3). To address these issues,
SGPT (Deng et al) [2024) employs shared and group-specific prompts to enhance generalization. However, its
two-stage training process and non-differentiable mechanism add optimization complexity and computational
overhead. Furthermore, when data heterogeneity is high, it still struggles to generalize across diverse client
distributions (Tables [1] and . These limitations highlight a key trade-off in FL prompt tuning: global
prompts generalize well but lack expressiveness, while personalized prompts offer local adaptability but suffer
from poor generalization and scalability. This raises the central question:

Can we achieve effective personalization while relying solely on globally shared prompts?

We answer this by proposing a novel prompt-tuning strategy tailored for fine-tuning of vision transformer in
FL. Our method introduces class-specific prompts that are jointly optimized with shared prompts to address
data heterogeneity across clients. To induce personalization without local prompt storage, we propose Prompt
Estimation from Prototypes for Federated Prompt Tuning (PEP-FedPT). It generates a Class-Contextualized
Mixed Prompt (CCMP) by combining global class-specific prompts. The combination weights are determined
by per-class membership scores, computed using global cls-token prototypes and the client’s local class
priors. The global cls prototype aggregates class centroids across clients, where each centroid is computed
by averaging the cls token representations of data points within a given class. For a given input, we estimate
class membership scores—refined by each client’s class priors. These scores act as soft weights to combine
class-specific prompts into a single, differentiable mixed prompt (CCMP). Owing to strong semantic structure
learned by pre-trained vision transformers, samples from the same class tend to form compact clusters in the
representation space. This property allows the global class centroids to serve as reliable anchors for estimating
class membership under domain heterogeneity. Incorporating class priors accounts for label heterogeneity
across clients: clients may observe the same label set but with markedly different class frequencies. Local
priors reflect the client’s underlying data distribution. Together, the similarity scores and class priors provide
a robust estimate of class membership that captures both domain and label heterogeneity. Each client can
dynamically personalize prompts using only shared global information, without the need for local prompt
storage or specialized server-side generation. Our approach integrates seamlessly into standard FL pipelines
and delivers strong empirical performance across heterogeneous datasets, as demonstrated in Tables [1| and
Despite relying solely on global prompts, it effectively utilizes clients’ data distribution, achieving scalable
generalization. Since early layers lack abstraction, while late layers limit prompt influence, CCMP is injected
at intermediate layers, where representations are sufficiently semantic yet allow adequate depth for effective
optimization.

Our key contributions are as follows:

1. We introduce a unified framework PEP-FedPT that jointly optimizes class-specific and shared prompts
to address data heterogeneity in federated learning of ViTs. We exploit the clients’ distribution to
achieve personalization by using only global prompts. Thus our proposed strategy aims to strike an
effective balance between generalizability and personalization.

2. We design a novel prompt-mixing strategy that generates Class Contexualized Mixed Prompts (CCMP)
as a function of class-specific prompts shared globally across clients. We empirically demonstrate its
superiority over existing methods through extensive experiments on datasets exhibiting feature and
label imbalance.

3. We provide theoretical insights into our design by showing that CCMP minimizes a quadratic upper
bound and is optimal in the Minimum Mean Squared Error (MMSE) sense.
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2 Related Work
2.1 Federated Learning (FL):

FL is a machine learning paradigm that emphasizes data privacy by enabling collaborative model training
under the coordination of a central server, without requiring direct data sharing. FedAvg
is the most commonly used technique for aggregating local models. This has led to its broad adoption
across various domains, such as Internet of Things and mobile devices (Mills et al.l 2019; Nguyen et al.,
2021} [Hard et al., 2018} [Ramaswamy et al., 2019)), healthcare (Rieke et al., 2020} |Xu et al., [2021; Nguyen
et al., 2021} Brisimi et al.l [2018} [Feng et al., 2023), person re-identification (Zhuang et al., |2020)), and
face recognition (Liu et al., [2022a). Under data-heterogeneity, training the models using FedAvg leads to
client-drift . Addressing this, regularization techniques (Acar et al.; |Li et al., [2020; |Gao et all 2022) and
variance reduction methods (Karimireddy et al. [2020)), and several studies on improving the generalization
performance in FL by inducing flatness during the local training (Sun et al., [2023; Caldarola et al., [2022) have
come to light. In case of extreme data heterogeneity across the clients, training a single model for all the clients
will be difficult. As an alternative, personalized FL approaches have been proposed (Tan et al.| 2023} |Chen &|
[Chao; [Ma et all [2022} [Shamsian et all [2021)). These frameworks share some model parameters with the
server while keeping others client-specific, enabling adaptation to local data distributions. Federated Domain
Generalization aims to learn models robust to client-level domain shifts; representative approaches include
FedSR [Nguyen et al| (2022), GA |[Zhang et al.| (2023]), and FedGaLA [Pourpanah et al|(2025)), which address
this via representation regularization, variance-aware aggregation, and gradient alignment, respectively.

2.2 Prompt Tuning and Federated Learning;:

As the fine-tuning of the foundational models became ubiquitous for downstream tasks in centralized
learning (Bommasani et al. [2021; Dosovitskiy et al., [2021; Radford et al.l [2021)), prompt tuning techniques
were originally proposed in the NLP community (Li & Liang|, 2021} Liu et al. 2022b]). Recently, Visual
Prompt Tuning (VPT) was proposed for prompt tuning in ViT models, demonstrating its efficiency. ViT
based FL shows robustness to heterogeneity. However, due to heavy communication costs,
prompt-tuning on pre-trained VIT models gained attention. In the recent literature, prompt tuning for FL
has been proposed in methods like SGPT (Deng et all, 2024), FedPR (Feng et all [2023)), pFedPG
and also in the context of Vision and Language models FedOTP (Li et al., [2024). SGPT relies
on group-specific prompts and requires alternate training due to a non-differentiable selection mechanism.
pFedPG depends on full client participation, while FedOTP assumes access to both text and image encoders.
We address these limitations by introducing class-specific prompts and a novel per-sample prompt-mixing
strategy based on class priors and cls-token prototypes. explore prompt-based domain

adaptation by tuning prompts in pre-trained vision—language models for cross-domain transfer.

3 Preliminary

In this paper, we use boldface letters to denote matrices and vectors. The operator "-" refers to element-wise
multiplication and * refers to the standard matrix multiplication. We define T'L; as the i*" transformer layer,
and E denotes the expectation operator. The term Jj represents the probability of observing samples from
class ¢ at client k. Additionally, sim(p,q) denotes the cosine similarity, while I represents the indicator
function. [M] denotes the set {1,2, ., M}El

3.1 Visual Prompt Tuning (VPT)

VPT is a parameter-efficient fine-tuning method for the pre-trained ViT (Jia et all [2022)). It is an efficient
alternative to fine-tuning the full model. (2022)) propose VPT, where prompts are inserted at the
input of the ViT. with d dimensional trainable prompt Py € R¥*! as follows:

cls;, P, E; =TL;([cls;_1,P;_1,E;_1]) (1)

y =Hxclsy (2)

IThe detailed notations and definitions are in Sec. of Appendix
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Figure 1: The left panel (a) illustrates server-client communication during federated training. In each
communication round, clients (right panel (b)) insert shared prompts at the input of the transformer and
class-contextualized prompts— derived by mixing class prompts using probabilities computed from local class
priors, cls-tokens and centroids—at intermediate layer(s).

E; € R¥" denotes the image tokens at layer i, n; denotes the number of image tokens, M denotes the
number of layers in the transformer. The final layer’s cls token i.e, clsy; is used for classification. In the
above model, the classification head H and Py are trainable.

3.2 Federated Learning (FL)

In FL, the server orchestrates the training with n clients with the goal of minimizing the following training
objective:

, ¢
min £(6) =~ _ fi(6) (3)
k=1
fi denotes the k' client local objective function. @ denotes the model parameters shared across the clients.
In general, it can be written as f(0) = ( I)E . 1,(0; (x,y)). Dk denotes the data distribution of the client k
XY)~ Pk

and 11 (0; (x,y)) denotes the task-specific loss function. For a classification task, x denotes the input and y is
the ground truth. In FL training, at each round ¢, the server broadcasts the global model 8¢ to a randomly
selected subset of clients S;. Each client k € S; performs several steps of local training starting from 6%, and
then sends its updated model 8% back to the server. The server aggregates these updates using federated
averaging:

1
t+1 t
6! = o S 6.

keS,

The updated model 8**! is then broadcast to clients in the next round. This procedure describes the basic
FedAvg algorithm McMahan et al.| (2017)).
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Algorithm 1: Psedocode for PEP-FedPT

Compute global class prototypes before training;

for each communication round do

Server sends model parameters to clients;

for each client in parallel do

for local epochs do

Insert shared prompts at layer 0;

for layers 5, 6, 7 do
Compute class scores from priors and CLS-prototype similarity;
Mix scores with class prompts to form CCMP;
Insert CCMP;

Train shared and class prompts;

Send prompt updates and class prototypes to server;

| Server aggregates prompt updates;

Periodically, server aggregates class prototypes;

4 Proposed Method: Prompt Estimation from Prototypes- Federated Prompt Tuning
(PEP-FedPT)

We consider a federated learning setup with n clients coordinated by a central server, where each client’s
data is drawn from a distinct distribution Dy. Following VPT , we assume each client uses a
pre-trained ViT-B/16 as its local model architecture. We introduce Shared Prompts and Class-Contextualized
Mixed Prompts (CCMP). Also, by utilizing the information in the local class priors and the global class
prototypes, we softly combine the class-specific prompts, leading to per-client customization while sharing
the global class-specific prompts. A highlevel overview of our method is shown in Algorithm[I]}

4.1 Prompt Design

Upon insertion of prompt Pg,_, into layer [ of a ViT, the input and output for that layer can be written as:

cls;, Ps,,E; = TLi(cls;—1,Ps,_,, E—1) (4)
where cls;; denotes the cls-token representation at output layer ¢’ of ViT, and E; denotes the combined
representation of the remaining tokens.

We have two sets of trainable parameters: Shared Prompts Pg and Class-Specific Prompts P, both of which
are common across all clients. While we insert the shared prompts directly, the Class-Specific Prompts are
used to compute Class Contexualized Mixed Prompts (CCMP) (denoted by m ) , which are then inserted in
subsequent layers in the ViT.

We now describe each of these in detail.

Shared Prompts (Pg): Inspired by (2022) we added shared prompts at the very first layer of the
ViT model.

These are shared across the clients and are given by Pg = [pslp&...ps‘ S‘], where |S| is the number of shared
prompts inserted and are processed as follows:

ClSl,Psl,El = TLl([CISO,Ps,EQD (5)

As discussed in |Ostapenko et al.| (2022) and Deng et al| (2024), the early layers capture the low-level
representations and can be shared across the classes. This allows the model to have better generalization.
It is shown that the representations in the initial layer of pre-trained ViT are uniformly distributed on the
manifold, indicating that the information is shared across the classes. This is true even when the data
distribution is different across the clients as shown Sec [A.5.4] of the appendix.
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Class Contextualized Mixed Prompts (CCMP) (m(k)): This prompt is obtained by softly combining the
class-specific prompts given by Po = [pclpCQ...pq (:J with scores driven by client-specific data distribution,
where |C| is equal to the total number of classes and P € RI*ICl. These class-specific prompts P¢ are
shared across the clients, but the scores that act as weights to combine these class-specific prompts are local
to each client. These soft weights for a client k at the input of layer [ on the i-th training input denoted
by sii—1.% € [0, 1}'0‘“ are designed as the function of input data point x; i, cls token prototypes and class
priors. Finally, the CCMP m;_; is added at the input of layer [, and it’s given below

m; (k) =Pc*sii1k (6)
The overall input and output after adding the CCMP m;_; at the input of layer [ is shown below:
ClS], Hl](k), Psl s E[ = TL[([CIS]_l, m; 1 (k’), PSF1 y E]_d). (7)

The soft weights are explained in Sec. 22} In Table[I3] we show that inserting CCMP prompts too early in the
ViT is not advantageous, as the cls token representations in the initial layers are not sufficiently informative for
reliable estimation of CCMP scores. Conversely, adding prompts in later layers is also suboptimal: although
the cls token representations are stronger at these stages, the prompts are not inserted deeply enough to learn
meaningful adaptations. Therefore, the most effective placement is within the mid-to-late layers (namely 5,
6 and 7 for all our experiments), where the representations are both informative and feasible for effective
prompt learning.

If the ViT has M layers, the final logits are given by:
y=Hxclsy, (8)

H denotes the classification layer. Finally, we aim to solve the following federated optimization problem
involving the shared and class-specific prompts.

1 n

i — iPs,Po,H 9
P;rll)l27H n kz_lfk(wprey S, C, ) ( )
Here w),. denotes the pre-trained ViT parameters and fj, denotes the loss for the client k.

4.2 Estimation of Soft Weights for CCMP

We present the design of the soft weights, which are aimed to
provide class-specific information to the model. We exploit
the information present in the class prototypes of cls;_1
token at a layer . Our empirical observations show that
cls tokens of the pre-trained ViT model carry significant
information regarding the downstream task. In the Figure [2]
we observe the Top-5 zero-shot test accuracy of the CIFAR-
100 dataset computed at each layer. The accuracy at layer
l is computed by taking the minimum distance between the
cls token corresponding to the test input and the class
prototypes of the cls token at the input of layer [.

Top-5 Accuracy(%) Predicted Across layers based on Prototypes
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We now describe the soft weights computed for a layer [ i.e, Layer Index

s;_1. Let us denote the cls token at the input of layer [ cor-

responding to data point x; j for client £ in communication Figure 2: The Top-5 accuracy computed based
round ¢ as cls;_1 ; x+. The cls token’s class prototype for On the minimum distance between the cls token
the class ¢ at communication round ¢ is denoted by HE g gt corresponding to the input and the cls proto-

and it is computed as in Eq. types. This shows that the cls representations
N in the middle layers have coarse information of
. ni)C Yoimiclsi ik Ly —cy Mg >0, the task.
Hi—1kt = (10)
0, n;w =0.
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Here ng . = Z k 1 Ly; w=c, where Nj denotes the number of

data points of chent k, and T, , —. denotes indicator function. It takes value 1 if the data point i of client k&
belongs to class ¢ otherwise it is 0.

After every fixed update period R, the server aggregates the prototypes from the clients to compute the
aggregated prototype f;_; ,. at the r-th period as Eq. Let the set of communication rounds within this
update period be A = {rR,7rR+1,...,(r +1)R —1}.

. D% 2te 2okes, Tus o 20t Hir e De >0,
l"’lfl,r = (11)
o, D, =0.

here Do =37, 0 D kes, Line | ,#0}, St C [n] denotes the subset of clients sampled by the server at a round

t. As the training progresses, the server uses the momentum to update the aggregated prototypes A7y, to
form the global class prototype Hi_q, as in Eq.[12) which is then communicated to the clients. The parameter
p denotes the momentum. The updated prototypes pj_; ,. are sent to the clients.

p’lcfl,r =p- p’lcfl,rfl + (1 - p) : ﬂlcfl,r (12)
If D. is 0, we set p = 1.

We now define the un-normalized score function §f =1k assigned by the cls token cls;_1 ; i, corresponding to
input x; 1, to class-specific prompt p. at the client k. Here we drop the index of the communication round ¢
and the update period r for better readability.

N sim (€ls;—1 &, c
T ( ( I 1)) 55 (13)

p
We define sim(p,q) = 7”13””01”

7 is the hyper-parameter and ¢f, is the prior probability of the class c at the client k. This can be obtained
by computing the empirical label distribution. Availability of such class prior information is a common

assumption in the works such as (2022)

1O
0f = — I, —. 14
k Nk ; Yi,k= ( )
The final scores 31?71—17 . are obtained as
c Aqu 1,k
Sil-1,k = IC] (15)

Zm 1 A;ml 1,k
The scores s7;_,; ; can be interpreted as the probability assigned to the class-specific prompt p., given the
cls token clsl 1,i,k- All the probabilities across the classes form the desired weight vector s;;_1 ; and the
final CCMP m;_, is computed using Eq. [} CCMP achieves personalization even when client priors are
uniform, due to its ability to capture the domain gap within the scores. This is a direct result of the cls;_1 ; »
tokens, as they will have different representations for different domains.
Privacy considerations: We acknowledge that PEP-FedPT requires the transmission of class prototypes to
facilitate adaptive prompt mixing. However, these transmitted statistics represent aggregated, intermediate
layers’, low-dimensional summaries of the local data rather than raw data. Moreover, without formal privacy
protection measures, strict privacy guarantees are challenging in virtually any FL framework. As discussed in
the Sec A.6 of (Xu et al]), it is usually hard for the server to extract sensitive data from category-level feature
statistics (in our case cls-prototypes) alone without having access to the feature extractor layers. Prototype-
based learning in FL has been used previously in (Dai et al |[2023} |Tan et al., 2022} Xu et al]). Moreover in
practical scenarios, even gradient-sharing algorithms like FedAvg would require a privacy preserving technique
for the system to be completely reliable. In we have discussed the impact of adding Laplace DP noise
to the class prototypes on the overall performance of our method. We have observed that it has had minimal
impact on the final accuracy of our proposed method. We also show that (e,0) privacy can be attained.
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4.3 Theoretical Underpinnings of CCMP

4.3.1 CCMP minimizes the Quadratic Upper bound on the Loss around the class prompts

CCMP constitutes the core component of our methodology and by design, it is specific to each client. We
show that CCMP minimizes the quadratic upper bound on the loss. We denote the estimate of the class
prompt for class ¢ in any round as p., and the class prompts will be denoted by Pc = [Pe, s Pes - - - 5 P c‘].
Let m(k) denote the CCMP prompt used for client k H, and let the total number of clients be n, and 4},
denote the empirical probability that a data point at client k belongs to class i. Let P be the set of all
possible prompts across all the clients, such that m(k) € P, Vk € {1,2,...,n}. We denote the average loss
corresponding to a data point whose true label y = i as I*. We rewrite this loss in terms of prompt p and

167 1 (m(k))|.-

class i as I'(p). Then the global loss across all clients can be computed as f == 1Y) | [Z
We now state the following assumptions:

A 1. P is compact subset of R?, where d is the token dimension.

This means that all the possible values for the prompts lie within a bounded region and they do not drift off
to infinity.

A 2. 1% is Lipschitz smooth with parameter 3; Vi € [|C|],Vk € [n].

This implies that the gradients do not change abruptly.

A 3. li(p) achieves its’ minimum value for p = P;,- 7 ’

Intuitively this assumption implies that clients class-specific loss function has same minimum. This is true
for label imbalance and is not true for feature imbalance setting.

Proposition 1. If the above assumptions hold, we show that f can be upper bounded as f < L =
%Z:iilizl 5 (l};(pci) + % lm(k) — pe, 2) + C and it is minimized at m(k) = Zﬁ‘l 8ipe;, Vk € [n].

which is equivalent to the (CCMP) described in sec.4.2 as T >> 1. Buax = maxe(c) Bi, C is a constant
which depends on P. Under the assumption. [3| which correspond to label heterogeneity setting this vanishes
when pe, = pt,Vi € [|C|] which makes L a tight upper bound of f.

A detailed proof is provided in Section of the appendix. The proof sketch proceeds by constructing
an upper bound on the class-wise loss using smoothness assumptions. Specifically, the first-order term is
bounded via compactness and smoothness properties. The upper bound is then minimized with respect to
each m(k). The key insight from this proposition is that each client’s prompt differs due to client-specific
class priors, even though the underlying class prompts p., are shared globally. This mechanism enables the
prompts to adapt to each client’s data distribution. The mixing scores in Eq. |15 depend both on the data
instance and the class priors; this is further discussed in Sec of appendix.

4.3.2 CCMP is Optimal in Minimum Mean Squared Estimate (MMSE) Sense

We denote pi(p|cls;—1) as the posterior probability of the prompt p after observing the cls token cls;_; at
the input of layer [. EL It should be noted that this is a discrete probability measure over the class-specific
prompts {Pe,,Pe, - - -, Pejc| }- 1f we assume that the density over the cls tokens follows py(cls;—1) and the
posterior over the class given the cls token is modeled as (based on Eq. ie.,

Pe(P = Pelclsi—1) = 57,1 (16)

This induces the joint probability density over the cls tokens observed and the class-specific prompts
{Pe1sPey - -+, Pejy }- We denote this by py(cls;—1, p) and is given below

pr(cls;—1,p) = pr(plcls;—1)pr(cls;—1) (17)

Proposition 2. If the cls tokens and the class-specific prompts at input of layer | has the joint density given
by pr(cls;—1,p) as in Eq. then the CCMP prompt for a client k, m;_1(k) obtained in Eq. @ is Minimum
Mean Squared Estimator (MMSE) of the true class prompt.

2for notation convenience, we drop the layer index j from m; (k).
3In cls;_; we omit the subscripts of client k, data point i and round t for simplifying notation.
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The proposition [2] says that the CCMP obtained in Eq. [6] is optimal in MMSE sense. The detailed proof is
given in Sec. of the appendix. This is done by showing MMSE optimality of the estimator E[p|cls;_1].
The discussion regarding the convergence is provided in Sec. of the appendix.

5 Experiments

Datasets: We conducted extensive experiments on four popular datasets (1) CIFAR-100 (Krizhevsky &
Hinton|, 2009) dataset consists of 50,000 training images and 10, 000 test images distributed across 100 classes.
(2) TinyImageNet (Le & Yang] [2015]) contains 100K images of 200 classes, with each class containing 500
training images and 50 test images. (3) DomainNet (Peng et all 2019) comprises 0.6 million images of 345
classes distributed across six domains: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch; however,
following the protocol of |Yang et al.[(2023]), we use the top ten most frequent classes for our experiments. (4)
iNaturalist originally introduced in [Van Horn et al.| (2018) is a large-scale fine-grained visual classification
dataset comprised of images of natural species. In this work we use federated version of this dataset.

Setup: We split CIFAR-100 and Tiny-ImageNet datasets among the clients with two different settings of
data heterogeneity: pathological splitting (Li et all 2023} |Oh et al.; Deng et al., [2024)), where each client
observes only 10 classes, and Dirichlet-based splitting denoted by Dir(€) (Acar et all), where each client has
a non-identical label distribution. A lower £ value indicates higher heterogeneity, and we set £ = 0.3. For
CIFAR-100 we consider 100 clients and for TinylmageNet we consider 200 clients. Only 5 randomly chosen
clients participate in every round. For the DomainNet dataset we consider the setting as Deng et al.| (2024);
Li et al.| (2021) where each domain is allocated to 10 clients among 60 clients, this considers the scenario of
feature imbalance setting. 6 randomly sampled clients participate in each communication round. Finally, in
the iNaturalist dataset (Hsu et al. 2020), we make sure each client gets at least 16 training samples. This
will have around 100k training samples distributed among the 1018 clients and 1203 classes. The partition is
performed to mimic the cross-device (Kairouz et all 2021]) non-iid setting. In all the above experimental
setups, the partition of the dataset across clients is completely disjoint, i.e., no two clients contain the same
data sample in all cases. The visualization of data heterogeneity is provided in Sec. of appendix. The
detailed hyperparameter settings is provided in and the evolution of cls representations are provided in
the Sec. of the Appendix.

Table 1: Quantitative comparisons on CIFAR-100, Tiny-ImageNet datasets using ViT-B/16. We report the
accuracy under two non-iid data partitioning setups 1) pathological: Each client observes only 10 classes 2)
Dirichlet: Label distribution of each client is drawn from Dirichlet distribution.

Datasets ‘ CIFAR-100 (%) 1 ‘ Tiny-ImageNet (%) 1
Method Pathological Dir(0.3) Pathological Dir(0.3)

Mean Acc ‘ Worst Acc | Mean Acc ‘ Worst Acc | Mean Acc ‘ Worst Acc | Mean Acc ‘ Worst Acc
Head—Tuning 77.85i0>17 59.87i0'74 79.56i0'25 66.66i2'79 68.39i0_76 44409i0.58 70-73i0.08 45.63i2.05
FedVPT 83.6210.02 | 70.1940.11 | 84.9110.07 | 74.641074 | 74204033 | 54.004046 | 76.5710.34 | 50.341251
FedVPT-D 85.1540.77 | 70.1240.90 | 88.6010.19 | 79171065 | 79.60+042 | 59.83+166 | 83.3010.16 | 60.33+058
FedPR 81.7710.30 | 68.9940.48 | 82.271022 | 73.2941138 | 68.864017 | 47504163 | 68931011 | 47374144
SGPT 84.16i0_24 70-79i0.30 85.9010_21 76-73i1.60 75.65i1_31 5566i352 78.84i1_11 53-87i0.46
pFedPG 92.9611.34 84.5841.1 77271077 | 62.341153 | 82.93410.18 | 50.214105 | 55914065 | 49.3141.05
P-PT 75.3710.30 | 55144103 | 80.1040.25 | 68.3310.58 | 61.68+1.16 | 38.0946.38 | 62.78+038 | 40.3041.13

PEP-FedPT(Ours)

95.46.10.16 | 84.741312 | 88.75.025 | 81.00+0.00 | 91.5210.11 | 77.3311.84 | 83.44002

61.00+0.31

Model Details: We use the Vision Transformer (ViT-B/16)(Neil & Dirk] 2020)) pre-trained on the ImageNet-
21K dataset (Feng et al., |2023}; [Yang et al., |2023) as our base model. ViT-B-16 was originally trained on
images with a resolution of 224x224 pixels, utilizing a patch size of 16. To maintain compatibility, we resize
our input images to 224x224 pixels. In the prompt-tuning stage, we specifically focus on optimizing shared and
class prompts, as well as the classifier head. The hyper-parameter details are in Sec. [A23:2) of the appendix.

Baselines: We compared our method against several global and personalized Federated Learning (FL)
methods that use the Prompt Tuning including Head-Tuning(Sun et al., [2022)), FedVPT and FedVPT-D (Jia
et al.l [2022)), FedPR (Feng et all 2023]), and SGPT (Deng et al.| [2024)). To thoroughly assess our method’s
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performance, we introduce a new baseline called P-PT which personalizes the prompts, giving insights into
how the personalization of prompts impacts performance.

Evaluation Methodology: We use two key metrics to assess the performance of both the baselines and our
proposed method (Deng et al., 2024): (1) Mean Accuracy calculates the average accuracy across individual
clients’ test data, reflecting adaptation to diverse client data distributions. (2) Worst Local Accuracy reflects
the performance of the worst-performing client, indicating adaptation to the most challenging local data.
Furthermore, we utilize a heldout evaluation strategy (Yuan et all [2021)), where 90% of clients participate
in training and 10% are reserved for testing. All aforementioned metrics are reported separately for both
participating and heldout clients. This setting demonstrates the model’s effectiveness in onboarding new clients
and adapting to previously unseen data without sharing updates with the central server. All experiments are
done over 3 different runs, and the mean and standard deviations are reported as (meanisiq).

5.1 Results and Discussion
5.1.1 Label Heterogeneity Results

The class heterogeneity results are presented in Table- [I] PEP-FedPT outperforms all the baselines, e.g.,
when compared against pFedPG with CIFAR-100 pathological setting we observe an improvement of 2.5%
in mean accuracy. For Tinylmagenet the improvement is 8.59% (mean accuracy) over pFedPG and 17.5%
(worst accuracy) over FedVPT-D. This shows that our prompt-mixing mechanism effectively addresses data
heterogeneity independently and performs even better in scenarios of higher heterogeneity or lower class
overlap between clients. Similar improvements are seen in other settings. Additional experiments are provided
in Sec.[A:4) of the appendix. The visualization of the accuracy vs communication rounds is shown in Sec. [A5.1]

Table 2: Experimental results on DomainNet and iNaturalist. For DomainNet we consider each domain
belonging to a client and we report the accuracy attained by each client and the average accuracy. On
the iNaturalist dataset we report the average test accuracy of all the clients and the 15" percentile worst
accuracy. Our method significantly outperforms all the baselines on this challenging dataset.

Datasets ‘ DomainNet (%) ‘ iNaturalist(%) 1
Method ‘ Clipart ‘ Infograph ‘ Painting ‘ Quickdraw ‘ Real ‘ Sketch ‘ Mean Acc ‘ Worst Acc ‘ Mean Acc ‘ Worst Ace (15%)
Head-Tuning 91.1640.92 57454107 | 91.3940.24 74.9440.28 96.68+0.42 86.46+1.42 83714197 | 38.884370 | 49.41+i0.41 20.5640.47
FedVPT 90.8441.37 | 58.56+0.60 | 92.2540.67 | T7.8l40.30 | 96.7810.4s | 88.2d40.89 | 84.2310.72 | 37.0242.44 | 52.2240.50 23.2140.55
FedVPT-D 94.0141.05 63.29410.81 | 93.4540.49 | 84.5641 59 96.9610.66 91.58.+0.00 87.3140.51 42,4941 85 57.96+1.12 30.00.40.74
FedPR 91.6240.091 56.2041.01 91.1641 .17 73.7240.62 96.6640.30 | 86.4141 01 82.9541 26 35184370 | 41.254931 08.6240.39
SGPT 92.6440.65 | 60.6210.22 | 91.544078 | 83.5541.85 | 96.5540.17 | 89.9340.47 | 85.561060 | 37344141 | 55.781057 27.2740.32
pFedPG 92.8940.82 | 63.56+0.88 | 92.2741.01 | 87.3310.21 | 97.1640.25 | 89.3440.30 | 87.4040.30 | 52.0540.32 | 52.424259 1254401
P-PT 90.1141 41 56.7341.16 | 90.254109 | 74.8110.81 95.18 4070 | 85.2640.53 | 82.3041.31 35.6741.33 | 45.694+0.52 16.6040.30

PEP-FedPT(Ours) | 95.4610.41 | 71.6851.41 | 93.00:0.55 | 86.89+153 | 97.670.53 | 91.79:40.70 | 89.15:50.70 | 59.794050 | 63484100 | 41.10.40.4s

5.1.2 Feature Heterogeneity Results

Feature-heterogeneity results are presented in Table[2} FedVPT-D serves as strong baseline due to its inclusion
of prompts at each layer. We present the results for our method. In this setting, personalized method
pFedPG also proves highly beneficial due to the pronounced feature imbalance among clients. Our method
PEP-FedPT improves on average by 5.52% over the best performing baseline FedVPT-D on the iNaturalist
dataset. For the iNaturalist dataset, under a low client participation rate (1%), many clients are sampled
infrequently, and a large number of clients (over 150) have extremely small test sets (fewer than 10 samples).
Thus, misclassification of only a few test samples leads to a worst-client accuracy of zero for all methods.
Consequently, the standard worst-client metric becomes uninformative. To address the evaluation difficulty
in this setting, we report the client accuracy at the 15" percentile as a redefined worst-client metric, which
provides a more informative assessment of performance on underperforming clients.

5.1.3 Heldout Evaluation

In the Table [3] we present the results for the heldout evaluation, where we report the accuracies of the
participating clients and the new clients. Participating clients are the ones who participate in the federated
training and the new clients do not participate in the FL training. In this setup, the testing accurcay
implies the zero-shot predictions on the held-out clients’ test data. We consider the CIFAR-100 dataset
with pathological partitioning where each client observes only 10 classes. Most baseline methods achieve
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competitive accuracy on participating clients but show reduced performance on unseen clients. Personalized
methods like pFedPG achieve very high participating accuracy but fail in held-out testing resulting in poor
performance, highlighting poor generalization. Since pFedPG is not explicitly designed for this evaluation
protocol, its performance under this setting should not be interpreted as indicative of its effectiveness. We
include pFedPG to illustrate the behavior of personalization-based methods in a strict zero-shot setting,
and therefore mark the corresponding results as Not Applicable (NA). In contrast, our method consistently
achieves the best results across both datasets, with 95.66% vs. 93.71% on CIFAR-100 and 92.53% vs. 90.60%
on Tiny-ImageNet, showing strong generalization to unseen clients. The results on DomainNet and iNaturalist
are provided in Sec. [A74.7] of the appendix.

Table 3: Quantitative comparisons on CIFAR-100 and Tiny-ImageNet with held out evaluation: We report
the accuracy with pathological partitioning where each client observes 10 classes. It can be observed that the
personalized methods like pFedPG perform the worst in the held-out evaluation Our method performs well
on the clients participating in the FL training and also on the unseen clients.

Method CIFAR-100 (1) Tiny-ImageNet (1)
Participating Acc  Testing Acc | Participating Acc  Testing Acc
Head 77.81i0_25 77-10i0_41 67-97i0.66 68.97i0_70
FedVPT 83.6210.24 82.3941.12 74.1540.47 74.1541 19
FedVPT-D 85.0640.51 84.8740.44 77.3841.35 76.8940.90
FedPR 81.6210.27 80.6110.68 69.3741.42 68.23+1.90
SGPT 83.90+0.23 83.63+0.64 76.38+0.68 78.104+1.85
pFedPG 93.3240.85 NA 86.09+1.42 NA
P-PT 75.9741.38 72.1940.58 60.76+0.39 60.4141 40
PEP-FedPT(Ours) | 95.66.0.17 93.711040 |  92.5310.35 90.600.61

5.2 Analysis of PEP-FedPT
5.2.1 Ablations

We conducted ablation studies on shared and class-specific prompts evaluating their impact by varying the
number of shared prompts and the influence of class priors on the prompt mixing strategy. Table [ reports
the effect of combining shared prompts with CCMP under both Pathological and Dirichlet splits. For the
Pathological split, the average accuracy improves from 83.62% with only shared prompts to 95.46% with
shared + CCMP. Similarly, for the Dirichlet split, the performance increases from 84.91% to 88.75%. These
results highlight the consistent benefit of incorporating CCMP across different data partitioning strategies.

Table 4: Shared and CCMP ablation on the CIFAR-100 dataset with Dirichlet and Pathological Partitions.
We report the Mean Accuracy in (%)

Prompt Strategy | Pathological Split | Dirichlet Split

Only Shared 83.6240.02 84.9140.07
Shared + CCMP 95.464.0.16 88.7540.25

The Table [f] presents the effect of incorporating class priors into the prompt design on CIFAR-100 under
both Pathological and Dirichlet splits. The results show that using Shared + CCMP with Class Priors (CP)
consistently improves performance over the baseline without CP. In particular, the Pathological split benefits,
with accuracy increasing from 84.01% to 95.46%, while the Dirichlet split also shows a notable gain from
86.12% to 88.75%. Similar analysis for other datasets is given in section and of the appendix.
Further additional experiments can be found in Section [A74] of the appendix.

5.2.2 Computation and Communication

We denote that d and dj, are token and attention head dimensions, C' and L denote the number of classes and
layers respectively, and T are the tokens. The minimum computations required by ViT forward is given as:
The Query (Q), Key (K) and Value (V) requires T'dd;, multiplications each. The inner product matrix QKT
requires T2d;, multiplications. The feedforward computations requirement is d?7T". If H heads are present
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Table 5: Impact of Class Priors on CIFAR-100 dataset with Dirichlet and Pathological Partitions

Prompt Strategy | Pathological Split | Dirichlet Split
Shared + CCMP Without CP 84.01i0,04 86.12i0'13
Shared + CCMP With CP 95-46j:0.16 88.75:‘:0'25

Accuracy vs Communication Rounds

Table 6: Comparison of computation and communication.
Resources required to achieve 83% accuracy on CIFAR-
100.

Accuracy (%)

Method Training Params Rounds w© — sePT
Time (sec) | | Communicated | | Required | f — o
20 — FedPR

FedVPT 4550 77 M 100 . PP eTIOwS)
FedVPT-D 4760 7.67 M 90 ° " Communication Rounds
SGPT 8170 13M 90
FedPR >5360 >8.4 M >100

Figure 3: Convergence across rounds on CIFAR-
PEP-FedPT (Ours) | 1153 | 4.6 M | 12 & 3: C & C R

100 with pathological partitioning.

and there are C classes for the classification then we need LH (3Tdd;, + T?dy,) + LTd? + Cd multiplications.
For CIFAR-100 on ViT-B/16 the CCMP computation takes only 0.008% of total computations, which is
very negligible implying the efficiency of the CCMP computation. Table [6] compares the computational and
communication complexity of our proposed method, PEP-FedPT against the different baselines. For a fair
comparison, we compare the methods that use global prompts. We analyze the resources required to achieve
83% accuracy, which is the highest accuracy reported for FedVPT. Our results show that PEP-FedPT achieves
this accuracy in just 12 rounds, requiring lowest training time and significantly reducing communication
overhead (4.6M) compared to SGPT (13.0M), where M denotes million. The claim of 12 rounds can be
verified in the Figure [3] FedPR only attains 81.66% in 100 rounds so we report this as (> 100). The training
times reported are measured on an Nvidia RTX-A6000 GPU. The detailed computation of why 4.6 M is :
Head requires (100 x 768), shared prompt (1 x 768) class prompts (100 x 768), prototypes (100 x 768 x 3)
scaled by 3 because of three layers with CCMP prompts. Total rounds 12 and in total, yields 4.6M parameters.
In this communication analysis, since our method shares the global prompts, we compared only the methods
that are not personalized.

6 Limitations and Scope for Future Work

Our approach relies on empirical estimates of class priors and cls token centroids, which require access to
labeled data on the client side and introduce several limitations. In semi-supervised or unsupervised settings,
where labeled data is scarce or unavailable, these estimates may become unreliable, potentially degrading
prompt construction and making adaptation to such scenarios non-trivial. Similarly, in long-tailed data
distributions, the limited presence of certain classes can negatively affect centroid quality and, consequently,
model performance. Finally, the method is primarily designed for non-ITD data distributions, leveraging
heterogeneity to enable personalization via global parameters; under IID settings, this advantage diminishes
and the method effectively reduces to standard Fed-VPT. Our theoretical result in Proposition. [1] is relatively
tighter for label heterogeneity setting in comparison to feature drift owing to our Assumption[3}] Exploring
extensions to address these limitations presents a promising direction for future research.

7 Conclusion

We propose a novel prompt-tuning methodology for Vision Transformers (ViTs) by introducing class-specific
prompts alongside shared prompts. Our approach leverages the cls-token representations in pretrained ViT
layers to extract prototypes, which are then combined with each client’s prior label distribution to compute
soft scores that guide the mixing of class-specific prompts into a unified, optimized prompt (CCMP). This
dynamic mixing allows (CCMP) to achieve personalization while using global prompts only. This combined
prompt (CCMP) is subsequently embedded within the ViT layer. Our method PEP-FedPT, achieves State of
the Art performance, surpassing previous methods across the benchmark datasets.
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A Appendix

A.1 Overview of Notation and Definitions

We give the overview of the notations and definitions used in the paper
o Boldface letters to denote matrices and vectors.

"." refers to element-wise multiplication.

e x refers to the standard matrix multiplication.

« We define T'L; as the i*" transformer layer.

e [E denotes the expectation operator.

o The term 47 represents the prior probability of class ¢ occurring at client k.

« Additionally, sim(p,q) denotes the cosine similarity, while I represents the indicator function.

* Mj_y . denotes the client k computing the CLS token prototypes in communication round ¢ and the
input of layer [.

H denotes the classification head.
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¢ ||.|| denotes Euclidean norm or 2-norm.
o [M] denotes the set {1,2,.,.M}.

e A={rR,rR+1,...,(r +1)R — 1} denotes the set of communication rounds in r-th update period
of length R.

o Ny, denotes the number of samples corresponding to class c in client k.
e Pg and P¢ denote shared prompts and class-specific prompts respectively.
e m denotes the CCMP.

e Nj denotes the total number of datapoints at client £ and n denotes the number of clients.

A.2 Method Details: Algorithm

We briefly go over the prototype update and the CCMP computation equations. Client level prototype
aggregation at communication round ¢ is given in the below Eq. [I§|

1 Ny,
e 2aim1 ISttt Ly, y=cs Mk >0,

K1 g = (18)
Oa Nk.c = 0.

Server prototype aggregation during the warm-up phase is given by Eq. [I9]

C 1 C
Hi—10~=7a7 § Hi—1k,0 (19)
|SO| keSo

Server aggregation of the prototypes at the end of r-th update period is in Eq. 20]

N Do Dten owes, Lug o, ,#0) M1 ke De >0,
/'l‘l—l,r = (20)
0, D, = 0.

Sever updating the prototypes based on the momentum is given in Eq.2I] If D, is 0, we set p = 1.

My, =p M1+ (L —p) fj_q, (21)

The class prior for class ¢ at client k is computed as in Eq.
1
of = N ; Iy, =c (22)

The soft scores are computed based on similarity between the class prototypes and cls representations as in

Eq. 23
N sim (€ls;—1 4k, c
T ( ( I 1)) 55 (23)

T
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The scores are converted to probabilities using Eq.

ac
c o Sil-1k
Sil-1,k = ICl Aj

Zj:l Sil-1,k

(24)

The probabilities serve as weights of class-specific prompts which produce the Class Contexualized Mixed

Prompts (CCMP) as in Eq.

my_ =Poxs;;_1

Si,1—1,k is the vector containing s¢,;_; , for different values of c.

(25)

Algorithm 2: PEP-FedPT

Input: H, Pg,Pc p, Pretrained Vision Transformer wy,..,Training data (x,y) ~ D, Set of class labels C,

Learning rate 7, Number of local epochs F, Update period R, Total number of communication
rounds 7', Total number of clients n, CCMP layer index [

Output: 6 = {H,Ps,Pc}, pi—1
Server samples the subset Sy C [n]
©i < WarmStartUp(wp,., So) Ve € C
for roundt € [T] do
Server samples participating clients S; C [n]
for client k € [S;] do
L 0}, uj ., = LocalTrain (6", py 1,1, k,t); Ve e C

0" « FedAveraging({6%,k € S;})McMahan et al.| (2017)

8 if ¢t mod R =0 then

10
11

12
13

14
15
16
17

18

19
20

21
22
23
24
25

26
27

28

r« L

R
for c € C do
fi_y . < AggregateCentroids({pj_, ;. .t € A}) [Eq.
ui_y, < UpdateCentroids(fif_ ., i 1, 1); [Eq
Hi_q < Mg,
Return 0, ;1
Function WarmStartUp (wy,c,Sin,l):

for client k in S;, do

obtain pj_; ;o [Eq. |

Return pf 4 ; Ve € C
Server obtains pf_; , [Eq. \
Return N(lll,o

Function LocalTrain(0%, u;_1,1, k,t):
compute pi_; ;. , Ve € C Eq.

Hk — 0

fore=1— FE do

Define loss | = [(H, Pg, m, z,y)
0k<—0k—n-Vlek

Return 0y, pi 4,

m  PromptMizing((H,Pg,Pc, Wpre, tti—1) [Eq.
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A.3 Experimental Setup

A.3.1 Details on Heterogeneity

We consider two different kinds of heterogeneity label imbalance and feature imbalance. In the label imbalance
we again consider two different settings, pathological and the Dirichlet based non-iid settings as shown in

Figure [

For pathological settings we select few classes of data points for each client and allocate the data among those
labels. For Dirichlet we allocate the data by drawing a sample from the Dirichlet distribution. We consider
these settings using the CIFAR-100 and Tiny-ImageNet Datasets by distributing the data among the 100 and
200 clients respectively and sampling only 5 clients in each communication round. For Dirichlert settings the
degree of non-iid is controlled by the parameter § and its denoted by Dir(d). The lower delta implies higher
heterogeneity and higher value implies the lower heterogeneity. Throughout the work we consider the value
of 0 to be 0.3.
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Figure 4: Comparison of Non-IID Label Shift due to Pathological setting and the Dirichlet setting

By feature imbalance, we mean clients are distributed with different domains. It can be seen in the Figure.
The DomainNet dataset can be viewed as analogous to the one described in the Figure In the Figure
the split shows the mix of feature and the label imbalance.
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Figure 5: Comparison of Non-IID Feature Shift

A.3.2 HyperParameter Details

We follow stochastic Gradient Descent with momentum (Deng et al., [2024) as the default optimizer with
learning rate 0.1 with exponential decay and the momentum 0.9. For all the experiments we consider number
of shared prompts (ng) to be 1, unless explicitly mentioned. We add the class specific prompts at the layers
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5, 6 and 7. We also set the gradient clipping to 10 following [Acar et all For all our experiment we consider
number of shared prompts to 1 except the Tiny-ImageNet Dirichlet where we set it to 5. The CCMP is
inserted at the layers 5, 6 and 7. We set the the temperature parameter 7 to 0.05 for all our experiments. We
show the dataset-specific hyperparameters in the table.

Table 7: Dataset-specific hyperparameter settings

Dataset # Classes  # Clients Classes / Client Comm. Rounds Participation Rate Local Epochs Centroid Update Interval
CIFAR-100 100 100 10 (Pathological / Dir(0.3)) 100 5% 5 10
Tiny-ImageNet 200 200 10 (Pathological / Dir(0.3)) 100 2.5% 5 10
DomainNet 10 60 5 50 10% 5 10
iNaturalist 1203 1018 10 500 1% 2 10

A.4 Additional Experiments

A.4.1 Class-Level Differential Privacy via Laplace Mechanism

Table 8: Impact of class-level DP noise (e = 0.2) on mean accuracy across datasets.

Method | CIFAR-100 (Path) | CIFAR-100 (Dir-0.3) | Tiny-ImageNet (Path) | Tiny-ImageNet (Dir-0.3)
With DP Noise 93-23i0.07 86.92i0,07 91.16i0,13 82.9210,11
Without DP Noise 95.4640.16 88.7540.25 91.5240.11 83.4410.02

To prevent leakage of individual client privacy in a federated learning setting through sharing of cls-tokens,
we employ the most common Laplace mechanism as described in [Dwork et al.| (2000]) for class prototype
everytime the client shares it with the server. After a client aggregates cls-tokens and forms its corresponding
class prototypes, we estimate the sensitivity of each class ¢ for a client k& based on the maximum L1 deviation
of its CLS- token representation from the corresponding class prototype, normalized by the number of samples
N j:

5 2 - max; Hclsf(k) — el
k=
‘ ch

)

where clsl(-clz denotes the CLS token of the i-th sample belonging to class c at client k, N, is the total number

of sampleé belonging to class ¢ for client k and p. is the prototype representing class ¢ in the embedding
space across all clients. To enforce differential privacy, Laplace noise is added to each class prototype 0.
based on its sensitivity S, j and a predefined privacy budget e:

0.1 < 0. + Laplace(0, S. i /¢€)

This class-aware noise injection is performed during every client-server communication, for all the CCMP
layers. As a result, individual class-level contributions are obfuscated, thereby enhancing privacy while
preserving model performance under non-IID data distributions. In the Table [§| we have shown the impact of
dp noise on our overall accuracy. We have used ¢ = 0.2 for our experiment.

Theoretical guarantees for differential privacy: The sensitivity function defined in [A-41]is an upper
bound of the true maximum possible difference of average calculated from neighboring datsets.

Consider two datasets D1 and D5, each containing an equal number N of [cls] token representations, that
differ at exactly one data point: cls; € D; and clsy € Dy. The sensitivity of the dataset average is given by

max||cls; — clsa||1

N

Af =

For any p

max||clsy — p + p — clsa|; - maz|clsy — pl1 + ||p — clsay - 2 - max; ||cls; — pllt
N - N - N

Af =
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By taking p to be the empirical average of all cls-token representations. We upper bound the sensitivity by
Se.i- Following this, it is straightforward to establish privacy guaranties. We refer to [Dwork et al.| (2014)) for
the formal proof. In particular, Theorem 3.6 shows that adding Laplace noise to the class prototype ensures
(¢, 0)-differential privacy.

A.4.2 Impact of Class Priors

Table 9: Ablation on class priors for iNaturalist, DomainNet and Tiny-ImageNet datasets. We report the
Mean Accuracy (%)

Prompt | iNaturalist | DomainNet | Tiny-ImageNet
Shared + CCMP Without CP 54.3810_56 86.34;&0_52 81.0810_13
Shared + CCMP With CP 63.4811'10 89.15:&0.70 83.4410'02

The ablation results in the Table [0 highlight the effect of incorporating class priors into the Shared+CCMP
strategy. For both iNaturalist and DomainNet, adding class priors consistently improves mean accuracy
compared to using Shared+CCMP without priors, with gains of nearly 9% on iNaturalist and about 3% on
DomainNet.

A.4.3 Impact of CCMP and Shared Prompts

Table 10: Ablation on prompts for iNaturalist, DomainNet and Tiny-ImageNet datasets.

Prompt | iNaturalist | DomainNet | Tiny-ImageNet
Ol’lly Shared 52.22:|:0_50 84.23:|:0V72 79.02:|:0,34
Shared + CCMP 63.48:|:1.10 89.15:|:0.70 83.44:|:0.02

The ablation results in the Table [I0] compare the effect of using only shared prompts versus combining them
with CCMP. On iNaturalist, the mean accuracy improves from 52.22% to 63.48%, while on DomainNet, the
performance rises from 84.23% to 89.15% when CCMP is added.

A.4.4 Impact of increasing shared prompts

Table 11: Impact of Accuracy on increasing the number of shared prompts with non-iid partitioning of
Dir(0.3). Increasing ng results in minor improvements for CIFAR-100 and DomainNet

Dataset ng =1 ng =95 ng = 10
CIFAR-100 | 88.7540.25 | 89.65410.15 | 90.5340.59
DomainNet 89.15i0.70 89-29i0.66 90-22i0.33

In the Table we show the impact of varying the number of shared prompts. It can be observed that the
impact is quite minimal.

A.4.5 On the Gain of CCMP

Introducing class-specific prompts increases the total parameter space compared to using a single global
prompt. However, the performance gain achieved by our method is not solely due to this increased parameter
count. To validate this, we augment the FedVPT baseline by adding 50 and 100 prompts (matching the
scale of our class prompts). The mean accuracy improves initially but quickly saturates, with only marginal
gains between 50 and 100 prompts. We can see this in Table [I2] we have used the CIFAR-100 dataset with
pathological data partitioning for this experiment. This indicates that merely increasing the number of
prompt tokens is not sufficient to achieve better performance. Instead, our method’s distinct soft mixing
of class-specific prompts using global class prototypes and local client priors plays a key role in boosting
accuracy, demonstrating the effectiveness of our proposed personalized prompt tuning mechanism.
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Table 12: Effect of increasing number of prompts in FedVPT baseline. The accuracy saturates despite
increasing parameter space, indicating that gains from our method are not due to higher parameter count.

Number of Prompts | Mean Accuracy (%)

1 83.6240.02
50 87.1540.14
100 87.4510.11

A.4.6 Varying the Location of CCMP Injection

In the Table We perform the analysis of our method PEP-FedPT. It can be seen that adding the CCMP
prompts too early in the ViT is not beneficial as the cls token representations at the very early layers
do not have better representations. Adding the prompts at later layers is also not beneficial, even tough
the cls tokens have better representations, since the prompts inserted are not deep enough to learn useful
representations. The choice of using the three prompts is to be efficient and, at the same time, to provide a
fair comparison with methods like SGPT (Deng et al., 2024]).

Table 13: Impact of adding the proposed CCMP prompts at different layers of ViT on CIFAR-100.

Position of CCMP | Mean Accuracy

1,2,3 90.05+0.21
5,6, 7 95.4610.16
8,9, 10 93.55+0.14

A.4.7 Heldout Evaluation on DomainNet and iNaturalist

The comparison shows that methods like Fed-VPT-D and SGPT provide competitive results, especially on
DomainNet. However, our method achieves the best overall performance, with 62.41% participating and
54.16% testing accuracy on iNaturalist, and 90.32% participating and 88.73% testing accuracy on DomainNet.
This highlights its robustness across both datasets and evaluation settings. For iNaturalist about 916 clients
participated in the training while 102 clients were held out. For DomainNet, 6 clients, one per domain, were
held out, and 54 clients, 9 from each domain, participated in the training.

Table 14: Comparison of methods on iNaturalist and DomainNet datasets with the held-out setting

Method iNaturalist (1) DomainNet (1)
Participating Acc  Testing Acc | Participating Acc  Testing Acc
Head 48.8710.41 45.27 1051 82.3441.81 83.19.42.02
Fed-VPT 51.694¢.41 48.0540.12 82.9211 33 83.6841 46
Fed-VPT-D 57.1341.12 53.20+1 .18 87.08+1.24 87.5441.52
P-PT 43.8710.94 41.2041 40 82.89.10.28 83.0542.15
FedPR 38.6210.16 36.03+0.15 83.5910.17 82.6211.79
SGPT 95.8240.12 93.8140.12 86.5510.58 87.274+0.69
pFedPG 95.6140.12 NA 88.3440.05 NA
PEP—FedPT(OIlI‘S) ‘ 62.4110'15 54.1610,39 ‘ 90'3210.18 88.7310,63

A.4.8 Alternative view of Worst Client Accuracy

Table. reports worst-client accuracy on iNaturalist, measured as the lower-tail (5%, 10%, and 15%)
percentiles of per-client test accuracy, which reflects the performance of the most disadvantaged clients
under data heterogeneity. Most baseline methods achieve near-zero accuracy at the 5% percentile, indicating
limited robustness. In contrast, our method consistently attains the highest worst-client accuracy across all
percentiles, with substantial margins over competing approaches. The gains at the 5% percentile demonstrate
a clear improvement for the worst-performing clients, while the consistent advantages at 10% and 15%
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Table 15: k% percentile accuracy on iNaturalist.

Method 5% | 0% | 15%

Head 0 12.50:‘:0‘32 20.565:0_47
VPT 0 14.28.10.16 | 23.2140.55
VPT-D 10.500.20 | 20.0010.23 | 30.00+0.74
P-PT 0 10.9310.25 16.6619.30
SGPT 05-50i0,37 18~91i0.43 27-27i032
FCdPR 0 03-54i0‘l4 U8.62i0_39
pFedPG 0 0 12.54:|:()'41
PEP-F@dPT(OuIS) 20-00j:().38 33.00i()_5() 41.10i()'4g

percentiles indicate more equitable performance across the federation. Overall, the results highlight that the
proposed approach improves robustness to client heterogeneity beyond average accuracy gains.

A.5 \Visualization and Further Analysis

A.5.1 Accuracy Vs Communication Rounds

100 Accuracy vs Communication Rounds

80

60

Accuracy (%)

40

— SGPT

20 —— FedVPT
—— FedVPT-D
—— FedPR
—— PEP-FedPT(Ours)

0 20 40 60 80 100
Communication Rounds

Figure 6: Comparison of the convergence of different methods across the Communication rounds on the
Tiny-ImageNet dataset with pathological non-iid partitioning where each client only observes 10 classes.

The Figure [6] shows how the accuracy is improving across the FL communication rounds across the various
algorithms. It is clearly evident that our proposed PEP-FedPT algorithm attains the best accuracy in
fewer communication rounds compared to the other algorithms, thus minimizing the computation and
communication costs.

A.5.2 t-SNE visualization of class-prompts

In the Figure [7] we show the t-sne visualization of the trained class prompts on CIFAR-100 pathological
10-class setting and we observe that each class prompt learns its own representation, which is beneficial to
making the final classification decision.

A.5.3 \Visualization of the soft weights for CCMP

In the Figure [8| we plot the soft weights averaged across all the test examples belonging to class 0 and class 1
across all the clients. It can be observed that on an average the soft scores gives high score for the relevant
class prompts.
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Figure 7: t-SNE visualization of the learned class prompts, it can be seen that each prompt learns its own
representation implying no collapse of dimensions.
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Figure 8: soft weights Averaged over all the data points that belong to class 0 and 1. It shows that on Average
the soft weights give more importance to the prompt corresponding to the true class.
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A.5.4 Visualization of Representations at different layers

In the Figures [9d] and [0h] we observe that in initial layers the representations are uniformly distributed across
the manifold post-training, which suggests that the utility of shared prompts is distinct from that of CCMP.

SNE Visuali of Class Representatior SNE Visuali of Class i t-SNE Visualization of Class Representations

L-SNE Dimension
.

L-SNE Dimensi

|

L-SNE Dimensi

(a) Layer-0 (b) Layer-7 (c) Layer-11

(d) t-SNE representations of cls tokens for different layers using DomainNet dataset. It indicates that the initial
layer representations are distributed uniformly over the manifold. The representation gets better once CCMP is
incorporated in the later layers.

t-SNE Visualization of Class Representations t-SNE Visualization of Class Representations t-SNE Visualization of Class Representations

LSNE Dimens
.
LSNE Dimens
LSNE Dimension

(e) Layer-0 (f) Layer-7 (g) Layer-11

(h) t-SNE representations of cls tokens for different layers using CIFAR-100 dataset, denoting that shared prompts at
layer 0 learn only common class representations, unlike CCMP introduced later in the model. The representations are
obtained using the fine-tuned ViT-B/16.

Figure 9: Comparison of t-SNE representations across layers for DomainNet and CIFAR-100 datasets.

A.5.5 Robustness on varying the Dirichlet Concentration

Table 16: CIFAR results under different Dirichlet partitions.

Method Dir(0.1) Dir(0.5)

Mean Acc  Worst Acc Mean Acc  Worst Acc
Head 79~21i0‘12 65.48i0‘02 79-95i0.14 72.2410',15
VPT 84.13410.03 71.8040.01 84.97+0.01  75.63+0.01
VPT-D 87.0840.02  74.00+0.02 87.92:074 79.0040.12
P-PT 79161024 67241124  78.8010.38  64.5410.6s8
SGPT 85.36+0.01 73.0040.16 86.0410.02 73.4940.01
FedPR 81.6410.32 65.081 80 82.1140.59 71.4240.84
pFCdPG 84.14i0‘49 73~62i0478 73~90i0.38 60.0010'98

PEP—FedPT(Ours) 90.85:|:()<13 84.28i1.15 87.75:|:().04 79'51:|:0.16
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This table presents the performance of different methods on the CIFAR dataset under two levels of label
heterogeneity, modeled by Dirichlet partitions (Dir(0.1) and Dir(0.5) ). For each method, we report the
average (avg) and worst-case (worst) accuracy across clients, along with the standard deviation. Our proposed
method consistently achieves the highest or comparable average and best Worst Acc accuracy, indicating
superior robustness and effectiveness compared to baseline methods.It can be seen that performance gain is
higher when data heterogeneity is more. Our method becomes FedVPT in the iid setup as the scores used to
mix class prompts will become identical.

A.5.6 Sensitivity to Temperature 7
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~#— Tiny-ImageNet

88
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Figure 10: Sensitivity of the Average Accuracy to the 7

Figure. [10] shows the effect of the temperature parameter, 7, on model accuracy for two datasets: CIFAR-100
and Tiny-ImageNet. Accuracy is measured for different values of 7 ranging from 107° to 100. For both
datasets, increasing 7 initially improves accuracy, reaching a peak at the same 7), after which further increases
in 7 lead to a drop in performance. This indicates that a moderate temperature helps optimize model
performance, while very small or very large temperatures can reduce accuracy.

A.5.7 Impact of temperature on optimal location for CCMP injection

Table 17: Impact of temperature 7 on optimal location for CCMP injection: Accuracies shown in CIFAR-
Dir(0.3) setting

Layers | 7 = 0.0001 7 =0.05 7 = 100
1,2,3 86.1810.05  86.7010.04 86.3210.16
5,6,7 86.241014  88.7510.25 87.9010 .02
9, 10, 11 87.771004  85.681034 87.3510.18

In table [I7] we show how the accuracy varies on CIFAR-100 under dirichlet setting. At a low temperature
setting (7 = 0.0001), the similarity scores computed from the cls token representations receive a significantly
higher relative weight. In this regime, performance is primarily driven by the quality of these scores rather
than the depth at which CCMP is injected. Since cls token representations at later layers (e.g., layers 9-11)
are more expressive, they provide more accurate similarity estimates, resulting in improved accuracy. As the
temperature increases (7 = 0.05 and 7 = 100), the influence of the similarity scores is reduced, and the depth
of prompt insertion becomes a critical factor. At higher temperatures, sufficient insertion depth is required
to enable the prompts to learn meaningful representations, and shallow insertion is no longer adequate to
achieve strong performance.

A.5.8 Personaization and generalization Trade-off

Figure. [L1] visualizes the tradeoff between personalized performance and generalized performance across four
datasets: CIFAR-100, Tiny-ImageNet, iNaturalist, and DomainNet. Each point corresponds to a method, with
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Figure 11: Personalization and Generalization Trade-off of different methods

the x-axis representing personalized accuracy (participating accuracy on clients) and the y-axis representing
generalized accuracy (testing accuracy on held-out data). Methods closer to the top-right corner achieve
a better balance between personalization and generalization. Across all datasets, PEP-FedPT consistently
occupies dominant region, achieving simultaneously higher personalized and generalized accuracy compared
to prior methods. In contrast, several baselines improve personalization at the expense of generalization
or vice versa, highlighting an inherent tension between the two objectives. The results demonstrate that

PEP-FedPT bridges this tradeoff.

A.5.9 Evolution of Class Prompts across rounds
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Figure 12: Evolution of Class Prompts across Rounds on CIFAR-100 Dataset

The Figure. [12]illustrates the evolution of class prompts across training rounds on the CIFAR-100 dataset.
At the initial stage (round 0), all class prompts are tightly clustered, indicating that they start from a nearly
identical or uninformative initialization. As training progresses (round 10), the prompts gradually spread
out, reflecting the model’s ability to differentiate between classes. By later rounds (round 20), the prompts
form well-separated representations, suggesting that each class prompt has adapted to capture class-specific
semantic information.

A.6 Theoretical Details
A.6.1 CCMP as minimizer of quadratic upper bound around class prompts

For clarity and completeness, we restate the relevant proposition from the main paper.

Proposition 3. If the assumptions |1] to |4 hold, we show that f can be upper bounded as f < L =
LSS 0 () + Py llm(k) = pe,|P) + C and it is minimized ot m(k) = X\%) 6ipe,,  VE € [n],
which is equivalent to the (CCMP) described in sec.4.2 as T >> 1. Buax = maxe( o) Bi, C is a constant

which depends on P. This vanishes when pe, = p:,Vi € [|C|] which makes L a tight upper bound of f.

Proof. We begin by applying the smoothness assumption on the loss function ¢¢ for each class i. By
Assumption 2, £% is B;-smooth, which implies that for prompts m(k) € P and p, € P, for k € [n] and
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i € [|C]] we have

Bi

k(m(k)) < 6.(pc,) + VA (pe,) " (m(k) = pe,) + 5 [Im(k) = pe,|* (26)

We define  fnax = max 5; (27)
ie[|C]]

which gives us

7 % % ﬂmax
(i(m(k)) < 6.(pe,) + VL (pe,)  (m(k) = pe,)) + =5 [m(k) - pe,) || (28)
Now we know that P is compact, let the diameter be D := sup ||x — y|| which gives us
z,y€eP
[p1 —p2l| <D forall pi,p2 € P (29)
= |[m(k) —p, || < D (30)
Since by Assumption 1 [(p) is 3;-smooth, we have for x,y € P
IVE.(x) = VEM)I < Billx — v (31)
< Bmax||x —¥y|| From equation (32)
If V6>0 |x—y|| <0, for €=00max we have
V6. (x) = VO < € = [VEG(x); = VG <€ € [d] (33)
VE}; (x); is a continuous mapping of compact metric space P into metric space R
= V/i(x); iscompact Vj € [d]
Let B;; be the diameter of Vi (P);, j € [d], then
_ d
Ve (pe) | < Bi = |Bi| (34)
j=1
Using Cauchy-Schwartz inequality and from [34] & [30| we have
Vi, (pe,) " (m(k) - p,) < DB; (35)
From 5
k(m(k)) <6, (pe,) + C + =0 [m(k) - pe | (36)
where Cj, = DB, . The global loss of the clients is given by
Lo fler
L= (Y 6k -t omk)) (37)
k=1 \i=1
.1 & e Jéi 9 -
<D= 30 |0k (fhpa) + 75 mk) — pe?) | +C (39)
k=1 |i=1
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1<
where C:;;Ck (39)

which proves the first part of our main proposition [I] in the paper.

If pc, = p,, we have a tight upper bound L= DI [Zﬁll 58 (Z};(pci) + ’6“;“‘ lm(k) — pe,
V/i (pe;) vanishes, according to Assumption

We are interested in finding the optimal client prompts m(k) for each client k.

2)} , because

= IC|
0Ly 1 4
= L N7 5 B (m(E) — pe. 40
] = 2 2 b (n(b) = pe) (10)
3 ol ol
= % m(k) =Y 6ipe, |, since Y 6 =1 (41)
i=1 i=1
Setting am(k) =0, we have m(k) = géipci (42)
which gives the second part of our proposition [T} and completes our proof. O

A.6.2 CCMP as MMSE estimator of the true class prompt

Here we clarify the details of the distribution pg(cls;—1,p) = pr(p|cls;—1)pr(cls;—1) especially pg(cls;_q).
We define it as the density induced by the deterministic transformation of the data distribution through the
preceding network layers.

Let Tj_; : X — R? represent the composite non-linear mapping performed by the first I — 1 layers of the ViT,
such that for any input x, the representation is given by cls;_; = T;_;(x). We can equip a probabiity space
on the input as (X, F, P), where F is a o-algebra (typically the Borel o-algebra) and P is the probability
measure on X. We also equip the Measurable space of the R? as (R?, B(R?)).

If B is a Borel-measurable subset of R%. Pr(B) is given by the pushforward measure of P on B by T;_; which
is P(Tlill(B)). We can always do this as the map 7;_; is continous and hence measurable.

Consequently, pi(cls;_1) is the probability density induced by this distribution derived via P(x) under the
mapping T;_1. The posterior probability px(p = pe,|cls;—1) only implies that once we observe cls;_; the
probability that it belongs to a class .

This is how we model the joint distribution pg(cls;_1, p).

We assume a joint data distribution P(x,y) over the input space X’ and the set of class labels ) with marginal
P(x). To formalize the notions, we define the input space as a probability space

Proposition If the cls tokens and the class-specific prompts at input of layer | has the joint density given
by pr(cls;—1,p) as in Eq. then the CCMP prompt for a client k, m;_1(k) obtained in Eq. @ is Minimum
Mean Squared Estimator (MMSE) of the true class prompt.

Proof. Consider the following mean-squared error
J(6) =E[p - p|” (43)
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where the expectation is taken across the joint distribution of pg(p,cls;—1). The p that’s minimizes the J(p)
is the MMSE estimator, and p is our true class prompt. We have the following

J(p) =Ellp - p|’
— E|lp — Elplels;_1] + Efplels,_] - p|”
— E|lp - Elplels;_1]|* + E[E[plels; 1] - b
+ 2E(p — E[p|cls;—1], E[p|cls;—1] — D)
= E|lp — E[plcls;1]|* + E[E[plcls;—1] — |

The equality is obtained as the cross term is zero i.e we have E[(p — E[p|cls;_1], E[p|cls;—1] — P)] = 0. Tt
follows by using the iterated expectation as shown below.

E(p — E[p|cls;—1], E[p|cls;—1] — p) = E[E[(p — E[p|cls;—1], E[p|cls;—1] — D)|cls;—1]] (44)
= E[E[(p — E[p|cls;—1][cls;—1, E[p|cls;—1] — D)]] (45)
=0 (46)
We now have
J(p) = Ellp — E[plels; 1]||* + E[|E[plels, 1] — p||* (47)

From the above Eq. [47|it can be readily seen that J(P) is minimized by setting the value of p = E[p|cls;_]

c]
Elplclsi1] = Y p(p = pe,,[clsi-1) - Pe,, (48)

m=1

From Eq. we can rewrite the above equation

IC|
E[plcls;—1] = Z Sit—1k " Pen
m=1

=Pe*sii—1xk

From Eq. 25| we conclude that E[p|cls;—1] = m;_; O

A.6.3 Convergence

We assume the following assumptions on the loss functions based on (Karimireddy et al., |2020; |Acar et al.)).
A 4. The loss functions f, are Lipschiltz smooth, i.e., |V fi(01) — V f(02)] < 5|61 — 62].

A5 L3 i IVAO)7 < G2+ B|VF(O)|° where f(8) = 231y f5(6). This is referred to bounded
gradient dissimilarity assumption,

A 6. let E|VI(O, (z,vy)) — Vfr(0)| < o2, for all k and 6. Here 1(0, (z,y)) is loss evaluated on the sample
(z,y) and fr(0) is expectation across the samples drawn from Dy. This is a bounded variance assumption.

In the above assumptions, the parameter 6 denotes the trainable, shared, and class-specific prompts along
with the classification head parameters.

The entire computation of the soft scores s; ;1 ; for the client k, based on cls, can be viewed as a part of
the model architecture itself (Fig.1) and encapsulated inside the client’s loss function.

We then have the following proposition.
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Proposition 3. Theorem V of |Karimireddy et al.| (2020) in Appendiz D.2: let * = argmin f(0), the
0

global step-size be ag and the local step-size be ag. When the update period R is very large or 7 >> 1, the
PEP-FedPT algorithm will have contracting gradients. If Initial model is 8°, F = f(6°) — f(8*) and for

1/3 2/3
constant M, then in T rounds, the model 87 satisfies E[||Vf(9T)||2] < O(B\/A%f + £ (Tff)’g/s ) 4+ ﬁBTQF).

The above proposition states that the PEP-FedPT algorithm requires O(E%) communication rounds to make

the average gradients of the global model smaller, i.e., E[||V f(07) H2] < €. The result is plug and play because
we only employ global prompts and parameters for the training.

Training Loss vs. Communication Rounds

—— FedPR
P-PT
S —— SGPT
101 4 —— Head
1 v —— FedVPT
—— FedVPT-D
PEP-FedPT(ours)

Cross-Entropy Loss (log scale)

0 20 40 60 80 100
Communication Rounds

Figure 13: Comparison of training loss of various algorithms on CIFAR-100 dataset

Figure [13| illustrates the training loss (cross-entropy, log scale) versus communication rounds for various
baselines. We observe that P-PT struggles to converge, while FedPR and Head show limited improvements
with early plateauing. Methods such as SGPT and FedVPT achieve more stable convergence, and FedVPT-D
further reduces the loss by incorporating additional regularization. In contrast, our proposed PEPFedPT
consistently outperforms all baselines, achieving both faster convergence and the lowest final loss. Our theory,
which minimizes the quadratic upper bound at convergence is expoected to have lower training loss. This
empirical trend aligns with our predictions, thereby ensuring improved stability and convergence in practice.

A.6.4 Analysis of CCMP when the scores are the function of data

We show that CCMP minimizes the quadratic upper bound on the loss even when the scores are functions
of both the data and class-priors. We show an upper bound on the loss for a given input x. This helps us
remove assumptions related to temperature parameter and thus gives a more general theoretical analysis.
Our notations are restated accordingly. We denote the estimate of class prompt for class 7 at any round to be
Pe; - We denote the class prompts by Po = [pe, s Pes - - - pr\]' Let m(k, x) denote the prompt used at client
k for data point x. H, and let the total number of clients be n, and §; denote the empirical probability that
a data point at client & belongs to class i. We assume that the joint density of the data in client pg(x,y) is
modeled as pr(X,y) = pr(x)pk(y|x), the posterior pi(y|x) is assumed to be given by the scores in Eq.
which we denote by sy ; x and we model py(y = i|x) by defining pi(y = i|x) := sk, x. Let P be the set of all
possible prompts across all the clients, such that m(k,x) € P, Vk € {1,2,...,n} ,¥x. The overall loss of
the client k is denoted by the E[lx(m(k,x),x,y)]. Note the expectation is over the pi(x,y). The goal is to
estimate m(k,x) as a function of class prompts {p¢,, Pec, - - - Pec }. The global loss across all clients can be

computed as f = 237" E[l,(m(k, x),x,y)].

We now state the following assumptions:

4for notation convenience, we drop the layer index j from m;(k,x).
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A 7. P is compact subset of RY, where d is the token dimension.

A 8. 1;(0,x,y) is B smooth in argument 0 with parameter 8 Yy € [|C|],vx, Vk € [n].

Proposition 4. If (;(0,(x,y)) satisfies the above assumptions @ to @ we  show that over-
all loss function f = 30  Ell(m(k,x),(x,y))] can be upper bounded as f < L =
LS B[ i (6pe) + 2 lm(k) = pe,|*) | + € and it is minimized at m(k) = Y\7) sipe,, Wk €
[n]. which is equivalent to the (CCMP) described in sec.4.2 . C is a constant which depends on P. The E is
over the distribution of the data x. Here we defined m(k) == m(k,x), (i (0) == 0,(0,x,y = 1) and s, = sk, x

Proof. we expand the clients loss E[¢;(m(k,x),x,y)] as below

]E[ék (m(kv X), X, y)] = E[]E[gk (m(k» X)v X, y)] |X] (49)
c|
=E[Y _ (m(k,x),x,y = i)pr(y = i|x)] (50)
=1
c|
=E[>_ l(m(k,x), X,y = i)sk,ix] (51)
=1
IC|

= E[Z C(m(k))si] (52)

In the last step we use the definitions in the proposition i.e, m(k) = m(k,x), ¢, (m(k)) == £, (m(k,x),x,y = i)
and s} = sy x.

If the Lipschitz smooth and compactness assumptions hold, then by following similar arguments from
till [38 we will have the global loss of clients given by,

n IC]
=2 SR sk fim(b) (5)
k=1 i=1
~ 1 n |C| . ) B ) ~
L= 13 E|Y ot (ko) + 5 (k) —pa )| € (54
k=1 i=1

which proves the first part.

We are interested in finding the optimal client prompts m(k) for each client k and for each data point x. This is
obtained by optimizing the argument inside the expectation which is [Ziill st (% (pPe;) + g lm(k) — pe, HQH
with respect to m(k).

051 i (¢(per) + 4 (k) — e,

)

IC]
1 .

=— p k) — pe, 55
— 2 2ok (m(k) ~ pe) (55)

3 ol ol
=N m(k) — Zl SpPe; |, since ;sz =1 (56)

IC|

oL .

Setting 8m(];€) =0, we have m(k)= ;%pci (57)
which gives the second part of our proposition [T} and completes our proof. O
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