
An Approach to Quantify Plans Robustness in Real-world Applications

Francesco Percassi1 , Sandra Castellanos-Paez1 , Romain Rombourg2 and Mauro Vallati1
1School of Computing and Engineering, University of Huddersfield, Huddersfield, United Kingdom

2G2ELab, Grenoble INP, CNRS, Université Grenoble Alpes, Grenoble, France
{f.percassi, s.castellanos}@hud.ac.uk, romain.rombourg@grenoble-inp.fr, m.vallati@hud.ac.uk

Abstract
Automated planning systems are increasingly de-
ployed in real-world applications, often charac-
terised by uncertainty and noise stemming from
sensors, actuators, and environmental conditions.
Under such circumstances, improving the deploy-
ability of generated plans requires assessing their
robustness to varying conditions, thereby reducing
the need for costly replanning. Replanning can be
computationally intensive and may hinder the prac-
tical applicability of planning systems. In many do-
mains, such as urban traffic control or underwater
exploration, it is often sufficient for plans to reach
an acceptable region rather than the exact goal.
A key distinction in this context lies between valid
plans (which achieve the intended goal under ideal
conditions) and executable plans (which remain
feasible under uncertainty or perturbation). This
paper formalises the notion of execution-invariant
planning tasks, in which plans are robust to noise
and uncertainty. To foster the adoption of auto-
mated planning in real-world settings, we propose
a statistical framework for evaluating plan robust-
ness, offering a quantifiable measure of a plan’s
ability to reach a goal within a specified toler-
ance under diverse perturbations or uncertainty. We
validate our approach in two real-world domains,
demonstrating its effectiveness.

1 Introduction
Automated planning is increasingly exploited to tackle com-
plex problems in diverse real-world applications, including
urban traffic control [Vallati et al., 2016], digital forensics
[Khan et al., 2023], unmanned aerial vehicle control [Kiam
et al., 2020], and pharmacokinetic optimisation [Alaboud and
Coles, 2019; Alon et al., 2024]. However, the effective use of
planning systems in such scenarios is often hindered by in-
herent uncertainty and noise.

Imperfect sensors, unreliable actuators, and unpredictable
external factors, such as weather conditions or unexpected
traffic demands, can render plans ineffective when deployed.
When execution deviates from the expected trajectory, a tra-
ditional approach is to replan or to perform plan repair [Fox

et al., 2006a], but this can significantly diminish the utility of
planning systems. Replanning and repairing are computation-
ally expensive [Percassi et al., 2023], especially when using
expressive formalisms like PDDL+ [Fox and Long, 2006],
and can disrupt ongoing operations. Consequently, the prac-
tical usability of plans in real-world scenarios heavily de-
pends on their robustness to varying conditions, minimising
the need for costly additional operations.

Several works have addressed plan robustness from various
perspectives. Some focus on generating robust plans from
the outset, explicitly considering exogenous events and dy-
namic environments [Fritz and McIlraith, 2009; Chrpa and
Karpas, 2024]. Conformant probabilistic planning addresses
uncertainty by synthesising plans that achieve a goal with a
given probability under stochastic initial states and actions
[Domshlak and Hoffmann, 2007; Taig and Brafman, 2015].
However, these approaches are limited to classical planning
settings and rely on fully specified probability distributions.
Others analyse the robustness of existing plans by investi-
gating their sensitivity to action timing uncertainty [Fox et
al., 2006b]. Cashmore et al. (2020) propose an approach to
identify decoupled robustness envelopes for temporal plans,
characterising their validity concerning temporal constraints
and contingencies. More recently, Percassi and Vallati (2024)
introduced a “what-if” analysis for urban traffic control, as-
sessing plan performance under manually injected perturba-
tions. Although focusing on explainability rather than robust-
ness, Sarwar et al. (2023) aimed to improve system reliability
through contrastive plan comparisons in hybrid models.

However, these analyses often neglect the true underly-
ing distribution of variables, limiting their effectiveness when
historical data is available. This motivates the need for ap-
proaches leveraging such data for a more accurate assessment
of robustness. Furthermore, in many real-world domains op-
erating under noisy and dynamic conditions, goals often rep-
resent desired outcomes rather than strict targets. Achieving
the precisely stated goal is frequently unnecessary; it suffices
for plans to guide execution towards an acceptable region
around the goal. This is evident in domains like underwater
exploration [Chrpa et al., 2017], where the objective is often
to provide a general survey of an area rather than reaching
a precise set of waypoints. Another example arises in au-
tonomous driving, where arriving within a reasonable prox-
imity of a destination is typically sufficient. This shift from



strict goal satisfaction to achieving acceptable outcomes ne-
cessitates new approaches to robustness evaluation, focusing
on plan executability rather than strict validity.

To advance the adoption of automated planning in
real-world applications, this paper defines the concept of
execution-invariant planning tasks, scenarios in which plans
are guaranteed to remain executable despite noise and uncer-
tainty. We propose a novel statistical framework for eval-
uating the robustness of such plans, offering a quantifiable
measure of their resilience in reaching a goal within defined
bounds. Our approach can explicitly incorporate statistical
information about perturbations, allowing for more accurate
and informative robustness assessments when historical data
or variable distributions are available. We demonstrate the ap-
plicability of our framework on realistic benchmarks, show-
casing its effectiveness in evaluating plan robustness.

2 Background
In this section, we briefly introduce the syntax and semantics
of discrete-time PDDL+, which serves as the planning for-
malism used in our experiments. This choice is not a require-
ment of the proposed framework, but reflects the planning
formalism used for the experimental evaluation.

A discrete-time PDDL+ planning task, denoted as Π, is
defined as a tuple ⟨F,X, I,G,A,E, P ⟩, together with a time
discretisation step δ ∈ Q+, which determines the temporal
granularity of the model. F is a finite set of Boolean vari-
ables, each taking values in {⊥,⊤}. X is a finite set of nu-
meric variables, each ranging over Q. A state s is a complete
assignment of values to all variables in F and X . For a state
s and variable v ∈ F ∪ X , s[v] denotes the value of v in s.
The initial state I is such an assignment, describing the sys-
tem’s starting configuration. The goal G describes the condi-
tions that must hold in the final state, and is defined as a set
of Boolean and numeric conditions. Boolean conditions take
the form ⟨v = b⟩, where v ∈ F and b ∈ {⊥,⊤}. Numeric
conditions take the form ⟨φ ▷◁ 0⟩, where φ is an arithmetic
expression over X , and ▷◁∈ {>,≥,=,≤, <}. A, E, and P
are the finite sets of actions, events and processes, respec-
tively. Each element z ∈ A ∪ E ∪ P is described as a pair
⟨pre(z), eff(z)⟩, where pre(z) is the precondition and eff(z)
is the effect associated with z. Preconditions pre(z) are ex-
pressed as propositional formulae composed of Boolean and
numeric conditions. For actions and events, the effects eff(z)
consist of a set of assignments to Boolean and numeric vari-
ables, i.e., ⟨v := b⟩ and ⟨v := φ⟩, respectively. Processes
behave differently from actions and events. Like the other
elements, processes have preconditions, but their effects are
described as a set of discrete-time numeric effects of the form
⟨v, φ⟩. This means that, as time progresses by steps of size δ,
each such expression contributes incrementally to the value
of v. With a slight abuse of notation, this can be expressed as
v(t+ δ) = v(t) + φ(t) · δ.

A PDDL+ plan πt is represented as a pair ⟨π, te⟩, where π
is a sequence of timestamped actions ⟨⟨a1, t1⟩, . . . , ⟨an, tn⟩⟩,
and te ∈ Q≥0 denotes the plan’s makespan or total duration.

The validity of πt is determined by simulating its execu-
tion over discrete timestamps multiples of δ. This simula-

tion tracks all changes to the state over time by consider-
ing the effects of actions, any events triggered during exe-
cution, and processes active at each time step. Each action
a applied at its timestamp ti induces an instantaneous state
transition, applying its effects and producing a new state.
After the application of each action and after the time pro-
gresses by δ, events are evaluated and applied if their pre-
conditions are satisfied. At every discrete timestamp within
the interval {0, δ, 2 · δ, . . . , te}, processes also contribute to
temporal state transitions. This iterative procedure contin-
ues throughout the entire makespan. A plan πt is valid for
Π if and only if every action is applicable and the final state
satisfies the goal condition G. For further details about the
semantics we are considering, refer to [Fox et al., 2012;
Percassi et al., 2025].

3 Case Studies
This section presents the three case studies that will be con-
sidered in the paper. The first domain, Non-Linear-Car, is a
toy problem introduced for explanatory purposes and will be
used as a running example. Urban Traffic Control and Baxter
are drawn from real-world applications and will be consid-
ered for the experimental analysis.
Non-Linear-Car In this well-known domain, the aim is to
guide a car along a straight road. The domain involves three
numeric variables, i.e., X = {x, v, a}, where x, v, and a rep-
resent the car’s position, velocity, and acceleration, respec-
tively. cdrag, ia, and vthreshold are constants that characterise
drag, acceleration intensity, and the velocity above which
drag begins to apply. Two actions control acceleration, i.e.,
A = {acc, dec}, where acc = ⟨⊤, {⟨a := a + ia⟩}⟩ and
dec = ⟨⊤, {⟨a := a − ia⟩}⟩. In the initial state, the car
is stationary, and cdrag and ia are set according to estimated
values. The physics of the car is modelled through the pro-
cesses P = {ρmove, ρdrag}. ρmove = ⟨⊤, {⟨x, v⟩, ⟨v, a⟩}⟩ ac-
counts for the position and velocity of the car. ρdrag = ⟨⟨v ≥
vthreshold⟩, {⟨v,−cdrag · v⟩}⟩ models the drag force, which is
linearly dependent on the velocity of the car, and acts as
a resistive force opposing the motion whenever vthreshold is
reached. The objective is to control the car through a se-
quence of timed accelerations and decelerations, bringing it
to a specific distance while returning it to a stationary state.
Urban Traffic Control The urban traffic control (UTC)
PDDL+ domain addresses the problem of optimising traf-
fic signals in an urban road network, to maximise throughput
and minimise congestion [Kouaiti et al., 2024]. The network
is modelled as a directed graph, where nodes correspond to
junctions and edges denote road links. Each junction oper-
ates through predefined traffic signal configurations, which
regulate vehicle flows between incoming and outgoing links.
Traffic flows are modelled as continuous processes, while
transitions between signal stages are represented as discrete
events. The turn rates, defined as constants of the problem,
determine the proportion of vehicles that move from an in-
coming link to an outgoing one when a green signal is ac-
tive between them. The planner is responsible for selecting
which configuration to apply at each junction and when. In
the formulation under consideration, the goal is to ensure that



a specified number of vehicles traverse a corridor within the
network while avoiding saturation at the corridor’s exit.

Baxter This domain model encodes in PDDL+ a robotic
manipulation scenario of an articulated object in a three-
dimensional space [Bertolucci et al., 2020]. More specifi-
cally, it considers a Baxter robot provided with two arms,
tasked to manipulate an object into a desired final configu-
ration. The manipulation involves a sequence of actions that
allows the Baxter to grasp two links and modify the angle
of the joint connecting these links together. Joints are not
explicitly represented as separate entities in the model. In-
stead, their presence is implicitly defined by the connection
between two links and by the value of a numeric function that
captures their relative orientation on the vertical or horizontal
plane. Notably, the effects of the manipulation of two con-
nected links are propagated via corresponding predicates to
the upstream part of the object.

4 Assumptions and Notation
Before introducing the concepts of execution-invariant tasks
and the framework for assessing plans’ robustness, it is nec-
essary to outline notations and assumptions.

Usage of Invariant Variables We require that arithmetic
expressions follow a specific syntactic form. In particular, we
define expressions as φ := φ + φ | φ − φ | φ · φ | φ/φ | v,
where v denotes a numeric variable. This formulation explic-
itly excludes the use of rational values, thereby enforcing that
all constant parameters of the domain must be modelled as
variables. For example, in the Non-Linear-Car domain, the
parameters cdrag, ia and vthreshold must be included in X .

Numeric Variables Domains Although our framework is
general, it is particularly suitable for planning tasks in-
volving numeric variables with naturally bounded domains.
In many application contexts, numeric variables are con-
strained by physical or operational limits derived from the
domain. For example, in the UTC domain, the occupancy of
a link l, denoted as occupancy l, varies within [0, capacity l],
where capacity l is the link’s maximum capacity. This is
a well-known observation in the literature and has impor-
tant implications for the decidability of numeric planning
tasks [Helmert, 2002; Gigante and Scala, 2023].

In what follows, we restrict our attention to numeric vari-
ables with known bounded domains. Specifically, for each
numeric variable v, we assume a domain Dv = [v, v] with
v, v ∈ Q and v ≤ v, as introduced above. Moreover, regard-
ing notation, given a set of variables V , we denote by S(V )
the set of all complete assignments to V over their respective
domains. While inferring such bounds automatically is not
always trivial [Kuroiwa et al., 2023], in practice, meaning-
ful ranges can often be identified from domain knowledge or
defined based on application requirements.

Executable and Valid Plans In this work, we are interested
in distinguishing between the notions of executability and va-
lidity of a plan. Given a plan π for a planning task Π, we
define π to be executable if every action in π is applicable in
the state in which it is executed, assuming actions are applied
sequentially starting from the initial state, and following the

semantics of the chosen planning formalism. A plan is valid
if it is executable and, in addition, it reaches a state satisfying
the goal. The sets of all executable and valid plans for Π are
denoted by EXEC(Π) and PLANS(Π), respectively.

In terms of notation, since we will investigate the validity
of a plan under unknown variations of the initial state, we
denote by Π the original planning task and by Π[I ′] the plan-
ning task where the nominal initial state I is replaced by I ′.
The initial states are assumed to be realisations of a random
variable I with a distribution fI representative of its possi-
ble outcomes. In general, the distribution fI is unknown, but
we assume access to a set of its realisations in the form of
historical data.

5 Execution-Invariant Planning Tasks
In many real-world scenarios, certain numeric variables may
vary without compromising the ability to execute a plan. To
capture this intuition, we first define how such variations can
be represented through perturbation state spaces. Then, we
introduce the notion of execution-invariant planning tasks,
where all plans remain executable despite changes in specific
initial values. As we will discuss, this class of tasks is espe-
cially well-suited to the robustness framework we propose.
Definition 1 (Perturbation State Space). Let Π be a planning
task with variables V where Ṽ ⊆ V and Ṽ ̸= ∅, and let
s ∈ S(Π). The perturbation state space induced by s over Ṽ
is defined as:

S̃(s, Ṽ ) = {s̃ = sfix ∪ snoise | snoise ∈ S(Ṽ )}
sfix = {x := s[v] | v ∈ V \ Ṽ }.

Intuitively, the state space S̃(s, Ṽ ) is obtained by keeping
the state s fixed for the variables that are not perturbed, i.e.,
sfix, while allowing all the variables in Ṽ to vary within their
domain, i.e., snoise. Henceforth, S̃ denotes a generic perturba-
tion state space induced by a set of variables Ṽ and an initial
state of a planning task Π, with s̃ representing any state in
this space.

The perturbation state space can be partitioned based on a
given plan π for Π, according to how states within it impact
the validity of π. In particular, given a perturbed state Ĩ , we
can test the validity of π for the task Π[Ĩ]. This validation
evaluation can result in three possible outcomes: (i) the plan
is valid, meaning it is executable and achieves the goal, (ii)
the plan is not valid but is executable, and (iii) the plan is not
valid and is not executable. The states in a perturbation state
space can be grouped based on these three outcomes.
Definition 2 (Validity, Executability and Failure Region). Let
Π be a planning task and S̃ a perturbation state space for Π.
A plan π for Π induces a partition of S̃ = VAL(S̃, π) ∪
EX (S̃, π) ∪ FAIL(S̃, π) such that:

VAL(S̃, π) = {Ĩ ∈ S̃ | π ∈ PLANS(Π[Ĩ])}
EX (S̃, π) = {Ĩ ∈ S̃ | π ̸∈ PLANS(Π[Ĩ]), π ∈ EXEC(Π[Ĩ])}

FAIL(S̃, π) = {Ĩ ∈ S̃ | π ̸∈ EXEC(Π[Ĩ])},

where VAL, EX and FAIL are referred to as plan validity,
executability and failure region, respectively.



With this definition in place, we can introduce the subclass
of planning tasks we are interested in studying in this work.
Specifically, we focus on planning tasks where the plan re-
mains executable even if certain (numeric) variables in the
initial state are perturbed in a given space. First, given a plan,
we characterise this property.

Definition 3 (Execution-Invariant Plan). Let Π be a planning
task and S̃ a perturbation state space for Π and some vari-
ables Ṽ . A plan π ∈ EXEC(Π) is said to be execution invari-
ant to Ṽ if and only if FAIL(S̃, π) = ∅.

In other words, an execution-invariant plan remains exe-
cutable regardless of variations in the initial state. This con-
dition is enforced by requiring the failure region to be empty.

Definition 4 (Execution-Invariant Planning Tasks). A plan-
ning task is execution-invariant if and only if there exists
a non-empty subset of its variables Ṽ such that every plan
π ∈ EXEC(Π) is execution-invariant for Ṽ .

In other words, a planning task is execution-invariant if it
admits a group of numeric variables whose variation does not
affect the applicability of any executable plan. (To avoid triv-
ial cases, we require that all variables in Ṽ are relevant to the
task, i.e., they appear in at least one precondition, effect, or
goal condition.)

The case studies introduced earlier align with the defini-
tion of execution-invariance. In particular, the Non-Linear-
Car domain is execution-invariant, as the actions accelerate
and decelerate are always executable, regardless of the state.
This domain was intentionally selected as a simple and illus-
trative example of our framework. In contrast, UTC and Bax-
ter are domains that naturally exhibit execution-invariance. In
UTC, this arises because initial occupancies do not appear in
action preconditions, making their values irrelevant to action
applicability. The same applies to the turn rates. For Bax-
ter, the configuration of two connected links can be changed
regardless of their initial positions.

More in general, we argue that execution-invariance natu-
rally emerges in planning tasks with numeric structure, espe-
cially those modelled in PDDL+. This stems from PDDL+’s
explicit distinction between agent and environment, which
gives rise to scenarios where variables, such as link occu-
pancies in UTC, affect only environmental dynamics without
impacting action applicability.

6 Plan Robustness
The notions presented above, such as the perturbed state
space, are only relevant for the concept of execution-invariant
planning tasks. Regarding plan robustness, it is computed
using either historical data or a model of uncertainty in the
initial states of the planning tasks. Thus, the initial state dis-
tribution is either implicitly or explicitly modelled. In the
following, plan robustness is cast in the execution invariance
setting to limit its scope to numerical variables and to ensure
that all expected values are well defined.

Intuitively, robustness is the probability that a given plan
π achieves the goal G under the distribution over the initial
state. The formal definition is as follows:

Definition 5 (Plan Robustness). Let Π be a planning task,
let I be a random variable representing the possible initial
states and fI its distribution. The robustness of a plan π for
Π with respect to I is defined as:

RI(π) = EI∼fI [Jπ ∈ PLANS(Π[I])K] ,
where JP K is the Iverson bracket which returns 1 if P is true
and 0 otherwise.

The nature of the probability distribution fI depends on
the application. It may be unknown, as in the UTC case, or
known when the underlying sources of uncertainty can be ac-
curately modelled.

To compute an approximate value of RI , we calculate a
confidence interval using Bayesian estimation. Since the ran-
dom variable Jπ ∈ PLANS(Π[I])K takes binary outcomes, it
follows a Bernoulli distribution with probability of success
RI . As we estimate the robustness using a Bayesian method,
we must specify a prior. The prior represents the beliefs on
the robustness value before any observations. Since we have
no reason to assume that any robustness value is more prob-
able a priori, a uniform prior represents exactly this belief.
This prior leads to the a posteriori robustness (the distribu-
tion of possible robustness values given the observations) be-
ing distributed as a Beta distribution. Using this approach, we
can derive confidence bounds for RI based on the observed
number of successes S across N trials. The confidence inter-
val [RI , RI ] for RI is given by:

[RI , RI ] =


[0, b1−α,S+1,N−S+1] if S = 0

[bα,S+1,N−S+1, 1] if S = N

[bα
2 ,S+1,N−S+1, b1−α

2 ,S+1,N−S+1] otherwise,
(1)

where bq,S+1,N−S+1 is the q-quantile of the Beta distribution
with shape parameters S + 1 (number of success plus 1) and
N − S + 1 (number of failure plus one), and 1 − α is the
desired confidence level.

In the following example, we apply this definition to the
Non-Linear-Car domain.
Example 1 (Non-Linear-Car Robustness). In this domain,
cdrag and ia are invariant variables used to model domain
parameters. Assume the initial state is I = {x : 0, v : 0, a :
0, cdrag : 0.1, ia = 1} and the goal is G = {⟨x ≥ 99⟩, ⟨x ≤
101⟩, ⟨v ≤ 0.1⟩}. Consider two valid plans: πs

t = ⟨πs, 25⟩
(slow) and πf

t = ⟨πf , 17⟩ (fast). πs
t has a longer makespan

with fewer actions, whereas πf
t reaches the goal faster via

more frequent accelerations and decelerations.
Suppose that cdrag and ia are subject to uncertainty; we

aim to study plan robustness with respect to these variables,
i.e., Ṽ = {cdrag, ia}. We assume, for this example, that
their initial values follow uniform distributions centred on
the nominal values, with bounds defined by an error factor
ϵ ∈ {0.01, 0.05, 0.1}. Uϵ denotes the uniform distribution
U(−ϵ, ϵ) over the interval [−ϵ, ϵ]. Applying the approxima-
tion of plan robustness, using a sample population of size
1000 and a significance level of α = 0.05, we obtain ro-
bustness estimates for different error rates shown in Table 1.

The results indicate that, for these uncertainty distribu-
tions, the slow plan is generally more robust than the fast
plan, regardless of the magnitude of the error considered.



ϵ πs
t πf

t

0.01 [0.99, 1.00] [0.54, 0.60]
0.05 [0.18, 0.22] [0.09, 0.12]
0.1 [0.08, 0.12] [0.04, 0.07]

Table 1: Plan robustness for different ϵ values.

0.99 1.00 1.01

ia

0.099

0.100

0.101

c d
ra

g

ϵ = 0.01

0.95 1.00 1.05

ia

0.095

0.100

0.105

c d
ra

g
ϵ = 0.05

0.9 1.0 1.1

ia

0.09

0.10

0.11

c d
ra

g

ϵ = 0.1

0.99 1.00 1.01

ia

0.099

0.100

0.101

c d
ra

g

ϵ = 0.01

0.95 1.00 1.05

ia

0.095

0.100

0.105

c d
ra

g

ϵ = 0.05

0.9 1.0 1.1

ia

0.09

0.10

0.11

c d
ra

g
ϵ = 0.1

Figure 1: Outcome of Jπ ∈ PLANS(Π[I])K for plan πs
t (upper) and

πf
t (lower), with I ∼ I + Uϵ and ϵ ∈ {0.01, 0.05, 0.1}. An orange

dot corresponds to an initial state realisation that ensures the plan’s
validity, while a blue dot corresponds to a realisation that guarantees
executability but not validity.

Figure 1 provides a graphical illustration of the robustness
calculation, where the outcome of Jπt ∈ PLANS(Π[I])K is
displayed for each perturbation. This behaviour occurs be-
cause the slower plan induces lower velocities overall, due
to fewer acceleration and deceleration actions. As a con-
sequence, the system avoids reaching the velocity thresholds
that would trigger drag, making the plan less sensitive to vari-
ations in cdrag. This effect is also visible in Figure 1 (upper),
where plan πs

t remains valid across a broader range of cdrag
perturbations, as long as ia stays within a bounded interval.

In many application domains, goals should be treated as
indications of expected outcomes rather than strict require-
ments. Achieving the exact goal is often unnecessary; it suf-
fices for plans to reach an acceptable region around the goal.
This perspective is especially relevant in domains such as ur-
ban traffic control or underwater exploration, where uncer-
tainty makes the given robustness definition, which relies on
exactly achieving the original goal, too restrictive.

To address this, we extend the notion of plan robustness to
measure the plan’s ability to reach a neighbourhood of states
that satisfy the goal, controlled by an acceptance tolerance.
We define B-robustness as a measure of a plan’s ability to
achieve the goal within a tolerance factor B. When B = 0,
the extended definition collapses to Definition 5, meaning we
accept a plan only if it strictly achieves the goal.

To characterise B-robustness, we need a notion of distance
between the state reached by executing a plan from a realisa-
tion of the initial state random variable and the set of states
described by the goal.

Distance Let Π be a planning task with a goal description
G, and let π be an executable plan for Π. Consider a realisa-
tion I of the initial state random variable I, which induces a
final state s when the plan π is applied starting from I . This
final state is computed as s = γ(I, π), where γ represents
the state transition function that transforms I according to the
plan π and the semantics of the given planning task.

The notion of distance is specific to each planning task;
however, to be meaningful, it must satisfy the following prop-
erties:

• ∀s, dG(s) ≥ 0;

• dG(s) = 0 ⇐⇒ s |= G.

This means that the distance to the goal G from a state s,
denoted as dG(s), should always be non-negative, and equal
to zero if and only if s satisfies the goal.

Definition 6 (B-Robustness). Given a tolerance factor B, the
B-robustness of a plan π is defined as follows:

RI(π,B) = EI∼fI [JdG(γ(I, π)) ≤ BK] .

To estimate plan B-robustness, we use Equation 1, which
yields a confidence interval from sampled executions.

While B-robustness quantifies the probability that a plan
reaches a relaxed version of the goal, it depends on the choice
of the tolerance factor B. In practice, one may wish to deter-
mine the smallest B that ensures a desired robustness level.
Let R⋆ ∈ [0, 1] denote this target level. We then introduce
Bmin, the minimum tolerance required for the plan to suc-
ceed with probability at least R⋆. Formally:

Bmin(π,R
⋆) = inf

R+

{B | R(π,B) ≥ R⋆},

where infD U is the infimum of U with U⊂D, i.e., the great-
est element in D that is less than or equal to all elements of
U . Note that if U = ∅ and D = R+, then infD U = +∞.

The value Bmin can be efficiently approximated using a di-
chotomic search, provided that the domain-specific distance
function dG satisfies the properties described earlier. If this
holds, we can iteratively narrow the search interval for B.
Starting with an initial interval [Blow, Bhigh], we compute
the midpoint Bmid, which splits the current interval in half.
Next, we evaluate the robustness R(π,Bmid). Depending on
whether R(π,Bmid) meets the target robustness R⋆, we up-
date the interval by focusing on either the lower or the upper
half. This process is repeated until the interval is sufficiently
small, providing an approximation of Bmin. Note that in the
first iteration, Blow = 0, while Bhigh may be set based on
prior knowledge of relevant ranges in the domain.

Example 2 (Non-Linear-Car Distance). To illustrate the con-
cept of distance in the Non-Linear-Car domain, we focus on
the subgoals related to distance, specifically G′ = {⟨x ≥
99⟩, ⟨x ≤ 101⟩}. Let s be the state resulting from the ex-
ecution of a plan for the task under consideration from an
uncertain initial state. The distance dG(s) is defined as the
Euclidean distance measuring how much the state s violates
the numeric goal conditions in G′. Particularly, each condi-
tion g ∈ G′ has the form ⟨x ▷◁ K⟩, where ▷◁∈ {≥,≤}. For
each condition g such that s ̸|= g, the term (s′[x] − K)2 is



0.99 1.00 1.01
ia

0.099

0.100

0.101

c d
ra

g
ε = 0.01

0.95 1.00 1.05
ia

0.095

0.100

0.105
ε = 0.05

0.9 1.0 1.1
ia

0.09

0.10

0.11
ε = 0.1

0

1

0

5

0

10

d
G

(s
)

Figure 2: Outcome of dG(s) for Non-Linear-Car. Each point’s gra-
dient colour represents the car’s deviation from the required distance
after applying the plan, starting from a realisation of the initial state.

added to the sum. If s |= g, its contribution to the distance is
zero. Finally, the square root of this sum is taken. Thus, the
distance reflects the extent of goal violation and is zero when
all conditions are satisfied. Figure 2 illustrates the distance
dG(s) for πf

t under different realisations of I.

7 Experimental Evaluation
In this section, we present the application of the proposed
framework to two case studies, i.e., UTC and Baxter. For
each case study, we evaluate the following aspects across a
set of plans: (i) their robustness for variations in the initial
state concerning the numeric component, (ii) the minimum
tolerance factor Bmin required to achieve a desired robust-
ness level R⋆ = 0.9 considering two approaches: a conser-
vative R (the confidence lower bound of R) and a most prob-
able R (the number of successes S across N trials), and (iii)
the trade-off between Bmin and R⋆ ∈ [0.6, 0.95]. For both
domains, we set the significance level α = 0.05, while the
probability distribution about I and the number of trials N
will depend on the case study. Furthermore, for points (ii)
and (iii), we will define two domain-specific distances. An
example of how to set up these computations is available at
https://gitlab.com/EdmondDantes/robustnessijcai.

All plans are generated using ENHSP, an expressive nu-
meric planner supporting PDDL+ [Scala et al., 2020].

7.1 Urban Traffic Control
We consider the PDDL+ formulation Fixed Repetition
(FIRE), [Kouaiti et al., 2024], as it has proven to be the most
effective among deployable UTC domains.

The uncertain variables for which we study the robustness
of UTC plans are link occupancies and turn rates. Link oc-
cupancies reflect network congestion in the initial state and
evolve during planning depending on the control strategy ap-
plied. These variables are bounded between 0 and the max-
imum capacity of each link. Turn rates can be safely as-
sumed invariant over the predefined time window of 15 min-
utes [Bhatnagar et al., 2022]. They are also bounded, with
upper limits estimated from legal speed constraints and the
structure of the road network. Therefore, given the set of link
and movements LINKS and MOVS, we set Ṽ = {occl | l ∈
LINKS} ∪ {tr l,l′,s | ⟨l, l′, s⟩ ∈ MOVS}, where occl is the
occupancy of the link l and tr l,l′,s is the turnrate associated
with the vehicle movement from link l to l′ during a stage s.

We analysed a statistical population of scenarios, from a
major corridor in the UK county of Yorkshire, consisting of
90 instances derived from historical data corresponding to the

morning peak hour on weekdays, at 8:00 AM. We considered
weekdays between the 26th of January and the 15th of Febru-
ary, 2022, for which we have reliable sensor data. For the ro-
bustness calculations, we collected 10 plans generated across
the first 10 days. Plans were generated using ENHSP with
Greedy Best-First Search and either hmax or hadd heuristics
[Scala et al., 2016].

Figure 3a shows the robustness confidence intervals com-
puted for the plans considered. It is interesting to note that,
while the robustness confidence can vary quite significantly
between plans for different days, the heuristic used for gener-
ating such plans does not usually have a major impact on the
corresponding robustness.

To quantify the minimum tolerance factor that can guar-
antee a robustness R⋆ = 0.9, we need to define dG(s). In
this UTC formulation, we denote by CORRIDOR the subset
of network links that lie on the main corridor of the net-
work. Each of them is associated with a numeric variable
count l, which tracks the number of vehicles that have tra-
versed l during the temporal progression of the plan. We
also denote llast as the final link corresponding to the cor-
ridor’s exit. The goal of a UTC planning is expressed as
G = {⟨count l ≥ Ll⟩ | l ∈ CORRIDOR}∪{⟨count llast ≤ U⟩}.
In other words, we require that for each link in the main cor-
ridor, a minimum number of vehicles equal to Ll must flow
through, while on the final link, this number must not ex-
ceed U . Specifically, the latter condition aims to prevent the
network from discharging too many vehicles at the exit, thus
avoiding congestion in the adjacent region. Given such a goal,
we specialise dG for UTC as follows:

dG(s) =
√√√√ ∑

g=⟨countl▷◁K⟩∈G:
s̸|=g

(s[count l]−K)2.

This distance function penalises violations of goal conditions
by measuring the squared deviation from the required thresh-
old for each unsatisfied numeric condition. This distance
function satisfies the previously discussed properties. We can
therefore calculate Bmin(πday, 0.9) for each of the computed
plans πday. The results of this evaluation are shown in Figure
3b, where the distance has been normalised. These results
indicate that the conservative approach requires a tolerance
factor of approximately 20%, while the most probable case is
usually around 5%. Finally, Figure 3c illustrates the trade-off
between Bmin and the required robustness R⋆ ∈ [0.6, 0.95]
for three plans computed for distinct days.

7.2 Baxter
For this experiment, we consider the formulation presented
in the work by Bertolucci et al. (2020), and we only consider
uncertainty over the initial object pose. The initial object pose
is characterised by the orientation of each link, denoted by l,
which is described by two angles: θxyl for the horizontal plane
and θzl for the z-axis. All angular variables are bounded in the
interval [0, 2π], corresponding to a full rotation of 360◦. With
five links, this results in a total of ten angles that completely
define the object pose. Finally, we consider a goal charac-
terised by five numeric conditions imposed on the orientation

https://gitlab.com/EdmondDantes/robustnessijcai


π01-26 π01-28 π02-01 π02-02 π02-03 π02-04 π02-07 π02-11 π02-14 π02-15

Plans πday

0.2

0.4

0.6

0.8
R
(π

da
y)

hmax

hadd

(a) [R,R] per plan day.

π01-26 π01-28 π02-01 π02-02 π02-03 π02-04 π02-07 π02-11 π02-14 π02-15

Plans πday

0.00

0.05

0.10

0.15

0.20

0.25

0.30

B
m
in
(π

da
y,
R

⋆
=

0.
9)

Conservative R Most Probable
S

N

(b) Bmin per plan day.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

R⋆

0.00

0.05

0.10

0.15

0.20

0.25

B
m
in
(π

da
y,
R

⋆
)

π01-26

π02-02

π02-07

(c) Bmin vs R⋆ in UTC.

Figure 3: UTC results: (a) robustness confidence intervals for plans from the two heuristics across weekdays; (b) Bmin per day; and (c)
trade-off between Bmin and required robustness R⋆ ∈ [0.6, 0.95] for three plans from different days.

π0 π1 π10 π100 π101 π102 π103 π104 π105 π106

Plans πi

0.0

0.1

0.2

0.3

R
(π

i)

(a) [R,R] per plan.

π0 π1 π10 π100 π101 π102 π103 π104 π105 π106

Plans πi

0

1

2

3

4

5

6

7

B
m
in
(π

i,
R

⋆
=

0.
9)

Conservative R Most Probable
S

N

(b) Bmin per plan.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

R⋆

1

2

3

4

5

B
m
in
(π

i,
R

⋆
)

π103

π104

π105

(c) Bmin vs R⋆ in Baxter.

Figure 4: Baxter results: (a) robustness confidence intervals across weekdays; (b) Bmin per plan; and (c) trade-off between Bmin and required
robustness R⋆ ∈ [0.6, 0.95] for three plans computed for different variations of the initial object pose.

variables of links l3, l4, and l5. These conditions define orien-
tation thresholds for the links: l3: θxyl3 > 40.1, θzl3 > 107.2;
l5: θxyl5 > 92.3, θzl5 > 249.7; l4: θxyl4 < 157.4.

Since this planning task is not linked to a setup where
historical data could be collected or object pose distribution
could be inferred, we chose a distribution that tries to emu-
late a noisy pose estimation for the object. More precisely,
we generate a population of 1000 instances by adding an er-
ror to each of the ten angles of the same initial object pose.
For the angle θ in a given initial state, we assume a random
variable θϵ that follows θϵ ∼ N (0, σ2) with σ = π

12 . We
use the following function f(x) = x − 2π⌊( x

2π )⌋ to guaran-
tee that θ + θϵ lies within the interval [0, 2π]. Note that the
chosen distribution does not represent any physical system.

In this domain, computing the distance dG involves iden-
tifying angles in the final state that did not reach their target
values and measuring their deviation from the goal configu-
ration. We specialise the distance dG for Baxter as:

dG(s) =
∑

g=⟨θ▷◁β⟩∈G:
s⊭g

arccos(cos(s[θ]− β))

More intuitively, dG is the cumulated angle the links need
to turn in any direction to satisfy the goal.

Figure 4a presents the confidence intervals of R for 10
plans for the generated population of 1000 instances. The
plans were computed for 10 random instances representing
different variations of the studied initial object pose. Figure
4b shows the computation for each plan of Bmin(πi) for a
target robustness R = 0.9. In this domain, differently from

UTC, there is no significant difference between the conserva-
tive and the most probable case, also given the randomised
distribution that has been used. However, in general, plans
tend to be robust. Finally, Figure 4c presents the trade-off be-
tween Bmin and the desired robustness for R⋆ ∈ [0.6, 0.95]
for three plans computed from distinct variations of the initial
object pose.

8 Conclusion
In summary, this work introduces execution-invariant plan-
ning tasks and a statistical framework for assessing plan ro-
bustness in the presence of initial state uncertainty, capturing
both exact and approximate goal achievement. Our contri-
butions are as follows. We formalised the notion of execu-
tion invariance and identified its relevance for planning tasks
in which variability in specific variables does not compro-
mise executability. We developed a statistical framework for
quantifying robustness based on the distribution of the initial
state. Third, we extended the robustness analysis through the
concept of B-robustness, which captures approximate goal
satisfaction under controlled tolerances. Fourth, we intro-
duced a method for estimating the minimum tolerance Bmin

required to achieve a desired robustness target. We validated
our framework in two realistic domains, urban traffic control
and Baxter robotic manipulation, demonstrating its effective-
ness in evaluating and comparing the robustness of different
plans. Future work includes estimating numeric bounds from
data, repairing executable plans that are not B-robust, and in-
tegrating robustness metrics into the plan generation process.



Acknowledgement
Francesco Percassi and Mauro Vallati were supported
by a UKRI Future Leaders Fellowship [grant number
MR/Z00005X/1].

References
[Alaboud and Coles, 2019] Fares K. Alaboud and Andrew Coles.

Personalized Medication and Activity Planning in PDDL+. In
ICAPS, pages 492–500. AAAI Press, 2019.

[Alon et al., 2024] Lee-or Alon, Hana Weitman, Alexander Shleyf-
man, and Gal A. Kaminka. Planning to be healthy: Towards per-
sonalized medication planning. In ECAI, volume 392 of Frontiers
in Artificial Intelligence and Applications, pages 4232–4239. IOS
Press, 2024.

[Bertolucci et al., 2020] Riccardo Bertolucci, Alessio Capitanelli,
Marco Maratea, Fulvio Mastrogiovanni, and Mauro Vallati. Col-
laborative Robotic Manipulation: A Use Case of Articulated Ob-
jects in Three-dimensions with Gravity. In ICTAI, pages 1167–
1174. IEEE, 2020.

[Bhatnagar et al., 2022] Saumya Bhatnagar, Sumit Mund, Enrico
Scala, Keith McCabe, Thomas Leo McCluskey, Mauro Vallati,
et al. On-the-Fly Knowledge Acquisition for Automated Plan-
ning Applications: Challenges and Lessons Learnt. In ICAART
(2), pages 387–397, 2022.

[Cashmore et al., 2020] Michael Cashmore, Daniele Magazzeni,
and Parisa Zehtabi. Planning for Hybrid Systems via Satisfia-
bility Modulo Theories. J. Artif. Intell. Res., 67:235–283, 2020.

[Chrpa and Karpas, 2024] Lukás Chrpa and Erez Karpas. On Ver-
ifying and Generating Robust Plans for Planning Tasks with Ex-
ogenous Events. In KR, volume 21, pages 273–283, 2024.

[Chrpa et al., 2017] Lukás Chrpa, José Pinto, Tiago Sa Marques,
Manuel A. Ribeiro, and João Borges de Sousa. Mixed-initiative
planning, replanning and execution: From concept to field testing
using AUV fleets. In IROS, pages 6825–6830. IEEE, 2017.

[Domshlak and Hoffmann, 2007] Carmel Domshlak and Jörg Hoff-
mann. Probabilistic Planning via Heuristic Forward Search and
Weighted Model Counting. J. Artif. Intell. Res., 30:565–620,
2007.

[Fox and Long, 2006] Maria Fox and Derek Long. Modelling
Mixed Discrete-Continuous Domains for Planning. J. Artif. In-
tell. Res., 27:235–297, 2006.

[Fox et al., 2006a] Maria Fox, Alfonso Gerevini, Derek Long, and
Ivan Serina. Plan Stability: Replanning versus Plan Repair. In
ICAPS, pages 212–221. AAAI, 2006.

[Fox et al., 2006b] Maria Fox, Richard Howey, and Derek Long.
Exploration of the Robustness of Plans. In AAAI, pages 834–839.
AAAI Press, 2006.

[Fox et al., 2012] Maria Fox, Derek Long, and Daniele Magazzeni.
Plan-based Policies for Efficient Multiple Battery Load Manage-
ment. J. Artif. Intell. Res., 44:335–382, 2012.

[Fritz and McIlraith, 2009] Christian Fritz and Sheila A. McIlraith.
Computing Robust Plans in Continuous Domains. In ICAPS.
AAAI, 2009.

[Gigante and Scala, 2023] Nicola Gigante and Enrico Scala. On the
Compilability of Bounded Numeric Planning. In IJCAI, pages
5341–5349, 2023.

[Helmert, 2002] Malte Helmert. Decidability and Undecidability
Results for Planning with Numerical State Variables. In AIPS,
pages 44–53. AAAI, 2002.

[Khan et al., 2023] Saad Khan, Simon Parkinson, Monika Roopak,
Rachel Armitage, and Andrew Barlow. Automated Planning to
Prioritise Digital Forensics Investigation Cases Containing Inde-
cent Images of Children. In ICAPS, pages 500–508. AAAI Press,
2023.

[Kiam et al., 2020] Jane Jean Kiam, Enrico Scala, Miquel Ramı́rez
Jávega, and Axel Schulte. An AI-Based Planning Framework for
HAPS in a Time-Varying Environment. In ICAPS, pages 412–
420, 2020.

[Kouaiti et al., 2024] Anas El Kouaiti, Francesco Percassi,
Alessandro Saetti, Thomas Leo McCluskey, and Mauro Vallati.
PDDL+ Models for Deployable yet Effective Traffic Signal
Optimisation. In ICAPS, pages 168–177. AAAI Press, 2024.

[Kuroiwa et al., 2023] Ryo Kuroiwa, Alexander Shleyfman, and
J. Christopher Beck. Extracting and Exploiting Bounds of Nu-
meric Variables for Optimal Linear Numeric Planning. In ECAI,
volume 372 of Frontiers in Artificial Intelligence and Applica-
tions, pages 1332–1339. IOS Press, 2023.

[Percassi and Vallati, 2024] Francesco Percassi and Mauro Vallati.
Leveraging AI Planning in a What-If Analysis Framework for
Assessing Traffic Signal Strategies. In ITSC, pages 1330–1335.
IEEE, 2024.

[Percassi et al., 2023] Francesco Percassi, Enrico Scala, and Mauro
Vallati. Fixing Plans for PDDL+ Problems: Theoretical and Prac-
tical Implications. In ICAPS, pages 324–333. AAAI Press, 2023.

[Percassi et al., 2025] Francesco Percassi, Enrico Scala, and Mauro
Vallati. On the Notion of Plan Quality for PDDL+. In ICAPS.
AAAI press, 2025.

[Sarwar et al., 2023] Mir Md Sajid Sarwar, Rajarshi Ray, and An-
suman Banerjee. A Contrastive Plan Explanation Framework
for Hybrid System Models. ACM Trans. Embed. Comput. Syst.,
22(2):22:1–22:51, 2023.

[Scala et al., 2016] Enrico Scala, Patrik Haslum, Sylvie Thiébaux,
and Miquel Ramı́rez. Interval-Based Relaxation for General Nu-
meric Planning. In Proc. of ECAI, pages 655–663, 2016.

[Scala et al., 2020] Enrico Scala, Patrik Haslum, Sylvie Thiébaux,
and Miquel Ramı́rez. Subgoaling Techniques for Satisficing and
Optimal Numeric Planning. J. Artif. Intell. Res., 68:691–752,
2020.

[Taig and Brafman, 2015] Ran Taig and Ronen I. Brafman. A Com-
pilation Based Approach to Conformant Probabilistic Planning
with Stochastic Actions. In ICAPS, pages 220–224. AAAI Press,
2015.

[Vallati et al., 2016] Mauro Vallati, Daniele Magazzeni, Bart De
Schutter, Lukás Chrpa, and Thomas Leo McCluskey. Efficient
Macroscopic Urban Traffic Models for Reducing Congestion: A
PDDL+ Planning Approach. In AAAI, pages 3188–3194. AAAI
Press, 2016.


	Introduction
	Background
	Case Studies
	Assumptions and Notation
	Execution-Invariant Planning Tasks
	Plan Robustness
	Experimental Evaluation
	Urban Traffic Control
	Baxter

	Conclusion

