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ABSTRACT

Blending multiple convolutional kernels is proved advantageous in neural archi-
tecture design. However, current two-stage neural architecture search methods
are mainly limited to single-path search spaces. How to efficiently search models
of multi-path structures remains a difficult problem. In this paper, we are moti-
vated to train a one-shot multi-path supernet to accurately evaluate the candidate
architectures. Specifically, we discover that in the studied search spaces, feature
vectors summed from multiple paths are nearly multiples of those from a single
path. Such disparity perturbs the supernet training and its ranking ability. There-
fore, we propose a novel mechanism called Shadow Batch Normalization (SBN) to
regularize the disparate feature statistics. Extensive experiments prove that SBNs
are capable of stabilizing the optimization and improving ranking performance.
We call our unified multi-path one-shot approach as MixPath, which generates a
series of models that achieve state-of-the-art results on ImageNet.

1 INTRODUCTION

Complete automation in neural network design is one of the most important research directions
of automated machine learning (Tan et al., 2019; Liu et al., 2019). Among various mainstream
paradigms, one-shot approaches (Guo et al., 2020; Chu et al., 2021; Li et al., 2019) make use of a
weight-sharing mechanism that reduces a large amount of computational cost, but these approaches
mainly focus on searching for single-path networks. Observing that a multi-path structure is beneficial
for model performance as in Inception (Szegedy et al., 2015) and ResNeXT (Xie et al., 2017), it is
necessary to incorporate multi-path structure into the search space. Noticeably, exploring multi-path
search space is made possible in one-stage approaches like (Chu et al., 2020) and (Pham et al., 2018).
However, it poses a challenge for two-stage methods to train a one-shot supernet that can accurately
predict the performance of its multi-path submodels.

Although FairNAS (Chu et al., 2021) largely alleviates the ranking difficulty in the single-path case
with a fairness strategy, it is inherently difficult to apply the same method in a multi-path scenario. It
should be emphasized that the most critical point of the two-stage NAS is that the supernet can rank
submodels as accurately as possible. However, we find that a vanilla training of a multi-path supernet
(e.g. randomly pick a multi-path submodel to train at each step) is not stable to provide a confident
ranking because of changing statistics during the sampling process. Therefore, we dive into its real
causes and undertake a unified approach to tackle this issue. Our contributions can be summarized as
follows.

• We propose a unified approach for multi-path (say at most m paths are allowed) one-shot
NAS, as opposed to the current single-path methods. From this perspective, current one-shot
methods (Guo et al., 2020; Chu et al., 2021) become one of our special cases when m = 1.

• We disclose why a vanilla multi-path training fails, and we propose a novel yet lightweight
mechanism, called shadow batch normalization (SBN, see Fig. 1), to stabilize the supernet
with a neglectable cost. By exploiting feature similarity from different paths, we further
reduce the number of SBNs to be m, otherwise it would be exponential.

• We reveal that our multi-path supernet is trained with stability due to SBNs. It also comes
with boosted ranking performance. Together with post BN calibration, it obtains a high
Kendall tau (0.597) on a subset of NAS-Bench-101 (Ying et al., 2019).
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Figure 1: Left: Options in a demo block, where at most m paths can be chosen. Middle: An example
of MixPath supernet training with Shadow Batch Normalizations (SBNs). Note 1x1 Conv is not a
must. SBNs are standard BNs, except that SBNs are applied w.r.t the number of activated paths. E.g.,
SBN1 is used whenever only m′ = 1 path is activated, SBN2 for m′ = 2 paths. Right: SBNs catch
each of the statistics in two modes (red for m′ = 1, green for m′ = 2), however, a single BN (black)
can’t capture both.

• We search proxylessly on ImageNet at a cost of 10 GPU days. The searched models
obtain state-of-the-art results on ImageNet, which are comparable with MixNet (Tan &
Le., 2019) models searched with 200× more computing powers. Moreover, our model
MixPath-B makes use of multi-branch feature aggregation and reaches higher accuracy than
EfficientNet-B0 with fewer FLOPS and parameters.

2 RELATED WORK

Conditional batch normalization Batch Normalization (BN) (Ioffe & Szegedy, 2015) has greatly
facilitated the training of neural networks by normalizing layer inputs to have fixed means and
variances. Slimmable neural networks(Yu et al., 2019) introduces a shared supernet that can run with
switchable channels at four different scales (1×, 0.75×, 0.5×, 0.25×). Due to feature inconsistency,
independent BNs are applied for each switch configuration to encode conditional statistics. However,
it is impractical because it requires an increased number of BNs when it has arbitrary channel widths.

Model ranking correlation It should be emphasized that the ranking ability for the family of
two-stage algorithms is of the uttermost importance (Bender et al., 2018), whose sole purpose is
to evaluate networks. To quantitatively analyze their ranking ability, previous works like (Yu et al.,
2020b; Chu et al., 2021; Li et al., 2020; Zheng et al., 2019) have applied a Kendall tau measure
(Kendall, 1938). To this end, various proxies (Tan et al., 2019; Zoph & Le, 2017; Zoph et al., 2018),
explicit or implicit performance predictors (Luo et al., 2018; Liu et al., 2018) are developed to avoid
the intractable evaluation. Recent one-shot approaches (Bender et al., 2018; Guo et al., 2020; Chu
et al., 2021) utilize a supernet where each submodel can be rapidly assessed with inherited weights.

3 MIXPATH: A UNIFIED APPROACH

3.1 MOTIVATION

There is a call for a multi-path one-shot approach. Informally, existing weight-sharing approaches
(Liu et al., 2019; Chu et al., 2020; Guo et al., 2020; Chu et al., 2021) can be classified into four cate-
gories based on two dimensions: stage levels and multi-path support, as shown in Fig. 2. Specifically,
DARTS (Liu et al., 2019) and Fair DARTS (Chu et al., 2020) both are one-stage methods while the
latter allows multiple paths between any two nodes. One-shot methods (Guo et al., 2020; Chu et al.,
2021) typically train a supernet in the first stage and evaluate submodels in the second stage for model
selection. So far, the two-stage one-shot methods mainly consider a single-path search space. It is
thus natural to devise their multi-path counterpart.

Moreover, it’s reasonable to design such a search space regarding two factors. First, multi-path
feature aggregation is proven to be useful, such as Inception series (Szegedy et al., 2015; Ioffe &
Szegedy, 2015; Szegedy et al., 2016; 2017) and ResNeXt (Xie et al., 2017). Second, it has the
potential to balance the trade-off between the performance and cost.
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Figure 2: A brief taxonomy of weight-sharing NAS. MixPath
fills the empty space of two-stage multiple-path methods.

Without loss of generality, say an in-
verted bottleneck has an input fea-
ture of Cin × H × W , whose num-
ber of intermediate and output chan-
nels are Cmid and Cout (same as
Cin) respectively. Its computational
cost can be formulated as ctotal =
2HWCinCmid + k2HWCmid =

2HWCmid(Cin+ k2

2 ), where k is the
kernel size of the depthwise convolu-
tion. Usually the value of k is set to
3 or 5. Since Cin typically dominates
k2

2 , we can boost the representative
power of depthwise transformation by
mixing more kernels with neglectable
increased cost. This design can be regarded as a straightforward combination of MixConv (Tan &
Le., 2019) and ResNeXt (Xie et al., 2017).

Multi-path supernet is very hard to train. Vanilla training of the multi-path supernet suffers
from severe training difficulties. We can simply train a multi-path supernet by randomly activating a
multi-path model at a single step. Here we randomly activate or deactivate each operation. However,
this training process is very unstable according to our pilot experiments conducted with the MixPath
supernet on ImageNet (Deng et al., 2009), shown by the blue line in Fig. 3 (a).
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Figure 3: (a) Average one-shot validation accuracies (solid line) and their variances (shade) when
training the MixPath supernet in S2 (activating at most m = 2 paths in each MixPath block) on
ImageNet. Twenty models are randomly sampled every two epochs. (b) Histogram of accuracies of
randomly sampled 3k one-shot models. One-shot models generally come with good performance
when SBNs are enabled during supernet training

What might have caused such a problem? It has been pointed out that high cosine similarity of
features from different operations is important for training stability (Chu et al., 2021). To verify the
issue, we draw the cosine similarity matrix of different features from our trained supernet in the top
row of Fig. 4 (a). Surprisingly, not only are the features from single-path similar to each other, but
also the multi-path features where they get added up. We discover that cosine similarity is limited
because it measures the orientation only. The addition of high-dimensional feature vectors does not
change their angles too much (as they are similar), but their magnitudes get scaled up, see blue arrows
in Fig.4 (b). We can further make a bold postulation that a simple superposition of multiple vectors
renders very dynamic statistics, hence it causes training instability. With this motivation in mind, we
next scale the feature vectors down to the same magnitude to verify if we can make it stabilized.

3.2 REGULARIZING MULTI-PATH SUPERNET

First of all, we can think of using a large amount of BNs to track the changing statistics. For a
thorough regularization, we adopt multiple standard BNs to regularize feature statistics from different
combinations of m paths. We call them shadow batch normalizations (SBNs) since they follow
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(a) Similarity of multi-path feature vectors (b) Feature vectors projected to 2d space

Figure 4: (a) Features from various path combinations are quite alike (w/ and w/o SBNs). Shown here
is the cosine similarity map of first-block feature vectors from the supernets (in S1). Darker means
higher similarity. (b) SBNs regularize the magnitudes of feature vectors (projected into 2-dimensional
space here) while vanilla BN cannot. Blue arrows represent the feature vectors obtained before SBNs
or a single BN, and red ones after them. Here SBNs transform the magnitudes (19.6, 37.2, 53.7, 68.7)
to around 32. BN normalized magnitudes (32.6, 36.6, 50.6, 66.7) are still diverse.

the activated paths combinations as shadows. Strictly speaking, in order to regularize all feature
combinations in a multi-path setting, the number of SBNs has to grow exponentially.1

3.2.1 REDUCE THE COMPLEXITY FROM 2m TO m.

The above regularization is too costly. As (Chu et al., 2021) indicates for the single path case, the
outputs of different operations at the same layer have higher similarities. It motivates us to reduce the
number of shadow BN by diving into the underlying mechanisms further. Informally, if the features of
every single path are similar (both magnitude and angles), we can derive that their combinations have
similar statistics too, then the number of BNs can be reduced to m. Formally, this can be formulated
as follows.

Definition 1. Zero-order condition: Let two high-dimensional functions y = f(x) and z = g(x)
represent two candidate operations, we say that y and z satisfy the zero-order condition if y ≈ z for
any valid input x.

Lemma 3.1. Let m be the maximum number of the activable paths, and each pair of operations satisfy
the zero-order condition, there will be m kinds of expectation and variance for all combinations.

The proof is provided in A.1 (appendix). It is pretty straightforward as the expectations and variances
are simply scaled up according to the number of additions. For instance, E[y+z] ≈ E[u+v] ≈ 2E[y].
Lemma 3.1 assures us that we can take SBNi(i = 1, 2, · · · ,m) to track the combination that contains
i paths. For the multi-path setting, we can observe similar results in Figure 4, which means the
requirement of Definition 1 is also satisfied.

Statistical analysis of Shadow Batch Normalization. We look into the statistics from the supernet
trained on CIFAR-102 in search space S1 (elaborated later in Section C.2) (appendix). Without loss
of generality, we set m = 2 and collect statistics of the four parameters of SBNs across all channels
for the first choice block in Fig. 5. Note SBN1 captures the statistics of one path, so does SBN2

for two paths. Based on the theoretical analysis of Section 3.2, we should have µbn1
≈ 0.5µbn2

and
σ2
bn1
≈ 0.25σ2

bn2
. This is consistently observed in the first two columns of Fig. 5. It’s also interesting

to see that the other two learnable parameters β and γ are quite similar for SBN1 and SBN2. This
is explainable as SBNs have transformed different statistics to a similar distribution, the parameters
of β and γ become very close. Similar results are observed when m = 3, 4 and in different layers in
Fig. 9 and Fig. 10 in C.3 (appendix).

3.3 MIXPATH NEURAL ARCHITECTURE SEARCH

Based on the above analysis, we train our multi-path supernet with shadow batch normalizations,
which we call the MixPath supernet. Following One-Shot (Bender et al., 2018), the supernet is used

1C1
m + C2

m + · · ·+ Cm
m = 2m − 1

2It’s cheaper to train the supernet on CIFAR-10, and similar observations are also reproducible on ImageNet.
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Figure 5: Top: Parameters (µ, σ2, γ, β) of the first-layer SBNs in MixPath supernet trained on
CIFAR-10 when at most m = 2 paths are activated. Specifically, SBN1 and SBN2 represent SBNs
for a single path and two paths. Bottom: Histogram of ratios (SBN1/SBN2) for each BN parameter.
They center around (0.5, 0.25, 1, 1). Note the mean of SBN2 is roughly twice as that of SBN1. It’s
interesting that we have previously forecasted this result.

to evaluate models in the predefined search space, which makes our approach a two-stage pipeline: 1)
training supernet with SBNs and 2) searching for competitive models. Specifically, in the training
stage, we apply random sampling so that multiple paths can be activated at each step, where they add
up to a mixed output. We then attach a corresponding SBN to the current path combination. This
process is detailed in Algorithm 1. Next, similar to (Chu et al., 2020), we progress with a well-known
evolutionary algorithm NSGA-II (Deb et al., 2002) for searching. In particular, our objectives are
to maximize classification accuracy while minimizing the FLOPS. This is detailed in Algorithm 2
(appendix). In addition, batch normalization calibration (Bender et al., 2018; Guo et al., 2020; Mei
et al., 2020), as an orthogonal post-processing trick, will be verified effective to further improve the
ranking ability.

Algorithm 1 : Stage 1 Supernet training with SBN.
Input: search space S(n,L) with n choice paths per layer and L layers in total, maximum optional
paths m, supernet parameters Θ(n,L), training epochs N , training data loader D, loss function
Loss.
Initialize every θj,l in Θ(m,L), SBN set {SBN1, SBN2, · · · , SBNn} in each layer.
for i = 1 to N do

for data, labels in D do
for l = 1 to L do

Randomly sample a number m′ between 1 and m, then randomly sample m′ paths without
replacement, where each has output ol

i, and use SBNm′ to act on the sum of outputs:
ol = SBNm′

(∑
i o

l
i

)
end for
Select model from above sampled index.
Clear gradients recorder for all parameters.
Calculate gradients for model based on Loss, data, labels, update θ(m,L) by gradients.

end for
end for

4 EXPERIMENTS

4.1 SEARCH SPACES

We investigate four search spaces in this paper, from S1 to S4. For searching on CIFAR-10, we use
S1 that contains 12 inverted bottleneck blocks. For ImageNet, we search in S2 and S3 that are similar
to MnasNet (Tan et al., 2019) and MixNet (Tan & Le., 2019). For Kendall Tau analysis, we devise a
subset of a common benchmark NAS-Bench-101 (Yu et al., 2020b), denoted as S4. The details of
these search spaces are listed in Table 6 (appendix).
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4.2 RANKING ABILITY ANALYSIS ON NAS-BENCH-101

To prove that SBNs can stabilize the supernet training and improve its ranking, we score our method
on a subset of a common benchmark NAS-Bench-101 (Yu et al., 2020b). Each model is stacked by 9
cells, and every cell has at most 5 internal nodes. We make some adaptations to our method. The
first 4 nodes are used to make candidate paths, each has 3 possible operations: 1 × 1 Conv, 3 × 3
Conv, and 3 × 3 Maxpool. The outputs of selected paths are summed up to give input to the fifth
node (assigned as 1× 1 Conv), after which the proposed SBNs are used. The designed cell space is
shown in Fig. 6.
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Figure 6: (a) Cell space with SBNs in NAS-Bench-101 (Ying et al., 2019) (b) Ground truth accuracies
vs. predictions by one-shot MixPath supernets (m = 4) trained with various strategies. We sample
70 models in NAS-Bench-101 (Ying et al., 2019) (sampling one time) to get the ground-truth. The
supernet trained SBN with post BN calibration (top right) gives the best prediction. A vanilla BN
alone (w/ SBNs) wrongly pushes models into a narrow range under 0.2.

Firstly, we conduct the baseline experiments on NAS-Bench-101 (Ying et al., 2019), training with
and without SBNs. For the latter, the features from the multi-path are summed up and then divided
by the number of activated paths, following a 1× 1 Conv-BN-ReLU (i.e., a single BN).

To deeply analyze the model ranking capacity of our method and to understand the effects of SBNs,
we conduct two pairs of experiments: (i) vanilla BN vs. SBN (ii) post-calibrated vanilla BN vs.
post-calibrated SBN. For all experiments, we train the supernet for 100 epochs with a batch size of
96 and a learning rate of 0.025 on three different seeds. We randomly sample 70 models to find their
ground-truth top-1 accuracy from NAS-Bench-101 to obtain Kendall tau (Kendall, 1938). We use
m = 4 in this section.3 The results are shown in Table 1 and Fig. 6 (b).

Strategy w/o Calibration w/ Calibration
w/o SBN 0.117±0.027 0.382±0.007
w/ SBN 0.393±0.037 0.597±0.037

Table 1: Comparison of Kendall taus between MixPath supernets (m = 4) trained with various
strategies. For each control group, we sampled 70 models from NAS-Bench-101 (Ying et al., 2019)
and repeated it 3 times on different seeds. †: after BN calibration

Notably, BN post-calibration can boost Kendall tau in each case, which confirms the validity of
this post-processing trick (Bender et al., 2018; Guo et al., 2020; Mei et al., 2020). Compared with
baseline experiments, the supernet trained with SBNs has a much stronger ranking capacity. Even
without calibration, the proposed method still ranks architectures better than the calibrated vanilla
BN (+0.011). The composition of two tricks can further boost the final score to 0.597. Next, we will
search for models in the search space commonly used for CIFAR-10 (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009) dataset respectively.

3We place m = 3 case in ablation study.
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We also search directly in this reduced space. To be comparable, this case is formulated as a single
objective optimization problem: finding the best model with known ground truth (94.29%) in the
space. As a strong baseline, we run DARTS (Liu et al., 2019) three times using different seeds. The
result is shown in Table 2. Our method obtains 94.22% within 5 GPU hours, which outperforms
DARTS with a large margin.

4.3 PROXYLESS SEARCH ON IMAGENET

Table 2: Search results on the reduced NAS-Bench-101. The
accuracy of known optimal is 94.29%.

Method Top-1 Acc Search Cost
(%) (GPU Hours)

DARTS (Liu et al., 2019) 79.42±0.23 7
Ours 94.22±0.06 5

We search proxylessly on ImageNet
(Deng et al., 2009) in the search
space of MnasNet (Tan et al., 2019),
as this layer-wise search space with
inverted bottleneck blocks (Sandler
et al., 2018) is also very commonly
used (Tan et al., 2019; Tan & Le, 2019;
Wu et al., 2019; Chu et al., 2021; Tan & Le., 2019). We fix the expansion rate as in (Tan & Le., 2019)
and search for the combinations of various depthwise convolutions. Specifically, we search from the
kernel sizes (3, 5, 7, 9) and their combinations. We call this search space S2. Moreover, we also
construct a search space S3 to incorporate architectures like MixNet (Tan & Le., 2019), where we
evenly divide the channel dimension of the depthwise layer into 4 groups and search from the kernel
sizes (3, 5, 7, 9) for each group. We set m = 2 (in S2) and m = 1 (in S3). In each case, we utilize
the same hyper-parameters: a batch size of 1024 and the SGD optimizer with 0.9 momentum and a
weight decay of 10−5. The initial learning rate is 0.1 with cosine decay and it decreases to 0 within
120 epochs. This takes about 150k times of backpropagation (10 GPU days on Tesla V100). Once
the supernet is trained, we adopt NSGA-II (Deb et al., 2002) for model selection.

As per training stand-alone models, we use the same tricks as MixNet-M (Tan & Le., 2019), the results
are listed in Table 3. To make fair comparisons, we disable distillation in NAS approaches because
it can marginally boost the performance of found models. Our cost in Table 3 includes training
supernet (10 GPU days) and NSGA-II (0.3 GPU day). MixPath-A, sampled from the Pareto front in
S3 (so is MixNet), uses 349M multiply-adds to obtain 76.9% accuracy on ImageNet. MixPath-B, in
S2, uses fewer FLOPS and parameters w.r.t EfficientNet-B0 to obtain 77.2%. Note SPOS, FBNet,
ProxylessNAS are also in S2 or similar. In the appendix we list the detailed structures of two models
in Fig. 11 of C.5. We also transfer these models on COCO detection, see C.7.
Table 3: Comparison with state-of-the-art models on ImageNet. To make fair comparisons, we disable
distillations for all methods. Search cost in GPU days. †: TPU days

Models ×+ #P Top-1 Top-5 Cost
(M) (M) (%) (%) G · d

MobileNetV2 (Sandler et al., 2018) 300 3.4 72.0 91.0 -
ShuffleNetV2 (Ma et al., 2018) 299 3.5 72.6 - -
GhostNet 1.3× (Han et al., 2020) 226 7.3 75.7 92.7 -
DARTS (Liu et al., 2019) 574 4.7 73.3 - 0.5
P-DARTS(Chen et al., 2019b) 557 4.9 75.6 92.6 0.3
PC-DARTS (Xu et al., 2020) 586 5.3 74.9 92.2 0.1
SGAS (Cri.2 best) (Li et al., 2020) 598 5.4 75.9 92.7 0.25
FairDARTS-C (Chu et al., 2020) 380 4.2 75.1 92.4 0.4
MnasNet-A2 (Tan et al., 2019) 340 4.8 75.6 92.7 ≈4k
One-Shot Small (F=32) (Bender et al., 2018) - 5.1 74.2 - 4†

FBNet-B (Wu et al., 2019) 295 4.5 74.1 - 9
MobileNetV3 (Howard et al., 2019) 219 5.4 75.2 92.2 ≈3k
Proxyless-R (Cai et al., 2019) 320 4.0 74.6 92.2 8.3
FairNAS-A (Chu et al., 2021) 388 4.6 75.3 92.4 12
Single Path One Shot (Guo et al., 2020) 328 3.4 74.9 92.0 12
Single-Path NAS (Stamoulis et al., 2019) 365 4.3 75.0 92.2 1.25
OFA w/o PS (Cai et al., 2020) 235 4.4 72.4 - 50
OFA w/ distillation (Cai et al., 2020) 230 - 76.0 - 50
BigNAS-M w/o distillation (Yu et al., 2020a) 418 5.5 77.4 93.5 -
MixNet-M (Tan & Le., 2019) 360 5.0 77.0 93.3 ≈3k
MixPath-A (ours) 349 5.0 76.9 93.4 10.3
MixPath-B (ours) 378 5.1 77.2 93.5 10.3
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Figure 7: Histogram of one-shot model accuracies sampled from MixPath supernets trained on
CIFAR-10 in S1, activating at most m = 1, 2, 3, 4 paths respectively. In all cases, the supernet trained
without SBNs severely underestimates a large proportion of candidate architectures. Note when
m = 1 it falls back to a vanilla BN.

5 ABLATION STUDY AND DISCUSSIONS

5.1 SUPERNET RANKING PERFORMANCE WITH DIFFERENT STRATEGIES

To study the individual contribution of SBN and BN post-calibration, we profit from NAS-Bench-101
(Ying et al., 2019) for ranking calculation since it provides ground truths for all models. Moreover, it
allows a fair comparison with other approaches in the same search space. Specifically, we investigate
the case m = 3 and report the result of each control group using 3 different seeds. Kendall tau
(Kendall, 1938) is calculated by randomly sampled 70 models.

Supernet with and without SBNs. Table 4 shows that the supernet trained without SBN is inade-
quate to evaluate sampled models (τ = 0.05), which is much lower than the one with a linear number
of SBNs (τ = 0.32). We further quantify the effect of the additional post BN calibration, and both
taus can be boosted. Particularly for SBN, it’s improved to 0.59 (+0.27). Therefore, the combination
of SBN and post BN calibration delivers the best ranking performance.

Table 4: Kendall taus’ comparison between MixPath super-
nets (m = 3) trained with multiple strategies. (same settings
as Table 1). ESBN: Exponential SBNs, LSBN: Linear SBNs

τ w/o SBN ESBN LSBN
w/o Calibration 0.05±0.06 0.37±0.06 0.32±0.03
w/ Calibration 0.43±0.03 0.34±0.08 0.59±0.02

Linear number of SBNs vs. expo-
nential. Through theoretical analysis,
we conclude that a linear number of
SBNs are enough to match all the com-
binations of activable paths, while we
can still use its exponential counter-
part where every single combination
follows an SBN. Table 4 shows that
linear SBN with BN calibration works best (with the highest τ ), while Exp SBN (exponential)
performs best if no calibration is applied. Why is it so? Linear SBNs make use of the zero-order
condition which is an approximate relationship. Exp SBNs are more accurate since they catch
statistics from each of the combinations. However, this makes a wider distribution of learnable
parameters γ, β, which is difficult for BN calibration to fit them well. Therefore, we choose Linear
SBNs with BN calibration instead. Regarding the Occam’s Razor, the linear growing BN generalizes
better than the exponential counterpart.

One-shot accuracy distribution of candidate models w.r.t. m

We run four experiments with m = 1, 2, 3, 4 to investigate the effect of SBNs in S1, other settings
are kept the same. In total, 1k models are randomly sampled to plot their test accuracy distributions
on CIFAR-10 for each m in Fig. 7. When m = 1, MixPath falls back to single path. Whereas,
SBN begins to demonstrate its power for m > 1, whose absence leads to a bad supernet with lower
predicted accuracies and a much larger gap. This indicates the supernet without SBNs severely
underestimates the performance of a large proportion of architectures.

Simple scaling vs. SBNs. Intuitively from the above motivation, simply scaling the magnitudes of
all features to the same level in each block could also stabilize the supernet training. We hereby
treat simple scaling as a baseline experiment. However, it is somewhat limited because it adjusts
magnitudes only. We find that ranking ability after the calibration of the simple scaling case is higher
than that of vanilla BNs and exponential SBNs, but it is lower than that of linear SBNs. This is
consistent with the baseline experiment in Table 5. Our proposed method with linear SBNs is still the
best among all the compared strategies. Note that the simple scaling approach can only roughly scale
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the magnitudes of the output. In contrast, SBNs can adjust the magnitudes and angles together to
better capture the changing distributions.

5.2 COMPARISON OF SEARCH STRATEGIES

Table 5: Comparison of Kendall taus between MixPath su-
pernets (m = 4) trained with various strategies. We sampled
70 models from NAS-Bench-101 (Ying et al., 2019) and
repeated it 3 times on different seeds. †: after BN calibration

Strategy Simple Scaling w/ SBNs
w/o Calibration 0.293±0.016 0.393±0.017
Calibration 0.472±0.021 0.597±0.037

We use the search space S3 on
ImageNet to compare the adopted
NSGA-II search algorithm (Deb et al.,
2002) with random search by charting
the Pareto-front of models found by
both methods in Fig. 13 (appendix).
NSGA-II has a clear advantage that
the Pareto-front models have higher
accuracies and fewer multi-adds.

5.3 PIPELINE COMPONENT ANALYSIS

Apart from the ablation studies on NAS-Bench-101 (Ying et al., 2019), we make a component
analysis of our pipeline in S1. We focus on the supernet training with and without SBN by fixing
the second-stage searching algorithm. Each pipeline is run three times on different random seeds.
Our goal is to find the best models under 500M FLOPS. As a result, with SBN enabled, we obtain
97.44% top-1 accuracy, higher than the best 97.12% when SBN is disabled. This confirms that it
mainly benefits from our novel training mechanism.

5.4 DISCUSSIONS

Why can SBNs stabilize supernet training and improve ranking ability? We have verified that
high cosine similarity is not the only factor that guarantees the stable training of a multi-path supernet.
It is more important to ensure that the feature distributions are consistent. Otherwise, the training is
disrupted because a single BN is not enough to capture changing statistics from multiple paths. The
proposed SBNs are able to track a variety of distributions, alleviating this instability. Empirically,
better training of the supernet also gives more appropriate weights for each subnetwork, with which
we can better estimate the ground-truth performance of the stand-alone models.

Why can SBNs work together with BN post-calibration? According to the analysis in Section
3.2, the parameters µ, σ of SBNs that follow a multi-path combination are multiples of those of a
single-path, as shown in Fig. 5. But not all the parameters fit well into this relationship, post BN
calibration can then readjust the mean and variance of the inputs to fit the learned parameters γ and β.
To some extent, it can make up for the gap from the supernet to submodels. Noticeably, SBN is a type
of regularization technique during the supernet training, while BN calibration is a post-processing
trick. They can work in an orthogonal way and both contribute to the ranking.

Comparison with Switchable Batch Normalization Switchable BN (Yu et al., 2019) is only
applied to learn the statistics of a limited number (K) of sub-architectures with K = {4, 8} channel
configurations. Our SBN is designed to match the changing feature statistics from a more flexible
combination of different choice paths, while the number of channels is fixed. The former is used for
network pruning while our SBN is to stabilize the training of the multi-path supernet.

6 CONCLUSION

In this paper, we propose a unified approach for two-stage one-shot neural architecture search,
with a multi-path search space enabled. Existing single-path approaches can thus be regarded as a
special case. The proposed method uses SBNs to catch the changing features from various branch
combinations, which successfully solves two difficulties of vanilla multi-path methods: the unstable
training of supernet and the unbearable weakness of model ranking. Moreover, by exploiting feature
similarities from different path combinations, we reduced the number of required exponential SBNs
to m, identical to the number of allowed paths. Extensive experiments on NAS-Bench-101 show
that our method can boost the model ranking capacity of the one-shot supernet by clear margins. We
achieved state-of-the-art architectures like MixPath-A (76.9%) and B (77.2%) on ImageNet.
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A PROOFS

A.1 PROOF OF LEMMA 3.1

Proof. Let ypy(y) = f(x), zpz(z) = g(x), x ∼ px(x). For the case m = 1, the expectation of y and
z can be written respectively as:

E[y] = E[f (x)] =

∫
px(x)f(x)dx

E[z] = E[g (x)] =

∫
px(x)g(x)dx

(1)

According to the zero-order condition, we have f(x) ≈ g(x). And p(x) is same for both y and z, so
E[y] ≈ E[z].

Now we prove V ar[y] ≈ V ar[z]. Note that V ar[y] = E
[
y2
]
− (E[y])

2 and V ar[z] = E
[
z2
]
−

(E[z])
2, thus we only need to prove E

[
y2
]
≈ E

[
z2
]
. It can be similarly proved as follows:

E
[
y2
]

=

∫
py(y)y2dy =

∫
px(x)f2(x)dx

E
[
z2
]

=

∫
pz(z)z2dz =

∫
px(x)g2(x)dx

(2)

According to the zero-order condition, we have V ar[y] ≈ V ar[z].

For the case ofm = 2, when the two paths are both selected, the output becomes y+z, its expectation
can be written as:

E[y + z] = E[y] + E[z] ≈ 2E[y] (3)

And the variance of y + z is,

V ar[y + z] ≈ V ar[2y] = 4V ar[y] (4)

Therefore, there are two kinds of expectations and variances: E[y] and V ar[y] for {y, z}, and
2E[y] and 4V ar[y] for {y + z}. Similarly, in the case where m ∈ [1, n], there will be m kinds of
expectations and variances.
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B ALGORITHMS

Algorithm 2 : Stage 2-NSGA-II search strategy.
Input: Supernet S, the number of generations N , population size n, validation dataset D, con-
straints C, objective weights w.
Output: A set of K individuals on the Pareto front.
Uniformly generate the populations P0 and Q0 until each has n individuals satisfying
Cacc, CFLOPs.
for i = 0 to N − 1 do
Ri = Pi ∪Qi

F = non-dominated-sorting(Ri)
Pick n individuals to form Pi+1 by ranks and the crowding distance weighted by w.
Qi+1 = ∅
while size(Qi+1) < n do
M = tournament-selection(Pi+1)
qi+1 = crossover(M)
if FLOPs(qi+1) > FLOPssmax then

continue
end if
Evaluate model qi+1 with S (BN calibration is recommended) on D
if acc(qi+1) > accmin then

Add qi+1 to Qi+1

end if
end while

end for
Select K equispaced models near Pareto-front from PN

C EXPERIMENTS DETAILS

C.1 SEARCH SPACES

We show the list of used search spaces in Table 6.

Space Dataset m Size Details
S1 CIFAR-10 1 812 There are 12 stacked inverted bottleneck blocks.

Kernel sizes are in (3, 5, 7, 9), and expansion rates
are in (3, 6).

2 3612

3 9212

4 16212

S2 ImageNet 2 1018
There are 18 stacked inverted bottleneck blocks.
Kernel sizes are in (3, 5, 7, 9). Expansion rate is
fixed following MixNet.

S3 ImageNet 1 25618

There are 18 stacked mobile inverted bottlenecks.
Depthwise layer channels are divided into 4 groups
and there are 4 choice kernel sizes (3, 5, 7, 9) for
each group. Expansion rate is also fixed as above.

S4 CIFAR-10 4 255

There are 9 stacked cells, each with 5 internal
nodes, where the first 4 nodes are candidate paths.
Each node has 3 operation choices (1 × 1 Conv,
3×3 Conv, 3×3 Maxpool). See Fig. 6 (main text).

Table 6: Four search spaces used in this paper. m is the maximum number of allowed paths per layer

C.2 SEARCH ON CIFAR-10

We conduct our experiments on CIFAR-10 dataset (Krizhevsky et al., 2009) with a designed search
space S1 containing 12 inverted bottlenecks (Sandler et al., 2018), each of which has four choices of
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kernel size (3, 5, 7, 9) for the depthwise layer and two choices (3, 6) for expansion rates. Hence, the
size of search space S1 ranges from 812 (m=1) to 16212 (m=4). For each case, we directly train the
supernet on CIFAR-10 for 200 epochs. The batch size is set to 96 and we use the SGD optimizer
with a momentum of 0.9 and 3× 10−4 weight decay. We also use a cosine scheduler for the learning
rate strategy with an initial value of 0.025. It only takes about 6 GPU hours on a single Tesla V100
GPU in total. The comparison with recent state-of-the-art models is listed in Table 7 and 3. Our
searched model MixPath-c obtains 97.4 % top-1 accuracy using 493M FLOPS on CIFAR-10, whose
architecture is shown in Fig. 11 in C.5 (appendix).

Models Params ×+ Top-1 Type Cost
(M) (M) (%) G · d

NASNet-A (Zoph et al., 2018) 3.3 608 97.4 RL 1800
NASNet-A Large (Zoph et al., 2018)? 85.0 12030 98.0 TF 1800
ENAS (Pham et al., 2018) 4.6 626† 97.1 RL 0.5
DARTS (Liu et al., 2019) 3.3 528 97.1 GD 0.4
RDARTS (Zela et al., 2020) - - 97.1 GD 1.6
SNAS (Xie et al., 2019) 2.9 422 97.0 GD 1.5
GDAS (Dong & Yang, 2019) 3.4 519 97.1 GD 0.2
P-DARTS (Chen et al., 2019b) 3.4 532 97.5 GD 0.3
PC-DARTS (Xu et al., 2020) 3.6 558 97.4 GD 0.1
MixPath-c (ours) 5.4 493 97.4 OS 0.25
MixNet-M (Tan & Le., 2019)? 3.5 360 97.9 TF ≈3k
MixPath-a (ours)? 3.5 348 98.1 TF 10
MixPath-b (ours)? 3.6 377 98.2 TF 10

Table 7: Comparison of models on CIFAR-10. †: MultAdds computed from the provided code. ?:
transferred from ImageNet (whose search cost is on ImageNet). RL: Reinforcement learning, GD:
Gradient-based, OS: one-shot, TF: Transferred.

C.3 MORE STATISTICS ANALYSIS ON SBNS

To further confirm our early postulation, we train MixPath supernet in the search space S1 on CIFAR-
10, allowing the number of activable paths m = 3 and m = 4. Other settings are kept the same as
the case m = 2. The relationship of parameters in SBNs is shown in Fig. 9. As expected, SBNs
capture feature statistics for different combinations of path activation. For instance, the mean of
SBN3 is three times that of SBN1. The similar phenomenon can be observed in other layers as well,
for instance, the statistics of the 6-th and 11-th layer are shown in Fig. 10.
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Figure 8: A t-SNE visualization of first-layer multi-path
features before and after SBNs. We randomly sample 64
samples to get these features. Dots of the same color indi-
cate the same multi-path combination. SBNs make distant
features from multi-path combinations similar to each other
(see closely overlapped dots on the right). Best viewed in
color.

SBNs have a strong impact on reg-
ularizing features from multiple
paths This is more obvious when
we draw a t-SNE visualization (Lau-
rens & Hinton, 2008) of first-layer
feature maps from our MixPath su-
pernet (m = 4) trained on CIFAR-
10 in Fig. 8. Before applying SBNs,
features from different path combi-
nations are quite distant from each
other, while SBNs close up this gap
and make them quite similar.

C.4 COSINE
SIMILARITY AND FEATURE
VECTORS ON NAS-BENCH-101

We also plot the cosine similarity
of features from different operations
along with their projected vectors be-
fore/after SBNs and vanilla BNs on
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Figure 9: Parameters (µ, σ2, γ, β) of the first-layer SBNs in MixPath supernet (in S1) trained on
CIFAR-10 when at most m = 3, 4 paths can be activated. SBNn refers to the one follows n-path
activations. The parameters of SBN3 and SBN4 are multiples of SBN1 as expected.
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Figure 10: Parameters (µ, σ2, γ, β) of the SBNs of the 6th and 11th layer in MixPath supernet (in S1)
trained on CIFAR-10 when at most m = 3 paths can be activated. SBNn refers to the one follows
n-path activations. The parameters of SBN3 are still multiples of SBN1 as expected.
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Figure 11: The architecture of MixPath-c (top), MixPath-A (middle) and MixPath-B (bottom).
MixPath-B makes use of feature aggregation and outperforms EfficientNet-B0 with fewer FLOPS
and parameters.

(a) (b)

Figure 12: (a) Cosine similarity of first-block features from the supernets trained on NAS-Bench-101
with and without SBNs (b) Feature vectors projected into 2-dimensional space.

NAS-Bench-101 in Fig. 12. We can see that not only are the features from different operations similar,
but so are the summations of features from multiple paths. At the same time, SBNs can transform
the amplitudes of different vectors to the same level, while vanilla BNs can’t. This is similar to the
situation in the search space S1 and matches with our theoretical analysis.

C.5 SEARCHED ARCHITECTURES ON CIFAR-10 AND IMAGENET

The architectures of MixPath-c, MixPath-A and MixPath-B are shown in Fig 11.

C.6 TRANSFERRING TO CIFAR-10

We also evaluated the transferability of MixPath models on CIFAR-10 dataset, as shown in Table 3
(main text). The settings are the same as (Huang et al., 2019) and (Kornblith et al., 2019). Specifically,
MixPath-b achieved 98.2% top-1 accuracy with only 377M FLOPS.

C.7 TRANSFERRING TO OBJECT DETECTION

We further verify the transferability of our models on object detection tasks and we only consider
mobile settings. Particularly, we utilize the RetinaNet framework (Lin et al., 2017) and use our
models as drop-in replacements for the backbone component. Feature Pyramid Network (FPN) is
enabled for all experiments. The number of the FPN output channels is 256. The input features from
the backbones to FPN are the output of the depth-wise layer of the last bottleneck block in four stages,
which covers 2 to 5.
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Figure 13: Pareto-front of models by NSGA-II vs. random search.

All the models are trained and evaluated on the MS COCO dataset (Lin et al., 2014) (train2017 and
val2017 respectively) for 12 epochs with a batch size of 16. We use the SGD optimizer with 0.9
momentum and 0.0001 weight decay. The initial learning rate is 0.01 and multiplied by 0.1 at epochs
8 and 11. Moreover, we use the MMDetection toolbox (Chen et al., 2019a) based on PyTorch (Paszke
et al., 2019). Table 8 shows that MixPath-A gives competitive results.

Backbones ×+ P Acc AP AP50 AP75 APS APM APL

(M) (M) (%) (%) (%) (%) (%) (%) (%)
MobileNetV3 219 5.4 75.2 29.9 49.3 30.8 14.9 33.3 41.1
MnasNet-A2 340 4.8 75.6 30.5 50.2 32.0 16.6 34.1 41.1
SingPath NAS 365 4.3 75.0 30.7 49.8 32.2 15.4 33.9 41.6
MixNet-M 360 5.0 77.0 31.3 51.7 32.4 17.0 35.0 41.9
MixPath-A 349 5.0 76.9 31.5 51.3 33.2 17.4 35.3 41.8

Table 8: COCO Object detection with various drop-in backbones

C.8 COMPARISON OF SEARCH STRATEGIES

We show the Pareto front of models searched by NSGA-II vs. Random in Fig. 13.

C.9 APPLYING SPOS ON MULTI-PATH SEARCH SPACE
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Figure 14: Rank performance comparison between enumer-
ating all compositions and our method.

We design a “branch composition” ex-
periment m = 4 in NAS-Bench-101
with 3 candidate operations, leading
to 34 possible blocks. We adopt the
SPOS strategy [9] to train this super-
net with the same hyper-parameters as
ours, but we only reach a Kendall tau
of -0.225 while our method obtains
0.504 in terms of ranking the same
sub-models (see Fig. 14). This result
is not surprising. We blame the failure
of the former approach for the use of
an excessive number of blocks, which
brings nearly 4× more trainable pa-
rameters in the supernet (199.7M vs.
ours 52.9M). In this case, it’s imprac-
tical and infeasible for SPOS to work under such setting because it’s hard to make candidate blocks
fully optimized. In effect, thus-trained supernet is unable to ensure a reliable rank. For example, on
average, one block receives an update every 34 iterations, resulting in poor ranking performance.
Besides, this approach will encounter memory explosion at a growing m. Even if we can solve the
ranking issue, it requires much more GPU memory to save the trainable parameters, which prevents
proxyless search on large datasets or big models. In contrast, our method doesn’t suffer from these
issues.
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