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Abstract

Masked diffusion models have demonstrated competitive results on various tasks
including language generation. However, due to its iterative refinement process, the
inference is often bottlenecked by slow and static sampling speed. To overcome this
problem, we introduce ‘KL-Adaptive Stability Sampling’ (KLASS), a fast yet ef-
fective sampling method that exploits token-level KL divergence to identify stable,
high-confidence predictions. By unmasking multiple tokens in each iteration with-
out any additional model training, our approach speeds up generation significantly
while maintaining sample quality. On reasoning benchmarks, KLASS achieves up
to 2.78× wall-clock speedups while improving performance over standard greedy
decoding, attaining state-of-the-art results among diffusion-based samplers. We fur-
ther validate KLASS across diverse domains, including text, image, and molecular
generation, showing its effectiveness as a broadly applicable sampler across differ-
ent models. Our code is available at https://github.com/shkim0116/KLASS.

1 Introduction

Masked diffusion models [1, 27, 33, 37] have attracted growing attention for their ability to model
joint distribution of sequences by iteratively refining samples from partially masked sequences to
clean data, achieving competitive performance on complex language tasks [26], image generation [6],
biological sequences [24, 33], and planning algorithms [49, 50].

Despite recent successes, these models are often restricted by slow and static sampling strategies
such as Top-k or stochastic sampling, where only a limited number of high-confidence tokens are
unmasked at each step. As a result, the generation process can become inefficient and prone to
local suboptimalities, thus constraining the practical applicability of masked diffusion approaches.
Several works investigate efficient samplers by caching the logits if no tokens are unmasked at the
specific timestep [33] or design a specific scheduler to unmask one token at a time [55]. Another
natural solution might be to incorporate an additional “planner” or auxiliary distribution to guide
sampling [47, 54]. However, doing so typically incurs substantial computational overhead, increases
inference latency, and can lead to difficulty aligning the planner’s distribution with the base model’s
learned distribution. Instead, our goal is to develop a lightweight yet effective sampling method that
remains within the model’s own capabilities, yielding speedups in generation while simultaneously
improving or maintaining overall accuracy.

To address these challenges, we propose ‘KL-Adaptive Stability Sampling’ (KLASS), an adaptive
sampling strategy that leverages the diffusion model’s own feedback to guide unmasking. Unlike
previous approaches that rely on fixed schedules (i.e., a predetermined number of tokens unmasked
at each timestep), our method adapts to the evolving confidence of the model during generation.
By tracking token-level Kullback-Leibler (KL) divergence across consecutive timesteps, we select
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... Therefore, the number of cars that drove through 
in the first 15 minutes is:\n \\[\n 25 - 20 = 10\n \\]
Therefore, the number of cars that drove through the 
traffic jam in the first 15 minutes is \\(\\boxed{ 10 }\\).  

… Therefore, the number of cars that drove through 
in the first 15 minutes is:\n \\[\n 25 - 20 = 5\n \\]
Therefore, the number of cars that drove through the 
traffic jam in the first 15 minutes is \\(\\boxed{ 5 }\\).
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(a) Case study comparing Top-k confi-
dence and KLASS solutions.
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(b) Average KL divergence of tokens at unmasking for correct and
incorrect predictions on LLaDA and DREAM.

Figure 1: KL divergence as a strong indicator of solution correctness. (a) The Top-k method selects
an incorrect solution despite high confidence, whereas KLASS identifies the correct solution, which
exhibits a significantly lower KL divergence. (b) KL divergence distributions for the LLaDA and
DREAM models show that correct predictions consistently have lower KL divergence than incorrect
ones across all datasets.

tokens whose conditional distributions remain similar (KL below a threshold) and whose predicted
probability exceeds a confidence threshold. This dynamic allocation of unmasking tokens results in
significant acceleration of generation speed while maintaining sample quality by avoiding premature
or suboptimal token unmasking without additional model training or extra memory burden.

We empirically validate our method on challenging reasoning benchmarks, including GSM8K, MATH,
HumanEval, and MBPP. We show that applying KLASS with large scale masked diffusion models not
only halves the number of sampling steps compared to standard greedy or Top-k decoding [18], but
also achieves higher accuracy, achieving state-of-the-art results compared to other diffusion samplers.
Figure 1a presents a comparison between solutions generated by Top-k confidence and KLASS
sampler. KLASS successfully identifies the correct token with lower KL, whereas Top-k confidence
tends to unmask incorrect tokens even with higher confidence. Furthermore, our experiment on plain
text generation also proves the effectiveness of our method which results in reduced perplexity while
maintaining entropy, thereby mitigating the inefficiencies inherent in conventional sampling. We
further show that our sampler works in other modalities, including image and molecule.

Overall, our proposed sampler for masked diffusion models is both simple and practical, harnessing
the latent potential of the base diffusion model itself, rather than relying on complex external planners.
By strategically identifying stable tokens at each iteration, the algorithm accelerates generation and
fosters more robust coverage of viable token candidates. We believe this work provides a practical
and scalable way for large-scale masked diffusion models, particularly where reliable and efficient
generation is essential, such as complex reasoning tasks.

We summarize our main contributions below:

• We propose KLASS, a training-free sampler that leverages the model’s internal dynamics in terms
of token level KL divergence and confidence without requiring external planners.

• We achieve over 2× faster sampling by halving the number of diffusion steps through parallel
unmasking of stable tokens.

• We provide comprehensive empirical validation, showing improved quality on reasoning bench-
marks across math and code generation, text generation, image synthesis, and molecular generation.

2 Related Works

Discrete diffusion models D3PM [1] investigate how forward and backward processes can be
constructed in discrete state spaces which is analogous to the continuous diffusion models [17, 39]. [5]
leverage continuous time Markov chain (CTMC) theory to formulate the forward-backward process
of discrete diffusion models with providing negative ELBO in continuous time limit as an objective.
Following the success of denoising score matching [40], Lou et al. [24], Meng et al. [25] suggest
discrete score matching loss by defining Stein score in discrete space. Ou et al. [27], Sahoo et al.
[33], Shi et al. [37] further shows that simplified version of masked diffusion model can significantly
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boost the performance of diffusion models closing the performance gap with AR models in language
domains. Recently, [26] demonstrate scaling law of discrete diffusion models in language domain
and further shows reasoning abilities.

Discrete diffusion samplers Generating a text from language diffusion models involves iteratively
refining a sequence from a noisy or masked state. Ancestral Sampling [24, 33] starts from a fully
masked sequence and iteratively applies the learned reverse denoising process over a series of discrete
timesteps to produce a clean sequence. SUBS parametrization [33] of the reverse step dictates how
model predictions are used to unmask tokens, often by ensuring that already revealed tokens remain
unchanged. To improve sample quality, ReMDM [42] adopts remasking strategies, where some newly
predicted tokens are reset to a mask based on confidence or timestep.

Accelerated Sampling of Discrete diffusion models The iterative nature of ancestral sampling
can result in high latency due to the large number of sequential steps. Consequently, much research
has focused on reducing the number of function evaluations (NFEs) in diffusion models. Deschenaux
and Gulcehre [10], Hayakawa et al. [14] leverage distillation methods to train the model with reduced
NFEs in analogous to fast sampling of continuous diffusion models [34, 40, 52]. Ren et al. [32]
improve discrete diffusion solvers by considering second-order numerical solver in CTMC framework.
Zheng et al. [55] propose a First-Hitting Sampler (FHS) to skip the unnecessary timesteps and unmask
one token at a time. Most of the existing samplers of masked diffusion models, however, resort
to additional training or rely on other models (i.e., planners) to choose unmasking tokens at each
timestep [20, 23, 28]. This could help avoiding suboptimal token selection but with considerable
computational overhead and may fail to be aligned with the model’s intrinsic capability.

Recent training-free strategies enable accelerated decoding for masked diffusion language models.
Fast-dLLM [46] uses an approximate KV cache with confidence-aware decoding, and SlowFast
Sampling [44] alternates decoding stages based on certainty, convergence, and position principles.
Other methods are the EB-Sampler [3], which unmasks multiple tokens based on entropy bounds,
Dimple [53], which adjusts generation using confident decoding, and Prophet [22], which uses the
Top-2 confidence gap to trigger an early commit and decode all remaining tokens at once.

3 Preliminaries

3.1 Masked diffusion models

In masked diffusion models, one requires an additional mask index m for each tokens and forward
process is defined by following absorbing process [1]:

q(zt|x) = Cat(zt;αtx+ (1− αt)m), (1)

where αt is predefined schedule, monotonically decreasing in t. Then one can analytically obtain
posterior distribution as:

q(zs | zt,x) =

{
Cat(zs; zt) if zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)x
1−αt

)
if zt = m.

(2)

The goal of the masked diffusion model is to learn this reverse process by parameterizing the posterior
(Eq. 2) by a neural network with pθ(zs|zt) := q(zs|zt, µθ(zt, t)).

In simplified masked diffusion models [27, 33, 37], learning objective can be simplified by parame-
terizing the models to focus on estimating only masked tokens while maintaining unmasked tokens
throughout the generation.

Then the learning objective is to minimize Negative ELBO (NELBO) whose continuous form is the
following:

L∞ = Ex∼q0,zt∼qt(zt|x)

∫ 1

0

α′
t

1− αt
[δx,m x · logµθ (zt, t)] . (3)
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Figure 2: Illustration of parallel decoding with KLASS. Tokens are unmasked when they meet the
two criteria: high predictive confidence and a stable probability distribution. Stability is measured by
a low KL divergence between consecutive steps (illustrated with history length of 1 for simplicity).
On the right it shows the sampling process for position 245: it remains masked due to low confidence
or high KL score, and is unmasked when both conditions are satisfied.

Here, q0 denotes data distribution and α′
t is the derivative of noise schedule αt in time. In this

continuous time framework, [33] further proves that above objective is invariant of noise schedule αt.

The above can be generalized to sequence-level of token length L modeling as follows.

L(L)
∞ =

∫ 1

0

α′
t

1− αt
Ex∼q0,zt∼qt(zt|x)

 ∑
l:z

(l)
t =m

x(l) · logµ(l)
θ (zt, t)

 dt. (4)

3.2 Inference via Ancestral Sampling

At inference, we discretize t ∈ [0, 1] into times {tT > · · · > t1 ≈ 0}, initializing xtT = [mask]L.
We then sample backward:

xti−1 ∼ pθ
(
xti−1 | xti

)
, i = T, . . . , 1.

In simplified MDM, unmasked tokens remain fixed and masked tokens are drawn from the model’s
prediction. After T steps, we obtain a complete sequence xt0 . We provide additional analysis of
other sampling strategies in Appendix C.

4 Method

4.1 Defining Confidence Score and KL Score

We begin with an observation to demonstrate that diffusion model can internally classify good and bad
tokens during inference. Specifically, we find two key properties that can be leveraged to determine
whether to unmask the current token or not. We index inference timesteps as t = T, . . . , 1.
Definition 4.1. (Confidence score) Denoting pit as the categorical distribution predicted by the
diffusion model at timestep t for token position i, we define the confidence confit to be the largest
value of the probability function among vocabulary space V (v ∈ V ):

confit = max
v

pit(v). (5)

Intuitively, higher confidence score indicates model is more certain about estimating the current token,
which improves chance of correctness of the current model’s estimate in that token.
Definition 4.2. (KL score) We define KL score dit of the token position i at timestep t as the
Kullback-Leibler divergence between previous estimates and current estimates of the given token:

dit = DKL

(
pit ∥ pit+1

)
, (6)
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where we denote pit, p
i
t+1 be the probability distribution of the model estimates of token index i at

time t and at time t+ 1, respectively.

KL score should be low only when model estimate is consistent throughout the reverse diffusion
process and this implies estimated token index is more reliable.

To empirically demonstrate how KL score behaves in practical scenario, we first generate samples for
a variety of math and programming reasoning benchmarks. As shown in Figure 1b, correct samples
consistently exhibit significantly lower KL scores than incorrect ones, for all models and datasets.
This observation motivates our use of KL scores as a guiding signal in the sampling algorithm of
masked diffusion models, which we formally introduce in the next section.

4.2 KLASS: KL-Adaptive Stability Sampling

We introduce ‘KL-Adaptive Stability Sampling’ (KLASS), a novel sampling algorithm for masked
diffusion models. As illustrated in Figure 2, KLASS leverages confidence score and KL score during
the unmasking process of the masked diffusion models (Eq. 2), by selectively choosing unmasking
tokens that have low KL score and high confidence score.

Stable-token selection. To effectively set the standard using both KL and confidence score, we
propose stable-token selection in the following way: Given a history length n, a KL threshold ϵKL,
and a confidence threshold τ , we select the set of stable tokens at step t as,

St =
{
i
∣∣∣ ∀k ∈ {1, . . . , n} DKL

(
pit+k−1 ∥ pit+k

)
< ϵKL︸ ︷︷ ︸

all recent KL’s below threshold

∧ confit > τ︸ ︷︷ ︸
high confidence

}
. (7)

Unmasking rule. KLASS adaptively choose which tokens to unmask at given timestep with above
defined stable index (Eq. 7). At each diffusion step t, we apply

xi
t =

{
unmask token at position i, i ∈ St,

otherwise, unmask the Top-u positions by confit, St = ∅,
(8)

where u is a fixed fallback unmasking count. We provide a pseudo code of our algorithm with further
analysis in Appendix B.

5 Theoretical Rationale

We provide a theoretical perspective on why using KL divergence can improve sample quality. We
show that, for a well-trained model, a token that is predicted as incorrect at the current step cannot
remain uniformly stable as the context is progressively resolved.
Definition 5.1. For each context c (instantiation of variables outside Xi), let C(c) be the nonempty
set of task–correct conditionals. Let C := {µ : µ(· | c) ∈ C(c) ∀c}. We say pθ is a conditional
δ–approximation to the task if

inf
π∈C

sup
c

TV
(
pθ( · | c), π( · | c)

)
≤ δ.

Definition 5.2. Fix i. Let x⋆
i be optimal under π(· | c⋆) at near-optimal context c⋆. Let x†

i ̸= x⋆
i

be suboptimal. Assume a true margin γ > 0 at c⋆: π(x⋆
i | c⋆) ≥ π(x†

i | c⋆) + γ. Assume the model
currently prefers x†

i at cM by margin β ≥ 0: pθ(x
†
i | cM ) ≥ pθ(x

⋆
i | cM ) + β.

Proposition 5.3. Suppose pθ is a conditional δ-approximation of π. For any context path cM →
cM−1→ · · ·→ c0 (changing only variables outside Xi) ending at c0 = c⋆, let Pt := pθ( · | ct) and
∆ := 1

2 (β + γ − 2δ)+. Then

TV(PM , P0) ≥ ∆,
1

M

M−1∑
t=0

KL
(
Pt ∥Pt+1

)
≥ 2∆2

M2
.

Proof. The proof is in Appendix A.1.

Interpretation. A token that is wrong at c0 but correct at c⋆ must be dynamically unstable somewhere
along the path: its average per-step KL is bounded away from 0.
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Table 1: Performance and sampling steps on reasoning benchmarks for different diffusion samplers.

Method Parallel MATH GSM8K HumanEval MBPP

Acc↑ Steps↓ Acc↑ Steps↓ Acc↑ Steps↓ Acc↑ Steps↓
LLaDA

Top-1 ✗ 31.4 256 75.13 256 39.63 256 46.69 256
Random ✗ 26.2 256 67.10 256 20.21 256 29.18 256
Top-2 ✓ 29.6 128 72.40 128 33.54 128 37.74 128
Confidence ✓ 31.6 96.46 75.21 74.35 37.80 54.41 47.08 85.20
KL divergence ✓ 32.6 172.21 74.52 155.88 40.24 111.93 45.53 150.47
KLASS (ours) ✓ 33.8 128.62 76.50 98.57 40.85 91.98 47.86 119.59

Dream
Top-1 ✗ 37.97 256 79.55 256 58.53 256 63.81 256
Random ✗ 18.73 256 37.35 256 18.09 256 28.14 256
Top-2 ✓ 33.60 128 71.69 128 42.88 128 47.08 128
Confidence ✓ 41.80 95.10 73.67 74.81 50.00 52.47 57.59 72.49
KL divergence ✓ 41.27 162.49 76.70 150.02 59.35 73.94 62.65 108.15
KLASS (ours) ✓ 43.20 149.72 79.43 155.67 59.35 74.88 64.59 111.24

Implication for KLASS Instability is the footprint of a bad choice: wrong tokens cannot remain
calm. KLASS therefore waits for tokens that are dynamically stable before unmasking, ensuring
higher-quality generation.

6 Experiments

To show effectiveness of our proposed sampler, we conduct experiments on multiple benchmarks
including reasoning benchmarks with large scale models in Section 6.1, text generation in Section 6.2,
along with other modalities including images in Section 6.3 and molecules in Section 6.4. We also
present ablation studies in Section 6.5 and analyze computational overhead in Section 6.6.

6.1 Reasoning tasks

Experimental setup We evaluate on four reasoning benchmarks: GSM8K [9] and MATH500 [15]
for math, and HumanEval [8] and MBPP-sanitized [2] for code synthesis. We use two instruction-
tuned models, LLaDA 8B Instruct [26] and Dream 7B Instruct [51]. For both models we set the
generation length to 256 tokens, with LLaDA using a block size of 64. The generation temperature
is set to 0 for LLaDA and 0.2 for Dream. We report both the number of sampling steps and the
pass@1 accuracy. The maximum inference timestep is set to 256. In KLASS, we compute per-token
KL divergence over a history length of n = 2, and apply KL thresholds ranging from 0.001 to 0.01
and confidence thresholds from 0.5 to 0.9. Full configuration details and a lightweight guideline for
hyperparameter selection are provided in Appendix D.1.2.

Baselines We compare KLASS against baselines across two categories. The first is sequential
unmasking (single-token), which includes: (i) Top-1 sampling, selecting the highest-confidence token
at each step [6]; and (ii) random sampling [1]. The second category is parallel unmasking, which
accelerates generation by revealing multiple tokens per step: (iii) Top-2 sampling, decoding the
two highest-confidence tokens per step to halve the total number of steps; (iv) confidence-threshold
sampling, unmasking all tokens with a predicted probability over 0.9; and (v) KL-threshold sampling,
unmasking all tokens with a KL divergence under 0.001, using a history length n = 2 as in KLASS.

Results As shown in Table 1, KLASS consistently improves accuracy across most tasks compared
to the standard greedy decoding (Top-1) baseline. It demonstrates robust generalization for both
LLaDA and Dream models across math and code synthesis benchmarks. Beyond accuracy, KLASS
is also highly efficient. It reduces sampling steps by 40–70% relative to the full 256-step schedule,
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Table 2: Generative perplexity, MAUVE, and entropy on unconditional text generation sampled with
512 steps.

Method MAUVE ↑ LLaMA2 ↓ LLaMA3 ↓ GPT-2 ↓ Entropy ↑
*Data 1.0 7.0 9.4 14.8 5.44

AR 0.855 10.97 15.12 12.07 5.21

SEDD 0.037 53.09 109.60 105.40 5.62
D3PM 0.022 41.82 72.85 76.70 5.40
MDLM 0.0043 30.88 54.15 51.78 5.46
KLASS (Ours) 0.242 26.94 49.19 45.50 5.43

Table 3: Generative FID and IS on MMaDA
with different step sizes.

Method Steps FID ↓ IS ↑
Confidence 16 34.48 75.72
KLASS (ours) 16 30.48 93.07
Confidence 32 36.45 72.40
KLASS (ours) 32 32.00 89.17

Table 4: Molecular generation results on the QM9
dataset conditioned on different molecular properties.

Method Property Reward ↑ NFEs ↓

MDLM QED 0.526 32.0
KLASS (ours) QED 0.546 18.8

MDLM Ring count 4.123 32.0
KLASS (ours) Ring count 4.258 24.4

yielding wall-clock speedups of up to 2.78× (Appendix D.1.3). Unlike other acceleration strategies
such as halving steps with a confidence-based Top-2 method, which degrades accuracy, KLASS
improves accuracy with fewer steps overall. KLASS achieves a superior balance between speed and
accuracy compared to methods that rely on a single threshold for either confidence or KL score alone.
This proves that the effectiveness of KLASS comes from its novel approach of combining token
confidence with KL-divergence trajectories.

6.2 Text generation

Experimental setup We evaluate KLASS on Masked Diffusion Language Model (MDLM) [33]
pre-trained on the OpenWebText corpus [12]. As baselines, we include (i) the original autoregressive
sampler, (ii) SEDD [24], and (iii) two variants of MDLM: one parameterized with subs (the standard
512-step sampler) and one parameterized with D3PM (the “absorb” variant). For all diffusion-based
methods, we generate 1,000 sequences of length 1,024 tokens under a fixed 512-step schedule, with
nucleus Top-p filtering at p = 0.9, history length n = 2, KL threshold ϵKL = 1e− 4, and confidence
threshold τ = 0.57.

Evaluation We report generative perplexity by exponentiating the average token-level negative log-
likelihood under three oracle models: LLaMA2 (7B) [41], LLaMA3 (8B) [13], and GPT-2 [29]. We
measure Shannon entropy of the predicted token distributions and compute MAUVE by comparing
our 1,000 generated samples to 1,000 held-out segments from the OpenWebText test split. Baseline
(*Data) results are given from the corresponding literatures [42, 47].

Results Table 2 shows that KLASS substantially improves generative quality over existing discrete
diffusion samplers. Our method higher MAUVE and lower perplexity across all oracle models while
maintaining comparable entropy. These results highlight that stability-aware multi-token unmasking
guided by KLASS leads to more coherent and fluent text generation, all without any additional model
training. We provide experimental details in Appendix D.2.

6.3 Image generation

Experimental setup We evaluate KLASS on the MMaDA (Multimodal Large Diffusion Language
Models) [48] a multimodal diffusion foundation model. We compare two samplers: (i) the standard
confidence-based sampler used by MMaDA, and (ii) our proposed KLASS. For each method, we
generate 10,000 images conditioned on labels drawn uniformly from the 1,000 ImageNet classes,
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Figure 3: KL Effect Across Confidence Levels on MATH.

using 16 and 32 step decoding schedules. KLASS is configured with history length n = 1, KL
divergence threshold ϵKL = 0.3, and confidence threshold τ = 0.1.

Evaluation We assess sample fidelity using two widely adopted metrics. First, we compute Fréchet
Inception Distance (FID) [16] between our 10,000 generated samples and the ImageNet validation
set, using the official Inception v3 implementation. Second, we measure Inception Score (IS) [35] on
the same samples with the standard protocol.

Results Table 3 shows that KLASS improves image quality on MMaDA over the standard
confidence-based sampler. Across both decoding schedules, KLASS yielding lower FID and higher
IS. The trend holds under the same decoding schedules and fairness controls, indicating that KLASS
improves fidelity and class-consistency without modifying the backbone or adding auxiliary guidance.
We provide experimental details in Appendix D.3.

6.4 Molecular generation

Experimental setup For the dataset, we use QM9 [30] which composed of up to 9 heavy atoms in
SMILES structure [45]. For models we follow the training recipe of [36] to train seperate models
conditioned on drug-likeness (QED) [4] and number of rings using classifier-free training of masked
diffusion models.

Evaluation We test KLASS on conditional generation of small molecules using CFG guidance.
Specifically, we aim to generate molecules with higher score of QED or maximizing ring counts
while fixing the CFG strength for fair comparison. We generate 1,024 samples for each task and
provide average value of number of function evaluation (NFEs). Further details of the experimental
setups are provided in Appendix D.4.

Results The result shows that KLASS effectively reduces the total sampling steps while maintaining
target reward in the conditional generation scenario for both target reward (QED and Ring count).
We provide further experimental results in this setup in Appendix D.4.

6.5 Ablation Studies

Effect of confidence and KL score thresholds Our evaluation of different confidence and KL
thresholds on the MATH dataset reveals that combining both is essential for optimal performance. As
shown in Figure 3, applying the KL threshold consistently enhances accuracy across all confidence
levels compared to relying on a confidence threshold alone (‘none’ row). This synergistic relationship
is further substantiated by Table 1, which demonstrates that using a single criterion leads to a notable
reduction in accuracy.

8



Table 5: Comparison of single-token and paral-
lel unmasking strategies under KLASS criteria.

Unmasking MATH GSM8K

Acc ↑ Steps ↓ Acc ↑ Steps ↓

Single (conf) 31.2 256 72.86 256
Single (KL) 29.0 256 73.46 256
Parallel 33.8 128.6 76.50 98.57

Table 6: Memory and computational overhead of
KL divergence per decoding step.

Model
Memory (MB) Time (s)

Overhead Total Overhead Total

LLaDA 247 18,702 0.000255 0.1218
Dream 296 18,875 0.000177 0.1275

While the optimal hyperparameter settings vary significantly between models, each model’s perfor-
mance remains stable and robust around its unique optimal point. For example, LLaDA performs
best with a lower confidence threshold, whereas Dream requires a higher one to achieve maximum
accuracy. In both cases, however, accuracy does not degrade sharply near these values, indicating
low sensitivity to minor hyperparameter adjustments. A more detailed sensitivity analysis, featuring
additional tasks and a finer-grained grid of thresholds, is provided in Appendix D.5.1.

Effect of unmasking multiple tokens We evaluate whether unmasking multiple tokens per step
improves LLaDA’s performance. Using KLASS, which selects tokens based on fixed thresholds, we
compare parallel multi-token unmasking to two sequential variants. These variants unmask only a
single token from the same stable pool satisfying the KLASS criteria: ‘Single (conf)’ unmasks the
one with the highest confidence and ‘Single (KL)’ unmasks the one with the lowest KL score.

As shown in Table 5, multi-token sampling boosts both accuracy and efficiency. On MATH, it
improves accuracy by up to 4.8 points while cutting sampling steps by nearly 50%. Similar trends
hold on GSM8K. These results suggest that LLaDA benefits from unmasking multiple stable tokens
in parallel, leading to faster and more accurate reasoning.

6.6 Analysis on Computational Overhead

The overhead of KL computation is negligible, as it is a lightweight post-processing step on existing
logits that requires no additional forward pass. For the set of masked tokens Im = {i | zit = m}, we
compute the KL score dit = DKL(p

i
t∥pit+1) and cache the prior distribution. This yields a combined

computational and memory overhead of O(|Im| · |V |), a linear cost that is negligible compared to
the expensive matrix multiplications and multi-gigabyte footprint of the main diffusion step. Table 6
empirically supports this conclusion. We measure the overhead for LLaDA and Dream, with vocab
sizes of 126,464 and 152,064, respectively, using a generation length of 256. The results show
memory overheads below 1.57% of total memory and latency overheads below 0.21% per decoding
step, confirming that KL computation adds only minimal cost.

7 Conclusion

We proposed KL-Adaptive Stability Sampling (KLASS), an efficient and adaptive sampling method
for masked diffusion models that leverages token-level KL divergence and model confidence to guide
the unmasking process. KLASS substantially reduces the number of sampling steps while main-
taining or improving accuracy, achieving state-of-the-art performance on math and code reasoning
benchmarks. Our approach is simple, requires no additional training, and generalizes well across
multiple modalities, making it a practical solution for faster and more reliable generation in masked
diffusion models.

For future work, one could extend this approach to discrete diffusion models with alternative noise
schedules, such as the uniform or marginal prior [1]. Another direction is to evaluate the proposed
sampler with larger models as they become available. We also discuss the broader impact and
limitations of our work in Appendix G.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction in Section 1 clearly state the motivation, pro-
posed method (KLASS), and main contributions, including faster sampling and improved
performance. These claims are supported by the theoretical and empirical results presented
in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated discussion of limitations in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper clearly states the assumptions for its theoretical result and provides
a complete and correct proof in Appendix A. The result is discussed in the method section 4
to support the core intuition behind KL-based sampling.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient information to reproduce the main experimental
results in Section 6. More details are provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include our anonymized source code and detailed reproduction instructions
in the supplementary material to enable faithful reproduction of all main experimental
results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all necessary training and evaluation details in the main
experimental section 6 and provides full hyperparameters, data splits, and implementation
choices in Appendix D, ensuring the experimental setup is transparent and reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the experimental settings and code used in KLASS to ensure
reproducibility. Some KLASS experiments are deterministic, yielding identical results in
the same settings. For the stochastic experiments, we report statistical measures such as
standard deviation in the Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides detailed information about compute resources in Ap-
pendix D, including GPU types, runtime per experiment, and memory usage, allowing
others to estimate and reproduce the computational costs involved in the reported results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and ensured that our
work is conducted in accordance with its principles.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: The paper discusses both potential positive and negative societal impacts
in Appendix G including the benefits of faster, more efficient generation for real-world
applications and the risks of misuse in sensitive domains, along with possible mitigation
strategies.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of pretrained models, scraped datasets,
or other high-risk artifacts that would require special safeguards against misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets are properly credited with license and usage terms stated in
Appendix D.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets such as datasets or pretrained models;
it proposes a new sampling algorithm applied to existing models and datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing tasks or experiments with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The research does not involve human subjects and therefore does not require
IRB approval or equivalent review.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology does not involve the use of large language models as
original or non-standard components; KLASS is a novel sampling algorithm applied to
masked diffusion models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Proofs

A.1 Proof of Proposition A.3

Definition A.1. For each context c (instantiation of variables outside Xi), let C(c) be the nonempty
set of task–correct conditionals. Let C := {µ : µ(· | c) ∈ C(c) ∀c}. We say pθ is a conditional
δ–approximation to the task if

inf
π∈C

sup
c

TV
(
pθ( · | c), π( · | c)

)
≤ δ.

Definition A.2. Fix i. Let x⋆
i be optimal under π(· | c⋆) at near-optimal context c⋆. Let x†

i ̸= x⋆
i

be suboptimal. Assume a true margin γ > 0 at c⋆: π(x⋆
i | c⋆) ≥ π(x†

i | c⋆) + γ. Assume the model
currently prefers x†

i at cM by margin β ≥ 0: pθ(x
†
i | cM ) ≥ pθ(x

⋆
i | cM ) + β.

Proposition A.3. Suppose pθ is a conditional δ-approximation of π. For any context path cM →
cM−1→ · · ·→ c0 (changing only variables outside Xi) ending at c0 = c⋆, let Pt := pθ( · | ct) and
∆ := 1

2 (β + γ − 2δ)+. Then

TV(PM , P0) ≥ ∆,
1

M

M−1∑
t=0

KL
(
Pt ∥Pt+1

)
≥ 2∆2

M2
.

Proof. Let f = 1{xi = x†
i} − 1{xi = x⋆

i } so ∥f∥∞ ≤ 1. Then

2TV(PM , P0) ≥
∣∣EP0 [f ]− EPM

[f ]
∣∣ = ∣∣ (p†θ(cM )− p⋆θ(cM ))− (p†θ(c

⋆)− p⋆θ(c
⋆))

∣∣.
By the margin assumptions (Definition A.2) and the conditional δ–approximation (Definition A.1),
p†θ(cM )− p⋆θ(cM ) ≥ β and p⋆θ(c

⋆)− p†θ(c
⋆) ≥ γ − 2δ. Hence 2TV(PM , P0) ≥ β + γ − 2δ, which

implies TV(PM , P0) ≥ ∆.

By the triangle inequality in total variation,

M−1∑
t=0

TV(Pt+1, Pt) ≥ TV(PM , P0) ≥ ∆.

Let Tt := TV(Pt+1, Pt). Pinsker’s inequality gives KL(Pt∥Pt+1) ≥ 2T 2
t for each t (since

TV (Pt+1, Pt) = TV (Pt+1, Pt)). Averaging and applying Cauchy–Schwarz,

1

M

M−1∑
t=0

KL(Pt∥Pt+1) ≥ 2

M

M−1∑
t=0

T 2
t ≥ 2

M
·
(∑M−1

t=0 Tt

)2
M

≥ 2∆2

M2
.

A.2 Proof for the Parallelization Error Bound

Setup and notation. All variables are discrete with finite alphabets; logs are natural. For distribu-
tions P,Q on a common support, define TV(P,Q) := 1

2∥P −Q∥1 and DKL(P∥Q). Let the reverse
diffusion steps be indexed by t = T, T − 1, . . . , 1. At step t, let Vt be the visible context (tokens
revealed before step t), Mt the masked indices, and St ⊆ Mt the batch selected to be revealed at
step t. For i ∈ Mt, write p i

t (·) := Pr[Xi ∈ · | Vt]. The distribution after revealing the batch St is
p i
t−1(·) := Pr[Xi ∈ · | Vt, XSt ]. We define the KL divergence incurred by revealing St at step t as:

d i
reveal(t) := DKL

(
p i
t−1 ∥ p i

t

)
.

Note that the KL score used by KLASS (Eq. 6) is d i
t = DKL(p

i
t ∥ p i

t+1), comparing the current step
t to the previous step t+ 1.

Fix an ordering St = {i1, . . . , im} and let

δi(t) := TV
(
Pr[Xi | Vt, X<i], Pr[Xi | Vt]

)
, <i := {j ∈ St : j appears before i}.
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Lemma A.4. For any ordering of St,

TV
(
Pr[XSt

| Vt],
∏
i∈St

Pr[Xi | Vt]
)

≤
∑
i∈St

E
[
δi(t)

∣∣Vt

]
.

Proof. Let St = {i1, . . . , im} and define hybrids on xS = (xi1 , . . . , xim):

R(j)(xS) :=
[∏
ℓ≤j

Pr(xiℓ | Vt, xi<ℓ
)
][∏

ℓ>j

Pr(xiℓ | Vt)
]
, j = 0, . . . ,m.

Then R(m) = Pr[XSt
| Vt] and R(0) =

∏
i∈St

Pr[Xi | Vt]. By the triangle inequality,
TV(R(m), R(0)) ≤

∑m
j=1 TV(R(j), R(j−1)). For increment j,

TV(R(j), R(j−1)) = EX<ij
∼Pr[·|Vt]

[
TV

(
Pr[Xij | Vt, X<ij ],Pr[Xij | Vt]

)]
.

Summing over j and conditioning on Vt yields the claim.

Lemma A.5. For any pair (Y,X),

EX

[
TV

(
Pr[Y | X],Pr[Y ]

)]
≤

√
1
2 I(Y ;X).

Proof. By Pinsker, TV(Pr[Y | X],Pr[Y ]) ≤
√
DKL(Pr[Y | X]∥Pr[Y ])/2. Jensen (concavity of√

·) gives

EX [TV] ≤
√

1
2 EX

[
DKL(Pr[Y | X]∥Pr[Y ])

]
=

√
1
2 I(Y ;X).

Lemma A.6. For each i ∈ St,

I
(
Xi; X<i

∣∣Vt

)
≤ I

(
Xi; XSt

∣∣Vt

)
= E

[
d i

reveal(t)
∣∣Vt

]
.

Proof. The first inequality follows from the MI chain rule: I(Xi;XSt
| Vt) = I(Xi;X<i | Vt) +

I(Xi;XSt\<i | Vt, X<i) ≥ I(Xi;X<i | Vt). The conditional MI–KL identity yields

I(Xi;XSt
| Vt) = E

[
DKL

(
Pr[Xi | Vt, XSt

]
∥∥ Pr[Xi | Vt]

) ∣∣∣Vt

]
.

By our definitions, Pr[Xi | Vt, XSt
] = p i

t−1 and Pr[Xi | Vt] = p i
t , so the term inside the expectation

is DKL(p
i
t−1∥p i

t ) = d i
reveal(t). Thus, I(Xi;XSt

| Vt) = E[d i
reveal(t) | Vt].

Theorem A.7. For any batch St selected at step t (t = T, . . . , 1),

TV
(
Pr[XSt

| Vt],
∏
i∈St

Pr[Xi | Vt]
)

≤
∑
i∈St

√
1
2 E[d

i
reveal(t) | Vt] . (9)

Proof. By Lemma A.4, the LHS is bounded by
∑

i∈St
E[δi(t) | Vt]. Apply Lemma A.5 with Y = Xi

and X = X<i to get E[δi(t) | Vt] ≤
√

I(Xi;X<i | Vt)/2. Then invoke Lemma A.6 to substitute
I(Xi;X<i | Vt) ≤ I(Xi;XSt

| Vt) = E[d i
reveal(t) | Vt]. Summing over i ∈ St yields Eq. 9.

B Pseudo Code

We provide the pseudo-code for our KLASS algorithm, implementing the unmasking rule described
in Section 4.2.

C Further Prior Works

In this section, we review several approaches for sampling from discrete diffusion models described
in prior work.
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Algorithm 1: KL-Adaptive Stability Sampling (KLASS)
Input: model M, total steps T, sequence length L, confidence threshold τ, KL

threshold ϵ, history window H, fallback count u
Output: Generated sequence x

[1] Initialize x← [MASK1:L], Pprev ← 0, KLbuf ← 0
[2] for t← 1 to T do
[3] ℓ←M(x).logits
[4] P← softmax(ℓ)
[5] c← max(P) // Get per-token confidence scores
[6] δ ← DKL(P ∥Pprev) // Get per-token KL scores

// Update KL history buffer
[7] KLbuf ← roll(KLbuf , shift = −1)
[8] KLbuf [: H]← δ
[9] Pprev ← P

// Identify stable tokens
[10] stable_kl← ∀(KLbuf < ϵ) // Check all history
[11] high_conf ← (c > τ)
[12] is_masked← isMask(x)
[13] ready← stable_kl ∧ high_conf ∧ is_masked
[14] if any(ready) then
[15] unmask_at_indices(x,P, ready)
[16] else

// Fallback: unmask top-u tokens
[17] scores← c · is_masked // Zero out unmasked tokens
[18] U ← topk_indices(scores, u)
[19] unmask_at_indices(x,P, U)

[20] return x

Ancestral sampling Generation proceeds by discretizing the reverse diffusion time-interval [0, 1]
into

0 = t0 < t1 < · · · < tT = 1.

To sample a sequence of length L, one initializes

z
(T )
1:L = [mask]L,

and for i = T, T − 1, . . . , 1 draws each coordinate independently:

z
(i−1)
ℓ ∼

{
δ
(
z
(i)
ℓ

)
, z

(i)
ℓ ̸= mask,

pθ
(
zℓ | z(i)1:L

)
, z

(i)
ℓ = mask,

ℓ = 1, . . . , L.

Because unmasked tokens remain unchanged, if at step i no new tokens are decoded then z
(i−1)
1:L =

z
(i)
1:L, and—when the denoiser µθ is time-invariant—its output at ti can be reused at ti−1, skipping

that network evaluation [27, 33]. Models whose µθ depends on t (e.g. SEDD [24]) must recompute
at every ti and cannot exploit this caching [24, 33, 37].

Exact simulation Exact simulation of the reverse CTMC in absorbing masked diffusion is achieved
via uniformization: one bounds the time-varying generator Q(t) by λ, samples

M ∼ Poisson(λT ), {τi}Mi=1
iid∼ Unif(0, T ),

and at each τi transitions from state x to y with probability Qx,y(τi)/λ, preserving the exact law of
the reversed path [7]. While unbiased, as the chain nears absorption the number of proposals—and
hence cost—can grow large.

Alternatively, the first-hitting sampler of Zheng et al. [55] draws each unmasking time without
discretization error: when n tokens remain masked, one samples

τn−1 = α−1
(
1− u1/n

n [1− α(τn)]
)
, un ∼ Unif(0, 1),

then un-masks exactly one token (chosen uniformly among the n) according to the model’s conditional
distribution. This procedure is unbiased but incurs O(L) sequential events, making runtime scale
with sequence length [55].
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τ -leaping Tau-leaping discretizes the reverse CTMC into fixed intervals of length τ , holding all
jump rates constant and applying transitions in parallel. Let R̂θ

t (x, x
′) be the learned rate from x to

x′ at time t. Over [t− τ, t] one draws

Kx→x′ ∼ Poisson
(
τ R̂θ

t (x, x
′)
)
,

and updates
xt−τ = xt +

∑
x′ ̸=xt

Kxt→x′
(
ex′ − ext

)
.

Under mild regularity, the global weak error scales as O(τ), recovering Gillespie’s exact algorithm
when τ → 0 [11]. Ren et al. derive a KL divergence bound

DKL

(
Lτ -leap ∥ pdata

)
≤ O(τ T ) + O(M T ) + O

(
e−cT/ logD

)
,

showing modest τ suffices even in high dimensions [31]. In practice, coordinates with multiple jumps
are rejected to enforce categorical integrity (a negligible event under suitable rates), trading O(1)
network evaluations per leap for an O(τ) discretization bias.

High-order samplers To improve on first-order τ -leaping, multi-stage integrators achieve higher
local accuracy. Ren et al. [32] introduce two-stage schemes with second-order convergence in KL.
The θ-RK-2 method computes an intermediate state

y∗ = yt +
∑
ν∈D

ν Poisson
(
µt(ν) θ∆t

)
,

then updates
yt−∆t = yt +

∑
ν∈D

ν Poisson
((

1− 1
2θ

)
µt(ν) +

1
2θ µ

∗
t (ν)

)
∆t,

where µ∗
t is the intensity at y∗. The θ-trapezoidal variant replaces the second stage with

yt−∆t = y∗ +
∑
ν∈D

ν Poisson
(
(α1 µ

∗
t − α2 µt)(ν) (1− θ)∆t

)
,

with α1 = 1
2θ(1−θ) , α2 = (1−θ)2+θ2

2θ(1−θ) . These reduce the discretization error to O(∆t2T ), enabling
3–5× fewer evaluations for comparable fidelity [32], and draw on high-order continuous schemes
[19].

D Experiment details and additional results

D.1 Reasoning tasks

D.1.1 Experiment details

We conduct our experiments using LLaDA 8B Instruct [26] and Dream 7B Instruct [51], which are
masked diffusion models capable of advanced reasoning. Across all settings, we fix the generation
length to 256 tokens. For LLaDA 8B Instruct, which supports semi-autoregressive sampling, we set
the block size to 64 for all experiments. Sampling temperature is set to 0 for LLaDA 8B Instruct, and
to 0.2 for Dream 7B Instruct. Additional experiments using Dream 7B Instruct with a temperature of
0 are reported in Appendix D.5.3. All sampling experiments are conducted on a single NVIDIA RTX
A5000 GPU.

D.1.2 Hyperparameter Selection Guideline

For hyperparameter selection, we adopt a lightweight three-step search procedure using a small
validation set of around 100 examples.

1. Initial KL Threshold Estimation: We obtain an initial estimate of the KL threshold by
inspecting the distribution of KL values during decoding.

2. Confidence Threshold Search: With the KL threshold fixed, we sweep confidence values
(0.9 down to 0.6) to identify the best trade-off between accuracy and decoding speed.
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3. KL Threshold Refinement: With the confidence threshold fixed, we refine the KL threshold
through a finer-grained search around the initial estimate.

This procedure is efficient, requiring only a small number of validation samples and negligible
computation relative to training. The final confidence and KL threshold configurations for each
dataset and model are summarized in Table 7.

Table 7: Experiment threshold configurations for KLASS

Model MATH GSM8K HumanEval MBPP

Conf KL Conf KL Conf KL Conf KL

LLaDA 0.6 0.010 0.6 0.015 0.9 0.010 0.7 0.010
Dream 0.9 0.005 0.9 0.001 0.8 0.001 0.9 0.001

D.1.3 Wall-clock time comparison

We compare the actual wall-clock time of the KLASS and Top-k samplers on the MATH dataset in
Table 8. Compared to the Top-k sampler with 256 steps (i.e., unmasking one token per step), KLASS
reduces generation time by 47.4% for LLaDA and by 16.1% for Dream).

When comparing KLASS with the Top-k sampler using a similar number of steps (128 for LLaDA
and 149 for Dream), the Top-k method achieves slightly lower generation times. However, this speed
gain comes at the cost of reduced accuracy. KLASS not only maintains a comparable runtime but
also improves accuracy, demonstrating its efficiency and effectiveness.

D.1.4 Statistical significance of Dream 7B Instruct results

In Table 9, we report the mean and standard deviation over three runs for all methods using Dream 7B
Instruct with a temperature of 0.2. Since the experiments with LLaDA 8B Instruct were conducted
with a temperature of 0, the results are deterministic, so we only report statistics for Dream.

D.2 Text generation

D.2.1 Experiment details

We evaluate KL-Adaptive Stability Sampling (KLASS) on a Masked Diffusion Language Model
(MDLM) [33] pre-trained on the OpenWebText corpus [12]. As baselines, we include (i) the original
autoregressive sampler (one-token-at-a-time unmasking), (ii) SEDD [24], and (iii) two MDLM
variants: the standard 512-step sampler and the “absorb” variant. For all diffusion-based methods, we
generate 1,000 sequences of length 1,024 tokens under a fixed 512-step schedule, applying nucleus
(top-p) filtering at p = 0.9, a history length n = 2, a KL divergence threshold ϵKL = 1e − 4, and
a confidence threshold τ = 0.57. To ensure a fair comparison under this fixed step count, we cap
the maximum number of tokens accepted by the thresholds at each step. In the fallback case where
tokens do not pass this criterion, we revert to the original MDLM. We report generative perplexity by
exponentiating the average token-level negative log-likelihood under three oracle models (LLaMA2
7B, LLaMA3 8B, and GPT-2), measure Shannon entropy of the predicted token distributions, and
compute MAUVE by comparing our 1,000 generated samples to 1,000 held-out segments from the
OpenWebText test split. All runs were executed on a single NVIDIA RTX A6000 GPU. To quantify
run-to-run variability, each method was repeated with three fixed random seeds (1, 267, and 359),
and we report mean ± one standard deviation over these replicates.

D.3 Image generation

D.3.1 Experiment details

We evaluate KLASS on the MMaDA [48]. We compare two samplers—confidence-based and KLASS.
For each sampler, we generate 10,000 class-conditional images with uniformly sampled ImageNet
labels under a 16-step, 32-step decoding budget. For KLASS, we fix the hyperparameters to history

28



Table 8: Wall-clock time per sample for Top-1 and KLASS decoding.
Model Dataset Accuracy Time (s) Speedup

Top-1 KLASS Top-1 KLASS

LLaDA

GSM8K 75.13 76.50 37.04 15.86 2.34×
MATH 31.40 33.80 38.40 21.41 1.79×
HumanEval 39.63 40.85 39.54 16.04 2.47×
MBPP 46.69 47.86 39.12 20.68 1.89×

Dream

GSM8K 79.75 80.44 29.66 22.26 1.33×
MATH 38.00 43.20 30.76 23.31 1.32×
HumanEval 58.53 59.76 32.01 11.52 2.78×
MBPP 63.81 64.59 31.89 17.65 1.81×

Table 9: Mean and standard deviation for each sampler across three runs (mean ± std).

MATH GSM8K

Sampler Acc (%) Step Acc (%) Step

Top-1 37.97± 0.12 256.00± 0.00 79.55± 0.14 256.00± 0.00
Random 18.73± 1.61 256.00± 0.00 37.35± 0.53 256.00± 0.00
Top-2 33.60± 0.16 128.00± 0.00 71.69± 0.35 128.00± 0.00
conf > 0.9 41.80± 0.00 95.10± 0.00 73.67± 0.15 74.81± 0.08
KL < 0.001 41.27± 0.09 162.49± 0.00 76.70± 1.14 150.02± 0.32
KLASS (ours) 43.20± 0.00 149.72± 0.00 79.43± 0.72 155.67± 0.41

(a) MATH & GSM8K

HumanEval MBPP

Sampler Acc (%) Step Acc (%) Step

Top-1 58.53± 0.00 256.00± 0.00 63.81± 0.00 256.00± 0.00
Random 18.09± 2.51 256.00± 0.00 28.14± 0.91 256.00± 0.00
Top-2 42.88± 0.29 128.00± 0.00 47.08± 0.32 128.00± 0.00
conf > 0.9 50.00± 0.00 52.47± 0.00 57.59± 0.00 72.49± 0.00
KL < 0.001 59.35± 0.29 73.94± 0.57 62.65± 0.00 108.15± 0.00
KLASS (ours) 59.35± 0.29 74.88± 0.74 64.59± 0.00 111.24± 0.00

(b) HumanEval & MBPP

Table 10: Generative perplexity, MAUVE and entropy on unconditional text generation. Here,
‘D3PM’ denotes an MDLM that is parameterized using D3PM.

Method MAUVE ↑ LLaMA2 ↓ LLaMA3 ↓ GPT2 ↓ Entropy ↑
*Data 1.000 7.00 9.40 14.80 5.44

AR 0.855± 0.033 10.97± 0.10 15.12± 0.18 12.07± 0.12 5.21± 0.02

SEDD 0.037± 0.012 53.09± 0.24 109.60± 0.79 105.40± 0.67 5.62± 0.00
D3PM 0.022± 0.006 41.82± 5.88 72.85± 12.69 76.70± 0.62 5.40± 0.00
MDLM 0.0043± 0.0002 30.88± 0.20 54.15± 0.27 51.78± 0.14 5.46± 0.00
KLASS 0.242± 0.082 26.94± 0.24 49.19± 0.40 45.50± 0.42 5.43± 0.01

length n = 1, KL divergence threshold ϵKL = 0.3, and confidence threshold τ = 0.1. For a fair
comparison with a fixed step count, we restrict the per-step reveal count allowed by the thresholds.
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FID is computed against the 50k ImageNet validation set using official Inception-v3 features, and IS
follows the standard protocol. All image-generation runs use a single NVIDIA RTX A5000.

D.4 Molecules

D.4.1 Experiment details

We mainly follow the experimental settings in [36] for the experiment. For training, we train
independent models for two target conditions: QED and ring count. We use diffusion step size 32,
taking 25,000 gradient steps. Small size diffusion transformer (DIT) which is composed of 12 DIT
blocks, hidden dimension of 768 is utilized for the architecture. We train the model with classifier-free
guidance (CFG) training with dropout condition probability of 0.1. We generate samples with CFG
strength γ = 1 for the experiment. Reported values in Table 4 for KLASS use ϵKL = 0.001 and
τ = 0.98 for both QED and Ring Count experiments. We utilize a single RTX 3090 gpu for both
training and the inference.

D.5 Ablations

D.5.1 Hyperparameter Sensitivity

To address sensitivity, we performed a grid search across diverse models and tasks (LLaDA/Dream
for reasoning, MDLM for molecular), demonstrating the robustness of KLASS.

Our findings show that configurations near the selected optimum consistently yield high accuracy
while significantly reducing sampling steps. For instance, on HumanEval with LLaDA (Table 11),
settings near (confidence = 0.9, KL = 0.01) maintain or improve upon the baseline accuracy of 39.63%
while using far fewer than 256 steps. Similar trends are observed for other settings (Tables 12, 13,
14, 15). Slightly different hyperparameter settings can sometimes outperform the main reported
configuration, indicating both robustness and potential for further tuning.

Table 11: Hyperparameter sensitivity on HumanEval with LLaDA. We report values as Accuracy
(Steps). Conf = 0.9 and KL = 0.01 are chosen for KLASS. The baseline accuracy is 39.63% with 256
steps.

KL = 0.015 KL = 0.01 KL = 0.005

Conf = 0.95 39.63 (65.19) 40.24 (99.29) 40.24 (103.14)
Conf = 0.9 40.24 (89.29) 40.85 (91.98) 40.24 (96.75)
Conf = 0.85 39.63 (84.98) 39.63 (88.78) 40.24 (94.48)
Conf = 0.8 39.02 (83.14) 39.02 (87.21) 40.85 (94.01)

Table 12: Hyperparameter sensitivity on MBPP with LLaDA. We report values as Accuracy (Steps).
Conf = 0.7 and KL = 0.01 are chosen for KLASS. The baseline accuracy is 48.64% with 256 steps.

KL = 0.015 KL = 0.01 KL = 0.005

Conf = 0.8 49.42 (122.37) 49.42 (134.52) 49.42 (134.52)
Conf = 0.75 49.03 (118.61) 49.42 (123.45) 48.25 (132.11)
Conf = 0.7 48.25 (116.24) 49.03 (127.81) 49.03 (130.67)
Conf = 0.65 46.30 (113.22) 48.64 (118.54) 49.42 (128.99)

D.5.2 Effect of history length

We evaluate the effect of varying the KL score history length in KLASS across different KL divergence
thresholds and confidence thresholds on the MATH dataset. Results are reported in Table 16 for both
LLaDA and Dream models.

For LLaDA, a history length of 2 offers the best balance of accuracy and efficiency, particularly at KL
threshold of 0.015 and a confidence threshold of 0.6. At the stricter threshold of 0.9, history length
has less impact, suggesting that a more relaxed confidence threshold allows more informative token
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Table 13: Hyperparameter sensitivity on HumanEval with Dream. We report values as Accuracy
(Steps). Conf = 0.8 and KL = 0.001 are chosen for KLASS. The baseline accuracy is 58.53% with
256 steps.

KL = 0.005 KL = 0.003 KL = 0.001 KL = 0.0005

Conf = 0.9 54.87 (64.78) 56.10 (67.41) 57.93 (74.86) 61.59 (79.57)
Conf = 0.85 57.32 (59.39) 55.49 (65.31) 59.15 (73.38) 60.98 (79.43)
Conf = 0.8 51.22 (58.09) 54.27 (62.82) 59.76 (73.73) 60.96 (79.51)
Conf = 0.75 48.78 (55.21) 53.05 (62.61) 59.15 (73.41) 60.37 (79.37)

Table 14: Hyperparameter sensitivity on MBPP with Dream. We report values as Accuracy (Steps).
Conf = 0.9 and KL = 0.001 are chosen for KLASS. The baseline accuracy is 63.81% with 256 steps.

KL = 0.005 KL = 0.003 KL = 0.001 KL = 0.0005

Conf = 0.95 65.37 (108.93) 65.37 (110.03) 64.59 (112.56) 64.59 (113.14)
Conf = 0.9 62.65 (103.99) 64.20 (107.09) 64.59 (111.24) 64.59 (112.65)
Conf = 0.85 64.20 (101.34) 63.81 (105.43) 65.37 (112.54) 64.59 (112.76)
Conf = 0.8 63.81 (96.02) 63.04 (103.22) 65.37 (112.52) 64.59 (112.82)

Table 15: Hyperparameter sensitivity on Molecule QED (MDLM). Conf = 0.98 and KL = 0.001 are
chosen for KLASS. The baseline QED is 0.526 with 32 steps. We report values as QED (Steps).

KL = 0.01 KL = 0.005 KL = 0.001 KL = 0.0005

Conf = 0.999 0.527 (18.61) 0.526 (18.61) 0.524 (18.58) 0.538 (18.45)
Conf = 0.99 0.515 (18.22) 0.521 (18.33) 0.543 (18.69) 0.537 (18.66)
Conf = 0.98 0.531 (18.43) 0.517 (18.38) 0.546 (18.78) 0.534 (18.82)
Conf = 0.96 0.529 (18.43) 0.535 (18.51) 0.534 (18.63) 0.543 (18.80)

candidates to be considered for unmasking. For Dream, the highest accuracy is achieved with history
length 2, ϵKL = 0.005, and τ = 0.9. At a lower confidence of 0.6, overall accuracy decreases, and
longer history helps stabilize token predictions. In summary, history length 2 is optimal across most
settings, providing improved accuracy with moderate computational cost. Therefore, we use history
length 2 for all reasoning tasks.

D.5.3 Effect of temperature

Table 17 shows that KLASS consistently improves over a deterministic Top-1 sampler across tasks
and temperature settings. Gains are especially strong at temperature 0, where KLASS boosts accuracy
by 6.22 to 8.00 percentage points and reduces steps by up to 79 %. At temperature 0.2, it still provides
solid improvements, with accuracy gains of 0.69 to 5.10 points and step reductions of 39 % to 71 %.
These results highlight KLASS’s ability to accelerate reasoning and improve accuracy, with even
greater boosts in more deterministic settings.

E Comparison to other diffusion samplers

E.1 Performance on reasoning tasks

To recap the baselines used in the main experiment (Table 1), we consider:

• Top-k: Tokens are generated by selecting the one with the highest confidence [6].
• Random: Tokens are generated in a purely random order [1].

Table 18 reports results for two additional samplers:

• Top-k Margin: Unmasks the token with the largest probability margin between the highest
and second-highest confidence [20].
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Table 16: Ablation results on the history length, across KL thresholds and models, grouped by
confidence thresholds.

LLaDA Dream

Conf KL History Length Acc (%) Steps Acc (%) Steps

0.6

0.010
1 32.2 77.13 37.6 123.73
2 33.8 128.62 39.6 165.68
3 32.2 153.60 41.8 182.93

0.015
1 30.4 89.04 34.8 83.11
2 33.2 121.11 35.6 119.33
3 33.2 146.19 36.6 146.40

0.020
1 31.0 74.42 34.4 73.66
2 31.0 117.01 29.6 104.19
3 30.6 140.56 34.6 128.46

0.9

0.010
1 31.4 128.76 42.2 141.36
2 30.6 152.75 41.6 169.45
3 30.8 170.66 42.0 183.51

0.015
1 31.0 127.05 41.0 126.42
2 30.8 149.72 43.2 149.72
3 31.0 167.11 40.2 165.37

0.020
1 30.8 125.85 40.4 120.35
2 30.8 148.92 42.0 142.75
3 31.2 164.75 40.4 158.01

Table 17: Effect of temperature on KLASS gains over Top-1 sampler with Dream.

Method MATH GSM8K HumanEval MBPP

Acc Steps Acc Steps Acc Steps Acc Steps

Temperature = 0.2

Top-1 38.10 256 79.75 256 58.53 256 63.81 256
KLASS 43.20 +5.10 150 -106 80.44 +0.69 156 -100 59.76 +1.23 74 -182 64.59 +0.78 111 -145

Temperature = 0

Top-1 25.80 256 41.70 256 29.27 256 33.46 256
KLASS 33.80 +8.00 121 -135 47.92 +6.22 106 -150 37.19 +7.92 53 -203 40.86 +7.40 76 -180

• Entropy: Tokens are ranked by their negative Shannon entropy, prioritizing those with
lower uncertainty (i.e., higher confidence) in the model’s prediction.

KLASS consistently outperforms Top-k Margin and Entropy-based methods with fewer sampling
steps. On LLaDA, it achieves top results on GSM8K and HumanEval in less than half the usual
iterations. While Entropy yields the highest accuracy on MATH and MBPP with 256 steps, its
performance drops sharply with fewer steps. In contrast, KLASS maintains high accuracy at lower
computational cost. On Dream, it also improves MATH and GSM8K accuracy while reducing steps,
demonstrating more efficient and effective sampling.

F Examples of generated samples

We present a comparison of reasoning in Table 19, texts in Figures 4 and 5.
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Table 18: Performance and sampling steps on reasoning benchmarks for Top-k Margin and Entropy
samplers.

MATH GSM8K HumanEval MBPP

Model Method Acc↑ Step↓ Acc↑ Step↓ Acc↑ Step↓ Acc↑ Step↓

LLaDA

Top-k Margin 32.0 256 74.14 256 39.63 256 47.86 256
Top-k Margin 31.4 128 74.45 128 30.48 128 40.08 128
Entropy 34.6 256 75.43 256 35.97 256 51.75 256
Entropy 32.6 128 73.01 128 25.60 128 40.08 128
KLASS (ours) 33.8 128.62 76.50 98.57 40.85 91.98 47.86 119.59

Dream

Top-k Margin 39.4 256 79.45 256 58.53 256 63.81 256
Top-k Margin 32.4 128 71.49 128 43.29 128 46.69 128
Entropy 39.4 256 79.45 256 58.53 256 63.81 256
Entropy 32.6 128 71.49 128 43.29 128 46.69 128
KLASS (ours) 43.2 149.72 80.44 156.24 59.76 73.73 64.59 111.24

G Limitation & Broader impact

G.1 Limitations

Further scalability to larger models In the absence of larger-size discrete diffusion models
compared to AR models, our method cannot be evaluated on the more challenging benchmarks such
as in agentic systems of LLMs [21, 38, 43].

Hyperparameter Search Cost Although we provide a lightweight guideline in Appendix D.1.2,
KLASS introduces a minimal search cost for its additional hyperparameters compared to simpler
baselines like Top-1 sampling. While our analysis in Appendix D.5.1 shows performance is robust
around the optimal points, further tuning could still be performed to find the best possible settings.

G.2 Broader impact

This work focuses on how to improve discrete diffusion sampler. However, improving diffusion
samplers, if misused, could facilitate the creation of harmful or misleading text, images, or even novel
molecules for malicious purposes.

To mitigate these risks, improvements in sampling techniques should be accompanied by a strong
emphasis on AI safety research and ethical guidelines. This includes developing robust mechanisms
for detecting and preventing the generation of harmful content and fostering public discourse on the
societal implications of advanced generative models.
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Table 19: Generated solutions with Dream on MATH.

Question If f(x) = 3x−2
x−2 , what is the value of f(−2) + f(−1) + f(0)?

Express your answer as a common fraction.

Answer 14
3

Top-1 First, let’s find f(−2): f(−2) = 3(−2)−2
−2−2 = −8

2 = −4

Next, let’s find f(−1): f(−1) = 3(−1)−2
−1−2 = −5

−3 = 5
3

Now, let’s find f(0): f(0) = 3(0)−2
0−2 = −2

−2 = 1

Finally, add: f(−2) + f(−1) + f(0) = −4 + 5
3 + 1 = −4 + 8

3 = −12
3 + 8

3 = −4
3

The final answer is −4
3 .

Random f(−2) = 3(−2)
−2−2 = 1, f(−1) = 3(−2)

−1−2 = 1, f(0) = 3(−2)
0−2 = 1.

So f(−2) + f(−1) + f(0) = 3.

The final answer is 3.

KLASS First, let’s find f(−2): f(−2) = 3(−2)−2
−2−2 = −8

−4 = 2

Next, let’s find f(−1): f(−1) = 3(−1)−2
−1−2 = −5

−3 = 5
3

Now, let’s find f(0): f(0) = 3(0)−2
0−2 = −2

−2 = 1

Finally, add: f(−2) + f(−1) + f(0) = 2 + 5
3 + 1 = 2 + 8

3 = 6
3 + 8

3 = 14
3

The final answer is 14
3 .

Figure 4: MDLM Generated Sample (512 tokens)

"each other, which Maria says has inspired her to create a new
breed of Guys and Watchers, defined as grooming clean-cut love rarities and
body and soul selfies that turn out just tatters or beauty products, whose more
than 22,000 total subscribers on Tinder were this particular couple from Montros.

Whats the point of taking care of love affairs for men? I do. I got into the
whole first meeting, when I was 12 years old, and the girls told me this, she
says. They said It is wonderful how you are, and I said, Youre beautiful.
You cant do it anymore. I really like that. It was beautiful to see them take
photos with other girls. They were so glad theyre this crazy thing..."

Figure 5: KLASS Generated Sample (512 tokens)

"Today, at age 84, I have the Bible streamed out of my personal library. How I
judge this; I think, it is debatable, but very hard to do so. Therefore, reading
the Bible does not be a prerequisite for Continuing to Live as a Christian Jew.
In this essay, or in other words, I hope youll all eventually find out, how the
Bible sounded as we know it, and I hope Im wrong if you choose.

Please consider this an honest, thoughtful comment, from an Atheists position.
The questions are ignored; the answers are honest. However, one should also pay
distinct attention to the answers. This is a phenomenon that has imposed upon
Americans and define Americas moral behavior. It follows that when a person sees
someone very clearly saying in his public statement that their hearts have
searched for the full page of the Bible in a nearly two millennium, it may be
good to sit down and make a comment. To anticipate multiple responses is shut
up. Either way would be a test of divine providence..."
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