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Abstract

Real-world robotic tasks stretch over extended horizons and encompass multiple1

stages. Learning long-horizon manipulation tasks, however, is a long-standing2

challenge, and demands decomposing the overarching task into several manageable3

subtasks to facilitate policy learning and generalization to unseen tasks. Prior4

task decomposition methods require task-specific knowledge, are computationally5

intensive, and cannot readily be applied to new tasks. To address these short-6

comings, we propose Universal Visual Decomposer (UVD), an off-the-shelf task7

decomposition method for visual long-horizon manipulation using pre-trained8

visual representations designed for robotic control. At a high level, UVD discov-9

ers subgoals by detecting phase shifts in the embedding space of the pre-trained10

representation. Operating purely on visual demonstrations without auxiliary in-11

formation, UVD can effectively extract visual subgoals embedded in the videos,12

while incurring zero additional training cost on top of standard visuomotor policy13

training. Goal-conditioned policies learned with UVD-discovered subgoals exhibit14

significantly improved compositional generalization at test time to unseen tasks.15

Furthermore, UVD-discovered subgoals can be used to construct goal-based re-16

ward shaping that jump-starts temporally extended exploration for reinforcement17

learning. We extensively evaluate UVD on both simulation and real-world tasks,18

and in all cases, UVD substantially outperforms baselines across imitation and19

reinforcement learning settings on in-domain and out-of-domain task sequences20

alike, validating the clear advantage of automated visual task decomposition within21

the simple, compact UVD framework. We provide videos and experiments results22

in uvd2023.github.io and Appendix.23

1 Method24

1.1 Universal Visual Decomposer25

Given an unlabeled video demonstration τ = (o0, ..., oT ), how might we discover useful subgoals?26

The key intuition of Universal Visual Decomposer is that, conditioned on a goal frame ot, some n27

frames (ot−n, ..., ot−1) preceding it must visually approach the goal frame; once we discover the28

first frame (ot−n) in this goal-reaching sequence, the frame that precedes it (ot−n−1) is then another29

subgoal. From ot−n−1, the same procedure can be carried out recursively until we reach o0. There30

are two central questions to address: (1) how to discover the first subgoal (last in terms of timestamp),31

and (2) how to determine the stopping point for the current subgoal and declare a new frame as the32

new subgoal.33

The first question is simple to resolve by observing that in a demonstration, the last frame oT is34

naturally a goal. Now, conditioned on a subgoal ot, we attempt to extract the first frame ot−n in the35
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sub-sequence of frames that depicts visual task progression to ot. To discover this first frame, we36

exploit the fact that several state-of-the-art pre-trained visual representations for robot control [1–3]37

are trained to capture temporal progress within short videos depicting a single solved task; these38

representations can effectively produce embedding distances that exhibit monotone trend over a short39

goal-reaching video sequence τ = (ot−n, ..., ot):40

dϕ(os; ot) ≥ dϕ(os+1; ot),∀s ∈ {t− n, . . . , t− 1}, (1)
where dϕ is a distance function in the ϕ-representation space; in this work, we set dϕ(o; o′) :=41

∥ϕ(o)− ϕ(o′)∥2 because several state-of-the-art pre-trained representations use the L2 distance as42

their embedding metric for learning. Given this, we set the previous subgoal to be the temporally43

closest observation to ot for which this monotonicity condition fails:44

ot−n−1 := argmax
oh

dϕ(oh; ot) < dϕ(oh+1; ot), h < t . (2)

Figure 1: Universal Visual Decomposer Pseu-
docode

The intuition is that a preceding frame that be-45

longs to the same subtask (i.e., visually apparent46

that it is progressing towards ot) should have a47

higher embedding distance than the succeeding48

frame if the embedding distance indeed captures49

temporal progression. As a result, a deviation50

from the monotonicity indicates that the preced-51

ing frame may not exhibit a clear relation to the52

current subgoal, and instead be a subgoal itself.53

Now, ot−n−1 becomes the new subgoal, and we54

apply (2) recursively until the full sequence τ is55

exhausted. see Fig. 1 for pseudocode. In prac-56

tice, (1) may not hold for every step due to noise57

in the embedding space, and we find that a sim-58

ple low pass filter procedure to first smoothen59

the embedding distances make the subgoal criterion (2) effective; see the supplementary website for60

details.61

Computational Efficiency. We highlight that our entire algorithm does not require any additional62

neural network training or forward computations on top of the one forward pass required to encode63

all observations for policy learning.64

1.2 UVD-Guided Policy Learning65

Now, we discuss several ways UVD-discovered subgoals can be used to supplement policy learning.66

Goal Relabeling. As UVD is performed on a trajectory basis, we can relabel all observations in67

a trajectory with the closest subgoals that appear later in time. In particular, for an action-labeled68

trajectory τ = (o0, a0, ..., oT , aT ) and UVD-discovered subgoals τgoal = (g0, ..., gm), we have that69

Label(ot) = gk where gk is the first subgoal occurring after time t. This procedure leads to an70

augmented, goal-relabeled trajectory τaug = {(o0, a0, g0), ..., (oT , aT , gm)}. Now, as all transitions71

are goal-conditioned, we can learn policies using any goal-conditioned imitation learning algorithm;72

for simplicity, we use goal-conditioned behavior cloning (GCBC) [4, 5].73

Reward Shaping. The above goal relabeling strategy applies to the imitation learning (IL) setting.74

Collecting the demonstrations needed for IL is, however, expensive. Instead, a reinforcement learning75

paradigm is feasible with much fewer demonstrations and comes with other ancillary benefits such76

as learned error recovery. This raises the question of how UVD-subgoals might be used with an RL77

paradigm. In particular, how can UVD help overcome the exploration challenge in long-horizon RL?78

Given that UVD selects subgoals so that the embedding distances in-between any two consecutive79

subgoals exhibit monotone trends, we define the UVD reward to be the goal-embedding distance80

difference computed using UVD goals:81

R(ot, ot+1;ϕ, gi) := dϕ(ot; gi)− dϕ(ot+1; gi) . (3)
where gi ∈ τgoal, and gi will be switched to gi+1 automatically during training when dϕ(ot+1; gi)82

is small enough. More details can be found on the supplementary website. This choice of reward83

encourages making consistent progress towards the goal and has been found in prior work [6–8, 2] to84

be particularly effective when deployed with suitable visual representations.85
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