

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MACEVAL: A MULTI-AGENT CONTINUAL EVALUATION NETWORK FOR LARGE MODELS

Anonymous authors

Paper under double-blind review

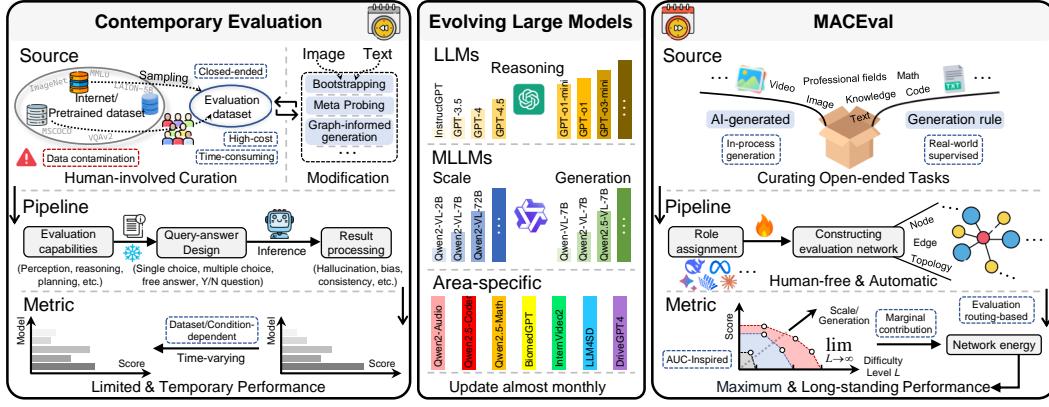


Figure 1: Paradigm comparison between current large model evaluations and our proposed **MACEval**.

ABSTRACT

Hundreds of benchmarks dedicated to evaluating large models from multiple perspectives have been presented over the past few years. Albeit substantial efforts, most of them remain closed-ended and are prone to overfitting due to the potential data contamination in the ever-growing training corpus of large models, thereby undermining the credibility of the evaluation. Moreover, the increasing scale and scope of current benchmarks with transient metrics, as well as the heavily human-dependent curation procedure, pose significant challenges for timely maintenance and adaptation to gauge the advancing capabilities of large models. In this paper, we introduce **MACEval**, a Multi-Agent Continual Evaluation network for dynamic evaluation of large models, and define a new set of metrics to quantify performance longitudinally and sustainably. MACEval adopts an interactive and autonomous evaluation mode that employs role assignment, in-process data generation, and evaluation routing through a cascaded agent network. Extensive experiments on 9 open-ended tasks with 23 participating large models demonstrate that MACEval is (1) human-free and automatic, mitigating laborious result processing with inter-agent judgment guided; (2) efficient and economical, reducing a considerable amount of data and overhead to obtain similar results compared to related benchmarks; and (3) flexible and scalable, migrating or integrating existing benchmarks via customized evaluation topologies. We hope that MACEval can broaden future directions of large model evaluation.

1 INTRODUCTION

Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have achieved unprecedented performance in diverse applications such as visual understanding (Achiam et al., 2023; Kavukcuoglu, 2025; Zhu et al., 2025), complex long-text reasoning (math and coding) (Anthropic, 2024; Grattafiori et al., 2024; Team, 2025), and spatial cognition (Wu et al., 2024b; Yang et al., 2024b). Evaluation holds an equally pivotal role as pre-training in the development of large models, functioning not only as a benchmark for understanding current performance but also as a critical

054 pillar for aligning model capabilities with intended objectives. In this regard, it is crucial to construct
055 transparent, trustworthy, and zero-contamination evaluations.
056

057 Despite the proliferation of various evaluation benchmarks, doubts about the genuine capabilities
058 of large models persist (Li et al., 2024d; Yang et al., 2024c), particularly when discrepancies arise
059 between leaderboard scores and real-world user experience. As shown in Fig. 1, we conclude
060 the following three fundamental issues from the perspectives of data source, evaluation pipeline,
061 and evaluation metric: **1) Closed-ended data.** Most benchmarks, alongside a corresponding well-
062 organized dataset, which contains evaluation materials (e.g., texts, images, or other modalities)
063 collected from the Internet or existing large-scale datasets, pose potential data contamination risks
064 of overlap with the training set (Xu et al., 2024; Deng et al., 2024). Once constructed, such
065 static datasets are susceptible to obsolescence due to overfitting, especially considering the current
066 rapid monthly update cycle of large models; **2) Human-dependent evaluation pipeline.** As the
067 scale and coverage of current benchmarks continue to expand, the drawbacks of heavily human-
068 involved annotation (e.g., query-answer design and data refinement) and result review that traditional
069 benchmarks (Wu et al., 2024a; Liu et al., 2024b; Yue et al., 2024a) rely on are gradually being
070 exposed. Its time-consuming and high-cost characteristics hinder timely maintenance and updates to
071 catch up with the models’ evolving performance; **3) Limited and temporary metric.** The current
072 performance quantification strategies that are limited by closed-ended datasets may not reflect the
073 model’s maximum capabilities. Besides, many metrics are transient in nature and fail to incrementally
074 reflect performance changes for future models, making longitudinal assessment challenging. Recently,
075 some researchers have proposed to address data-related issues by employing techniques such as
076 vision-language bootstrapping (Yang et al., 2024c), establishing specific data generation rules (Zhu
077 et al., 2024a), or meta probing agent (Zhu et al., 2024b). However, solutions for improving evaluation
078 pipelines and metrics remain largely unexplored.

079 To address these problems, we introduce **MACEval**, a dynamic continual evaluation framework that
080 measures the progress of large models autonomously by implementing a multi-agent collaboration
081 system. First, we model the traditional one-way problem-solving evaluation process as an interactive
082 interview process and assign three distinct roles in MACEval, *i.e.*, the interviewee, the interviewer,
083 and the supervisor, who are responsible for answering, developing the questions, and inspecting the
084 whole evaluation process, respectively. In particular, adhering to the design principles of open-ended
085 evaluation tasks, we deploy reliable and contamination-free data sources by integrating an in-process
086 generation strategy with real-world rule-based supervision, thus reducing unnecessary data collection
087 and evaluation expenditures. Furthermore, instead of relying on human procedures, MACEval
088 builds an agent-based evaluation network with a message-passing mechanism to automatically
089 perform assessments across different tasks through pre-defined evaluation topologies, which enables
090 hierarchical capability evaluation and is more flexible. Based on this, we propose an Area Under
091 Curve (AUC)-inspired evaluation routing-based metric to measure the overall performance of a
092 large model continually and maximally. Experiments on 23 popular large models across five typical
093 capabilities demonstrate the effectiveness and efficiency of the proposed MACEval.
094

095 Our contributions are summarized in three-fold:
096

- 097 • We introduce MACEval (Fig. 2), a multi-agent continual evaluation network for dynamic
098 large model assessment. By modeling the evaluation procedure as an autonomous interview,
099 MACEval effectively mitigates data contamination and enhances evaluation efficiency.
- 100 • We propose an AUC-inspired quantitative performance metric for large models to evaluate
101 longitudinally, which can be further incorporated with the evaluation routing to assess the
102 overall performance across various capabilities.
- 103 • We evaluate comprehensively the proprietary and open-source LLMs and MLLMs on several
104 open-ended tasks to demonstrate the effectiveness of the proposed MACEval. Evaluation
105 results show superior efficiency, flexibility, and scalability of MACEval compared to existing
106 benchmarks, thus offering valuable directions for future research on large model evaluation.

107 2 RELATED WORK

108 **Benchmarks for Large Models.** Benchmarks are the foundations of applied large generative model
109 research. Over the past few years, significant efforts have been made to evaluate LLMs and MLLMs

108 from multiple perspectives (Chang et al., 2024; Li et al., 2024c). From textual comprehension (Bai
109 et al., 2023; Bang et al., 2023) and visual perception (Liu et al., 2023; Fu et al., 2024; Li et al., 2024a)
110 to multistep reasoning (Shao et al., 2024; Chen et al., 2024b; Rajabi & Kosecka, 2024) and other
111 specialized domains (Bai et al., 2024; Chen et al., 2025; Yue et al., 2024a; He et al., 2024), evaluation
112 results not only serve as practical guidance for end users but also provide developers with actionable
113 insights for model optimization. With the rapid development of large models and their real-time
114 Internet data crawling strategy used for training, most benchmarks face the risk of being quickly
115 overfitted. Besides, the static, labor-intensive nature and sheer scale of existing benchmarks aggravate
116 the difficulty of maintenance and timely updates (Banerjee et al., 2024), thereby enhancing their
117 susceptibility to data contamination. Therefore, there is an urgent need to establish a long-lasting,
118 dynamic, and robust evaluation framework for large models.
119

120 **Data Contamination.** Recently, data contamination issues have gained widespread attention across
121 evaluation benchmarks for both LLMs and MLLMs (Carlini et al., 2023; Xu et al., 2024; Li &
122 Flanigan, 2024). Researchers from OpenAI and the Llama group conducted contamination studies
123 for GPT-4 (Achiam et al., 2023) and Llama2 (Touvron et al., 2023) on their pre-training data. Study
124 (Li et al., 2024d) reveals significant contamination rates in academic exam-based benchmarks such
125 as MMLU (29.1%) (Hendrycks et al., 2021) and C-Eval (45.8%) (Huang et al., 2023), primarily
126 attributed to the widespread dissemination and circulation of academic test questions. Deng et al.
127 (Deng et al., 2024) proposed a corpora overlap investigation protocol, TS-Guessing, and detected
128 57% exact match rate of ChatGPT in predicting masked choices in the MMLU test set. Yang et al.
129 (Yang et al., 2024c) reported image overlaps of over 84.4% and 33.2% between SEEDBench (Li et al.,
130 2024a) and pre-training datasets LAION-100M (Schuhmann et al., 2021) and CC3M (Sharma et al.,
131 2018), respectively. Such exposure can significantly impact the reliability of the evaluation, leading
132 to inflated results that do not accurately reflect the true capabilities of the large models. In this paper,
133 we address this problem by reforming the source of evaluation content, introducing AI-generated
134 data and an open-ended task design strategy to enhance benchmark robustness.
135

136 **Dynamic Evaluation.** One recent promising attempt to mitigate the issue of data contamination in
137 large model evaluations is dynamic evaluation. Wang et al. (2025) implemented several perturbations,
138 such as paraphrasing, adding noise, and reversing polarity, to construct evolving instances for testing
139 LLMs against diverse queries and data noise. DyVal (Zhu et al., 2024a) proposes to dynamically
140 generate evaluation samples under pre-defined constraints, which modulates a graph-based algorithm
141 generation structure and fine-grained control over problem difficulty by adjusting the structural
142 complexity. Afterwards, Zhu et al. (2024b) presented meta-probing agents, which automatically
143 refresh an original evaluation problem following psychometric theory on three basic cognitive abilities,
144 including language understanding, problem solving, and domain knowledge. In (Yang et al., 2024c),
145 the authors designed various bootstrapping strategies (e.g. image editing and sentence rephrasing)
146 with complexity control for both image and question modification. However, these studies primarily
147 focus on modifying the sources of evaluation data, without achieving fully dynamic and automatic
148 evaluation processes. Moreover, the corresponding evaluation metrics remain static and transient,
149 failing to adequately reflect the dynamic evolution characteristics of large models.
150

151 3 THE MACEVAL

152 3.1 DESIGN PRINCIPLES

153 **Focusing on Autonomous Evaluation Process.** Unlike existing LLM or MLLM benchmarks that
154 are strongly human-involving in source content collection and relatively independent in cross-ability
155 evaluation, our MACEval follows two basic principles: (1) Not requiring pre-collected evaluation
156 datasets, and all visual or text query-answer pairs are dynamically generated during the process; (2)
157 Progressive capability evaluation scheme with real-time task adjustment. We adhere to the principles
158 in building the MACEval, while making it applicable to evaluating all-round abilities.
159

160 **Pushing to the Limit.** Since existing benchmark datasets are finite and closed-ended, the measured
161 performance scores do not reflect the model’s maximum capabilities. To push the evaluated model
162 to the limit, we adopt a stress-testing strategy in which the model is continuously challenged with
163 increasingly difficult query-answer tasks until it fails to provide a correct response. Henceforth, we
164 can derive a long-standing performance metric by iteratively updating the envelope area formed by
165 connecting performance points across different difficulty levels.
166

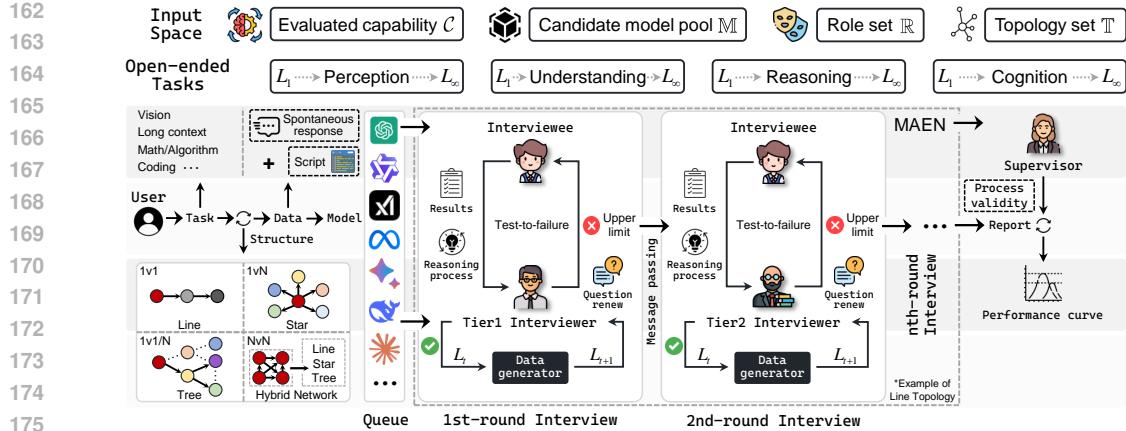


Figure 2: An overview of our proposed MACEval, which consists of three primary phases: evaluation capability determination, MAEN construction, and open-ended task selection. The pipeline models the evaluation of large models as a multi-round interview process. Specialized agents like interviewers for direct performance evaluation and third-party supervisors for validity assessment of the entire process with a message propagation mechanism, enabling collaboration between interviewer models and other functional models to efficiently and automatically produce reliable evaluation outputs.

3.2 CURATING OPEN-ENDED TASKS

Previous benchmarks for large models primarily focus on collecting raw materials from the Internet or existing general datasets to construct evaluation datasets, leading to potential data contamination risks due to overlaps between evaluation sets and the training data of large models (Touvron et al., 2023; Zhu et al., 2024a; Yang et al., 2024c). In this paper, we avoid such a problem by curating open-ended tasks with quantitatively adjustable difficulty for evaluation and adopt an in-process generation manner through the multi-agent evaluation strategy. This ensures the randomness of the evaluation process while guaranteeing the uniqueness of the target results under the given task. Specifically, we conduct a preliminary exploration of 9 tasks across five key domains currently emphasized in the field: visual perception, textual comprehension, math, algorithms, and coding (White et al., 2025), as listed in Tab. 1. See Appendix B for additional details.

Visual Perception. Evaluating the visual perception capabilities of MLLMs has always been one of the foundational aspects of recent research in MLLMs, featuring prominently in many releases and serving as a key reference for downstream task applications (Bai et al., 2025; Zhu et al., 2025). As illustrated in Fig. 3, we evaluate the low-level and high-level perception capabilities (Wu et al., 2024a) via an Image Quality Perception (IQP) task and a Content Understanding (CU) task, respectively. For the IQP task, we dynamically generate a set of Gaussian white noise with different intensities by increasing the variance and adding it to the original images. For the CU task, we query the MLLM to identify the number of repeated icons in images with progressively increasing grid sizes.

Text Comprehension. For the most fundamental text comprehension task in LLM evaluation, we include a Scrambled Text Understanding (STU) task, *i.e.*, inferring the meaning of a sentence while ignoring typos and misspellings, and a String Parsing (SP) task that evaluates the fine-grained character-level textual processing abilities. Concretely, for the STU task, we disrupt or mask the word structure to generate scrambled text. The proportion of perturbed words relative to the total number of words in the sentence serves as a variable for controlling the difficulty level. For the SP task, the length of the string, namely the number of irrelevant characters, serves as the difficulty variable.

Math. Mathematical reasoning is a cornerstone for assessing the ability of LLMs to resolve complex problems and make multi-hop reasoning, which plays a significant role in general LLM research (Yang et al., 2023; Yue et al., 2024b). Current math-specific benchmarks (Zhang et al., 2024; Xia et al., 2025) mainly collect diverse sets of problems from major textbooks and online resources, such as geometry, linear algebra, and calculus, but rarely provide a quantitative grading of problem difficulty, thereby hindering their direct applicability in the design of open-ended evaluation tasks. Here, we consider the basic arithmetic calculations and encompass two intuitive difficulty control means, *i.e.*, changing the numerical scale and the number of operations, as shown in Fig. 3.

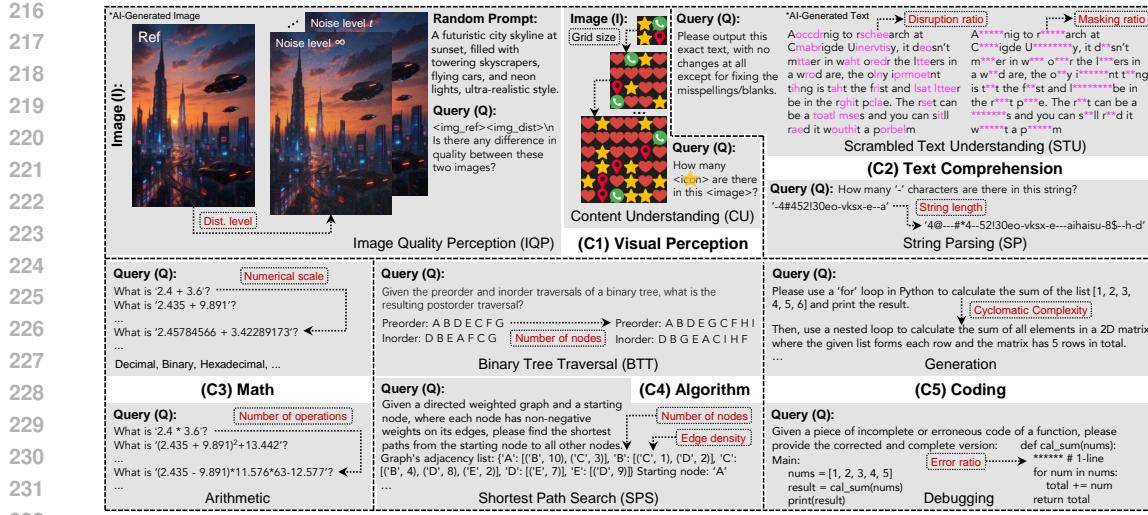


Figure 3: A data card of 9 open-ended tasks that evaluate the visual perception, text comprehension, math, algorithm reasoning, and coding abilities of large models.

Algorithm. As a derivative task of basic mathematics, solving algorithmic problems constitutes another important aspect for assessing the reasoning capabilities of LLMs. Specifically, we select two common tasks in computer science, Binary Tree Traversal (BTT) and Shortest Path Search (SPS), for evaluation. Among them, the number of nodes and the edge density that determine the complexity of the data structure are taken as the variables.

Coding. Coding is among the most practical capabilities of LLMs in real-world scenarios. Following (Chen et al., 2024c; Jain et al., 2025), we design two open-ended code generation and debugging tasks with dynamic difficulty. The generation task specifically focuses on the ability of models to parse a cyclomatic complexity evolved coding question statement and write an executable answer. The debugging scenario assesses the self-repair capabilities of LLMs. Here, the model is given a problem statement and its corresponding code with partially removed content (*missing ratio*), and then prompted to generate a repaired version.

3.3 DEFINITION AND FORMULATION

We define the input space of a multi-agent system as $\mathbb{I} = (\mathbb{M}, \mathbb{R}, \mathbb{T})$, where \mathbb{M} denotes the candidate pool of LLMs or MLLMs. \mathbb{R} represents the set of pre-defined agent roles (e.g., interviewee, interviewer, and supervisor), and \mathbb{T} is the set of evaluation topologies, i.e. collaboration modes, such as point-to-point link, tree, star, and multi-hop network. Within the evaluation space, a Multi-Agent Evaluation Network (MAEN) instance is defined as follows:

Definition 1 (Multi-Agent Evaluation Network) *The graph-based MAEN \mathcal{G} includes several large models with distinct identities (node type), participating collaboratively (edge type) in a configurable (topological type) evaluation process:*

$$\mathcal{G} = \{\{\mathcal{M}_i\}_{i=1}^M, \{\mathcal{R}_j\}_{j=1}^R, \{\mathcal{T}_k\}_{k=1}^T\}, \quad \mathcal{M}_i \in \mathbb{M}, \quad \mathcal{R}_j \in \mathbb{R}, \quad \mathcal{T}_k \in \mathbb{T}, \quad (1)$$

where \mathcal{M} , \mathcal{R} , and \mathcal{T} correspond to the selected large model, role function, and evaluation network structure, respectively. M , R , and T are the number of each corresponding component.

Definition 2 (Multi-Agent Continual Evaluation Stream) *The MAEVal stream can be denoted by a mapping function $f : \mathbb{M} \times \mathbb{R} \times \mathbb{T} \rightarrow \mathcal{G}$ that maps the input space \mathbb{I} to an MAEN \mathcal{G} tailored for the evaluated capability C from a non-stationary data stream $\mathcal{S} = \{(q, a)_0, (q, a)_1, \dots, (q, a)_\infty\}$, where data tuple $(q, a)_t$ (query-answer pair) is dynamically generated via a step t -dependent function.*

270 **Definition 3 (Message Passing)** Given a MAEN \mathcal{G} , an interviewee node \mathcal{M}^E , a set of downstream
 271 adjacent interviewer nodes $\mathcal{U} = \{\mathcal{M}_1^I, \dots, \mathcal{M}_N^I\}$, and the message (dialogues during the evaluation
 272 process) $\mathcal{D} = \{d_1^t, \dots, d_N^t\}$, where N is the size of \mathcal{U} , and d_1^t denotes the message generated during
 273 the interaction between \mathcal{M}^E and \mathcal{M}_1^I at step- t , message passing aggregates all the messages \mathcal{D} to
 274 higher-tier interviewer nodes $\tilde{\mathcal{M}}^I$ to produce updated data, which can be formulated as:
 275

$$(\hat{q}, \hat{a})_{t+1} = \tilde{\mathcal{M}}^I ((q, a)_t, \mathcal{D}). \quad (2)$$

277 Specifically, when the message passing terminates at a supervisor node, the aggregated messages
 278 store the information of the entire MAEN, which reflects the validity of the evaluation process.
 279

280 3.4 A FRAMEWORK FOR MACEVAL

281 The proposed MACEval network is configured by three main factors: **1)** the role assignment defines
 282 the basic functionality of network nodes; **2)** the evaluation topology determines the sequential order
 283 and interdependencies within the evaluation process; **3)** the evaluation network-based metrics and the
 284 evaluating continually mechanism provides comprehensive and sustainable capability assessment.
 285

286 **Role Assignment.** As shown in Fig. 2, the evaluation process for large
 287 models is conceptualized as an interview-like procedure, where tasks are
 288 posed sequentially or in parallel for probing different capabilities. We
 289 mainly involve three types of agents, *i.e.*, the interviewer, the interviewee,
 290 and the supervisor. Among them, the interviewee, namely the evaluated
 291 model, generates responses according to the given queries. The
 292 interviewer performs real-time performance evaluations and determines
 293 whether to transform a given question into a new one with dynamically
 294 increasing difficulty based on the interviewee’s responses. To ensure
 295 the validity of the evaluation process and to avoid scenarios such as
 296 repetitive questioning or posing questions that do not meet evaluation
 297 requirements, we deploy a third-party model distinct from the evaluation
 298 and interviewer models to serve as a supervisory component.

299 **Evaluation Topology.** Prior benchmarks run each task independently
 300 and average the task metrics on separate subsets of the collected dataset
 301 to get an overall metric, neglecting the inherent dependencies between
 302 tasks while failing to support progressive and sustainable evaluation
 303 ([Chang et al., 2024](#)). In MACEval, we introduce four evaluation topologies, including line, star,
 304 tree, and hybrid network, to establish the relationships among different evaluation streams. This
 305 also enables users to construct customized evaluation networks that better align with the assessment
 306 requirements of their target capability. More details are in Appendix C.

307 **Evaluating Continually.** During the evaluation phase, an interviewer continually updates the data
 308 tuples $(q, a)_t$ based on new responses from the interviewee model, until it fails to answer correctly at
 309 a given level of difficulty. After that, the interviewee model, together with its performance records
 310 from the previous round, enters the next interview round. Such a spontaneous evaluation process
 311 goes beyond the limitations imposed by fixed dataset size, enabling deeper exploration of the model’s
 312 extreme performance while avoiding the manual collection of excessive and redundant data. Given
 313 the above objectives, we design an Area Under Curve (AUC)-inspired metric:
 314

$$\text{ACC-AUC} = \int_a^{\arg \min_t \{t | \text{ACC}(t)=0\}} \text{ACC}(t) dt, \quad \text{ACC}(t) = \frac{\sum_{r=1}^{Q_{total}} \mathbf{1} \{ \mathcal{M}^E (q_{r,t}) \cong a_{r,t} \}}{Q_{total}}, \quad (3)$$

315 where a is the initial difficulty level, and $\mathbf{1} \{ \cdot \}$ represents the indicator function, which returns 1 if
 316 the condition inside the braces holds, and 0 otherwise. $q_{r,t}$ and $a_{r,t}$ are the r -th query-answer pair
 317 at difficulty level t . Q_{total} denotes the total number of query-answer pairs at a certain level. This
 318 simple and generally-applicable strategy enables us to evaluate the large models *longitudinally* and
 319 *sustainably*, as verified in our experimental analysis (Fig. 5).

320 3.5 EVALUATION ROUTING-BASED METRIC

321 Building upon the single-dimensional evaluation strategy discussed previously, we introduce a novel
 322 evaluation routing-based metric to measure the overall capability of large models. As illustrated in
 323

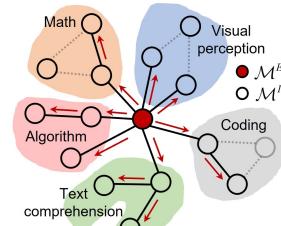


Figure 4: Example of an evaluation network, where colored clusters represent evaluation agents for different capabilities and red arrows denote activated evaluation routes.

324
325 Table 2: The performance of different interviewees (LLMs) on 4 text-only capabilities under a 1-hop
326 line evaluation topology configuration. We report ACC-AUC and the difficulty level corresponding
327 to the maximum performance, separated by a slash. The best results are highlighted in bold.

Interviewee (LLM)	Interviewer	Text Comprehension			Math		Algorithm			Coding	
		STU _{disrupt}	STU _{mask}	SP	Arith. _{scale}	Arith. _{oper}	BTT	SPS _{node}	SPS _{edge}	Gener.	Debug.
GPT-4o	GPT-4o	8.857/10	6.043/7	2.6/6	1.7/2	0.4/1	3.1/4	5.5/10	4.1/6	6.1/11	14.3/16
GPT-4.1		8.438/9	4.815/6	3.6/10	1.8/2	0.3/1	2.6/4	5.2/10	3.7/6	6.3/12	14.8/16
Gemini 1.5 Pro		8.766/10	5.289/6	1.4/3	1.3/2	0.5/1	2.8/3	5.4/10	4.2/6	6.1/12	14.6/18
Gemini 2.0 Flash	GPT-4o	8.898/10	5.049/6	2.8/8	1.6/2	0.6/1	3.1/4	6.1/10	4.5/7	7.3/13	16.6/22
Gemini 2.5 Pro		8.978/10	6.062/7	3.8/9	3.3/5	0.9/3	3.2/4	6.2/10	4.9/8	7.8/15	17.8/22
DeepSeek-V3	GPT-4o	5.293/6	5.099/6	2.0/5	2.6/4	0.7/1	3.0/3	4.4/10	4.6/6	6.4/13	15.3/17
DeepSeek-R1		9.871/10	5.936/7	8.3/10	7.2/10	0.9/1	3.1/5	9.3/13	7.2/9	7.5/13	17.9/20
Qwen3-8B		7.626/10	2.846/4	1.4/4	1.0/1	0.9/2	1.1/2	4.2/8	2.8/4	5.8/8	11.5/14
Qwen2.5-7B		6.797/8	3.003/4	0.9/2	0.9/1	0.5/1	1.6/2	3.4/8	2.6/4	5.2/8	9.8/13
Qwen2.5-14B	GPT-4o	7.903/10	3.327/4	2.0/5	1.0/1	0.5/1	2.2/3	4.4/8	3.0/4	5.5/8	11.2/13
Qwen2.5-72B		8.543/10	4.274/5	2.2/5	1.0/1	0.5/1	2.4/3	2.8/4	3.7/5	5.8/9	13.9/15
Qwen2-7B		7.339/9	3.053/4	0.5/1	0.7/1	0.4/1	1.2/2	2.8/7	2.4/4	4.7/7	8.5/13
Llama3.3-70B		7.619/10	4.564/6	2.8/8	1.0/1	0.5/1	2.6/3	4.1/8	3.3/4	5.7/9	13.6/14
Llama3.2-3B	GPT-4o	5.641/8	2.369/3	0.1/1	0.3/1	0.3/1	0.6/1	1.4/4	1.7/3	2.2/5	7.3/8
Llama3.1-8B		6.740/9	3.006/4	0.7/4	0.2/1	0.4/1	0/0	2.9/8	2.1/4	4.6/7	9.3/12

340
341 Fig. 4, given an evaluation network with activated evaluation routing \mathcal{P} , the comprehensive ability of
342 the interviewee model \mathcal{M}^E can be measured as follows:

$$\epsilon_{\text{overall}} = \sum_{(\mathcal{M}^E, \mathcal{M}^I) \in \mathcal{P}} \text{ACC-AUC}_{(\mathcal{M}^E, \mathcal{M}^I)}. \quad (4)$$

343 This metric quantifies the overall model performance as the evaluation network energy derived from
344 edge (evaluation route) weights. It considers the intrinsic dependencies among different capability
345 assessments while enhancing user-oriented customization, thereby enabling a self-organizing and
346 scalable evaluation framework.

347 4 EXPERIMENTS

351 4.1 EXPERIMENTAL SETUP

353 **Benchmark Candidates.** Our experiments include 23 large models total, with a mix of cutting-edge
354 proprietary models, open-source LLMs, and MLLMs. Specifically, for proprietary models, we
355 include OpenAI models such as GPT-4o (OpenAI, 2024), and GPT-4.1 (2025-04-14) (Achiam
356 et al., 2023), Google models such as Gemini-1.5-Pro, Gemini-2.0-Flash (Reid et al., 2024), and
357 Gemini-2.5-Pro (Kavukcuoglu, 2025). For open-source LLMs, we include three mainstream language
358 backbones widely used in many large models, *i.e.*, the DeepSeeks (DeepSeek-V3 (Liu et al., 2024a)
359 and DeepSeek-R1 (Guo et al., 2025)), the Qwens (Qwen3-8B (Team, 2025), Qwen2.5-{7, 14, 72}B
360 (Team, 2024), Qwen2-7B (Yang et al., 2024a)), and the Llamas (Llama3.3-70B, Llama3.2-3B,
361 Llama3.1-8B) (Grattafiori et al., 2024). For open-source MLLMs, we include models such as
362 Qwen2.5-vl-{3, 7, 72}B (Bai et al., 2025), Qwen2-vl-7B (Wang et al., 2024), InternVL3-8B (Zhu
363 et al., 2025), InternVL2.5-{8, 38}B (Chen et al., 2024d), InternVL2-8B (Chen et al., 2024e).

364 **Implementation Details.** For all models, we perform evaluation using their respective templates
365 under zero shot settings. The initial difficulty level a and the total number of queries in each level
366 Q_{total} are set to 1 and 10, respectively. The `max_new_tokens` is set to the maximum value
367 supported by each model to ensure the completeness of the response. We employ SSH connections
368 to establish communication between the local interviewer model and the remote interviewee model
369 running on a server. All experiments are conducted using a maximum of 8 RTX4090 24GB GPUs.

370 4.2 MAIN RESULTS

371 In Tab. 2 and Fig. 5, we analyze the performance of 15 LLMs and 8 MLLMs under different settings
372 on 9 open-ended tasks. Our evaluation brings several important findings, as follows:

373 **1) Identifying the gap in upper-bound performance via continual evaluation.** As shown in Tab. 2,
374 although the performance of different models varies, models of the same scale or generation generally
375 share a similar upper limit of performance. This phenomenon is particularly evident in arithmetic
376 and algorithmic tasks that require strong reasoning abilities, reflecting the common performance
377 bottleneck of current LLMs.

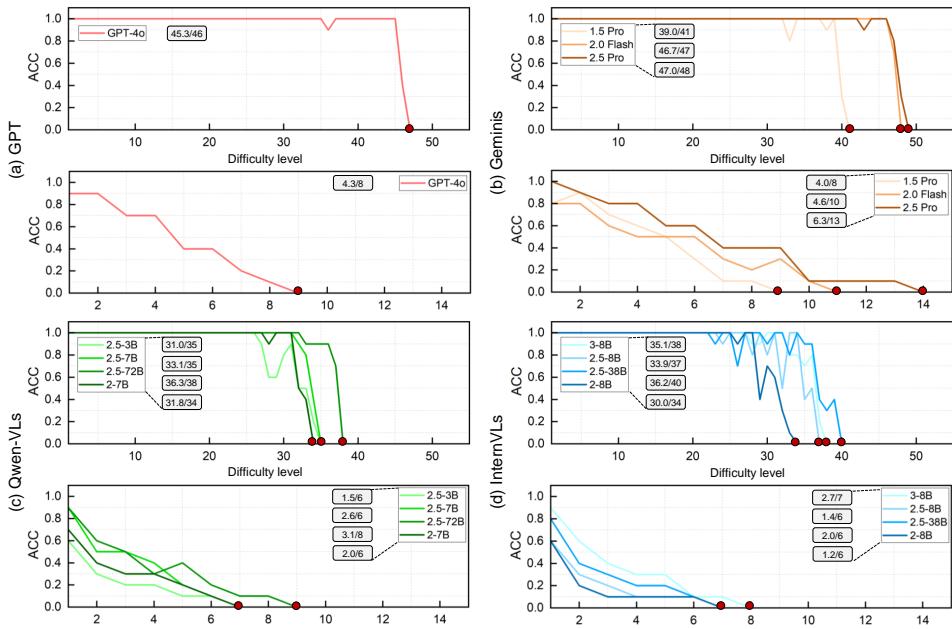


Figure 5: Performance curves and ACC-AUC values of different series of MLLMs. The positions of the red circles indicate the upper bound of the model’s capabilities. The upper and lower parts of the subfigure depict the IQP and CU tasks, respectively.

2) Models with downloadable weights currently lag behind the top-performing models. All five proprietary models, especially the more advanced Gemini 2.5 Pro and GPT-4o, have shown superior performance to open-source models, such as the Qwen 2.5 and Llama 3.3 series, on most tasks. It is worth noting that DeepSeek-R1, with its powerful reasoning capabilities, outperforms proprietary models on over 60% of the tasks.

3) Scaling law vs. Technological advancement. Tab. 2 and Fig. 5 show a notable performance improvement in the evaluated capabilities when comparing larger models to smaller ones, as well as newer model generations to their predecessors, showing a relatively strong scaling law. Meanwhile, the latest Qwen3-8B benefited from its thinking mode, significantly surpassing the previous Qwen2.5-14B, and almost on par with Qwen2.5-72B in math and coding.

4) Steep decline in low-level visual perception. In Fig. 5, we observe a sharp performance cliff in the low-level IQP tasks, which suggests potential Just Noticeable Difference (JND) points in the vision backbones of MLLMs. Besides, the InternVL series exhibits more unstable perceptual responses compared to the Qwens and other proprietary models.

4.3 CORRELATION ANALYSES

In Fig. 6, we compute the Pearson correlation coefficient among all pairs of tasks. Results show that, unsurprisingly, text comprehension, algorithm reasoning, and coding all correlate with one another (avg. $r > 0.81$). Moreover, math tasks involving intensive numerical computation correlate relatively weakly with all other categories, which, together with the extremely low maximum capability level reported in Tab. 2, indicates the uniqueness of this capability. We further investigate the relationship between maximum capability level and long-term ACC-AUC in Fig. 7. It can be observed that these two dimensions are highly correlated (avg. $r \approx 0.888$) in all tasks, and few models reach saturated performance within a limited capability level.

4.4 EFFECT OF DIFFERENT EVALUATION TOPOLOGIES

1) Message passing improves the quality of question generation. We focus on two types of question generation errors caused by hallucinations from the interviewer model during the evaluation process,

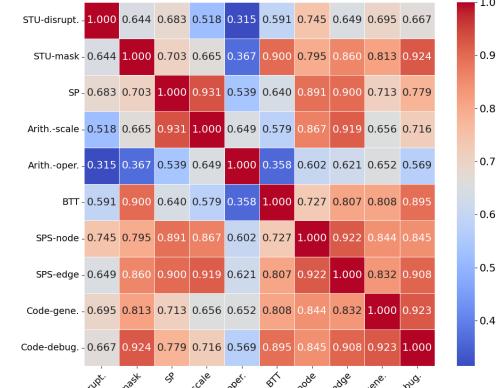


Figure 6: Correlations across different tasks.

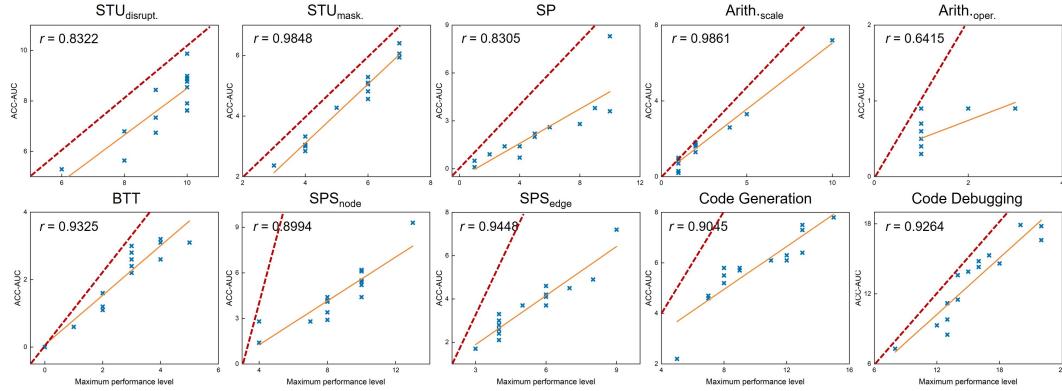


Figure 7: Maximum performance level vs. ACC-AUC. We plot the performance of 15 LLMs compared to the corresponding maximum difficulty levels with each a fit line and correlation coefficient. The red dotted lines denote the performance saturation line.

Table 3: Error rate of *w/* and *w/o* message passing (GPT-4o as interviewer). End nodes are in bold.

Topology	STU _{disrupt.}	STU _{mask.}	SP	Arith. _{scale}	Arith. _{oper.}	BTT	SPS _{node}	SPS _{edge}	Generation	Debugging
1-hop line (<i>w/o</i>)	36%	42%	18%	2%	50%	52%	26%	36%	30%	18%
Node sequence	STU _{disrupt.} >STU _{mask.}			Arith. _{scale} >Arith. _{oper.}		SPS _{node} >SPS _{edge}			Generation->Debugging	
2-hop line (<i>w/</i>)	18% (-24%)			4% (-46%)		22% (-14%)			14% (-4%)	

i.e., format violations and redundant questions. Tab. 3 demonstrates the effectiveness of the message passing mechanism in improving the question quality between two related tasks with an average error rate reduction of 22%, which serves as a special prompt engineering. Since the subject of the visual perception tasks is the image itself, no obvious mistakes in question generation were detected.

2) Overall performance comparison based on the evaluation network energy. As shown in Fig. 10, we compute the overall performance for 15 LLMs based on the evaluation routes in Fig. 4. To ensure fairness, we remove two 1-hop visual perception-related evaluation nodes, which are not affected by the message-passing mechanism. We notice that proprietary models still maintain a dominant position. The characteristic of $\epsilon_{\text{overall}}$ lies in considering underlying inter-task dependencies, incorporating information-aware evaluation routing instead of independently assessing and aggregating task scores.

Table 4: Results of different interviewers.

Interviewee	Interviewer	STU _{mask.}	Arith. _{scale}	BTT	Debug.
Gemini 1.5 Pro	Gemini 2.5 Pro	5.218/6	0.8/1	2.8/3	14.9/17
	DeepSeek-V3	5.087/6	1.4/2	3.3/4	14.1/15
	Qwen2.5-7B	5.083/6	1.3/2	2.6/3	12.9/13
Qwen3-8B	Gemini 2.5 Pro	3.095/4	1.0/2	1.4/2	11.2/14
	DeepSeek-V3	2.818/4	0.9/2	1.4/2	11.7/14
	Qwen2.5-7B	2.905/4	1.0/2	2.0/3	10.9/12
Llama3.1-8B	Gemini 2.5 Pro	2.946/4	0.1/1	0/0	9.6/12
	DeepSeek-V3	2.930/4	0.3/1	0/0	9.4/12
	Qwen2.5-7B	2.998/4	0.2/1	0/0	9.0/11

4.5 ANALYSIS OF INTERVIEWER DIVERSITY

Next, we discuss the performance differences under different interviewer settings. As listed in Tab. 4, the evaluation results remain consistent across different interviewers in most scenarios. However, when evaluating tasks that involve more complex text generation, using a weaker model as the interviewer may limit the exploration of the interviewee model’s upper-bound capabilities. See more experimental results in the Appendix. D.

5 CONCLUSION

This work introduces MACEval, a novel dynamic evaluation framework for large generative models, which provides effective solutions to avoid data contamination and reduce human participation by a multi-agent system-based automatic evaluation network. To identify the upper bound of performance and evaluate continually, we propose an AUC-inspired metric, further incorporating the evaluation topologies to measure the overall performance of large models. Evaluation results on five high-profile capabilities, including visual perception, text comprehension, math, algorithm reasoning, and coding, demonstrate the effectiveness, efficiency, and flexibility of MACEval compared to existing benchmarks. We believe that employing large models as agents to form the autonomous evaluation network presents a promising direction for achieving safe and fair evaluation.

486 REFERENCES

487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Stability AI. Introducing stable diffusion 3.5. <https://stability.ai/news/introducing-stable-diffusion-3-5>, 2024. Accessed: 2025-05-04.

492 Anthropic. Introducing the next generation of claudie. <https://www.anthropic.com/news/claudie-3-family>, 2024. Accessed: 2025-04-28.

493 Fan Bai, Yuxin Du, Tiejun Huang, Max Q-H Meng, and Bo Zhao. M3d: Advancing 3d medical
494 image analysis with multi-modal large language models. *arXiv preprint arXiv:2404.00578*, 2024.

495 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
496 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
497 2025.

498 Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia
499 Xiao, Haozhe Lyu, et al. Benchmarking foundation models with language-model-as-an-examiner.
500 *Advances in Neural Information Processing Systems*, 36:78142–78167, 2023.

501 Sourav Banerjee, Ayushi Agarwal, and Eishkaran Singh. The vulnerability of language model
502 benchmarks: Do they accurately reflect true llm performance? *arXiv preprint arXiv:2412.03597*,
503 2024.

504 Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
505 Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
506 chatgpt on reasoning, hallucination, and interactivity. In *Proceedings of the 13th International
507 Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
508 Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 675–718,
509 2023.

510 Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
511 Zhang. Quantifying memorization across neural language models. In *The Eleventh International
512 Conference on Learning Representations*, 2023.

513 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
514 Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM
515 transactions on intelligent systems and technology*, 15(3):1–45, 2024.

516 Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
517 Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge with
518 vision-language benchmark. In *Forty-first International Conference on Machine Learning*, 2024a.

519 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M3cot: A novel
520 benchmark for multi-domain multi-step multi-modal chain-of-thought. In *Proceedings of the 62nd
521 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
522 8199–8221, 2024b.

523 Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
524 self-debug. In *The Twelfth International Conference on Learning Representations*, 2024c.

525 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
526 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
527 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024d.

528 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
529 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
530 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
531 Vision and Pattern Recognition*, pp. 24185–24198, 2024e.

540 Zijian Chen, Tingzhu Chen, Wenjun Zhang, and Guangtao Zhai. Obi-bench: Can lmms aid in
541 study of ancient script on oracle bones? In *The Thirteenth International Conference on Learning*
542 *Representations*, 2025.

543 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
544 Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An
545 open platform for evaluating llms by human preference. In *International Conference on Machine*
546 *Learning*, pp. 8359–8388. PMLR, 2024.

547 Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating data
548 contamination in modern benchmarks for large language models. In *Proceedings of the 2024*
549 *Conference of the North American Chapter of the Association for Computational Linguistics: Human*
550 *Language Technologies (Volume 1: Long Papers)*, pp. 8698–8711, 2024.

551 Mucong Ding, Chenghao Deng, Jocelyn Choo, Zichu Wu, Aakriti Agrawal, Avi Schwarzschild,
552 Tianyi Zhou, Tom Goldstein, John Langford, Animashree Anandkumar, et al. Easy2hard-bench:
553 Standardized difficulty labels for profiling llm performance and generalization. *Advances in Neural*
554 *Information Processing Systems*, 37:44323–44365, 2024.

555 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
556 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
557 benchmark for multimodal large language models, 2024. URL <https://arxiv.org/abs/2306.13394>.

558 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
559 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
560 models. *arXiv preprint arXiv:2407.21783*, 2024.

561 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
562 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
563 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

564 Zheqi He, Xinya Wu, Pengfei Zhou, Richeng Xuan, Guang Liu, Xi Yang, Qiannan Zhu, and
565 Hua Huang. Cmmu: a benchmark for chinese multi-modal multi-type question understanding
566 and reasoning. In *Proceedings of the Thirty-Third International Joint Conference on Artificial*
567 *Intelligence*, pp. 830–838, 2024.

568 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
569 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
570 *Learning Representations*, 2021.

571 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
572 Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese
573 evaluation suite for foundation models. *Advances in Neural Information Processing Systems*, 36:
574 62991–63010, 2023.

575 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
576 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
577 evaluation of large language models for code. In *The Thirteenth International Conference on*
578 *Learning Representations*, 2025.

579 Koray Kavukcuoglu. Gemini 2.5: Our most intelligent ai
580 model. https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/?utm_source=deepmind.google&utm_medium=referral&utm_campaign=gdm&utm_content=#gemini-2-5-thinking, 2025. Accessed: 2025-04-30.

581 Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
582 Grefenstette, Samuel R Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
583 persuasive llms leads to more truthful answers. In *International Conference on Machine Learning*,
584 pp. 23662–23733. PMLR, 2024.

594 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024. Accessed: 2025-04-28.
595
596
597 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
598 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF*
599 *Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024a.
600 Changmao Li and Jeffrey Flanigan. Task contamination: Language models may not be few-shot
601 anymore. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
602 18471–18480, 2024.
603
604 Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
605 v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024b.
606
607 Jian Li, Weiheng Lu, Hao Fei, Meng Luo, Ming Dai, Min Xia, Yizhang Jin, Zhenye Gan, Ding Qi,
608 Chaoyou Fu, et al. A survey on benchmarks of multimodal large language models. *arXiv preprint*
609 *arXiv:2408.08632*, 2024c.
610
611 Yucheng Li, Yunhao Guo, Frank Guerin, and Chenghua Lin. An open-source data contamination
612 report for large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 528–541, 2024d.
613
614 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
615 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
616 *arXiv:2412.19437*, 2024a.
617
618 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
619 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
620 In *European conference on computer vision*, pp. 216–233. Springer, 2024b.
621
622 Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng Yin, Cheng-lin Liu, Lianwen Jin, and
623 Xiang Bai. On the hidden mystery of ocr in large multimodal models. *arXiv e-prints*, pp. arXiv–
624 2305, 2023.
625
626 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024. Accessed:
627 2025-04-27.
628
629 Navid Rajabi and Jana Kosecka. Gsr-bench: A benchmark for grounded spatial reasoning evaluation
630 via multimodal llms. In *NeurIPS 2024 Workshop on Compositional Learning: Perspectives,
631 Methods, and Paths Forward*, 2024.
632
633 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
634 Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
635 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint*
636 *arXiv:2403.05530*, 2024.
637
638 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
639 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference
640 on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
641
642 Christoph Schuhmann, Robert Kaczmarczyk, Aran Komatsuzaki, Aarush Katta, Richard Vencu,
643 Romain Beaumont, Jenia Jitsev, Theo Coombes, and Clayton Mullis. Laion-400m: Open dataset
644 of clip-filtered 400 million image-text pairs. In *NeurIPS Workshop Datacentric AI*, number
FZJ-2022-00923. Jülich Supercomputing Center, 2021.
645
646 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and
647 Hongsheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset
648 and benchmark for chain-of-thought reasoning. *Advances in Neural Information Processing
649 Systems*, 37:8612–8642, 2024.
650
651 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
652 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th
653 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
654 2556–2565, 2018.

648 Qwen Team. Qwen2.5: A party of foundation models. <https://qwenlm.github.io/blog/qwen2.5/>, 2024. Accessed: 2025-04-30.
649
650

651 Qwen Team. Qwen3. <https://qwenlm.github.io/blog/qwen3/>, 2025. Accessed: 2025-
652 05-04.

653 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
654 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
655 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

656 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
657 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
658 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

659 Siyuan Wang, Zhuohan Long, Zhihao Fan, Xuan-Jing Huang, and Zhongyu Wei. Benchmark self-
660 evolving: A multi-agent framework for dynamic llm evaluation. In *Proceedings of the 31st*
661 *International Conference on Computational Linguistics*, pp. 3310–3328, 2025.

662 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
663 Schwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, et al. Livebench: A challenging,
664 contamination-free llm benchmark. In *The Thirteenth International Conference on Learning*
665 *Representations*, 2025.

666 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Chunyi Li,
667 Wenxiu Sun, Qiong Yan, Guangtao Zhai, et al. Q-bench: A benchmark for general-purpose
668 foundation models on low-level vision. In *The Twelfth International Conference on Learning*
669 *Representations*, 2024a.

670 Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind's
671 eye of llms: Visualization-of-thought elicits spatial reasoning in large language models. In *The*
672 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b.

673 Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
674 reasoning beyond accuracy. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
675 volume 39, pp. 27723–27730, 2025.

676 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
677 Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
678 transformers. *arXiv preprint arXiv:2410.10629*, 2024.

679 Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
680 language models: A survey. *arXiv preprint arXiv:2406.04244*, 2024.

681 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
682 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
683 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
684 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
685 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
686 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
687 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
688 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
689 technical report. *arXiv preprint arXiv:2407.10671*, 2024a.

690 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
691 space: How multimodal large language models see, remember, and recall spaces. *arXiv preprint*
692 *arXiv:2412.14171*, 2024b.

693 Yue Yang, Shuibai Zhang, Wenqi Shao, Kaipeng Zhang, Yi Bin, Yu Wang, and Ping Luo. Dynamic
694 multimodal evaluation with flexible complexity by vision-language bootstrapping. *arXiv preprint*
695 *arXiv:2410.08695*, 2024c.

696 Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie
697 Tang. Gpt can solve mathematical problems without a calculator. *arXiv preprint arXiv:2309.03241*,
698 2023.

702 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
703 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
704 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*
705 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024a.
706
707 Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
708 Mammoth: Building math generalist models through hybrid instruction tuning. In *The Twelfth*
709 *International Conference on Learning Representations*, 2024b.
710
711 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
712 Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams
713 in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer,
714 2024.
715
716 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
717 Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
718 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.
719
720 Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
721 Dynamic evaluation of large language models for reasoning tasks. In *The Twelfth International*
722 *Conference on Learning Representations*, 2024a.
723
724 Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dynamic evaluation of large
725 language models by meta probing agents. In *International Conference on Machine Learning*, pp.
726 62599–62617. PMLR, 2024b.
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 APPENDIX
757

758 A LIMITATIONS AND SOCIETAL IMPACT
759

760 Although our study provides validation of the MACEval framework in various tasks, there are several
761 potential limitations acknowledged below. First, our experiments are limited to 9 tasks across five
762 common capabilities, encompassing a specific range of topics. Incorporating a broader spectrum of
763 tasks, such as those within a specialty area, facilitates to yield a more comprehensive insights into
764 MACEval’s applicability. Second, we apply evaluation topologies with fewer hops, *i.e.*, nodes and
765 edges, to preliminarily demonstrate the effectiveness of the proposed framework. In the future, it is
766 possible to construct larger evaluation networks to include a richer array of capability assessments.
767 Third, in MACEval, the evaluation data stream consists of question-answer pairs graded by difficulty.
768 One of the principles in constructing open-ended tasks is that the difficulty should be quantifiable,
769 which imposes limitations on the implementation of many tasks.

770 Meanwhile, our work holds the potential for significant societal impact, both positive and negative.
771 First, the evaluation is normally considered as important as training in developing large models. An
772 insightful evaluation can offer promising directions to large model developers. The main motivation
773 of this work is to build automatic, scalable, and trustworthy evaluation framework for large models,
774 aligning closely with the rapid iteration of current models. Our MACEval offer a promising direction
775 that using large models to tackle the evaluation problems for themselves has a lower costs than
776 the traditional human-dependent form on broad occasions. Second, the proposed interview-like
777 autonomous evaluation pipeline with open-ended settings is more conducive to exploring the per-
778 formance boundaries of large models with less subjective bias. Third, although our research is not
779 directly related to the design of generative models, the possibility of spontaneously generating NSFW
780 contents in other tasks due to hallucinations or ambiguity in the content of the dialogue cannot be
781 ruled out, since we adopted an human-free autonomous multi-agent collaboration framework in the
782 evaluation process, where the evaluation content is autonomously generated.

783 B DETAILED OPEN-ENDED TASKS CONSTRUCTION
784

785 The objective of curating open-ended tasks for large model evaluation is to mitigate data contamination
786 issues. We design 9 tasks based on fully AI-generated and difficulty-controllable principles, spanning
787 five capabilities, including visual perception, text comprehension, math, algorithm reasoning, and
788 coding, to preliminarily validate the effectiveness of our MACEval framework:

- 790 • **Image Quality Perception (IQP):** First, we select a set of keywords (*people, animals,*
791 *nature, plants, cars, objects, buildings, textures, sports, and interiors*) based on the cat-
792 egorization of the renowned image website [Unsplash](https://unsplash.com/)¹, which served as the source for
793 generating image prompts. Then, we adopt an interviewer-assisted prompt generation strat-
794 egy to obtain Q_{total} prompts. Five prevailing text-to-image models, including Stable
795 Diffusion-1.5 ([Rombach et al., 2022](#)), Stable-Diffusion-3.5-medium ([AI](#),
796 [2024](#)), Playground v2.5 ([Li et al., 2024b](#)), FLUX.1-schnell ([Labs, 2024](#)), and
797 Sana ([Xie et al., 2024](#)), are randomly invoked externally to generate original image contents.
798 The output image size is set to 512² and the num_inference_steps is set to the default
799 value. As for the difficulty control, we generate a set of Gaussian white noise by setting the
800 variance to [1 : ∞ : 1] (which represents values starting from 1 with a step size of 1) and
801 add it to the original images.
- 802 • **Content Understanding (CU):** This task evaluates the model’s ability to distinguish image
803 content. We download over 100 different icons from [FLATICON](#)² and randomly form part
804 of them into a grid image, which contains smaller icons, as shown in Fig. 8. Then, we
805 examine whether the interviewee model can correctly answer the exact number of target
806 icons in the given grid images. The task difficulty is controlled by the number of grids, *i.e.*,
807 the more the grids there are, the more interference terms are presented. We begin with the
808 3×3 size.

809 ¹<https://unsplash.com/>

²<https://www.flaticon.com/>

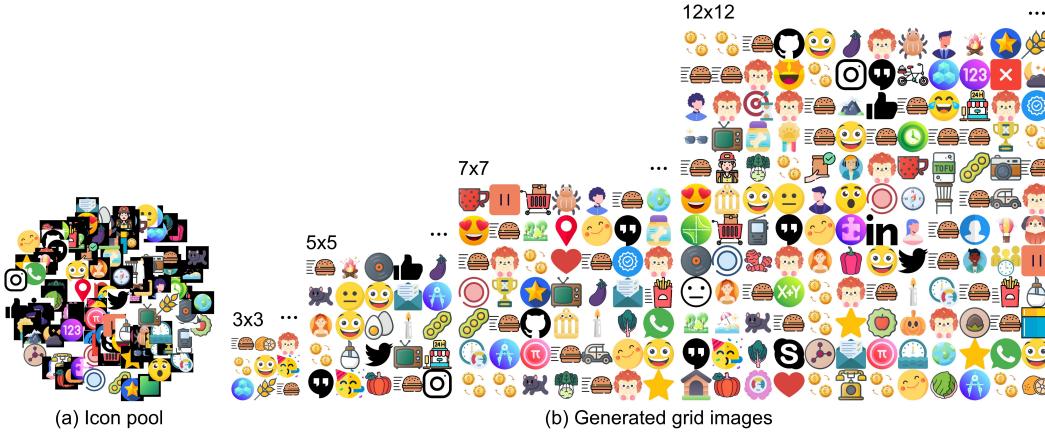


Figure 8: Visualization of grid images with different icons in content understanding task.

- **Scrambled Text Understanding (STU):** Humans can grasp the general meaning of sentences and paragraphs even with some misspelled words, without significantly affecting overall comprehension. However, whether LLMs can achieve the same remains an open question. To create the questions for this task, we instruct the interviewer model to generate a text of approximately 100 words (e.g., story, diary, or prose), which is then processed by external functions to apply two types of perturbations: 1) disrupt the character order within words. For each text, we flip a certain proportion ($N_{disp}^{word}/N_{total}^{word}$) of correctly spelled words to misspelled words (White et al., 2025), where N_{disp}^{word} and N_{total}^{word} denote the number of disrupted words and the total number of words, respectively; 2) mask a certain proportion ($N_{masked}^{char}/N_{total}^{char}$) of characters with ‘*’, where N_{masked}^{char} and N_{total}^{char} denote the number of masked characters and the total number of characters, respectively. The resulting text is then sent to the interviewee model for completion and comprehension.
- **String Parsing (SP):** To investigate the discernibility of LLMs in processing long texts, we design a needle-in-a-haystack evaluation task, requiring the LLMs to count the occurrences of a target character within a long string. We perform similar instructions to the STU task for string generation and add the needle ‘.’ to a random position within the string. Then, the string length is incrementally increased based on the interviewee’s performance to elevate task difficulty.
- **Arithmetic:** Considering the inherent challenge of quantifying the difficulty of mathematical problems, which is normally associated with factors such as problem complexity, level of abstraction, the number of solution steps, and the methods employed to solve it, we select two basic arithmetic problems with quantifiable difficulties: 1) multiplication of decimals with increasing digits, and 2) operations with increasing number of terms.
- **Binary Tree Traversal (BTT):** Binary tree is a common data structure widely used in computer science and programming. In general, a binary tree structure can be uniquely determined by given its pre-order and in-order traversals. Based on this, we prompt the interviewer model to generate a binary tree with its pre-order and in-order traversals, then query the interviewee model to output the post-order traversal. The number of nodes is used to control the task difficulty, namely the structural complexity of a binary tree.
- **Shortest Path Search (SPS):** The shortest path algorithm is an important concept in graph theory used to find the shortest path between two nodes in a weighted graph. Taking the famous Dijkstra algorithm as an example, its time complexity is $O(V^2)$ and $O((V + E) \log V)$ when using a regular array and a priority queue, respectively. Inspired by this, we first instruct the interviewer model to generate a graph with an adjacency matrix along with the start and end nodes, which is further sent to the interviewee model for shortest path computation. The number of nodes and edge density are used to control the difficulty.
- **Code Generation:** Similar to the mathematical problems, the difficulty of coding problems is also hard to define. In this paper, we focus on the cyclomatic complexity, which is a

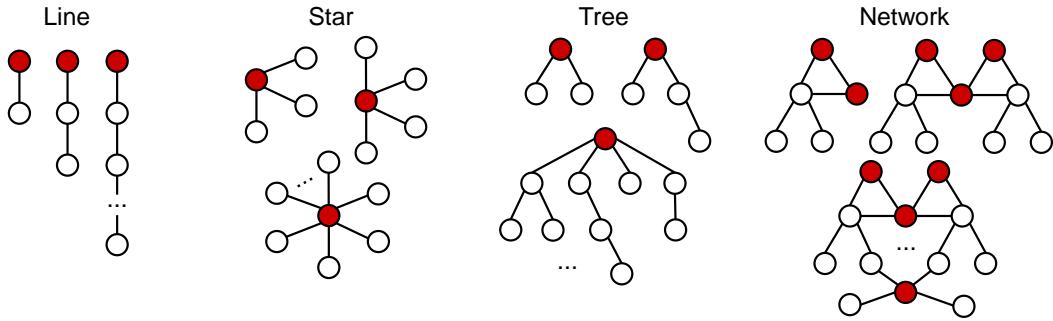


Figure 9: Example of four typical evaluation topologies as well as their variants.

software metric that quantifies the complexity of a code’s control flow, specifically measuring the number of linearly independent paths through the code. We first instruct the interviewer model to generate an initial code demand and then send this to the interviewee model for code generation. After that, the generated code will be sent back to the interviewer model for examination. If the interviewee successfully completes the current task, a new requirement will be randomly added, such as incorporating a ‘for’ loop, a ‘while’ loop, or an ‘if’ conditional statement. This process will continue iteratively until the interviewee fails to produce the correct output.

- **Code Debugging:** As for the debugging task, we adopt the same code generation demand to the interviewer model and then mask or delete a certain proportion of them by an external function. The interviewee model is asked to repair the missing sections.

Note that for arithmetic, BTT, and SPS tasks, we implement external code-based supervision to prevent potential generation errors made by the interviewer itself.

C ADDITIONAL INFORMATION OF EVALUATION TOPOLOGY

We distinguish evaluation topologies into four primary categories: line, star, tree, and hybrid network, as shown in Fig. 9.

- **Line:** Line-based evaluation topology is the simplest structure where nodes (such as interviewee models and interviewer models) are connected in a sequential manner along a single communication line. In other words, in each round of task evaluation, only one interviewer model engages in dialogue-based assessment with the interviewee model.
- **Star:** Star topology means that one interviewee model is connected to multiple interviewer models, with a maximum hop count of 1. The typical assessment scenarios corresponding to this evaluation topology include: a) N interviewers jointly assess the performance under a specific task and conduct a comprehensive performance discussion or merely average the score; b) for each interviewee, all tasks or capabilities are evaluated in parallel. Each line within a star topology denotes a single evaluation process.
- **Tree:** Tree-based evaluation topology possesses an innate hierarchical structure that enables decomposable evaluations from low-level abilities to high-level abilities. For example, when evaluating the math capability, one can start with the fundamental arithmetic tasks and proceed to more complex calculus, equation solving, and mathematical proof tasks.
- **Hybrid Network:** Compared to other single-type topologies, the hybrid network presents a more intricate web of node relationships, where a new edge type (*interviewee-interviewee*) and a cyclic structure are introduced. Specifically, such a structure is more suited to a panel discussion form of evaluation task. For example, evaluating the collaborative communication skills and debating abilities of large models for more truthful answers, when confronted with the task of designing solutions to complex problems (Khan et al., 2024).

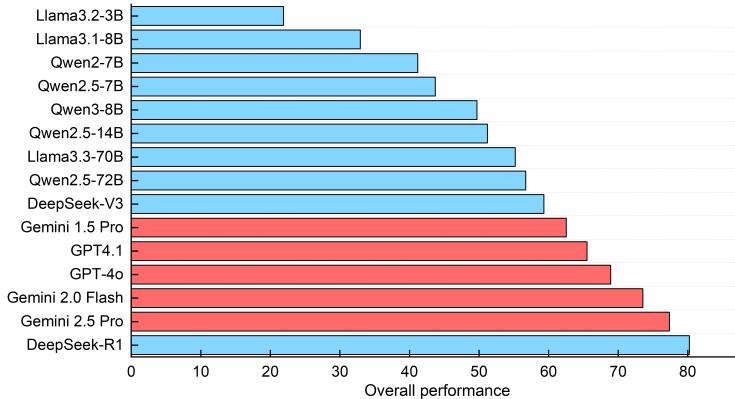


Figure 10: Overall performance comparison among 15 LLMs based on the evaluation network.

Table 5: The SRCC between the score of the model and all raters for 'scoring' setting. The human agreement percentage in the form of experts/crowds for 'yes-or-no' setting.

Setting	Supervisor	STU _{disrupt.}	STU _{mask.}	Arith. _{oper.}	BTT
Scoring	Claude 3.7 Sonnet	0.8419	0.8593	0.8862	0.8122
Scoring	Gemini 2.5 Pro	0.8522	0.8668	0.8912	0.8217
Yes-or-No	Claude 3.7 Sonnet	0.944/0.923	0.935/0.920	0.936/0.918	0.903/0.898
Yes-or-No	Gemini 2.5 Pro	0.948/0.929	0.938/0.922	0.941/0.927	0.925/0.908

D ADDITIONAL EXPERIMENTAL RESULTS

Subjective Alignment of the Supervisor. We conducted extra subjective experiments where we quantified their alignment with human annotations. Specifically, we adopt two schemes: 'yes-or-no' evaluation and scoring evaluation (Chen et al., 2024a). 2 experts (with experience in publishing articles on large models) and 8 public participants from campus are invited to participate. We selected four tasks with high error rates (according to Tab. 3), including STU_{disrupt.}, STU_{mask.}, Arith._{oper.}, and BTT, for evaluation. We use Claude 3.7 Sonnet and Gemini 2.5 Pro as the supervisor. GPT-4o is the interviewer. Note that in these tasks, we have already implemented external algorithmic function checks for the ground-truth errors (e.g., "23445 + 22784 = ?"). Therefore, human and third-party supervisory models primarily focus on errors related to textual hallucinations. In 'yes-or-no' evaluation, the human participants and the supervisor model are instructed to answer "*whether there exist any hallucination in the evaluation dialogues? Return yes or no.*" In the scoring evaluation, we instruct "*Please carefully judge the quality of the evaluation process dialogue based on the task requirements,*" and provide a detailed scoring standard with a 1-5 Likert scale:

- 1: The response is accurate and trustworthy
- 2: The response is mostly correct but contains minor, non-core factual errors
- 3: A mix of fact and fabrication makes the response partially unreliable
- 4: The core claim is false or the response is mostly fabricated and misleading
- 5: The response is almost entirely invented, nonsensical, or detached from reality.

In Tab. 5, we observe a significant high correlation between human and the supervisor models in both settings, demonstrating their effectiveness in supervising the evaluation process. In addition, we found that over 95% of the queries received a rating of 4 or higher, showing the effectiveness of the joint generation scheme of the interviewer model and the external function.

Multiple Roles Exploration. To evaluate the effect of different role settings, we further conduct experiments for the same model in interviewee, interviewer, and supervisor. Concretely, we test one open-source model Qwen2.5-7B and one proprietary model GPT-4o in three representative tasks, including STU_{disrupt.}, Arith._{scale}, and BTT. As shown in Tab. 9, we can observe that changing the supervisor does not explicitly affect the resulting performance. Meanwhile, after changing the

972
973 **Table 6: Results on different role settings. ACC-AUC/Max. Perf. is reported.**

Interviewee	Interviewer	Supervisor	STU _{disrupt.}	Arith. _{scale}	BTT
Qwen2.5-7B	GPT-4o	Claude 3.7 Sonnet	6.797/8	0.9/1	1.6/2
Qwen2.5-7B	Qwen2.5-7B	Qwen2.5-7B	6.833/8	1.0/2	1.6/2
Qwen2.5-7B	Qwen2.5-7B+GPT-4o+Claude 3.7 Sonnet	Qwen2.5-7B	6.802/8	0.9/1	1.6/2
GPT-4o		GPT-4o	Claude 3.7 Sonnet	8.855/10	1.7/2
GPT-4o		GPT-4o	GPT-4o	8.855/10	1.7/2
					3.1/4
					3.1/4

979
980 **Table 7: Results on different role settings. ACC-AUC/Max. Perf. is reported.**

Interviewee	Interviewer	Supervisor	STU _{disrupt.}	Arith. _{scale}	BTT
Qwen2.5-7B	GPT-4o	Claude 3.7 Sonnet	6.797/8	0.9/1	1.6/2
Qwen2.5-7B	Qwen2.5-7B	Qwen2.5-7B	6.833/8	1.0/2	1.6/2
Qwen2.5-7B	Qwen2.5-7B+GPT-4o+Claude 3.7 Sonnet	Qwen2.5-7B	6.802/8	0.9/1	1.6/2
GPT-4o		GPT-4o	Claude 3.7 Sonnet	8.855/10	1.7/2
GPT-4o		GPT-4o	GPT-4o	8.855/10	1.7/2
					3.1/4
					3.1/4

988 interviewer from GPT-4o to Qwen2.5-7B, the evaluated performance of Qwen2.5-7B on STU_{disrupt.}
989 and Arith._{scale} tasks grows slightly. We suspect that this is due to the limited diversity of the generated
990 queries stemming from the relatively weak capability of the interviewer model (similar conclusion
991 as Tab. 4). Therefore, we further employ a 1v3 star evaluation topology to solve the mild variance
992 for the same interviewee model across interviewers, which indeed improves the reliability of the
993 evaluation process. Moreover, we find a high error rate (56%) in the BTT task, calculated by the
994 misalignment between the external function and self-generated ground-truth, when Qwen2.5-7B
995 serves as the interviewer. This result is much lower in GPT-4o’s setting, showing the necessity of
996 using relatively powerful models and incorporating external functions.

997 **Compare ACC-AUC to Static Evaluation Baselines with Difficulty Settings.** We conduct additional
998 experiments for comparing performance trends across easy, medium, and hard tasks in static
999 benchmarks under the framework of MACEval. Specifically, we use the problems from E2H-AMC,
1000 a subset in Easy2Hard-Bench (Ding et al., 2024), where the difficulty rating is represented by the
1001 percentage of students who answered each question correctly. Here are three problem examples:

- 1002 • *Cagney can frost a cup cake every <20> seconds and Lacey can frost a cupcake every
1003 <30> seconds. Working together, how many cupcakes can they frost in <5> minutes? Avg.
1004 Difficulty = 0.134 Avg. Difficulty = 0.134*
- 1005 • *Find the number of pairs of integers (a, b) with <1> ≤ a < b ≤ <57> such that a² has a
1006 smaller remainder than b² when divided by <57>. Avg. Difficulty = 0.587*
- 1007 • *In a <16>x<16> table of integers, each row and column contains at most <4> distinct
1008 integers. What is the maximum number of distinct integers that there can be in the whole
1009 table? Avg. Difficulty = 0.784*

1010 We uniformly sample 10 question templates with incremental difficulty rating from 0.1035 to 0.8548
1011 (The larger the value, the higher the difficulty). During the evaluation data generation, the interviewer
1012 model with external function-assisted is instructed to generate query-answer by changing the values
1013 in ‘<>’. We set the number of queries at each difficulty level to 100. Rather than relying on
1014 manually annotated fine-grained difficulty scores, we increase the number of testing rounds within
1015 each predefined difficulty level to obtain a more precise performance estimate. Here, we tested two
1016 models: Qwen 2.5-VL-72B and Gemini 1.5 Pro. GPT-4o is used as the interviewer model. In Tab.
1017 8, we observe that the overall declining trend on both dynamic and static settings are similar. The
1018 performance under MACEval with multi-round queries exhibit slightly higher values than those with
1019 static settings, showing a more genuine performance while demonstrating its potential superiority for
1020 longitudinal evaluation against data contamination.

1021 **The Stability of Evaluation Data Generation.** We compare the performance differences in terms of
1022 the number of generated queries at the same difficulty level on STU_{mask.} and BTT tasks, as shown in
1023 Tab. 10. The interviewee and interviewer are Qwen2.5-72B and GPT-4o, respectively. We further
1024 conducted two-side t-test and reported 95% PI and p-value for 300 queries in Tab. 11. We can
1025 observe that there is no significant difference between the results of 10@10 and 20@10 that the

1026
1027 Table 8: Data points in discrete form. The upper and bottom parts are the accuracy results under
1028 MACEval and static settings, respectively.

Difficulty level	1	2	3	4	5	6	7	8	9	10
Qwen2.5-72B	0.57	0.42	0.32	0.27	0.24	0.18	0.14	0.10	0.10	0.09
Gemini 1.5 Pro	0.51	0.36	0.24	0.21	0.16	0.14	0.10	0.08	0.08	0.08
Qwen2.5-72B	0.53	0.43	0.29	0.21	0.18	0.17	0.12	0.10	0.08	0.09
Gemini 1.5 Pro	0.46	0.39	0.22	0.12	0.10	0.07	0.06	0.04	0.04	0.03

1035 Table 9: Results on different role settings. ACC-AUC/Max. Perf. is reported.

Interviewee	Interviewer	Supervisor	STU _{disrupt.}	Arith. _{scale}	BTT
Qwen2.5-7B	GPT-4o	Claude 3.7 Sonnet	6.797/8	0.9/1	1.6/2
Qwen2.5-7B	Qwen2.5-7B	Qwen2.5-7B	6.833/8	1.0/2	1.6/2
Qwen2.5-7B	Qwen2.5-7B+GPT-4o+Claude 3.7 Sonnet	Qwen2.5-7B	6.802/8	0.9/1	1.6/2
GPT-4o	GPT-4o	Claude 3.7 Sonnet	8.855/10	1.7/2	3.1/4
GPT-4o	GPT-4o	GPT-4o	8.855/10	1.7/2	3.1/4

1043 p-value>0.05. Their 95% PIs have a considerable overlap, indicating the robustness of the evaluation
1044 process. Furthermore, the 95% PI of 20@10 is more concentrated than that of 10@10, showing the
1045 precision of increasing the number of rounds under the given difficulty level.

1046 **Expanding the Task Suite to Include Tasks that are Less Structured and Quantifiable.** We
1047 further expanded the task suite to include language understanding tasks that are less structured or
1048 quantifiable. Specifically, we focus on the following tasks:

1049

- 1050 • External material: To avoid data contamination, we manually collected 10 recent news from
1051 world economic forum³ (time period: 2025.7.20-7.25) to ensure that they are not in the
1052 training data.
- 1053 • Self-generated: The interviewee model is required to generate text contents with certain
1054 length and requirements.

1055 Settings:

1056

- 1057 • For task 1-1 (External), where the interviewer randomly require the interviewee model to
1058 paraphrase, simplify, or summarize the given text content with certain output format, we
1059 score tasks purely by their adherence to the instructions (White et al., 2025). The interviewer
1060 model are instructed to increase the number of queries in each round until the finishing rate
1061 equal to a very low value. However, in this experiments, we found a relatively slow rate
1062 of decline. It is time-consuming to reach the scenario with 0% finishing rate compared to
1063 other tasks. Therefore, we report the ACC-AUC at 50% finishing rate and the corresponding
1064 number of queries, which can also validate the feasibility of MACEval in handling open
1065 language understanding tasks.
- 1066 • For task 1-2 (External), we further employ the language bootstrapping (Yang et al., 2024c)
1067 (e.g., the proportion of irrelevant words or sentences) to adjust the difficulty rate each success
1068 round while satisfying the principle of MACEval (pushing to the limit). Therefore, we
1069 report the ACC-AUC and the bootstrapping proportion (%).
- 1070 • For task 2 (Self-generated), the interviewer model are instructed to increase the number of
1071 queries (difficulty rate) in each round until the finishing rate equal to a very low value. A
1072 external Python function is deployed to count word length for accuracy calculation. Same
1073 with scenario 1-1, we report the ACC-AUC at 50% finishing rate and the corresponding
1074 number of queries due to the slow decline rate.
- 1075 • Four models are selected for evaluation. Three different evaluation topologies are investi-
1076 gated (including 1-hop line and 1v4 star).

1077 In Tab. 12, we find tiny difference in ACC-AUC/Max. Perf. when changing GPT-4o to Claude 3.7
1078 Sonnet under 1-hop line. This can be attributed to the small disparity of the in-process data, which

1079 ³<https://www.weforum.org/>

1080
1081 Table 10: Results on different numbers of queries. ACC-AUC/Max. Perf. is reported.
1082
1083
1084
1085
1086

#Query	STU _{mask.}	BTT
10	4.247/5	2.40/3
20	4.256/5	2.50/3
30	4.253/5	2.43/3
50	4.244/5	2.46/3

1087
1088
1089 Table 11: Results of the statistical test.
1090
1091

#Query@N times	STU _{mask.}	BTT
10@10	[4.2444, 4.2558]	[2.4122, 2.4618]
20@10	[4.2457, 4.2533]	[2.4265, 2.4570]
p-value	0.8486	0.7227

1095
1096
1097 can be mitigated under the 1v4 star evaluation topology, where a mean opinion score (MOS)-based
1098 strategy is adopted, showing good robustness and flexibility of the MACEval framework. We notice
1099 the results in Task 1-1 and Task-2 are similar, indicating that the influence of the data source in certain
1100 tasks is negligible and validating the suitability of AI-generated text in such tasks.

1101 **More Evaluation on Math Tasks.** We expand the math tasks to solving the equations, we choose 8
1102 models for evaluation, where GPT-4o serves as the interviewer model. The difficulty level is set to the
1103 number of variables. We require it to retain four decimal places. As listed in Tab. 13, we observe that
1104 those open-source models even with large scale parameters or mainstream proprietary models, such
1105 as GPT-4o and Gemini1.5 Pro, can only solve equation with two variables, showing great potential
1106 for general large models to improve. Surprisingly, the cutting-edge Gemini 2.5 Pro, a model skilled
1107 in mathematics and reasoning, is only capable of solving systems of three linear equations in three
1108 variables to a limited extent.

1109 **Potential Error Propagating.** We conduct extra experiments to explore the effects of that errors are
1110 proactively injected to the next round under the current node or evaluation process. Specifically, we
1111 add interference characters (unordered and meaningless strings) into the message, which are together
1112 taken to the next node. We evaluate on the data generation process of the binary tree traversal (BTT)
1113 task, which have the highest initial error (52%, Tab. 3). The results in Tab. 14 show that injecting
1114 irrelevant textual contents will not affect the inherent error rate that depends on the difficulty of the
1115 task itself. Conversely, the progressive accumulation of erroneous content renders the information
1116 more readily detectable by third-party supervisor, facilitating its timely suppression and the issuance
1117 of a regeneration directive to the interviewer model. Hence, the applied external algorithm played a
1118 crucial role within the single task.

1119
1120 D.1 COMPARISON TO OTHER LARGE MODEL BENCHMARKS
1121

1122 We compare the evaluation results obtained by MACEval to the popular benchmarks (LiveBench
1123 ([White et al., 2025](#)) and ChatBot Arena ([Chiang et al., 2024](#))), shown in Fig. 11. It can be observed
1124 that the results of MACEval highly correlate with mainstream benchmarks (avg. $r = 0.9509$),
1125 demonstrating the effectiveness of MACEval and proving the potential of open-ended problem
1126 settings.
1127

1128
1129 D.2 VISUALIZATION OF THE EVALUATION STREAM
1130

1131 To illustrate the working mechanism of MACEval more intuitively, we visualize the dialogue example
1132 of the third-party supervisor and prompt templates for both interviewee and interviewer in Fig. 12
1133 and Appendix F. In this paper, we adopt the Claude 3.7 Sonnet ([Anthropic, 2024](#)) as the supervisor.

1134

1135

Table 12: Results on the expanded language understanding tasks.

Model	Interviewer	Task1-1	Task1-2	Task2
GPT-4o		54.4/88	41.3/45	57.5/93
Gemini 2.0 Flash		67.2/113	40.8/44	70.3/116
Qwen2.5-72B	GPT-4o	49.8/75	41.9/45	51.6/77
Qwen2.5-7B		21.5/26	29.3/38	21.8/27
GPT-4o		53.8/87	41.9/45	58.9/95
Gemini 2.0 Flash		65.8/109	42.7/46	74.4/119
Qwen2.5-72B	Claude 3.7 Sonnet	50.3/77	41.7/45	53.4/78
Qwen2.5-7B		21.9/26	29.5/39	22.4/28
GPT-4o		55.6/88	41.7/45	58.2/95
Gemini 2.0 Flash	GPT-4o+Claude 3.7 Sonnet+Gemini 2.5 Pro+DeepSeek V3	67.1/112	41.7/45	73.8/117
Qwen2.5-72B		50.8/76	41.7/45	52.9/77
Qwen2.5-7B		21.8/26	29.6/39	21.9/27

1148

1149

Table 13: Results on the equation solving task.

Model	Equation Solving
GPT-4o	1.4/2
Gemini 2.5 Pro	2.1/3
Gemini 2.0 Flash	1.4/2
Gemini 1.5 Pro	1.1/2
Qwen2.5-7B	0.8/1
Qwen2.5-14B	0.8/1
Qwen2.5-72B	1.3/2
Llama3.1-8B	0.6/1

1160

1161

E FUTURE POSSIBILITIES

1162

1163

Apart from the comments for possible next steps of research related to the evaluation of large models that have already been given, this section is devoted to the extension for some of them and then more topics with good potential based upon our understanding and rethinking for the field.

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

- **Focus on Efficient Evaluation.** Currently, most evaluations are trending towards larger scales and broader scopes, which significantly exacerbate the costs associated with data collection and maintenance. Therefore, the development of efficient evaluation pathways is of great importance. For instance, it may be possible to assess a large model’s capabilities in a particular dimension by evaluating a small number of key samples. Conducting principal component analysis and dimensionality reduction on evaluation data to identify efficient and rapid evaluation routes could emerge as a significant research direction.
- **Evaluating the evaluations.** Evaluations are critical for understanding the capabilities of large models. Its fairness, comprehensiveness, reproducibility, timeliness, scalability, transparency, and practicality are key points to serve as a "good" evaluation. Recently, with the rapid increasing number of various benchmarks, it is highly needed for objective metrics to evaluate evaluations themselves.

1181

1182

1183

1184

1185

1186

1187

It is hoped that these can provide actionable ideas for researchers and would trigger further discussion, and more importantly, new exploration in this area.

F PROMPT TEMPLATES

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Table 14: Impact of error propagation.

Error-round 1	Error-round 2	Error-round 3	Error-round 4	Error-round 5
52%	50%	53%	52%	54%

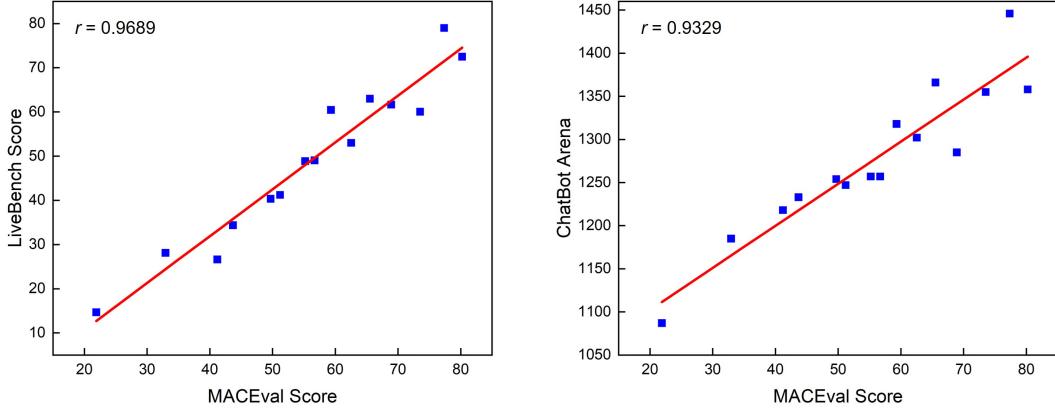


Figure 11: The performance of LLMs on different benchmarks, compared to a best-fit line. We compare the evaluation results in relative performance on MACEval vs. LiveBench, and MACEval vs. ChatBot Arena.

F.1 PROMPT TEMPLATES FOR VISUAL PERCEPTION TASKS

Example for Interviewer:

```

<|System Prompt|>
You are a helpful assistant for prompt generation in text-to-image
tasks.

<|User Prompt|>
Please generate a prompt regarding the generation of {keyword}
images. Return text in <text></text> format.

<|Interviewer's Answer|>
<text>A high-resolution natural landscape at sunrise, viewed from
a hilltop. The foreground shows dewy grass and wildflowers gently
swaying in the breeze. In the middle ground, a winding dirt path
leads through a lush green forest with scattered rays of sunlight
filtering through the trees. In the background, soft morning mist
blankets a valley with a river glistening under the golden light of
the rising sun. Birds are flying low near the horizon, and the sky
transitions from deep orange to pale blue.</text>

<|External image generation model|>
def SD3_5 (prompt) :

    .....

<|External distortion algorithm|>
def add_noise (img, noise_level) :

    .....

<|Resulting content|>
Reference image: <image1>
Distortion image: <image2>
Noise level: <noise_level>

```

System: You are a third-party supervisor. Your role is to assess each round of an evaluation task, including both the questions generated by the interviewer and the responses provided by the interviewee. Your primary focus should be on the quality and validity of the questions—specifically, whether they align with the intended evaluation goals, and whether there are issues such as redundancy, incomprehensible content, or signs of hallucination from the model.

 Evaluation network:
<Evaluation details>
<|Round1|>
.....
Interviewer: Amid the de*se for*st, Lena stumbled upon an ancient, moss-covered ca*tin. The air was thick with the *cent of pine and mystery. Inside, a dusty journal lay open on a wooden table, its pages fill*d with cry*tic s*mbols and sket*hes of strange crea**res. As she fl**ped through the pa*es, a chilling w*nd howled through the cracks, and the door creaked open. A sha*owy fig*re loo*ed in the do*rw*ay, eyes gleaming with eerie familiarity. Lena's he*a* racing as the figure whi**ered, "You've finally found it." The journal's last page read, "The key to the past is in the pre**nt."
Interviewee:
<|User Prompt|> Here is an text with masks (*): <text>...</text>. Please output this exact text, with no changes at all except for filling the masks. Please leave all other stylistic decisions like commas and US vs British spellings as in the original text. Output the revised text between the <text></text> symbols.
<|Interviewee's Answer|>
Amid the dense forest, Lena stumbled upon an ancient, moss-covered cabin. The air was thick with the scent of pine and mystery. Inside, a dusty journal lay open on a wooden table, its pages filled with cryptic symbols and sketches of strange creatures. As she flipped through the pages, a chilling wind howled through the cracks, and the door creaked open. A shadowy figure loomed in the doorway, eyes gleaming with eerie familiarity. Lena's heart raced as the figure whispered, "You've finally found it." The journal's last page read, "The key to the past is in the present."
<|Round1|>
<|Round2|>
Interviewer:
.....
Interviewee:
<|Round2|>
.....
</Evaluation details>
Please provide a score from 1 to 10, where a higher score indicates better question quality and fewer procedural flaws. Output the score in Score:<> format.
 Supervisor:
1. Relevance to Evaluation Goals:
The prompt tests the interviewee's ability to accurately perform a masked word completion task with constraints—this aligns well with typical language model evaluation objectives (e.g., understanding context, preserving formatting and style, filling in appropriate vocabulary).
2. Clarity:
The instructions are clear and unambiguous. The mask symbol (*) is explained, and the desired output is explicitly stated: fill in the masks only, make no other changes, preserve all stylistic elements.
3. Specificity and Constraints:
The prompt carefully enforces output constraints—this is essential in evaluating precision. The use of <text>...</text> to bound the output is a helpful structure.
4. Non-redundancy:
There is no unnecessary repetition. The task is novel and clearly scoped.
5. No Hallucinations or Invalid Assumptions:
There is no evidence of hallucination or flawed premises in the prompt.
Overall Assessment:
This is a well-constructed question that clearly tests a model's attention to detail and language understanding. It is free of procedural flaws and aligns closely with the goal of evaluating text restoration under constraints.
Score:<10>

Figure 12: The working mechanism of the third-party supervisor involved along the evaluation pathway and responsible for validating the entire evaluation network.

Example for Interviewee:

```

1296
1297 <|User Prompt|>
1298 Given two images <image1> and <image2>, please answer if there are
1299 any differences in noise between them. Return judgment <yes> or
1300 <no> with analysis in format:
1301 <Judgment>xxx</Judgment>
1302 <Analysis>xxx</Analysis>
1303
1304 <|Interviewee's Answer|>
1305 <Judgment>No</Judgment>
1306 <Analysis>There are no differences between these two images. They
1307 appear to be identical.</Analysis>
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

```

F.2 PROMPT TEMPLATES FOR CONTENT UNDERSTANDING TASKS

Example for Interviewer:

```

1312 <|System Prompt|>
1313 You are a helpful assistant.
1314
1315 <|User Prompt|>
1316 Please generate two random numbers from 1 to 100 and from 1 to
1317 {{level+2}} × {{level+2}}, respectively. Return answer in the
1318 following format:
1319 Number1: <> # The first one denotes the selected icon's ID.
1320 Number2: <> # The second one denotes the number of the same icons.
1321
1322 <|Interviewer's Answer|>
1323 Number1: <67>
1324 Number2: <11>
1325
1326 <|External grid_image generation algorithm|>
1327 def grid_image (image_id, size):
1328
1329     .....
1330
1331 <|Resulting content|>
1332 Icon image: <image1>
1333 Grid image: <image2>
1334 Grid size: <level+2>

```

Example for Interviewee:

```

1336 <|User Prompt|>
1337 Given an icon image <image1> and a large grid image <image2>,
1338 please answer how many icons <image1> are there in the grid image
1339 <image2>? Return number only in format:
1340 Number: <>
1341
1342 <|Interviewee's Answer|>
1343 Number: <4>

```

1350 F.3 PROMPT TEMPLATES FOR SCRAMBLED TEXT UNDERSTANDING TASKS
1351
1352
1353
1354

1355 **Example for Interviewer (Disruption):**
1356
1357
1358
1359
1360
1361
1362
1363

```
1364 <|System Prompt|>  
1365 You are an expert in the field of literature, specializing in  
1366 writing stories, journals, and essays.  
1367  
1368 <|User Prompt|>  
1369 Please generate a piece of text, about 100 words, which can be a  
1370 story, journal, or essay. Output the text between the <text></text>  
1371 symbols.  
1372  
1373 <|Interviewer's Answer|>  
1374 <text>  
1375 Amid the dense forest, Lena stumbled upon an ancient, moss-covered  
1376 cabin. The air was thick with the scent of pine and mystery.  
1377 Inside, a dusty journal lay open on a wooden table, its pages  
1378 filled with cryptic symbols and sketches of strange creatures. As  
1379 she flipped through the pages, a chilling wind howled through the  
1380 cracks, and the door creaked open. A shadowy figure loomed in the  
1381 doorway, eyes gleaming with eerie familiarity. Lena's heart raced  
1382 as the figure whispered, "You've finally found it." The journal's  
1383 last page read, "The key to the past is in the present."  
1384 </text>  
1385  
1386 <|Adding Perturbations (Disrupt the character order)|>  
1387 def disrupt_words (ori_text, disp_ratio):  
1388     ....  
1389  
1390 <|Resulting Text|>  
1391 Amid the dnese foerst, Lena stumbled upon an nacient, moss-covered  
1392 cabin. The air was tihck with the scent of pnie and msytery.  
1393 Inside, a dusty jorunal lay open on a wooedn table, its paegs  
1394 filled with cryptic syombls and skecthes of starnge crateures. As  
1395 she flipped thurogh the pages, a chilling wnid howled through the  
1396 cracks, and the door creaked open. A sahdowy fiugre loomed in the  
1397 doroway, eyes gleaming with eerie famiilarity. Lena's hraet raced  
1398 as the fiugre whispered, "You've fainlly found it." The journal's  
1399 last page read, "The key to the past is in the present."  
1400  
1401  
1402  
1403
```

Example for Interviewee (Disruption):

```
1404
1405 <|User Prompt|>
1406 Here is an text with typos: <text>...</text>. Please output
1407 this exact text, with no changes at all except for fixing the
1408 misspellings. Please leave all other stylistic decisions like
1409 commas and US vs British spellings as in the original text. Output
1410 the revised text between the <text></text> symbols.
1411
1412 <|Interviewee's Answer|>
1413 <text>
1414 Amid the dense forest, Lena stumbled upon an ancient, moss-covered
1415 cabin. The air was thick with the scent of pine and mystery.
1416 Inside, a dusty journal lay open on a wooden table, its pages
1417 filled with cryptic symbols and sketches of strange creatures. As
1418 she flipped through the pages, a chilling wind howled through the
1419 cracks, and the door creaked open. A shadowy figure loomed in the
1420 doorway, eyes gleaming with eerie familiarity. Lena's heart raced
1421 as the figure whispered, "You've finally found it." The journal's
1422 last page read, "The key to the past is in the present."
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
```

1458 Example for Interviewer (Mask):

1459

1460 <|System Prompt|>
1461 same as the above

1462
1463 <|User Prompt|>

1464 same as the above
1465 <|Interviewer's Answer|>

1466 same as the above
1467
1468 <|Adding Perturbations (Mask characters with *)|>
1469 def mask_characters (ori_text, mask_ratio):

1469

1472 **|Resulting Text|**

Amid the dense forest, Lena stumbled upon an ancient, moss-covered cabin. The air was thick with the scent of pine and mystery. Inside, austy journal lay open on a wooden table, its pages filled with cryptic symbols and sketches of strange creatures. As she flipped through the pages, a chilling wail howled through the cracks, and the door creaked open. A shaggy figure loomed in the doorway, eyes gleaming with eerie familiarity. Lena's heart raced as the figure whispered, "You've finally found it." The journal's last page read, "The key to the past is in the present."

1481

Example for Interviewee (Mask):

1483

1484 <|User Prompt|>
1485 Here is an text with masks (*): <text>...</text>. Please output
1486 this exact text, with no changes at all except for filling the
1487 masks. Please leave all other stylistic decisions like commas
1488 and US vs British spellings as in the original text. Output the
revised text between the <text></text> symbols.

1489

1490

1491 Amid the dense forest, Lena stumbled upon an ancient, moss-covered
1492 cabin. The air was thick with the scent of pine and mystery.
1493 Inside, a dusty journal lay open on a wooden table, its pages
1494 filled with cryptic symbols and sketches of strange creatures. As
1495 she flipped through the pages, a chilling wind howled through the
1496 cracks, and the door creaked open. A shadowy figure loomed in the
1497 doorway, eyes gleaming with eerie familiarity. Lena's heart raced
1498 as the figure whispered, "You've finally found it." The journal's
last page read, "The key to the past is in the present."

1499

1500

1501

1502

1503

1504

1505

1506

1503

1507

1508

1509

1512 F.4 PROMPT TEMPLATES FOR STRING PARSING TASKS
1513

1514 **Example for Interviewer:**

1515
1516 **<|System Prompt|>**
1517 You are a helpful assistant proficient in generating text.
1518
1519 **<|User Prompt|>**
1520 Please generate a {level}-character-long string that may include
1521 English letters (both uppercase and lowercase) and special
1522 characters such as: !, @, #, %, &. Then, insert four '-'
1523 characters at random positions in the string. Return string in
1524 String: <> format.
1525
1526 **<|Interviewer's Answer|>**
1527 String: <a-D#fG%kL-qW!zXe@R-tY&>
1528
1529 **<|External algorithm supervision|>**
1530 def task_calibration (ori_text):
1531
1532 **<|Resulting Text|>**
1533 String:<a-D#fG%kL-q-W!zXe@R-tY&>
1534

1535 **Example for Interviewee:**

1536
1537 **<|User Prompt|>**
1538 Here is a long string: <text>...</text>. How many '-' characters
1539 are there in this string? Return the number in the following
1540 format:
1541 Number: < >
1542
1543 **<|Interviewer's Answer|>**
1544 Number: <4>
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 F.5 PROMPT TEMPLATES FOR ARITHMETIC TASKS
1567

1568 **Example for Interviewer (Scale):**

```
1570 <|System Prompt|>  
1571 You are a helpful assistant proficient in mathematics.  
1572  
1573 <|User Prompt|>  
1574 Please generate a multiplication problem with the correct answer  
1575 involving two n-digit decimal numbers. The two numbers must be  
1576 different from those used in previous problems.  
1577  
1578 Return question and correct answer in the following format:  
1579 <question> </question>  
<answer> <answer>  
1580  
1581 <|Interviewer's Answer|>  
1582 <question> What is 123.456 × 789.123? </question>  
<answer> 97406.100088 </answer>  
1583  
1584 <|External algorithm supervision|>  
1585 def task_calibration (ori_text):  
1586  
1587 .....
```

1588 <|Resulting Text|>
1589 <question> What is 123.456 × 789.123? </question>
<answer> 97421.969088 </answer>
1590

1591 **Example for Interviewee (Scale):**
1592

```
1593 <|User Prompt|>  
1594 Please solve the given math problem and return your answer in  
1595 <answer> </answer> format.  
1596  
1597 <|Interviewer's Answer|>  
1598 <answer> 97461.969 </answer>
```

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620 **Example for Interviewer (Operation):**
1621

```
1622 <|System Prompt|>  
1623 You are a helpful assistant proficient in mathematics.  
1624  
1625 <|User Prompt|>  
1626 Please generate an arithmetic problem with the following  
1627 requirements:  
1628 1. Each number should have exactly {digit} significant digits  
1629 2. The numbers should be randomly generated, not following any  
1630 pattern  
1631 3. The problem should use exactly {level+1} operators such as  
1632 (+, -, ×, /)  
1633 4. You can use parentheses () freely to group operations  
1634 5. The numbers should be different from the former problems  
1635  
1636 Return question and correct answer in the following format:  
<question> </question>  
<answer> </answer>  
1637  
1638 <|Interviewer's Answer|>  
<question> (12846 + (90572/43105)) × 76230 – 50418 </question>  
1639 <answer> 979566891.3525446 </answer>  
1640  
1641 <|External algorithm supervision|>  
1642 def task_calibration (ori_text):  
1643  
1644 .....  
1645  
1646 <|Resulting Text|>  
<question> (12846 + (90572/43105)) × 76230 – 50418 </question>  
1647 <answer> 979360336.076325 </answer>
```

1648 **Example for Interviewee (Operation):**
1649

```
1650  
1651 <|User Prompt|>  
1652 Please solve the given math problem and return your answer in  
1653 <answer> </answer> format.  
1654  
1655 <|Interviewer's Answer|>  
<answer> 979360426.076235 </answer>  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673
```

1674 F.6 PROMPT TEMPLATES FOR BINARY TREE TRAVERSAL TASKS
1675

1676 **Example for Interviewer:**

```
1678 <|System Prompt|>  
1679 You are a helpful assistant proficient in computer science  
1680 algorithms.  
1681  
1682 <|User Prompt|>  
1683 Please generate a binary tree traversal problem with the following  
1684 requirements:  
1685 1. The tree should have exactly {level+2} levels  
1686 2. The number of nodes should be between {2**{level+1}} and  
1687 {2**{level+2}-1} (inclusive)  
1688 3. The sequences should be different from these last problems:  
1689 {last problems}  
1690 4. The tree structure should be a valid binary tree  
1691 5. Each node ID should be a unique integer  
1692  
1693 Provide three types of traversal sequences. Format your response  
1694 as:  
<preorder> </preorder>  
<inorder> </inorder>  
<postorder> </postorder>  
1695  
1696 <|Interviewer's Answer|>  
1697 <preorder> 50 30 20 10 15 13 12 40 35 70 60 80 75 78 76 79 77  
1698 </preorder>  
1699 <inorder> 12 13 15 10 20 30 35 40 50 60 70 75 76 78 77 79 80  
1700 </inorder>  
1701 <postorder> 12 13 15 10 20 35 40 30 60 76 77 79 78 75 80 70 50  
1702 </postorder>  
1703  
1704 <|External algorithm supervision|>  
1705 def task_calibration (ori_text):  
1706  
1707 .....  
1708 <|Resulting Text|>  
1709 <preorder> 50 30 20 10 15 13 12 40 35 70 60 80 75 78 76 79 77  
1710 </preorder>  
1711 <inorder> 12 13 15 10 20 30 35 40 50 60 70 75 76 78 77 79 80  
1712 </inorder>  
1713 <postorder> 12 13 15 10 20 35 40 30 60 76 77 79 78 75 80 70 50  
1714
```

Example for Interviewee:

```
1716 <|User Prompt|>  
1717 Given the preorder and inorder traversals of a binary tree (with  
1718 node IDs separated by spaces) <preorder> ... </preorder> and  
1719 <inorder> ... </inorder>, compute its postorder traversal. Please  
1720 solve the given algorithm problem and return your answer in <answer>  
1721 </answer> format.  
1722  
1723 <|Interviewer's Answer|>  
1724 <answer>12 13 15 10 20 35 40 30 60 76 77 79 78 75 80 70 50</answer>  
1725
```

1726 F.7 PROMPT TEMPLATES FOR SHORTEST PATH SEARCH TASKS
1727

Example for Interviewer:

1728
1729 <|System Prompt|>
1730 You are a helpful assistant proficient in computer science
1731 algorithms.
1732 <|User Prompt|>
1733 Please generate a shortest path search problem with the following
1734 requirements:
1735 1. The network should be an undirected weighted graph
1736 2. The network is given in an adjacency list format. For example,
1737 for each node, its connected nodes along with the corresponding
1738 edge weights are listed as:
1739 <network>
1740 A: B(2), C(4)
1741 B: A(2), D(3)
1742 C: A(4), D(1)
1743 D: B(3), C(1)
1744 </network>
1745 3. The number of nodes is {level_node+4}, or the average edge
1746 number of each node is {level_edge+2}
1747 5. Node IDs must be uppercase or lowercase English letters.
1748 Please randomly select two nodes from the graph and compute the
1749 weighted shortest path between them (return the number only).
1750 Format your response as:
1751 <Node ID1> </Node ID1>
1752 <Node ID2> </Node ID2>
1753 <path> </path>
1754 <|Interviewer's Answer|>
1755 <network>
1756 A: B(3), C(1), F(8)
1757 B: A(3), D(5), E(7)
1758 C: A(1), D(2)
1759 D: B(5), C(2), E(1)
1760 E: B(7), D(1), F(4)
1761 F: A(8), E(4)
1762 </network>
1763 <Node ID1> A </Node ID1>
1764 <Node ID2> E </Node ID2>
1765 <path> 4 </path>
1766
1767 <|External algorithm supervision|>
1768 def task_calibration (ori_text):
1769
1770
1771
1772 <|Resulting Text|>
1773 <network>
1774 A: B(3), C(1), F(8)
1775 B: A(3), D(5), E(7)
1776 C: A(1), D(2)
1777 D: B(5), C(2), E(1)
1778 E: B(7), D(1), F(4)
1779 F: A(8), E(4)
1780 </network>
1781 <Node ID1> A </Node ID1>
1782 <Node ID2> E </Node ID2>
1783 <path> 4 </path>

Example for Interviewee:

```

1782
1783 <|User Prompt|>
1784 Given the nodes <Node ID1> A </Node ID1> and <Node ID2> E </Node
1785 ID2> of an undirected weighted graph <network> </network>.
1786 The network is given in an adjacency list format. For example, for
1787 each node, its connected nodes along with the corresponding edge
1788 weights are listed as:
1789 <network>
1790 A: B(2), C(4)
1791 B: A(2), D(3)
1792 C: A(4), D(1)
1793 D: B(3), C(1)
1794 </network>
1795 Please calculate the weighted shortest path between them and return
1796 your answer in <answer> </answer> format with the number only.
1797
1798
1799
1800
1801
1802
1803 <|Interviewer's Answer|>
1804 <answer> 4 </answer>
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

```

F.8 PROMPT TEMPLATES FOR CODE GENERATION TASKS

Example for Interviewer:

```

1808
1809
1810
1811
1812
1813 <|System Prompt|>
1814 You are a helpful programming assistant and an expert Python
1815 programmer.
1816
1817 <|User Prompt|>
1818 Please generate a common coding problem specification without any
1819 code and the test input as well as the corresponding printable
1820 output in the following format:
1821 <problem> </problem>
1822 <input> </input>
1823 <output> </output>
1824 Note that the new problem should be different from the {former
1825 problems}.
1826
1827 <|Interviewer's Answer|>
1828 <problem> Given a list of integers, determine whether any two
1829 distinct numbers in the list add up to a specific target number.
1830 Return 'True' if such a pair exists, otherwise return 'False'.
1831 </problem>
1832 <input> numbers = [2, 7, 11, 15], target = 9 </input>
1833 <output> True </output>
1834
1835

```

Example for Interviewee:

```

1836
1837 <|User Prompt|>
1838 Given a coding question and the test input as well as the
1839 corresponding printable output in the following format:
1840 <problem> </problem>
1841 <input> </input>
1842 <output> </output>
1843 Please generate a correct Python program that matches the
1844 specification and output requirements. The code must be directly
1845 executable, so please import the necessary library files and pay
1846 attention to code indentation and line breaks. Return the code for
1847 two parts in the following format:
1848 <code_function> </code_function>
1849 if __name__ == '__main__':
1850 <code_main> </code_main>
1851
1852 <|Interviewee's Answer|>
1853 <code_function>
1854 from typing import List
1855 def has_pair_with_sum(numbers: List[int], target: int) -> bool:
1856     seen = set()
1857     for num in numbers:
1858         complement = target - num
1859         if complement in seen:
1860             return True
1861         seen.add(num)
1862     return False
1863 </code_function>
1864 <code_main>
1865     numbers = [2, 7, 11, 15]
1866     target = 9
1867     print(has_pair_with_sum(numbers, target))
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882 F.9 PROMPT TEMPLATES FOR CODE DEBUGGING TASKS
1883
1884
1885
1886
1887
1888
1889

```

Example for Interviewer:

```

1890
1891 <|System Prompt|>
1892 You are a helpful programming assistant and an expert Python
1893 programmer.
1894 <|User Prompt|>
1895 First, please generate a common coding problem specification and
1896 the test input as well as the corresponding printable output in the
1897 following format:
1898 <problem> </problem>
1899 <input> </input>
1900 <output> </output>
1901 Then, generate a correct Python program that matches the
1902 specification and output requirements. The code must be directly
1903 executable, so please import the necessary library files and pay
1904 attention to code indentation and line breaks. Return the code for
1905 two parts in the following format:
1906 <code_function> </code_function>
1907 if __name__ == '__main__':
1908 <code_main> </code_main>
1909 Note that the new problem should be different from the {former
1910 problems}.
1911 <|Interviewer's Answer|>
1912 <problem> Given a list of integers, determine whether any two
1913 distinct numbers in the list add up to a specific target number.
1914 Return 'True' if such a pair exists, otherwise return 'False'.
1915 </problem>
1916 <input> numbers = [2, 7, 11, 15], target = 9 </input>
1917 <output> True </output>
1918 <code_function>
1919 from typing import List
1920 def has_pair_with_sum(numbers: List[int], target: int) -> bool:
1921     seen = set()
1922     for num in numbers:
1923         complement = target - num
1924         if complement in seen:
1925             return True
1926         seen.add(num)
1927     return False
1928 </code_function>
1929 <code_main>
1930 numbers = [2, 7, 11, 15]
1931 target = 9
1932 print(has_pair_with_sum(numbers, target))
1933 </code_main>
1934 <|External code masking|>
1935 def code_masking (code, masking_ratio):
1936     .....
1937 <|Resulting Content|>
1938 <code_function>
1939 from typing import List
1940 def has_pair_with_sum(numbers: List[int], target: int) -> bool:
1941     seen = set()
1942     for num in numbers:
1943         complement = target - num
1944         if complement in seen:
1945             return True
1946         seen.*****
1947     return False
1948 </code_function>
1949

```

1944
1945

Example for Interviewee:

```
1946 <|User Prompt|>
1947 Given a coding question and the test input as well as the
1948 corresponding printable output in the following format:
1949 <problem> </problem>
1950 <input> </input>
1951 <output> </output>
1952 Please repair the masked Python code <code_function>
1953 </code_function> to match the specification and output requirements.
1954 The code must be directly executable, so please import the
1955 necessary library files and pay attention to code indentation and
1956 line breaks. Then generate a fixed version of the program in the
1957 following format:
1958 <code_function> </code_function>
1959 <|Interviewee's Answer|>
1960 <code_function>
1961 from typing import List
1962 def has_pair_with_sum(numbers: List[int], target: int) -> bool:
1963     seen = set()
1964     for num in numbers:
1965         complement = target - num
1966         if complement in seen:
1967             return True
1968         seen.add(num)
1969     return False
1970 </code_function>
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
```