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Abstract

Psychiatry research seeks to understand the manifestations of psychopathology1

in behavior, as measured in questionnaire data, by identifying a small number2

of latent factors that explain them. While factor analysis is the traditional tool3

for this purpose, the resulting factors may not be interpretable, and may also4

be subject to confounding variables. Moreover, missing data are common, and5

explicit imputation is often required. To overcome these limitations, we introduce6

interpretability constrained questionnaire factorization (ICQF), a non-negative7

matrix factorization method with regularization tailored for questionnaire data. Our8

method aims to promote factor interpretability and solution stability. We provide an9

optimization procedure with theoretical convergence guarantees, and an automated10

procedure to detect latent dimensionality accurately. We validate these procedures11

using realistic synthetic data. We demonstrate the effectiveness of our method12

in a widely used general-purpose questionnaire, in two independent datasets (the13

Healthy Brain Network and Adolescent Brain Cognitive Development studies).14

Specifically, we show that ICQF improves interpretability, as defined by domain15

experts, while preserving diagnostic information across a range of disorders, and16

outperforms competing methods for smaller dataset sizes. This suggests that the17

regularization in our method matches domain characteristics.18

1 Introduction19

Standardized questionnaires are a common tool in psychiatric practice and research, for purposes20

ranging from screening to diagnosis or quantification of severity. A typical questionnaire comprises21

questions – usually referred to as items – reflecting the degree to which particular symptoms or22

behavioural issues are present in study participants. Items are chosen as evidence for the presence23

of latent constructs giving rise to the psychiatric problems observed. For many common disorders,24

there is a practical consensus on constructs. If so, a questionnaire may be organized so that subsets25

of the items can be added up to yield a subscale score quantifying the presence of their respective26

construct. Otherwise, the goal may be to discover constructs through factor analysis.27

The factor analysis (FA) of a questionnaire matrix (#participants×#items) expresses it as the28

product of a factor matrix (#participants×#factors) and a loading matrix (#factors×#items).29

The method assumes that answers to items should be correlated, and can therefore be explained in30

terms of a smaller number of factors. The method yields two real-valued matrices, with uncorrelated31

columns in the factor matrix. The number of factors is specified a priori, or estimated from data. The32

values of the factors for each participant can then be viewed as a succinct representation of them.33

Interpreting what construct a factor may represent is done by considering its loadings across items.34

Ideally, if very few items have a non-zero loading, or each item only has a high loading on a single35

factor, it will be easy to associate the factor with them. The FA solution is often subjected to rotation36
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to try to accomplish this. In practice, the loadings could be an arbitrary linear combination of items,37

with positive and negative weights. Factors are real-valued, and neither their magnitude nor their38

sign are intrinsically meaningful. Beyond this, any missing data will have to be imputed, or the39

respective items omitted, before FA can be used. Finally, patterns in answers that are driven by40

other characteristics of participants (e.g. age or sex) are absorbed into factors themselves, acting as41

confounders, instead of being represented separately or controlled for.42

In this paper, we propose to address all of the issues above with a novel matrix factorization method43

specifically designed for use with questionnaire data, through the following contributions:44

1. Interpretability-Constrained Questionnaire Factorization (ICQF) Our method incorporates45

key characteristics which enhance the interpretability of resulting factors, as conveyed by clinical46

psychiatry collaborators. These characteristics are translated into mathematical constraints as follows:47

• Factor values are within the range of [0, 1], representing the degree of presence of the factor.48

• Factor loadings are bounded within the same range as the original questionnaire responses, facili-49

tating interpretation as answer patterns associated with the factor, rather than arbitrary values.50

• The reconstructed matrix adheres to the range or observed maximum of the original questionnaire,51

preventing any entry from exceeding these limits.52

• The method directly handles missing data without requiring imputation. Additionally, it allows for53

the inclusion of pre-specified factors to capture answer patterns correlated with known variables.54

2. Theoretical foundations of ICQF Introducing constraints on both the factors and the recon-55

structed matrix poses algorithmic challenges. We introduce an optimization procedure for ICQF,56

using alternating minimization with ADMM, and we demonstrate that it converges to a local mini-57

mum of the optimization problem. We implement blockwise-cross-validation (BCV) to determine58

the number of factors. We show that, if this number of factors is close to that underlying the data, the59

solution will be close to a global minimum. We also empirically demonstrate that BCV detects the60

number of factors more precisely than competing methods through synthetic questionnaire examples.61

3. Method evaluation We conduct a comprehensive evaluation of ICQF in comparison with62

state-of-the-art methods on CBCL, a widely used questionnaire to assess behavioral and emotional63

problems, collected in two independent clinical studies (HBN and ABCD). We demonstrate the64

effectiveness of our method on quantitative metrics that reflect preservation of diagnostic information65

in latent factors, and stability of factor loadings in limited sample sizes or across datasets.66

4. Light-weighted implementation We provide a Python implementation of ICQF that can67

efficiently handle typical questionnaire datasets in psychology or psychiatry research contexts.68

2 Related Work and Technical Motivation for our Method69

The extraction of latent variables (a.k.a. factors) from matrix data is often done through low rank70

matrix factorizations, such as singular value decomposition (SVD), principal component analysis71

(PCA) and exploratory Factor Analysis (hereafter, just FA) (Golub & Van Loan, 2013; Bishop &72

Nasrabadi, 2006). While SVD and PCA aim at reconstructing the data, FA aims at explaining73

correlations between (questions) items through latent factors (Bandalos & Boehm-Kaufman, 2010).74

Factor rotation (Browne, 2001; Sass & Schmitt, 2010; Schmitt & Sass, 2011) is then performed to75

obtain a sparser solution which is easier to interpret and analyze. For a review of FA, see Thompson76

(2004); Gaskin & Happell (2014); Gorsuch (2014); Goretzko et al. (2021). Non-negative matrix77

factorization (NMF) was proposed as a way of identifying sparser, more interpretable latent variables,78

which can be added to reconstruct the data matrix. It was introduced in Paatero & Tapper (1994) and79

developed in Lee & Seung (2000). Different varieties of NMF-based models have been proposed80

for various applications, such as the sparsity-controlled (Eggert & Korner, 2004; Qian et al., 2011),81

manifold-regularized (Lu et al., 2012), orthogonal Ding et al. (2006); Choi (2008), convex/semi-82

convex (Ding et al., 2008), or archetypal regularized NMF (Javadi & Montanari, 2020). More recently,83

Deep-NMF (Trigeorgis et al., 2016; Zhao et al., 2017) and Deep-MF (Xue et al., 2017; Fan & Cheng,84

2018; Arora et al., 2019) can model non-linearities on top of (non-negative) factors, when the sample85

is large (Fan, 2021). These methods do not directly model either the interpretability characteristics86

or the constraints that we view as desirable. If the goal is to identify latent variables relevant for87

multiple matrices, the standard approach is multi-view learning (Sun et al., 2019), or variants that88
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can handle only partial overlap in participants across matrices (Ding et al., 2014; Gunasekar et al.,89

2015; Gaynanova & Li, 2019). Finally, non-negative matrix tri-factorization (Li et al., 2009; Pei et al.,90

2015), supports an additional matrix mapping between latent representations for different matrices.91

Obtaining a factorization with these methods requires both specifying the number of latent variables,92

and solving an optimization problem. In SVD/PCA, the number of variables is often selected based93

on the percentage of variance explained, or determined via techniques such as spectral analysis, the94

Laplace-PCA method, or Velicer’s MAP test (Velicer, 1976; Velicer et al., 2000; Minka, 2000). For95

FA, several methods have been proposed: Bartlett’s test (Bartlett, 1950), parallel analysis (Horn, 1965;96

Hayton et al., 2004), MAP test and comparison data (Ruscio & Roche, 2012). For NMF, iterative97

detection algorithms are recommended, e.g. the Bayesian information criterion (BIC) (Stoica &98

Selen, 2004), cophenetic correlation coefficient (CCC) (Fogel et al., 2007) and the dispersion (Brunet99

et al., 2004). More recent proposals for NMF are Bi-cross-validation (BiCV) (Owen & Perry, 2009)100

and its generalization, the blockwise-cross-validation (BCV) (Kanagal & Sindhwani, 2010), which101

we use in this paper. The optimization problem for NMF is non-convex, and different algorithms for102

solving it have been proposed. Multiplicative update (MU) (Lee & Seung, 2000) is the simplest and103

mostly used. Projected gradient algorithms such as the block coordinate descent (Cichocki & Phan,104

2009; Xu & Yin, 2013; Kim et al., 2014) and the alternating optimization (Kim & Park, 2008; Mairal105

et al., 2010) aim at scalability and efficiency in larger matrices. Given that our optimization problem106

has various constraints, we use a combination of alternative optimization and Alternating Direction107

Method of Multipliers (ADMM) (Boyd et al., 2011; Huang et al., 2016).108

3 Methods109

3.1 Interpretable Constrained Questionnaire Factorization (ICQF)110

Inputs Our method operates on a questionnaire data matrix M ∈ Rn×m
≥0 with n participants and111

m questions, where entry (i, j) is the answer given by participant i to question j. As questionnaires112

often have missing data, we also have a mask matrixM ∈ {0, 1}n×m of the same dimensionality113

as M , indicating whether each entry is available (= 1) or not (= 0). Optionally, we may have a114

confounder matrix C ∈ Rn×c
≥0 , encoding c known variables for each participant that could account for115

correlations across questions (e.g. age or sex). If the jth confound C[:,j] is categorical, we convert116

it to indicator columns for each value. If it is continuous, we first rescale it into [0, 1] (where 0 and117

1 are the minimum and maximum in the dataset), and replace it with two new columns, C[:,j] and118

1 − C[:,j]. This mirroring procedure ensures that both directions of the confounding variables are119

considered (e.g. answer patterns more common the younger or the older the participants are). Lastly,120

we incorporate a vector of ones into C to facilitate intercept modeling of dataset wide answer patterns.121

Optimization problem We seek to factorize the questionnaire matrix M as the product of a122

n× k factor matrix W ∈ [0, 1], with the confound matrix C ∈ [0, 1] as optional additional columns,123

and a m× (k + c) loading matrix Q := [RQ,CQ], with a loading pattern RQ over m questions for124

each of the k factors (and CQ for optional confounds). Denoting the Hadamard product as ⊙, our125

optimization problem minimizes the squared error of this factorization126

minimize
W∈W,Q∈Q,Z∈Z

1/2 ∥M⊙ (M − Z)∥2F + β ·R(W,Q)

such that [W,C]QT = Z, Z = {Z| min(M) ≤ Zij ≤ max(M)}
Q = {Q| 0 ≤ Qij} andW = {W | 0 ≤Wij ≤ 1} (ICQF)

subject to entries of Q being in the same value range as question answers, so loadings are interpretable,127

and bounding the reconstruction by the range of values in the questionnaire matrix M . We further128

regularize W and Q through R(W,Q) := ∥W∥p,q + γ∥Q∥p,q, γ = n
m max(M), where ∥A∥p,q :=129

(
∑m

i=1(
∑n

j=1 |Aij |p)q/p)1/q . Here, we use p = q = 1 for sparsity control. The heuristic γ balances130

the sparsity control between W and Q; γ is absorbed into β of Q if no ambiguity results.131

3.2 Solving the optimization problem132

We use the ADMM framework for fitting the ICQF model, due to its parallelizability, flexibility in133

incorporating various types of constraints, and its compatibility with different optimization schemes.134
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Specifically, we utilize the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) to accommodate135

our sparsity constraints, leveraging its numerical advantages, such as quadratic convergence and136

low memory cost, as discussed in Gaines et al. (2018). Unlike stochastic optimization approaches,137

which require addressing the missing entries and uneven distribution of responses in questionnaires138

when generating training batches, ADMM allows us to tackle the optimization problem holistically.139

Additionally, it can find a solution for large clinical questionnaire datasets (thousands of participants,140

tens to hundreds of questions) in about a minute with a laptop CPU, so the performance is appropriate.141

Optimization procedure The ICQF problem is non-convex and requires satisfying multiple142

constraints. Under the ADMM optimization procedure, the Lagrangian Lρ is:143

Lρ(W,Q,Z, αZ) =1/2∥M⊙ (M − Z)∥2F + IW(W ) + β∥W∥1,1 + IQ(Q) + β∥Q∥1,1
+
〈
αZ , Z − [W,C]QT

〉
+ ρ/2

∥∥Z − [W,C]QT
∥∥2
F
+ IZ(Z)

(1)

where ρ is the penalty parameter, αZ is the vector of Lagrangian multipliers and IX (X) = 0 if144

X ∈ X and∞ otherwise. We alternatingly update primal variables W,Q and the auxiliary variable145

Z by solving the following sub-problems:146

W (i+1) = argmin
W∈W

ρ/2∥Z(i) − [W,C]Q(i),T + ρ−1α
(i)
Z ∥

2
F + β∥W∥1,1 (2)

Q(i+1) = argmin
Q∈Q

ρ/2∥Z(i) − [W (i+1), C]QT + ρ−1α
(i)
Z ∥

2
F + β∥Q∥1,1 (3)

Z(i+1) = argmin
Z∈Z

∥M⊙ (M − Z)∥2F + ρ∥Z − [W (i+1), C]Q(i+1),T + ρ−1α
(i)
Z ∥

2
F (4)

for some penalty parameter ρ. Lastly, αZ is updated via147

α
(i+1)
Z ← α

(i)
Z + ρ(Z(i+1) − [W (i+1), C](Q(i+1))T ) (5)

Equations 2 and 3 can be further split into row-wise constrained Lasso problems and there is a closed148

form solution for equation 4. The optimization details are further discussed in Appendix 6.1. Given149

the flexibility of ADMM, a similar procedure can also be used with other regularizations.150

Convergence of the optimization procedure The convergence hinges on the careful selection151

of the penalty parameter ρ. Informally, imposing the constraint ρ ≥
√
2 on the penalty parameter ρ152

guarantees monotonicity of the optimization procedure, and that it will converge to a local minimum.153

Integrating this constraint with the adaptive selection of ρ (Xu et al., 2017), we obtain an efficient154

optimization procedure for ICQF. Formally, this can be stated as the following proposition.155

Proposition 3.1 (Non-increasing property). Assume ρ ≥
√
2, we have156

0 ≤ Lρ(W
(i+1), Q(i+1), Z(i+1), α

(i+1)
Z ) ≤ Lρ(W

(i), Q(i), Z(i), α
(i)
Z ) ∀i. (6)

and by the monotone convergence theorem, (W (i), Q(i)) will converge to a critical point (W,Q).157

The main idea of the proof of 3.1 is to estimate the difference between the two consecutive Lagrangians158

in Equation 6 by expanding it into159

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i), α
(i)
Z ) =Lρ(V

(i+1), α
(i+1)
Z )− Lρ(V

(i+1), α
(i)
Z )

+ Lρ(V
(i+1), α

(i)
Z )− Lρ(V

(i), α
(i)
Z ) (7)

where V(i) :=
{
W (i), Q(i), Z(i)

}
. Given that the subproblems 2 – 4 are minimized during each160

iteration, we can estimate upper bounds of these terms and obtain161

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i), α
(i)
Z ) ≤

(
1

ρ
− ρ

2

)
·
(
∥[W (i+1), C](Q(i+1),T −Q(i),T )∥2F

+ ∥[(W (i+1) −W (i)), C]Q(i),T ∥2F + ∥Z(i+1) − Z(i)∥2F
)
. (8)

If we set ρ ≥
√
2, the right hand side becomes negative and the Lagrangian decreases across iterations162

and converges to a critical point. The full proof of Proposition 3.1 is given in Appendix 6.2.163

Furthermore, Bjorck et al. (2021) showed that, for non-negative matrix factorizations, if the dimen-164

sionality k is the same as that k∗ of a ground truth solution (W ∗, Q∗), the error ∥M −WQT ∥2F is165
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star-convex towards (W ∗, Q∗), and the solution is close to a global minimum. However, if k ̸= k∗,166

the relative error between W ∗ and W increases with |
√
k/k∗ − 1|. Inaccurate estimation of k∗ thus167

affects both the interpretability of (W , Q) and the convergence to global minima. With the bounded168

constraints imposed on W and Q in ICQF, Popoviciu’s inequality establishes an upper bound for the169

variances σ2
W and σ2

Q of each column in W and Q respectively. To simplify the analysis, we assume170

equal variances among the columns (generally true). Then we have the following proposition:171

Proposition 3.2. Let (W ∗, Q∗) be a ground-truth factorization of the given M = W∗(Q∗)T , with172

latent dimension k∗, where W∗ and Q∗ are matrix-valued random variables with entries sampled173

from bounded distributions. Suppose (W,Q) is another factorization with dimension k ̸= k∗, then174

E
[
∥W∗ −W∥2F

]
≥
(√

k/k∗ − 1
)2

E
[
∥W∗∥2F

]
(9)

with high probability. The full proof of Proposition 3.2 is provided in Appendix 6.3. The two175

propositions, combined, show that our factorization can capture the true latent structure of the data,176

under the right conditions. The first is a linear combination of factors being a good approximation,177

which is the case for questionnaires. The second is having a robust estimator of k, discussed next.178

Choice of number of factors For each β, we choose the number of factors k using blockwise-179

cross-validation (BCV). Given a matrix M , for each k, we shuffle the rows and columns of M and180

subdivide it into br × bc blocks. These blocks are split into 10 folds and we repeatedly omit blocks in181

a fold, factorize the remainder, impute the omitted blocks via matrix completion and compute the182

error1 of that imputation. We choose k with the lowest average error. This procedure can adapt to183

the distribution of confounds C by stratified splitting. We compared this with other approaches for184

choosing k, for ICQF and other methods, over synthetic data, and report the results in Section 4.1.185

4 Experiments and results186

4.1 Experiments on synthetic questionnaire data187

We examined the effectiveness of BCV and other algorithms on estimating the number of latent188

factors in a synthetic dataset, for ICQF against ℓ1-regularized NMF (ℓ1-NMF) (Cichocki & Phan,189

2009) and factor analysis with promax rotation (FA-promax) (Hendrickson & White, 1964) as factors190

can be correlated. Both ICQF and ℓ1-NMF were initialized with NNDSVD (Boutsidis & Gallopoulos,191

2008), and the sparsity (β = 1e−1) and stopping criterion (relative iteration convergence tolerance192

ϵ < 1e−3) for fairness. The estimation method for FA was minimum residual.193

We generated a synthetic questionnaire with k∗ = 10 factors. We first created a 200× 10 latent factor194

matrix W (Figure 1 left). Each factor is present in isolation for 20 participants, and in tandem with195

another for 10 more, to synthesize correlation between factors. An entry of W [i, j] is defined as196

W [i, j] := D[i, j] · a · b, a ∼ U(0.5, 1), b ∼ B(1, 0.9) (10)

where U(0.5, 1) is Uniform in [0.5, 1] and B(1, 0.9) is Bernoulli with probability p = 0.9.197

Each factor had an associated loading vector – answer pattern – over 100 questions ([0, 100] range).198

The resulting 100× 10 loading matrix Q , shown in Figure 1 (center), is defined to be199

Q[i, j] := c · d, c ∼ U(0, 100), d ∼ B(1, 0.3) (11)

We then create a noiseless data matrix Mclean := min(0,max(WQT , 100)), and add noise by200

M := min (0,max(Mclean + e · f, 100)) , f ∼ U(−100, 100) (12)

where e follows a discrete probability distribution with P (e = 1) = δ, P (e = 0) = 1 − δ. This201

yields a data matrix M , shown in Figure 1 (right) for δ = 0.3 (the highest noise level).202

1Appropriate weighting is multiplied to the error if number of blocks in the last fold is less than others.
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Figure 1: Synthetic W , Q and M with δ = 0.3.

Detection
schemes for k

Noise density δ
δ = 0.1 δ = 0.2 δ = 0.3

ICQF (BCV) (0.10, 0.06) (0.11, 0.06) (0.77, 0.15)
ℓ1-NMF (BCV) (0.17, 0.07) (2.37, 0.33) (2.40, 0.31)

ICQF (BIC1) (0.10, 0.06) (0.67, 0.23) (2.40, 0.48)
ℓ1-NMF (BIC1) (0.90, 0.23) (1.10, 0.30) (2.47, 0.54)

ICQF (CCC) (1.33, 0.24) (1.14, 0.21) (0.96, 0.18)
ℓ1-NMF (CCC) NaN NaN NaN

ICQF (Dispersion) (0.23, 0.09) (0.93, 0.16) (2.60, 0.26)
ℓ1-NMF (Dispersion) NaN NaN NaN

FA-promax (PA) (0.17, 0.07) (0.53, 0.10) (0.87, 0.14)
FA-promax (MAP) (0.11, 0.06) (0.13, 0.06) (1.27, 0.20)
FA-promax (BIC2) (0.30, 0.03) (0.93, 0.11) NaN

Table 1: Average error and standard error (ϵ̄, sE) of k.

203

Table 1 shows the mean error ϵ̄ and the standard error sE of the detected k versus ground-truth204

k∗ = 10, across 30 generated datasets. We tested five popular detection algorithms: BCV (Kanagal &205

Sindhwani, 2010), BIC1 (Stoica & Selen, 2004)2, CCC (Fogel et al., 2007) and Dispersion (Brunet206

et al., 2004). For ICQF and ℓ1-NMF, BCV is the best detection scheme at all noise levels; BIC2207

performs well for low noise only. For the three common FA schemes, Horn’s PA (Horn, 1965) and208

MAP (Velicer, 1976) are superior to BIC2 (Preacher et al., 2013), which aligns with empirical209

observations in Velicer et al. (2000); Watkins (2018); Goretzko et al. (2021). ICQF with BCV210

outperforms ℓ1-NMF and FA at all noise levels.211

4.2 Experiments with the Child Behavior Checklist (CBCL) questionnaire212

4.2.1 Data213

The 2001 Child Behavior Checklist (CBCL) is a general-purpose questionnaire covering different214

domains of psychopathology designed to screen and refer patients to pediatric psychiatry clinics, for215

a variety of diagnoses (Heflinger et al., 2000; Biederman et al., 2005, 2020). The referral is based216

either on raw answers on the questionnaire or syndrome-specific subscales derived from them. The217

checklist includes 113 questions, grouped into 8 syndrome subscales: Aggressive, Anxiety/Depressed,218

Attention, Rule Break, Social, Somatic, Thought, Withdrawn problems. Answers are scored on a219

three-point Likert scale (0=absent, 1=occurs sometimes, 2=occurs often) and the time frame for the220

responses is the past 6 months. We use the parent-reported CBCL responses.221

The primary experiments in this paper use CBCL questionnaires from two independent studies:222

the Healthy Brain Network (HBN) (Alexander et al., 2017) and the Adolescent Brain Cognitive223

DevelopmentSM (ABCD) study (https://abcdstudy.org). HBN is an ongoing project to create a biobank224

from New York City area care-seeking children and adolescents. ABCD is a longitudinal study,225

starting with youths aged 9-10, to obtain a socio-demographically representative sample over time.226

Both datasets provide diagnostic labels for mental health conditions, of which we selected the 11227

most prevalent ones (Depression, General Anxiety, ADHD, Suspected ASD, Panic, Agoraphobia,228

Separation and Social Anxiety, BPD, Phobia, OCD, Eating Disorder, PTSD, Sleep problems). In229

HBN, we use CBCL from 1335 participants, 1,001 of whom have at least one diagnosis. In ABCD,230

we use CBCL from 11,681 participants, 7,359 of whom have at least one diagnosis.231

4.2.2 Experimental setup232

Baseline methods Our first baseline method is ℓ1- regularized NMF (ℓ1-NMF) (Cichocki & Phan,233

2009), as it also imposes non-negativity and sparsity constraints. As constructs (or questions) can be234

correlated, we rule out other NMF methods with orthogonality constraints. FA with promax rotation235

(FA-promax) (Hendrickson & White, 1964) using minimum residual as estimation method is included236

because it is the most commonly used technique for analyzing questionnaires and extracting latent237

constructs. It is also a baseline familiar to the clinical community designing questionnaires. Finally,238

syndrome subscales are included since they are often used for diagnostic prediction in screening. To239

estimate the number of factors k, we use BCV for ℓ1-NMF and ICQF, and Horn’s parallel analysis240

for FA, the best approach for each method in the synthetic questionnaire experiments in Section 4.1.241

Dataset splits Within each dataset, we first split the participants into development and held-out242

sets with an 80/20 ratio. The assignment is done using stratified sampling, to keep the distribution of243

confounds and diagnostic labels similar across both sets. Training and validation sets are derived244

2Here BIC1(k) := log
(
∥M −WQT ∥2F

)
+ km+n

mn
log

(
mn
m+n

)
, other versions yield similar results.
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Figure 2: Heatmap of factor loadings Q := [RQ,CQ] from ICQF for factors proper, old/young and male/female
confounds, and the implicit intercept (top) and loadings Q from Factor Analysis with promax rotation (bottom).
Abbreviated questions are listed at the bottom of each column. Questions are grouped by syndrome subscale;
some factors are syndrome specific, while others bridge syndromes.

from the development set, as explained in each experiment. All the quantitative results are obtained245

on the held-out set. To increase the robustness of our analysis, and obtain measures of uncertainty,246

we use different seeds to resample 30 dataset splits, and carry out experiments on each split. The247

reported results are obtained by averaging the results on the held-out set across all 30 splits.248

Model training and inference Let W set denote the participant factor matrix in ICQF or NMF, or the249

factor score in FA, with the superscript denoting the set. Similarly, let Q denote the question loadings250

associated with a factor in each method. Model training will yield a (W train, Q) for participants in the251

training set. Inference with the model will produce W validate and W held-out in validation and held-out252

sets, using the trained Q and confounds Cvalidate, Cheld-out (if applicable).253

4.2.3 Experiment 1: qualitative comparison of ICQF with FA254

We begin with a qualitative assessment of ICQF applied to the development set portion of the CBCL255

questionnaire from the HBN dataset. We estimated the latent dimensionality k = 8 using BCV to256

compute an error over left-out data, at each possible k. The regularization parameter β = 0.5 was set257

the same way. The top-panel of Figure 2 shows the heat map of the loading matrix Q := [RQ,CQ],258

composed of loadings RQ for the latent factors W , and the loadings CQ for the confounds C.259

Given the absence of ground-truth factorizations for this questionnaire, the qualitative assessment260

hinges on the relation of question loadings to the syndrome subscales used in clinical practice.261

While there were factors that loaded primarily in questions from one subscale, as expected, we were262

encouraged by finding others that grouped questions from multiple subscales, in ways that were263

deemed sensible co-occurrences by our clinical collaborators. As a further, sanity check, we inspected264

the loadings of confound Old (increasing age) and observe that they covered issues such as “Argues”,265

“Act Young”, “Swears” and “Alcohol”. The loadings of Q also reveal the relative importance among266

questions in each estimated factor; subscales deem all questions equally important.267

For comparison, Figure 2 (bottom) shows the loadings Q from Factor Analysis with promax rotation.268

By means of parallel analysis, we have identified a value of k = 13, which significantly exceeds the269
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Figure 3: Trend and variability in average diagnostic prediction performance across 11 conditions, using
decreasing dataset sizes, in CBCL questionnaires from HBN (left) and ABCD (right) independent datasets.

8 syndrome subscales that were initially established during the development of the checklist. The270

absence of sparsity and non-negativity control also results in a matrix that is more densely populated271

with both positive and negative elements, in an arbitrary range. This can present challenges when272

attempting to interpret the loadings in conjunction with the factor matrix W , also without constraints.273

4.2.4 Experiment 2: preservation of diagnostic-related information274

Our first quantitative metric to compare ICQF with baseline methods is the degree to which the275

low-dimensional factor representation of each participant (row of W ) retains diagnostic information,276

across all 11 conditions we consider. Furthermore, this metric must be evaluated as a function of277

training sample size. As the sample size decreases, the regularization imposed by each method278

becomes more influential in determining the relationship between questions.279

We evaluate this by creating training sets of different sizes from the development set (80, 40, 60, and280

20 % of participants, with a fixed 20% as a validation set) and factorizing each of them with ICQF281

and the other methods. This yields a W train, Qtrain for each combination of method and training set282

size, which is then used to infer factor scores W held-out
% from the held-out set. The same held out-set is283

used for every method and dataset size being compared.284

To estimate diagnostic prediction performance for each W train, Qtrain factorization, we train a separate285

logistic regression model with ℓ2 regularization and balanced class weights from W train for each286

of the 11 diagnostic labels (i.e., 11 binary classification problems). The regularization strength is287

fine-tuned using W validate, and prediction assessment is carried out on W held-out using the receiver288

operating characteristic (ROC) area under the curve (AUC) metric. The use of AUC is motivated289

from a clinical perspective, where clinicians often apply varying thresholds for detection depending290

on the aim of prediction, such as screening or intervention that incurs significant costs. We repeat this291

procedure in both CBCL-HBN and CBCL-ABCD data.292

Figure 3 shows the trend and variability (95% confidence region) of the averaged AUCs of ICQF293

and the baseline methods using different dataset sizes (proportions of subjects), for HBN (left) and294

ABCD (right). In both HBN and ABCD, the ICQF outperforms other optimal baseline methods in295

maintaining high AUC scores across 11 conditions, and the difference in performance increases as296

the sample size decreases (p ≤ 0.01, based on a one-side Wilcoxon signed rank test and adjusted297

using False Discovery Rate α = 0.01), except for ℓ1-NMF at 20% in CBCL-HBN). Moreover, the298

factorization solutions obtained with ICQF are more stable in terms of the number of dimensions k299

(k = 8→ 6 for ICQF, versus 8→ 3 for ℓ1-NMF and 13→ 18 for FA-promax in HBN; k = 7→300

7 for ICQF, versus 5→ 4 for ℓ1-NMF and 20→ 17 for FA-promax in ABCD). This is particularly301

noteworthy in comparison to ℓ1-NMF, as it indicates the extra bounded constraints on W and the302

approximation matrix Mapprox makes BCV detect k more consistently.303

4.2.5 Experiment 3: quality of the factor loadings304

Our second quantitative metric to compare ICQF with baseline methods considers the change in305

quality of the factor loading matrix Q as training sample size decreases, to examine the effect of306

regularization in constraining estimates. As before, we obtain a W train, Qtrain for each combination307
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Table 2: Top 2: Quality of Q factor loadings at various training set sizes, within dataset. The values are the
mean and standard deviation of Pearson correlation coefficients between best-matched Q factors from the full
dataset, and from decreasing size subsets of it. Bolded where ICQF is significantly better. Bottom: Agreement
in Q factor loadings between models estimated in CBCL in two independent datasets, measured in the same way.

Factorization
Questionnaire n-subjects ICQF FA-promax ℓ1-NMF

CBCL-HBN

1854 (80%) 0.89 (0.07) 0.51 (0.41) 0.76 (0.18)
1388 (60%) 0.94 (0.03) 0.62 (0.34) 0.75 (0.19)
924 (40%) 0.92 (0.05) 0.62 (0.33) 0.75 (0.19)
462 (20%) 0.85 (0.12) 0.54 (0.36) 0.76 (0.20)

CBCL-ABCD

7474 (80%) 0.84 (0.13) 0.43 (0.27) 0.63 (0.28)
5604 (60%) 0.84 (0.13) 0.32 (0.30) 0.63 (0.28)
3736 (40%) 0.77 (0.20) 0.42 (0.24) 0.63 (0.28)
1868 (20%) 0.69 (0.25) 0.35 (0.26) 0.62 (0.29)

CBCL-HBN ↔ CBCL-ABCD full ↔ full 0.75 (0.07) 0.71 (0.03) 0.68 (0.08)

of method and training set size. We then compare the loading matrix each size (Q%) with the one308

obtained on the full development dataset (Qfull). We do this by greedily matching each row from Qfull309

with a row from Q% by their Pearson correlation, and then computing the average correlation across310

pairs as the score. Given that a factorization learned on a smaller dataset may have fewer factors,311

we do this over the first min(kfull, k%) rows only. The first two rows of Table 2 reports this score312

for ICQF and the two baseline factorization methods, at each dataset size, on both CBCL-HBN and313

CBCL-ABCD datasets. ICQF outperforms the other methods at every dataset size (p ≤ 0.01, based314

on a one-side Wilcoxon signed rank test and adjusted using False Discovery Rate α = 0.01), except315

for ℓ1-NMF at 20% in CBCL-HBN.316

Our third quantitative metric is the replicability of factor loadings across independent studies (and317

populations). This is an important criterion for clinical research purposes, as it means that the relations318

between questions identified by the factorization are general. We measure this by computing W,Q for319

the full development sets of HBN and ABCD, for ICQF and the two baseline factorization methods.320

For each method, we greedily match factors loadings for the HBN and ABCD factorizations, and321

compute the average Pearson correlation across factor pairs, reported on the third row of Table 2. We322

conduct similar statistical testing and observe that ICQF outperforms the other methods (p ≤ 0.05).323

5 Discussion324

In this paper, we introduced ICQF, a non-negative matrix factorization method designed for question-325

naire data. Our method incorporates characteristics that enhance the interpretability of the resulting326

factorization, as conveyed by psychiatry collaborators. We showed that their qualitative desiderata327

can be turned into formal constraints in the factorization problem, together with direct modelling of328

confounding variables, which other methods do not allow. The method is user friendly, by supporting329

automated estimation of the number of factors, minimizing the number of hyper-parameters, and330

transparently handling missing entries instead of requiring separate imputation. The characteristics331

above mean that ICQF required an entire optimization procedure to be derived from scratch. We332

provided a theoretical formalization of the problem and the procedure, and demonstrated a pair333

of propositions that guarantee convergence of the procedure to a local minimum and, in certain334

conditions, a global minimum as well.335

We evaluated ICQF against alternative methods for the same purpose (ℓ1-NMF, used in the machine336

learning literature, and factor analysis, used in the clinical literature), on a widely used clinical337

questionnaire, in participants from two completely independent datasets. We designed metrics338

capturing the desired properties, namely preservation of diagnostic information – as this questionnaire339

is used for screening – and stability of solutions, at a range of dataset sizes, or across independent340

datasets. We carried out experiments controlling these factors, and showed that ICQF outperforms the341

alternative methods across the board. We have also used ICQF with 20 other questionnaires in HBN342

– both general-purpose and disorder-specific – in experiments not reported in this paper. Overall,343

results suggest that the regularization imposed by ICQF matches the underlying characteristics of344

questionnaire data better than other methods, in addition to promoting interpretability.345
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