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Abstract

Wasserstein gradient flow (WGF) is a common method to perform optimization
over the space of probability measures. While WGF is guaranteed to converge
to a first-order stationary point, for nonconvex functionals the converged solution
does not necessarily satisfy the second-order optimality condition; i.e., it could
converge to a saddle point. In this work, we propose a new algorithm for probability
measure optimization, perturbed Wasserstein gradient flow (PWGF), that achieves
second-order optimality for general nonconvex objectives. PWGF enhances WGF
by injecting noisy perturbations near saddle points via a Gaussian process-based
scheme. By pushing the measure forward along a random vector field generated
from a Gaussian process, PWGF helps the solution escape saddle points efficiently
by perturbing the solution towards the smallest eigenvalue direction of the Wasser-
stein Hessian. We theoretically derive the computational complexity for PWGF
to achieve a second-order stationary point. Furthermore, we prove that PWGF
converges to a global optimum in polynomial time for strictly benign objectives.

1 Introduction

We consider the general problem of optimizing a probability measure: ming, cp, (r) F(u), where
P,(R?) denotes the space of Borel probability measures on R? with finite second moment and
F : P2(R%) — R is a given functional which is not necessarily convex. Optimization of measures
appears extensively in machine learning and statistics either explicitly or implicitly, such as in
sampling and variational inference (Jordan et al., 1998; Liu & Wang, 2016), generative models (Arbel
etal., 2019; Chu et al., 2019) and training neural networks (Mei et al., 2018; Nitanda et al., 2022),
and has garnered significant attention both theoretically and practically. To solve such problems, the
Wasserstein gradient flow (WGF) is extensively employed:

Orpy +V - (—V(;i(ut)ut) =0, (m)C P2(RY). )
WGEF is the continuity equation of the velocity field V‘;—i and can be interpreted as gradient descent
with respect to the 2-Wasserstein metric (Jordan et al., 1998). Moreover, (1) is equivalent to the
continuous-time and infinite-particle limit of first-order optimization algorithms such as gradient
descent, and serves as the foundation for numerous machine learning methods; see Appendix A for a
discussion of related works and applications. It is thus of paramount importance to understand the
convergence of WGF, and to develop algorithms which guarantee well-behaved solutions.

*This work was primarily conducted while the author was at the University of Tokyo and RIKEN AIP.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Convergence of WGFE. A prominent line of work on the convergence of WGF is the study of
neural network optimization using mean-field theory (Mei et al., 2018). Mean-field theory models the
evolution of an interacting particle system as the number of particles tends to infinity, such as the
training dynamics of an infinite-width neural network, through the WGF of the limiting distribution.
For simple problem settings such as regression with two-layer networks, the corresponding loss
functional is shown to be (linearly) convex, allowing for global convergence analysis of WGF (Chizat
& Bach, 2018; Mei et al., 2018). Furthermore, Nitanda et al. (2022); Chizat (2022); Suzuki et al.
(2023) obtained linear convergence under the log-Sobolev inequality (LSI) condition using mean-field
Langevin dynamics. This adds isotropic noise via Brownian motion, corresponding to an additional
entropy regularization which effectively makes the objective strongly convex.

Non-convex objectives. While these works primarily rely on convexity, the vast majority of
objectives arising in deep learning (such as the loss function for neural networks with three or more
layers) are non-convex, even when lifted to the space of measures. However, due to the inherent
difficulty of infinite-dimensional non-convex optimization, convergence guarantees for WGF in this
regime has been extremely limited. Recently, Kim & Suzuki (2024) studied a transformer model
combining a mean-field neural network with linear attention for in-context learning, resulting in a non-
convex optimization problem. Through landscape analysis, they showed that the objective possesses
a desirable benignity property: all second-order optima are either saddle points or global optima. A
similar result has been demonstrated for energy kernels such as the MMD functional (Boufadene &
Vialard, 2024). These findings suggest the necessity of probability measure optimization algorithms
that account for second-order optimality. While the first-order optimality of WGF has been shown by
Lanzetti et al. (2025), there are few studies that rigorously consider second-order conditions.

Perturbation methods. The main difficulty of non-convex optimization is due to the existence of
saddle points. A first-order method with naive initialization may end up converging to a saddle point.
Moreover, Du et al. (2017) showed that gradient descent can be significantly delayed near saddle
points, taking exponential time to converge. For optimization in finite-dimensional Euclidean space,
Ge et al. (2015); Jin et al. (2017); Li (2019) proposed methods to overcome this issue by introducing
perturbations in the vicinity of saddle points to ‘fall off” the saddle and escape efficiently. These
methods, often referred to as perturbed gradient descent (PGD), are particularly useful as they
achieve second-order optimality in polynomial time while primarily relying on first-order techniques.
In particular, PGD guarantees global convergence for problems satisfying a strict benignity property,
such as matrix factorization (Jin et al., 2017) and tensor decomposition (Ge et al., 2015).

With these issues in mind, we ask the following question:

Can we develop a perturbative version of Wasserstein gradient flow for non-convex objectives which
converges efficiently to second-order optimal points?

Our Contributions. In this study, we propose a perturbative modification to WGF that efficiently
avoids saddle points. Considering the tangent bundle structure of P, (R?) induced by the Wasserstein
distance, it is natural to extend the notion of perturbation in Euclidean space to measure space
by defining perturbations of the drift function through randomly generated vector fields. Such a
perturbative method was conjectured to improve convergence by Kim & Suzuki (2024), but without
any theoretical guarantees. Our contributions are summarized as follows:

* We propose a new implementable algorithm, perturbed Wasserstein gradient flow (PWGF),
that guarantees second-order optimality for general smooth and non-convex functionals. Unlike
the method proposed by Kim & Suzuki (2024), which injects isotropic noise near saddles into
the WGF, we guarantee improvement by directing the noise using the (Wasserstein) Hessian.
Specifically, PWGF pushes the measure along a random velocity field generated from a Gaussian
process whose covariance is constructed from the Hessian of the objective.

* We prove that PWGEF effectively avoids saddle points and reaches second-order optimal points in
time that depends polynomially on precision parameters, enabling the optimization of non-convex
distributional objectives. Compared to the finite-dimensional setting (Li, 2019), the analysis
requires a careful treatment of an infinite dimensional objective. For this purpose, we utilize
techniques from Wasserstein geometry, optimal transport and the theory of Gaussian processes.



Organization. The paper is organized as follows. Section 2 provides theoretical preliminaries,
supplemented in Appendix B. Second-order optimality conditions are presented in Section 3. In
Section 4, we introduce the proposed PWGF algorithm. Section 5 presents the convergence analysis,
along with a rough sketch of the proof. Numerical experiments are provided in Appendix F.

2 Preliminaries

In this paper, we consider the optimization problem min,, ¢, ga) F'(1) over the space of probability

distributions, where F' : P(R%) — R is a real-valued lower-bounded functional defined on P, (R?).
This section introduces the problem of probability measure optimization and reviews key concepts in
optimal transport and Wasserstein geometry. See Appendix B for further details.

Notation. Let Id be the identity map on R%. The canonical projection to the ith coordinate is
denoted by p;. The Euclidean inner product and operator norm are (-, -}, ||-||. The Frobenius norm is
|||z~ The set of real-valued functions on R? that are infinitely differentiable with compact support is
Cg°(R?). The inner product and norm or operator norm in L (1) is (-, ) 12,y » || 12,y The trace
norm of an operator is |||/, ;2,,, and the Hilbert-Schmidt norm is ||-[|g4g 72(,)- 7' = O indicates
that an operator 7" is positive semi-definite. The smallest eigenvalue of a compact operator 7" is

denoted by Apin 7. The exponential of an operator 7" is denoted by e or exp T. We use O to denote
big O notation ignoring logarithmic factors.

The set of all Borel probability measures on R? with finite second moments is denoted by P, (R?),
and the subset of measures absolutely continuous with respect to Lebesgue measure is denoted
by P¢(R?). The Dirac measure on x € R? is §, € P2(R?). f#u denotes the pushforward of
i € Pa(R?) by a measurable map f : R — R9,

2.1 Wasserstein Geometry

Definition 2.1 (Wasserstein metric). The 2-Wasserstein metric between p, v € Po (Rd) is defined as
Wa(u)* = min [ o~ gl (dody), @
YET (p,v)

where I'(11, /) represents the set of all transport plans (or the set of couplings) of p, v, that is, all joint
distributions on R? x R? whose marginal distributions are 1 and . We denote the set of all optimal
transport plans by ', (14, /) and the optimal transport map by T

A fundamental dynamics in Wasserstein space is the continuity equation with velocity field vy,
Qe + V- (vepe) =0,y € Po(RY), t € 1. 3)

Intuitively, (3) describes how a particle distribution y, evolves along a vector field v;. In particular,
WGF (1) moves particles according to the vector field v, = —V% (14¢) (see Section 2.3). Moreover,
the continuity equation with velocity field v; such that

v € Tan, Pa(RY) = (Vo[ € CR®D} .

can be locally approximated by a pushforward along v; (Proposition B.9). Therefore the continuity
equation is computationally approximated by the pushforward representation:

perat < (Id + Atvy) # . “)

The absolute continuity of the curve u, with respect to the Wasserstein distance is equivalent to
satisfying (3) for some v; € LQ(ut) (Ambrosio et al. (2008), Theorem 8.3.1). In this sense, the
continuity equation provides a concept of differentiation consistent with the Wasserstein metric. For
further background on optimal transport theory, see Appendix B.

2.2 Wasserstein Gradient

The Wasserstein gradient is the fundamental quantity for first-order analysis in Wasserstein space.



Definition 2.2 (Wasserstein gradient). The Wasserstein gradient of F' at 1 € Po(R?) is a vector field
V. F : R? — R? such that for any v € P2(R?) and v € T',(u, v),

F() = Flp) = [ 9, (@) (y - o) (dady) + O(Wam,)?).

The first variation also frequently appears in the context of probability measure optimization (cf.
proximal Gibbs measure (Nitanda et al., 2022)).

Definition 2.3 (First variation). The first variation %—5 : Po(R?) x R? — R is defined as a functional
satisfying for any v € Py (R?),

Fu+hiv =) = | i—im, 2)( — v)(dz). )

dhly.Zo

A naive computation might suggest that V, F' = Vg—f; however, this is not generally true without
additional conditions. Nevertheless, we do not distinguish between the two, see Appendix B.2.

First-order optimality. The Wasserstein gradient allows us to construct first-order approximations
of functionals. Furthermore, Lanzetti et al. (2025) demonstrated two analogies to finite-dimensional
optimization. The first is that V,I' = 0 serves as a necessary condition for local optimality. The
second is that V, ' = 0 becomes a sufficient condition for global optimality in the convex case.
Based on these considerations, we define the following.

Definition 2.4 (First-order stationary point). Supoose that a functional F : Py(R?%) — R satisfies
sufficient smoothness. We say that u € Py(R?) is a first-order stationary point, if y satisfies
V. F'=0 p-ae.

2.3 Wasserstein Gradient Flow (WGF)

As a counterpart of gradient descent in Euclidean space, the WGF in Wasserstein space is defined as

O+ V - (=VuF(p)p) =0, (1) C Po(RY). (6)
From previous observations, the direction v, = —V,, F'(11;) yields the steepest descent direction of
the objective F'. Furthermore, by the chain rule (Proposition C.3) it holds that
d 2
SF () = ~[IVuF (1) 32, < 0

This indicates that the WGF monotonically decreases the objective function. Indeed, the WGF can be
interpreted as a gradient descent method in the space of probability measures (Jordan et al., 1998).
Moreover, WGF becomes stationary iff the solution is at a first-order stationary point (Definition 2.4).

3 Second Order Optimality on Probability Space

In order to study second-order behavior, we define a suitable class of sufficiently regular functionals.
Definition 3.1 (Sufficient smoothness). A functional F' : Pg(Rd) — R is sufficiently smooth if

e F admits a L?(y)-integrable Wasserstein gradient V, F at all 1 € Po(R?).

* V. F(u,x) further admits Wasserstein gradient VZF : Py(R?) x R* x RY — R**¢ and

is differentiable with respect to the second coordinate x for any p € Po(R?) and p-ae. z.
Furthermore, V7, F(11) is L*(p © pu) integrable and pi-ess sup|| V'V, F(u, z)|| < oo.

Assumption 1. The objective F : P2(RY) — R is a sufficiently smooth functional.

Building upon the discussion of first-order optimality, we extend the analysis to second-order
conditions. For simplicity of notation, we define the following operators H,,, H L for f € L*(R%):

H, f(x) = / V2F (2, 9) f()u(dy),  HLf(x) = VV,F () f(2).

We establish the following proposition.



Proposition 3.2. For I : Po(R?) — R a sufficiently smooth functional, for all v € L? (1)<,

d? )
a2 h:OF((Id + ho)#u) = (v, (H, + HM)U>L2(,L)' 7)

This demonstrates that the second order term of a vector field perturbation is characterized by the
operator H,, + H ;/r For a more general version, see Proposition C.7. In particular, when examining
stability at first-order stationary points, we have V, F'(11) = 0, which implies VV, F'(u) = 0, that
is, H;, = 0. Consequently, the change in I due to perturbations along vector fields is determined
solely by the integral operator I, up to second order. Note that this does not necessarily hold for

w ¢ Pg(R?); for further details, refer to Appendix C.

Next, paralleling the work by Lanzetti et al. (2025), we demonstrate that H,, > O serves as a sufficient
condition for local stability, establishing the analogy with second-order conditions in Euclidean space.

Proposition 3.3 (second-order necessary condition). Let F' : Po(R?) — R be sufficiently smooth. If
w* € PH(RY) is a local minimum of F, then it holds that H,,» = O.

Based on this observation, we define the second-order optimality condition for probability measures.

Definition 3.4 (second-order stationary point). For F' : Py(R?) — R a sufficiently smooth functional
and ;1 € Po(RY),

* We say that (1 is a second-order stationary point if p is a first-order stationary point and H,, = O.

 We say that y is a saddle point if pu is a first order stationary point and satisfies H,, # O, i.e., the
smallest eigenvalue of H), is strictly negative : ApinH,, < 0.

Since we seek approximate solutions for F', we also define approximate second order stationary
points and saddle points.

Definition 3.5 (approximate second-order stationary point). Suppose that F' : Py(R%) — R is
sufficiently smooth and p € Py(R9).

* We say that /. is an (g, 6)-stationary point, if |V, F'(1)|] < eand ApinH,, > —46.

L2(p) —=

* We say that 1 is an (e, 6)-saddle point, if |V, F'(u) <eand A\pminH,, < —6.

”L”(u)
While this definition is useful for convergence analysis, it is not fully appropriate in light of the
second-order expansion (7). This is because the condition ||V, F'(u)|| 2(y) < € only implies that

V. F(p) is small in the sense of L? norm and does not indicate that V'V, F'(1) is close to zero.
Therefore, in that case, second order optimality should be determined by H,, + H ;/t rather than H,.

Consequently, this paper assumes that the L? norm of Wasserstein gradients being small implies that
the supremum norm of their gradients is also small.

Assumption 2. For any p € P2(RY), it holds that
press sup [V 9, s )] < Rl V)1 ®
e

Under this assumption, a small ||V, F(u)| 2, implies that p-esssup|[VV,.F(p,z)| =
|1 H || L2, is also small, justifying the definition of (e, §)-stationary points.

3.1 Global Convergence for Strictly Benign Objectives

It is known that certain non-convex optimization problems possess a desirable property called
benignity, i.e. all local minima must be global minima. In Euclidean spaces, examples include tensor
decomposition (Ge et al., 2015; Jin et al., 2017). With our definitions of (approximate) second-order
optimality, a similar property can be considered for the Wasserstein space.

Definition 3.6 (Strict benignity). The functional F : P(R?) — R is said to be (g, 6, a)-strictly
benign if at least one of the following conditions holds for any 1 € Py (R%):

1. ”qu(N)”L?(H) > €.



2. AminH, < —6.
3. Wa(p, pu°) < « for some global optima p°.

We provide examples of non-convex objective functions that exhibit strict benignity. For details on
the properties of each objective function, refer to the appendix and the cited papers.

Example 1 (Matrix decomposition). This example is inspired by the fact that finite-dimensional
tensor decomposition exhibits strict benignity. We use a mean-field two-layer neural network

hu(z) = /aa(sz)u(dadw)

to learn a rank-one matrix induced by the target measure 11, where z is a data input that follows a
certain distribution, the parameter is z = (a,w) € R¥*!, and o is an activation function, which we
set as the sigmoid function. The objective functional can be expressed as follows:

F(p) = Bzl e (2)hue (2) T = hyu(2)hya(2) 7]
We defer a detailed analysis of this objective to Appendix G.

Example 2 (3-layer neural network). Consider a three-layer neural network model consisting of a
mean-field two-layer network followed by a linear layer. Assuming realizability, the L2 loss with
respect to a teacher network T h,,- (2) can be written as follows:

F(p, T) = By [||T"hy- (2) = Thyu(2)|I°] ©

In this case, the optimization problem with respect to 7" can be explicitly solved. Defining y° =
(T* x Idp)#p* and ¥, , = E. [hy(2)h,(2)"], the optimal T satisfies T = %0 , %} and (9)
reduces to the following probability measure optimization problem:

F(p) = Bz (1o (2) = So Sy ha(2)17] (10)
Kim & Suzuki (2024) analyze this optimization problem and essentially show strict benignity,
assuming X, , is bounded away from degeneracy.

Example 3 (Coulomb MMD). The maximum mean discrepancy (MMD) with Coulomb kernel can
be expressed as:

_ [ (p = p°)®*(dady)
FW”‘/ e —gle2

This energy functional has been studied by Boufadene & Vialard (2024), who showed that any
absolutely continuous stationary point must be a global optimum. Therefore, F' becomes benign in
regions that do not involve singular distributions.

4 Perturbed Wasserstein Gradient Flow

In this section, we introduce our proposed algorithm that incorporates perturbations in measure space
along random velocity fields to escape saddle points.

4.1 Perturbations in Wasserstein Space

In Euclidean spaces, perturbed gradient descent (PGD) is a first-order optimization method capable
of escaping saddle points efficiently by adding perturbations (Ge et al., 2015; Jin et al., 2017; Li,
2019). Despite relying solely on first order information, this method effectively achieves second order
optimality, making it highly practical especially for problems with known benign structure. A typical
perturbation technique in Euclidean spaces involves adding vectors sampled uniformly from a ball of
small radius. Intuitively, such perturbations can uniformly explore all directions, making it likely
to include the unstable direction corresponding to the smallest eigenvalue of the Hessian, thereby
quickly ‘falling off” the saddle.

To extend this idea to the space of probability measures, two issues must be addressed: (1) how to
induce perturbations in Wasserstein space, and (2) whether the perturbation includes the unstable
direction that maximally reduces the objective. For (1), Kim & Suzuki (2024) proposed introducing



Algorithm 1 PWGF (continuous-time)
set hyperparameter 7, = O(ég A %), Tihres = O(%), and Fipres = O(6%)

initialize ,u(o) and t,, = —Tinres
fort > 0 do
if ||VHF(Mt)||L2 o Seandt —tp > fihres then

§r~ GP(O’KM,) pt = (Id + mp&)tpe, tp <t

end if
if t =t 4+ Tinres and F(utp) — F(pt) < Fihyes then
return /i,
end if
Oy + V- (=V, F(p)pi) = 0
end for

perturbations via a multivariate Gaussian process £ ~ GP (0, K') with a fixed positive semi-definite
kernel K : R x R? — R?*9, transforming p into (Id +n¢)# . Leveraging vector fields to represent
infinitesimal changes in probability measures is both natural and practical. However, they did not
provide a theoretical justification for the effectiveness of this method.

We resolve this issue and guarantee (2) by constructing a measure-dependent kernel K = K,, based
on the Wasserstein Hessian of the objective:

Ku(z,y) = [V2F(u,,2)V2F (1, z,y)u(dz). (11)

The integral operator defined by this kernel coincides with the squared Hessian operator 5 Specifi-
cally, it holds for f € L?(p)¢ that

Hf(x):= [V2F(u,x,2) ([ VEF (1, 2,0) f ( )u(dy)) p(dz)
= [ (f V2F(u, 2, 2)V2F (1, 2, y)p(dz)) £ (y) p(dy)
= [ Ku(z,y)f(y)u(dy).

The Hessian-based kernel K, is symmetric, positive semi-definite, and meets the trace-class condition
due to the integrability of V,, F'(ut). This means that K, satisfies the requirements for a Gaussian
process kernel. More importantly, the Gaussian process £ is ‘directed’ by H,,, ensuring that the
perturbation is likely to include the direction corresponding to the smallest eigenvalue of H,,, thereby
achieving a reduction in the objective (Proposition 5.4). Details are provided in Appendix D.

4.2 Algorithm of PWGF

Based on the above considerations, we propose perturbed Wasserstein gradient flow (PWGF) as a
method for solving non-convex optimization problems of probability measures. PWGF alternates
between perturbing near saddle points using a Gaussian process with the kernel defined in (11) and
evolving via WGF when not near saddle points.

We present the specific algorithm in Algorithm 1, including the saddle detection mechanism. In the
space of probability measures, the Hessian H, is an operator on L? (p)9, and determining whether its
smallest eigenvalue is below a certain threshold is computationally challenging. Drawing on Jin et al.
(2017), we propose a practical criterion: Proposition 5.4 says that if a perturbation is introduced at
an (g, §)-saddle point, the objective function decreases with high probability after a certain period
of WGF. Consequently, by always introducing perturbations at first-order stationary points, we can
determine whether a given stationary point is a saddle point based on the decrease on the objective
within a fixed time threshold.

The time-discretized version of PWGEF is provided in Algorithm 2. To implement PWGF numerically,
the optimal probability measure is approximated by the ensemble average of N particles as p =

% Zjvzl 0., and the pushforward and descent steps are directly applied to each particle as
(perturbation) z; < x; +np - £(x;),
(gradient descent) x; < z; — nVF(u®), zj).



Algorithm 2 PWGEF (discrete-time)
set hyperparameter 7, = O(ég A %), 17 = O(1), kthres = O(%), and Fipres = 0(53)

initialize (¥ and k) = Eqpres
for k=0,1,...do
if |V, F (™) (utoy < €and k — Ky > Keres then

£~ GP(0,K,0), p®) « (Id + &) #pu®)
kp +— Ek

end if

if k = kp + kinres and F(u*0)) — F(u(®)) < Fijyes then
return (Fr)

end if

P e (1d =V, F (ut)) )

end for

S Convergence Analysis

In this section, we provide the theoretical guarantee for the PWGF algorithm. In addition to the
assumptions introduced in the previous sections, we impose the following Lipschitz continuity of the
Wasserstein gradient and Hessian.

Assumption 3. F’ satisfies the following smoothness:
» V F is Ly-Lipschitz, i.e. for any v € T'(p, v),
JIVLF(p,2) = V. F (v, ) |[Po(dedy) < 13 [ ||z — yl[*y(dzdy). (12)
* V2F is Lo-Lipschitz, i.e. for any v € T'(p, v),
JIVEF (w1, m0) = VEF (v, 91, 92) |27®2(dwdy) < L3 [ ||z — yl*y(dzdy).  (13)

» VV . Fis Ls-Lipschitz, i.e. for any v € T'(p1, v),
y—esssup,cga [|VV, F(p,7) = VY, F(r,y)|2 < L3 [ o — y|*y(dady).  (14)

Remark 5.1. Similar gradient and Hessian Lipschitz continuity assumptions are made in the conver-
gence analysis of perturbed gradient descent methods in Euclidean spaces (Ge et al., 2015; Jin et al.,
2017; Li, 2019). Additionally, the first-order Lipschitz assumption is similar to works on convex
functionals (Chizat, 2022; Suzuki et al., 2023).

5.1 Convergence Results for Continuous-time PWGF

The following is the main theorem of this paper, asserting that PWGF terminates in polynomial time
and reaches an (e, §)-stationary point with high probability.

Theorem 5.2. Let ¢, 6, ( > 0 be chosen such that (Ly + L3) ¢ < 6% and €,6 < O(1).> Let
the initial point be j1g € P2(RY), and AF = F(ug) — inf,cp, ey F'(1t). For hyperparameters
np = 0(6% A g) Tihres = O(%) and Fipres = 0(63), PWGEF halts after

~ 1 1
t=o(ar (5+5))
time steps and reaches an (g, §)-second-order stationary point with probability 1 — (.

To prove Theorem 5.2, we present several supporting results. Detailed proofs are deferred to Appendix
E. Lemma 5.3 is a fundamental property of WGF, providing a lower bound on the decrease in the
objective for non-stationary points.

’In the analysis of PGD in Euclidean spaces, pe < 62 is often assumed, where p is the Lipschitz constant of
the Hessian (Jin et al., 2017; Li, 2019). We adopt this assumption to the probabilistic measure space setting,
where the Hessian Lipschitz constant becomes p = L2 + Ls.



Lemma 5.3. For a curve of probability measures L following the WGF; the following holds:
t
Flu) = Fu) = [ IV o), o

Proposition 5.4 is the crucial step of our analysis, showing that perturbing an (e, §)-saddle point using
a Gaussian process with kernel (11) enables WGF to move along the unstable direction and decrease
the objective function. In other words, it allows us to efficiently escape the saddle point.

Proposition 5.4. Set n = O(1) and let €, 6, 1p, Tinres, Finres be chosen as in Theorem 5.2.
Suppose ut € P¢(R?) satisfies HVMF(,LLT)HH(M) < eand Ng ‘= AminH,1 < —0. Generating
& ~ GP(0,k,) and setting poy = (Id + n,€)tu’ as the initial point of the WGE, we have with
probability 1 — (':

F(/ﬂ) = F(iTypes) = Finres:

Combining these results establishes convergence.

Proof of Theorem 5.2. Let e, &, ¢ > 0 be chosen arbitrarily chosen such that (L + L3) ¢ < §2, and
set ¢’ > 0 such that ¢’ is polynomial in % and ¢ up to logarithmic factors.

From Proposition 5.4, perturbations occur at most m := ’—FfTF-‘ times. Thus, the probability of

failure after m perturbations is at most 1 — (1 — ¢')™ < m(’. Setting (' = % ensures that the
algorithm reaches an (e, §)-second order stationary point with probability at least 1 — .

PWGF consists of a gradient descent phase and an evaluation phase, where the decrease in the
objective is assessed after applying a perturbation. Then we define the gradient descent phase
as State 0, and the evaluation phase as State 1. Let T denote the total time in State 0, where
IV F () ”Lz(u) > £. By Lemma 5.3, the decrease in the objective during State 0 is at least 2Ty,

implying Ty < %. Moreover, the total time 77 in State I is bounded as 77 < mTijres = AF?% =

O(4E). Hence, PWGF halts in Ty + 71 = O(AF (& + &)). O

5.2 Convergence Analysis for Discrete-time PWGF

We also prove convergence to a second-order stationary point for the time-discretized PWGF (Algo-
rithm 2).

Theorem 5.5. Let the initial point be iy € P2(R?) and denote AF = F(ug) — inf ,ep, ey F(1).
Setn = O(1) and let ¢, ¢, Mp> Tihress Fihres be chosen as in Theorem 5.2. Then, discrete time

PWGF halts after
~ 1 1
k= O(AF (62 + 54>>

steps and reaches an (g, §)-second-order stationary point with probability 1 — (.

The proof is similar to the continuous-time case; details are deferred to Appendix E.2. Since second-
order stationary points are global optima for a strictly benign objective, the convergence of PWGF to
a global solution is also guaranteed.

Corollary 5.6. Under the same setting as Theorem 5.5, discrete-time PWGF for (e, 6, )-strictly
benign objective F' halts after O(AF (E% + 5%)) steps and reaches a-close to some global optima
u® s Wa(p, u°) < « with probability 1 — (.

6 Conclusion

We proposed a new method for non-convex probability optimization, perturbed Wasserstein gradient
flows (PWGF), which alternates between perturbing near saddle points using a Hessian-guided
Gaussian process and evolving via WGF. We have established that PWGEF efficiently achieves second-
order optimality with high probability. A potential avenue for future work is to reduce computational
cost by using a stochastic approximation of the Hessian as the kernel of the Gaussian process,
analogous to stochastic gradients. Another direction is to provide a method for analyzing benignity
of non-convex distributional objectives, thereby broadening the range of applications of PWGFE.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The proposed PWGF algorithm is detailed in Section 4. The convergence
analysis is given in in Section 5. Proof details are provided throughout the appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the conclusion, as well as Appendix B.2.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

12



Justification: See Assumptions 1,2,3. All complete proofs are provided throughout the
appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Experimental details are provided in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The conducted experiments are toy simulations.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details are provided in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted 5 experiments under the same conditions, plotting the mean and
standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experimental details are provided in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have checked that the research conforms with the NeurIPS Code
of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper is primarily theoretical and no immediate societal impact is expected.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper is primarily theoretical.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Applications of Wasserstein Gradient Flow

A.1 Mean-Field Analysis

Mean-field analysis can be applied to optimization problems where the objective function is expressed
as a function of the ensemble average of some underlying functions. We consider the optimization
problem :

. 1
minimize G

=l

N
Zh(l’]) S.t. L1, ", TN ERd, (15)
j=1

where i : RY — RY, G : RY — R, and d’ = 1 for simplicity. The gradient direction of the variable
x; is computed as follows :

1 1 1
Ve, G| & > hxy) | = ~¢ | > h(x;) | Vh(x;). (16)
j=1 j=1
Taking the mean field limit N — oo of (15), we lift this problem to the space of measures:
minimize G(/ h(l’)/i(dl’)) st p € Py(RY). (17
The Wasserstein gradient is computed as follows :
V.60 = V5 () = &' ( [ bt ) vhio) a8)

Consequently, from (16) and (18), the update rules for gradient descent applied to the original
problem (15) and WGF applied to the lifted problem (17) are equivalent, up to a constant scaling
factor. However, properties differ significantly between the two formulations. For example, when
F is the identity function, the original problem (15) is not necessarily linear, while the mean-field
problem (17) is linear with respect to x. Similarly, for commonly encountered loss functions with
convex losses, (15) is not necessarily convex with respect to the variables z1, ...,z y, but in the
mean-field setting (17) becomes convex with respect to .

The properties of functions defined on the space of probability measures facilitate the design of WGF-
based algorithms with improved performance. The works of Nitanda et al. (2022) and Chizat (2022)
have explored the ability of optimization of mean-field Langevin dynamics (MFLD), an approach
that augments WGF with Brownian noise, based on the convexity of the objective function. Similarly,
Kim & Suzuki (2024) have focused on the benignity of objective functions regarding in-context
learning of certain transformer models and, leveraging this insight, have proposed a birth-death
modification and also an isotropic perturbation scheme. Our proposed algorithm contributes to this
line of research by providing the first convergence guarantees for strictly benign problems on the
space of probability measures.

A.2 Additional Related Works

WGF has important applications in Bayesian inference, where posterior distributions are usually esti-
mated from data via variational inference (VI). VI formulates posterior estimation as an optimization
problem of the KL divergence. In particular, particle-based VI is founded on the idea of evolving
empirical measures formed by particles using WGF. This idea originates from the work of Jordan
et al. (1998), which established a connection between diffusion processes and gradient descent in
2-Wasserstein space with entropy regularization.

Stein variational gradient descent (Liu & Wang, 2016; He et al., 2024) circumvents computational
difficulties in calculating descent directions through kernel methods. This approach can be seen as a
version of WGF where an integral operator acts on the descent direction (Chewi et al., 2020; Duncan
et al., 2023). In this context, derivative methods such as Newton’s method on the space of probability
measures (Detommaso et al., 2018; Wang & Li, 2020) and accelerated methods (Liu et al., 2018;
Taghvaei & Mehta, 2019; Wang & Li, 2022) have also been proposed. Furthermore, optimization
of measures also appears in contexts such as online optimization (Guo et al., 2022; Han, 2024) and
reinforcement learning (Richemond & Maginnis, 2017; Zhang et al., 2018).

19



B Wasserstein Geometry

B.1 Wasserstein Space

In this section, we provide basic aspects of Wasserstein geometry and propositions used in this paper.
We refer to Ambrosio et al. (2008) for a comprehensive review.

We assume that all curves j; € Po(R?) that appear in this section are absolutely continuous and
satisfy the continuity equation with respect to a vector field v; € Tan, ,P2(R?). The existence
condition for solutions to the continuity equation corresponding to a vector field v, is provided, for
example, by Ambrosio et al. (2008), Section 8.2.

Definition B.1 (Wasserstein distance). The 2-Wasserstein distance between two points p, v € Po (Rd)
is defined as

Wa(uv)* = int [ flo = yl*2(dedy). (19)

el (k)

Here, I'(1, v) represents the set of all transport plans:

D(pv) = {7 € Pa(R? X RY) [pr#y = p, poity = v}

Moreover, v € I'(u, v) is called the optimal transport plan, if the infmum in (19) is attained by ~.
The set of all optimal transport plans is denoted by I',(u, v). Furthermore, if a measurable map
f:R? — R? satisfies (Id x f)#u € T'y(u, ), then f is called the optimal transport map between
and v. In this case, we denote the optimal transport map f as 7.

Wy : Po(R?) x Py(R?) — R defines a metric structure on Py (R?). Therefore, we consider Py (R9)
as a metric space equipped with the W5 metric. Convergence in the W5 metric is equivalent to the
weak convergence of measures plus uniform integrability of second moments (Ambrosio et al., 2008).

An optimal transport plan is guaranteed to exist for any p, v € Po(R%), as stated in the following
proposition.

Proposition B.2. For ji, v € Py(R?), there exists an optimal transport plan between i and v. That
is, there exists v € T'(u, v) such that

Wa(p,v)? = / & — g y(dady).

Proof. Refer to Ambrosio et al. (2008), Chapter 6. O]

An optimal transport map, not a plan, does not necessarily exist. Specifically, there are cases where
even transport maps themselves do not exist. For example, when d = 1, u = §g, and v = #
no transport map exists, as T#p # v for any T : R — R. However, The following proposition
establishes that under certain conditions, the existence and uniqueness of an optimal transport map
are guaranteed.

s

Proposition B.3 (Brenier’s theorem). For any ju € P$(RY) and v € Py (RY), there exists an optimal
transport map T} : R? — R4, Specifically, T,/ satisfies

Wa(u.v)* = [17:@)  xlu(do).
Furthermore, the following hold:

* To(p,v) = {(Id x T} )ip}, that is, the unique optimal transport plan from jui to v is induced
by T, .

* The optimal transport map can be expressed as T = NV, where ¢ is a convex function
defined p-almost everywhere.

« Ifv € P§(R?) as well, then T} o TV =1d p-a.e. and TY o T} = 1d v-a.e.

Proof. See Ambrosio et al. (2008), Chapter 6. O
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P, (R?) forms a geodesic metric space due to the existence of optimal transport plans and the
pushforward property:
Proposition B.4. Let pi,v € P2(R?), and v € To(p, v). Then py = ((1 — t)p1 + tp2)iy defines a
geodesic between |, and v, i.e.,

Wa(u, pe) = tWa(p,v) (Vt € [0,1]).

In particular, in case where v is induced by an optimal transport map T/, py = (1 —)Id+¢T )#p
and T} = (1 — t)Id + T hold.

Proof. See Ambrosio et al. (2008), Lemma 7.2.1. O

The following continuity equation describes how a particle distribution u; evolves along a time-
dependent vector field v;.
Definition B.5 (Continuity equation, Ambrosio et al. (2008)). Let y; € P2(R) (t € I) be a curve

in Wasserstein space, and let v; € L(p;)? (t € I) be the corresponding vector field. The curve p; is
said to satisfy the continuity equation with respect to the vector field v; if the distribution equation:

Ope + V- (vgpi) =0 (20
holds. Equation (20) means that for all ¢ € C5°(R9),

G [ emtan) = [ Vot u@pds),

The absolute continuity of the curve p; with respect to the Wasserstein distance is equivalent to the
satisfaction of the continuity equation for some v; € L?(p;) (Ambrosio et al. (2008) Theorem 8.3.1).
In this sense, the continuity equation provides a concept of differentiation consistent with the distance
structure induced by the Wasserstein distance.

Proposition B.6 (Ambrosio et al. (2008), Theorem 8.3.1). Let I C R be an open interval, and let
pi I — Po(RY) be a continuous curve. yi; is absolutely continuous, if and if only i satisfies
continuity equation (3) for some vector field vy € L* ().

For the vector field that gives the continuity equation (3),

o LL2%(ue)
V(v —we)pe) =0 <= vy —wy € {Vog | p € C§ (]Rd)} e X

is equivalent to the fact that the continuity equation gives the same curve p;. Noting the orthogonal
decomposition L?(p;)? = X w DX MJ; , the vector field with the minimal L? norm among those that
give the same curve p; must have no component in the subspace X,,, and it follows that v; € X Mlt .
From these observations, we define the tangent space representing infinitesimal changes in the space
of probability measures Py (R%) as follows :

Definition B.7 (Tangent bundle, Ambrosio et al. (2008)). We define the tangent space Tan,, Py (R¢) C

L%(p) at g € Po(RY) as

L?(p)
Tan, P2(R?) = X} = (Vo[ p € O (R} .

The following proposition, referred to as the Benamou-Brenier formula, demonstrates that the
Wasserstein distance is characterized by the minimal action among absolutely continuous curves
connecting two given probability measures.

Proposition B.8 (Benamou-Brenier formula). For any p,v € P2(R?) and T > 0, the following
holds:

T

Oppie +V - (vppe) = 0 (t € (0, 7)), po = p, pir = V} .

Proof. From Ambrosio et al. (2008), Theorem 8.3.1,

1
Wa(p,v)? = inf{/ [vellZa ) dt
0

By changing the variable ¢ — 4, the claim follows. O

Ope + V- () =0 (L € (0,1)), po = p, 1 = v}.
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The following proposition establishes that the infinitesimal behavior of an absolutely continuous
curve can be expressed by the pushforward (Id + hvy)# 1.

Proposition B.9. Let u; be an absolutely continuous curve satisfying continuous equation with
vector field v, € Tan,,, Po(R?). Then,

Wa(pens (Id + hoy) e

li =0.
50 h 0
Proof. See Ambrosio et al. (2008), Proposition 8.4.6. O]

The following propositions provide sufficient conditions for a map to be an optimal transport map.

Proposition B.10 (Santambrogio (2015), Theorem 1.48). Suppose that . € Po(R?) and that
¢ : RY — R is a convex and pi-a.e. differentiable function with Vi € L*(p)?. Then, the map Vi
provides the optimal transport map from i to (V)i

Proof. Let ¢* be a Legendre-Fenchel transformation of ¢. Then, it holds that

() +¢*(y) > (v,y) Vz,y €R,
() +¢"(y) = (v,y) (Id x Vo)#pu-ae. (z,y).

For any transport plan v € T'(u, Vp#u), it holds that

2 / (2,5} y(dzdy) > —2 / (p(x) + " (1))(dzdy)
_— / (@) u(dz) - / " (Veo(z) u(de)
= —2/ (z,y) (Id x Vo)#p.

By adding [ (||]|*+||y[|*)v(dzdy) = [([|=]*+]|y]|*)(Idx Vi) #p(dz) both sides of the inequality,
we obtain

/ e — gl y(dady) > / e — yl(1d x Vo)#u(de).

Then V is a optimal transport map. O

Proposition B.11 (Lanzetti et al. (2025), Lemma 2.4). Let i € P2(R?) and ¢ € C(R?). Then,
there exists h > 0 such that Id + hV1) is an optimal transport map from p to (Id + hVY)#u for
h € [—h, h]. Furthermore,

WQ(/L, (Id + hvw)#ﬂ) = h”vaLQ(u)

Proof. From v € CX(RY), we have sup,cga |V (z) < oo, supxeRd V20 ()| < oo
Then, by taking h = sup,cpa [|V?%(2)||, we verify that ;HQZ” + hip(x) is convex and

V(%||x||2+hw(x)) = (Id + hV%)(x) is L%(u) integrable for all h € [—h.h]. Noting

that V(%Hx”2 + h’(/J(J))) = (Id + hV%)(z) and applying Proposition B.10, we obtain that

Id + AV yields an optimal transport map. Consequently, the Wasserstein distance between
and (Id + hV)#p is computed as:

1

Walyn, (10 + hV ) 4p) = ( [+ 176@) 21 u(dx)) = BVl

O

Corollary B.12. Let u € Po(RY) and ¢ € C*RY) satisfy IVellrzqy < oo
n— esssupngdHV o(z || < 00. Then, there exists h > 0 such that 1d+h¥ @ is an optimal transport
map from i to (1d+hVN ) #pu for h € [—h, h]. Furthermore, Wa(p1, (Id+hV p)#u) = h||[V| ;-
holds.

(1)
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B.2 Wasserstein Gradient

This section provides additional discussion on the relationship between the Wasserstein gradient and
the first variation.

Definition B.13 (Wasserstein gradient, Lanzetti et al. (2025); Bonnet (2019)). The Wasserstein
gradient V. F : P2(R?) x R? — R? at i € P2(R?) is defined as a vector-field such that for any
v € Po(R%) and v € T'y(u, v), it holds that

F() = F(u) = [ VuF(.2)7(y - 2)(dady) + O(Wa(p, ). @1

In particular, there exists a unique element that satisfies V,, F'(u) € Tan,Ps(R?) (Lanzetti et al.
(2025) Proposition 2.5), and we take this as the Wasserstein gradient.

The first variation ‘;—5 appearing in the WGF equation (1) is defined as follows.

Definition B.14 (First variation). The first variation ‘;—Z : Po(R?) xR — R is defined as a functional

satisfying for any v € Py(R?),

d oF
F h(v — = | — —v)(dx). 22
G|, =) [ Gt )= vy 22)
The first variation, if it exists, is unique up to a constant difference.

Recall the definition of the total variation:

Definition B.15 (Total variation). Suppose that 11, v € Po(R?). The total variation between j and v
is:

TV(u,v) = sup |u(B)—v(B)|=

o s S [u(B) - w(B)|

CCB(R?),UC=R? G=¢

N

As is evident from the definition, the mixture (1 — h)u + hv, defines the constant-speed geodesic
between p, v in the sense of total variation. Thus, the first variation can be interpreted as the coefficient
of differentiation along the geodesic with respect to the total variation distance. On the other hand,
as observed in the previous section, the geodesic of W5 is represented as ((1 — h)p1 + hp2)#y
for v € T'o(p,v). Therefore, the Wasserstein gradient can be understood as the coefficient of
differentiation along the geodesic with respect to the Wasserstein distance.’

Through a naive but mathematically non-rigorous calculation, we have

F(v) — F(u) ~ / ‘Z—im, 2)(v — ) (dx)

=/<g(u,y)—g(u7x))v(dxdy)

I <<V(§i(ﬂ,x)7y - x> . <y - VR )y - x)>)7(dﬂcdy)
_/<V(;Z;(u,x),y:c> y(dady) + O (Wa(u, v)?).

This points to V, ' = V‘;—i (u). This equation does not hold without certain conditions, but it is
valid and implicitly assumed to hold in many practical cases. Kent et al. (2021) make a brief mention
of this frustration. The equivalence V- = Vf—l't specifically provides the following correspondence.

oF
VNF(/U‘7I) = V*(/J,,l'),

op
§2F
ViF(ILL,JZ7y) = vxvyW(M7x7y)a
oF
VVHF(U7x) = Vza(ﬂ'a .I‘)

3There is no strict dominance or subordination between total variation and Wasserstein distance in R¢.
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C Optimality Conditions for Functionals on Probability Space

In this section, we discuss the details of the optimality conditions for functionals on probability
measures based on the Wasserstein gradient. The first-order optimality conditions have been studied
in Bonnet (2019) and Lanzetti et al. (2025), and we begin by reviewing these works. We then extend
these results to second-order conditions.

C.1 First-order Condition

The first order condition for probability measure optimization is studied by Lanzetti et al. (2025),
including constrained optimization problem. Here, we review the results of the first-order condition
for unconstrained problem. In the next section, we extend these results and obtain the second-order
condition.

The following proposition shows that Equation (21) holds even when +y is not optimal.

Proposition C.1. Let F : Po(RY) — R be a functional on probability space, and differentiable at ju.
Then, for any transport plan vy € I'(u, v) (not necessarily an optimal one),

F0) = FG0 = [ VuFua) - 22 (aody) + O [ 1o = l*taoy) )

Proof. See Lanzetti et al. (2025). O

The following two propositions are useful for computing changes in the objective function. The next
proposition provides a first-order Taylor expansion for infinitesimal perturbations induced by a vector
field.

Proposition C.2. For a sufficiently smooth functional F : P3(R%) — R and a vector field v €
L2(p)? (u € Po(RY), it holds that

P + b)) = F(1) = b (VuF (1), 0) 1o + O(h2).

Proof. Consider the situation of Proposition C.1 where v = (Id 4+ hv)#p, v = (Id x (Id + hv))#p.
Then,

[ F 0.y = )2 (edy) = [ (9,0 0). (0 + o) = ) )
=h <VHF(N)7U>L2(H) )
and also
[z = sl2(dody) = [ o+ hota)) = o Puds) = 2ol

holds. So, by Proposition C.1, the claim follows. O

The following proposition provides a formula for differentiating the objective along an absolutely
continuous curve. This corresponds to the chain rule for differentiable curves in Euclidean space.
Proposition C.3 (Chain rule). For a sufficiently smooth functional F : Py(R%) — R and absolutely
continuous curve [i; satisfying a continuous equation Oy + ¥V « (vepr) = 0, t — F(ue) is
differentiable, and the following holds:

d
&F(ut) = <qu(,ut)7Ut>L2(m) :

Proof. By applying the definition of Wasserstein gradient (Definition B.13) for p = pyqp, v =
(Id + hvy)#pe and v € To(ptetn, (Id + hvy)#41e), it holds that

Fpirn) — F(éld + hvg ) # i) < ’}IL / (VuF (e, ),y — x) y(dady)| + o(1)
W- Id+h
< ”VMF(/”)”L?(M) 2(:“t+h7( h+ Ut)#,ut) +O(1)
— 0,
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as h — 0, where Cauchy Schwarz inequality is used in second line and Proposition B.9 is used in
third line. Then by Proposition C.2, we have

d e Flpegn) — F(u)
g [ ko) = limy n
— lim F((Id + hog)#pee) — F(pe)
h—0 h

= (VuF (), 00) g2, -
O

The above proposition shows that the Wasserstein gradient plays a crucial role for first-order pertur-
bations. In particular, if V,,F'(;1) = 0, the objective function does not change under any first-order
perturbation. This suggests that it is reasonable to define first-order stationary points as points
satisfying V, F'(1) = 0. Furthermore, supporting this observation, Lanzetti et al. (2025) established
the following proposition.

Proposition C.4 (First-order necessary condition). Let u* € Po(R%) be a local minimizer of a
differentiable functional F : Py(R%) — R i.e. it holds that there exists a constant r > 0 such that

Wa(p, p*) <r = F(p) < F(u?).
Then the Wasserstein gradient of F' vanishes at p*:
V. F(p*,2) =0 p*-aex,
ie. V,F(p*) =0in L?(u*)%

Proof. See Lanzetti et al. (2025), Theorem 3.1. ]

Proposition C.5 (First-order sufficient condition). Suppose that F' is differentiable and o-
geodesically convex with o > 0, i.e. it holds that

F) = F(u) 2 [ (V,F(2).y - 2)(dody) + 5 Waluur)? ¥y € ol o),

Then, V , F(1*) = 0 p-a.e. implies that j* is global minimizer of F, i.e. F(u) > F(u*) holds for
any ji € Pa(RY).

Proof. See Lanzetti et al. (2025), Theorem 3.3. O

C.2 Second-order Condition

Building on the results from the previous section, we discuss second-order optimality in measure
optimization. To obtain second-order terms, we first prove the following lemma. The key point is
that we obtain the derivative F'(u;) not only at ¢t = 0, but also for 0 < ¢ < 1. By obtaining this, we
can compute the second-order coefficient.*

Lemma C.6. Let F be a sufficiently smooth functional, yi, v € Po(R?), and py, be a constant
geodesic induced by v € T'(u, v). Then, forany 0 <t < 1,

GEW) = [V, (1= 02+ ),y ) (dady).

Proof. By Proposition C.1, we obtain the following statement (x): let u, v € Po(R?), v € T'(i,v)
and let py .= ((1 — t)p1 + tpa)#, then

4
dt

F(u) = / (VuF(u, ),y — ) y(dedy).
t=0

4Similar to this proposition, higher-order terms (third-order and beyond) can be computed in the same manner.
It is conjectured that higher-order terms can also be expressed as the action of V, or V on F'.
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Since we suppose ¢ < 1,

A Flu) - Flu)
&F(’“) = i s
1 I F(pieq(1—1)s) — F (1)
im
1—1ts=0 S
1 d
T 1_-tds o F(:ut—‘r(l—t)s)'
Here, it holds that
fre(i—t)s = (L= (£ + (L= 1)s))py + (¢ + (1 — 1)s)p2)#y
= ((1 = s)((1 = t)p1 +tp2) + sp2)#y
= ((1 = s)p1 + sp2)#(((1 — 1)p1 + tp2) X p2)#.
Then, by (*) for p < py, v < v,y < ((1 —t)p1 + tpa x Id)#~, we have
d 1 F(Mt+(1—t)s) — F ()
qt k) =3 —til_r»%
— 7 [ (VuFu2),y = ) (1= 01 + tpa X W) (dody)

B 17—75 / (VuF (e, (1= t)z +ty),y — (1 — t)z + ty)) y(dedy)

= / (VuF (e, (1= t)z + ty),y — z) y(dady).
O

Proposition C.7. Suppose F : Po(R?) is sufficiently smooth. Let ji,v € Po(R?), and let py, be a
constant geodesic induced by vy € T'o(u, v). Then, as h — 0,

F(un) = Flp) = b [ (9,F ()5~ 2} (dody)
+ % / (y1 — 1, Vo F (1, w1, 32) (y2 — m2) ) y(dz1dys )y (dzadys)
2
+ 5 [ (=2 99uF2)(y — 0) 2 (dody) + o)
Proof. By Lemma C.6,

d2
dn2

d
F(un) = -
h=0 dh |,

-/ i,

= / </ViF(N,$17$2)(3}1 —x1)y(d21dy1), y2 — CC2> ydzody2

/ (VuF(pn, (1 = h)z + hy),y — ) y(dzdy)

V. F(pn, (1= h)z + hy),y — x> v(dzdy)

+ [ (VP a)(y — )y~ a) 7 (dedy)
= // <y1 —x1, ViF(u,xl,xg)(m — x2)> 7v®2(dzydy; dzadys)

+ / (VV L F () (y — ),y — x) y(dedy).
O

Remark C.8. Except for the term VV , F, this expression can be interpreted in a manner similar to
Taylor expansion in Euclidean space. The term VV , I’ arises from the change in the metric y of
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the tangent space. This phenomenon is similar to what occurs on Riemannian manifolds, where the
metric of the tangent spaces is not necessarily constant. It is worth noting that a similar calculation is
performed in Appendix 5 of Bonnet (2019). As stated in the main text, at first-order stationary points,
we have V,F' = 0, which implies VV I = 0 Therefore, second-order optimality at stationary
points can be understood in terms of the integral operator property of VﬁF .

By setting v = (Id + hv)#p in Proposition C.7, we obtain the following:
Proposition C.9. Suppose F : P2(R%) — R is sufficiently smooth. Then, it holds that for all
ve L (u)?,

h2

F((Id + ho)#a) = F(0) = h (Y, (1), 0) 2 + o (0, (B, + HJ)

5 +o(h?) (h—0).

(w)

For the next lemma, we denote the interior and boundary of a set A C R? as A° and 0 A, respectively.

Lemma C.10. Suppose that i € P$(R?) and that f : R — R is of class C*(R?). Then, it holds
that

f=0 pae = Vf=0 p-ae
Proof. Let B C R? be aclosed set B = {z € R? | f(z) = 0}. Forall z € B® C B, there exists
7 > 0 such that
ly—zll<r = ye B = [f(y) =0
Then we have V f(z) = 0. Thus,

u({r € RUVF(x) = 0}) > u(B")

— u(B) - u(dB)
=1-—p(0B).

Since (4 is absolutely continuous with respect to Lebesgue measure and B is a Jordan measurable set,

#(0B) = 0 holds. Hence, V f(z) = 0 p-a.e. O

Proposition C.11 (Second-order necessary condition, restatement of Proposition 3.3). Let F :
P2(R?) — R be sufficiently smooth. If u* € P$(R?) be a local minimum of F, i.e. it holds that
there exists a constant v > 0 such that

Wa(p, p*) <r = F(p) < F(u").
Then it holds that H,~ = O.
Proof. According to Proposition C.4, V,F'(1*) = 0 p-a.e. Then it follows from Lemma C.10 that
VV,.F(p*) =0ae.

For any vector field v € L?(pu*), there exists a constant A > 0 such that h < h = Wy (u*, (Id +
hv)#p*) = h||v| 2(,~) < r. By applying Proposition C.9, we have

(0, Hy0) ey =PI+ ho)#") = F(u*) + o(1) > o(1).

By letting h — 0, we have <v,HM*v>L2(#*) >0ie. H, = O. O
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D Kernels and Gaussian Processes

The purpose of this section is to present a series of propositions regarding positive semi-definite
kernels, the integral operators they define, and Gaussian processes. Additionally, we aim to derive an
inequality that evaluates the tail probability of the L? (1) norm of a Gaussian process.

In the following propositions, the kernel function K : R? x RY — R*9 of interest corresponds
to the integral kernel K, of the squared Hessian defined in (11). However, we first examine the
properties of general kernels and Gaussian processes, applying these results to K, defined in (11) at
the end of this section.

In this paper, we consider multivariate Gaussian processes. Kim & Suzuki (2024) were the first to
propose introducing random perturbations to probability measures using a multivariate Gaussian
process. Another application of multivariate Gaussian processes is modeling vector fields on Rieman-
nian manifolds (Hutchinson et al., 2021). For detailed definition and properties, please refer to Chen
et al. (2023).

Definition D.1 (Multivariate Gaussian process). The vector-valued function ¢ : R? — R is said
to follow a multivariate Gaussian process if any finite collection of variables &(z1),- - ,&(xn)
are jointly normally distributed. This process is determined by the vector-valued mean function
m : RY — R? and the matrix-valued covariance function K : R% x RY — R?x4:

m(z) = E[§(z)] (z € RY),
K(z,7) = E[({(x) — m(2))(£(z) = m(2))"] (x,% €RY).
In this case, we denote & ~ GP(m, K).

Proposition D.2. Suppose K : R? x RY — R¥*? satisfies [ || K (z,y)| p®?(dzdy) < oo and

K(z,y)" = K(y, ) for all z,y € R%. Then, there exists a sequence {fn }n>1 C R, which is finite
or converges to 0, satisfies || T || 1v,12 () = D_p>1 |Kn| < 00, and is non-increasing. Furthermore,

there exists an orthonormal basis {1y, }n>1 C L*(R%)? such that

K(.’E, y) = Z Kn’(/)n(m)lpn(y)—r»

n>1

where the infinite sum converges in the L?(11)4*?% norm.

Proof. This follows from the eigenvalue expansion theorem for compact self-adjoint operators on
Hilbert spaces. The trace-class property Zn21 |kn| < oo follows from T}, being trace-class. O

Proposition D.3. Let 1 € Po(R?) and ¢ € L?*(p)?. Suppose K : R? x RY — RI*4 js g
positive semi-definite kernel satisfying [ || K (z,y)|| p®?(dzdy) < oc. Then, & ~ GP(0, K) satisfies
¢ € L?(w)? almost surely.

Proof. Using the integrability of k£ and equivalence of matrix norms:
BlI¢[2] = [ Elee) (@) n(de) = [ (i (w,2) utcs) < .
Setting A,, = {|[£]|” > n} for n € N, it holds that

. . 1
P(IE]} < o0) = 1= P (21 An) =1 = im P(A4,) > 1~ limsup ~E[I¢]] = 1.

n— oo

Thus, £ € L?(u)? almost surely. O

Proposition D.4. Let yu € Po(R?) and v € L?(u)?. Suppose K : R? x R4 — R¥*4 js a positive
semi-definite kernel satisfying [ || K (z,y)| pn®%(dzdy) < oc. Then, for any & ~ GP(0, K), we have
(W, &) L2y ~ N0, (Y, Tre)h) £2(p0y)-

Proof. The proof follows Kim & Suzuki (2024), Lemma E.9. First, we show that (1, &) 2(,, is
normally distributed.
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We define the closed subspace of square-integrable real-valued random variables by E =
span{y(x)T&(x) | z € R}, Forany Z € E-, the following holds:

BIZ(6.8)1200] = [ BIZ0(@)¢(@)] ulda) =0,

Thus, (¢,€) 12,y € (E+)* = E holds, meaning that (), £) 12(,,) is the L?(P) limit, and therefore,
the law convergence limit of of normally distributed random variables. As will be shown later, the
mean of (¢, &) L2 18 0, and its variance is (W, T)) 12(,)- Therefore, the characteristic function

converges pointwise to the characteristic function of a normal distribution, implying that (¢, £) L2()
follows a normal distribution.

Moreover, the mean and variance are computed as:

E[(4,€) 2] = / (o) TE[E ()] pldz) =0,
El(,€)25,] = / (o) TEE ()€ () T () n®2(dady)
- / (@) T () plda) = (6, Teb) 2.

Here, Fubini’s theorem and the definition of Gaussian processes are used. O

Proposition D.5 (Karhunen—Logve expansion). Suppose K : RY x RY — RI*4 be a positive
semidefinite kernel and satisfy [ || K (z,y)||p®?(dzdy) < co. Let {kn}, 51 C Rxo and {¢hn}, 5, C

L?(u)? be as in Lemma D.2. The sequence of the random variables X,, = (1),,, 2 ~ N(0, kp)
is mutually independent. Furthermore, the Gaussian process & ~ GP (0, K) is represented as follows:

5(1?) = Z ann('r)v

n>1

where the right-hand infinite sum means convergence in L*>(P @ pu).

Proof. First, we show that the sequence of the random variables X,, = (¢, &) L2() (n>1)is
mutually independent.

E[X, X,] = E{/wn(xf&(x)u(dx)/ﬁ(y)wm(y)u(dy)]
— [ 0@ B @8 () udady)
— [t ([ Kt vmtutan) utao
_ / (@) (R () 1(d)

= lfman,mv
where Fubini’s theorem is used in the second and fourth line. The fifth line follows from the fact that
1, 1s the eigenvector of the integral operator T .

Thus n # m implies the covariance of X,, and X,, is equal to 0. This implies that X, and X, are
mutually independent, because they follow the normal distribution. Hence we obtain the mutual
independency of the sequence Xy, = (¥, &) 2(,) (n = 1).
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The Karhunen-Loeve expansion follows from

N 2 N
-3 Xuvn| | =B[lelag] ~ 23 B[Xn ) o)
n=1 L2(u) n=1
N N
+Z 1/Jm¢m L2(M)E[X X ]
n=1m=1

B[z | - i
Z Ky N2, N—>oo

n=N+1
[

Proposition D.6 (extended Markov’s inequality). For any random variable X and non-decreasing
positive-valued measurable function ¢ : R — R, the following holds :

E[p(X)]
P(X > M) < 00 (VM € R).

Proof. By applying Markov’s inequality, we have

P(X > M) < Pr(p(X) = ¢(M))

IA

O

With the above preparations, we obtain an upper bound for the tail probability of the L? norm of the
Gaussian process.

Proposition D.7. Suppose K : R? x RY — R%*9 pe a positive semi-definite symmetric kernel and
satisfy [ || K (z,y)||n®?(dedy) < oo holds. Let {tin}, 51 C Rxq and {tn},, 5, C L?(u)* be as in
Proposition D.2. The Gaussian process & ~ GP (0, K') with kernel function K satisfies the following:

e—1 > on>1Fn 1
P12 2 M) < exp (=Gt + S ) (000> T, )

Proof. First, we calculate the characteristic function of ||£ ||2L2( 1)

Since ¢ ~ GP(0, K), by Lemma D.5, we can express ||€Hiz(#) =YX =Y (X, i<
N(O,k,)Vn >1). Let Yy = 25:1 X,,%. Then for any s € C, we have

1

E sX,,L2 _ ,
le } V1—2k,s
and so, by the independence of {Xn}n21,

N

Hm

SYN

In particular, setting s = iu (u € R), the characteristic function of Yy is

log E[e""YV] = —fZlog — 2iKkpu). (23)
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Let 0,, = Arg(1 — 2ik,u) (=5 < 0, < 7). Then for the real and imaginary parts,

1Y 1Y
< 3 ; log(l + 4/1%112) < 5 ; 4/<Vn2u2

2

N
Re Z (log(1 — 2ik,u))

n=1

N
Z log(1 — 2ik,u))

N N
<> 0. <> tan9n|—22/€n|u| < 2fu| Y kn < o0,
n=1 n=1

n>1

Thus, the characteristic function of Y converges pointwise as N — oo. By Levy’s continuity
theorem, Y weakly convergesto Y = limy o0 Yy =D, X 2, and its characteristic function

islogE[e™Y] = -2 3 - log(1 — 2ik,u).
Now, we will proceed to

* Show that for some ¢ > 0, replacing iu with ¢ makes the series on the right-hand side of (23)
converge. This allows us to show the existence of the moment generating function E[e!Y]
for such ¢.

* Use Lemma D.6 with ¢() < €'®, X < Y to obtain the upper bound for the tail probability.

* Adjust ¢ > 0 (within the range where the moment generating function exists) to obtain the
best possible upper bound for the tail probability.

The function ¢ — —3 log(1 — 2k,t) is convex, and the tangent at t = 0 is ¢ ry,t. Thus for a > 1,
the equation for ¢;

1
akpt = ~5 log(1 — 2k,t)
has a solution ¢t = ¢,, > 0 for ¢ > 0, and it holds that
1
0<t<t, — ~5 log(1 — 2k,t) < akyt.

Since knt, is constant for n > 1 and {k,},~, is non- increasing, the sequence {t,}, - is non-
decreasing. Hence, for any n > 1, ¢ € [0,#1], we have — log(1 — 2k,t) < akyt, so

logE[et“&”i] < atz K, < 00.
n>1

Therefore, for ¢t € [0,¢1], the moment generating function E[et”E”i] exists, and E[et”E”i] <

e™Xn>1%n  Hence, for the upper bound of the tail probability of the Gaussian process norm,
we have

E[e!l€l%]
P(HEH,,, > M) S oo

< exp —tM? +athfn

n>1

By optimizing the right-hand side of this expression with respect to ¢, a, we obtain the best upper

bound. For a > 1, atk; = —3 log(1 — 2kt), considering large M, we solve
minimize f(t) = —tM> +at y Ky, (24)
n>1
st.t>0, a= —2— log(1 — 2k1t) > 1. (25)
K1t
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The derivative of (24) is

d D>t bin
—f(t)=-M>+="=— = 26
/@) T e O (26)
which gives
1 Zn>1 Kn
t=t'"=—|[1-—"F—. 27
2,‘4‘,1 ( M2 ( )

If M2 > an1 Kn, then t* > 0,a > 1, satisfying the condition (25). The upper bound becomes

P(l€l 2y = M) < exp f(t)

Zn>1 Kn
== log(1l — 2k t*
o og( K1 )>

M? n>1Kn n>1Kn M?
:exp<— +Z >1 +Z >1 >7

= exp (—15*]\42 -

— 1
2K 2K1 2K1 8 Y ons1En

where in the third line we used (26), (27). Finally, applying the inequality —x + logz < —%x at

2 .
Tr = ZMiﬁ, we obtain
n>1fn

So, we conclude

e—1 Dn>1 K
P(Hf”wu) = M) < exp <—2 M2+21L>.

ek1 2K1

We apply the results from the previous section.

Lemma D.8. Let K, be the Hessian-based kernel introduced in (11). Then, the Gaussian process
& ~ GP(0, K,,) satisfies the following :

© (Pn &) L2 gury ~ N(0, A7),
* P-almost surely, it occurs that & € R(H,) C TanHPQ(Rd), In particular, from the

assumptions, 1d+n,¢ gives the optimal transport map from p to (Id+n,&)# . for sufficiently
small n, > 0 P-a.s.

o=

 For any constant M > Ry > (Zn21 )\nz) , the following holds :

2
e—1 2 Zn>1 /\n
P<”€HL2(N) 2 M) < exp ( 26)\12M + Tﬁ )

Proof. Given the assumption [ | VZF (u,z,y)||n®*(dzdy) < oo, Lemma D.2 can be applied to
K =V} F(). Specifically, there exists a sequence of real numbers {\,,},,~,; C R\ {0} satisfying

HHMHES L2 = D on>1 An? < oo and an orthonormal basis {¥n},sg of L?(), such that
§2F
VEF (2, y) = ViVag g (@y) = S dthn(@)n(y)", p®-ae (x,y).  (28)
n>1

Regarding the kernel of the squared Hessian K,
Ku(w,y) = > Atn(@)n(y)", p®-ae. (z,y).

n>1
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Here, K, satisfies the assumptions of Lemma D.5, corresponding to the case where ,, = A2 in
that lemma. Then, from Proposition D.4, (¢,,, ) L2 ™ N(0,22) holds. Finally, it follows from

1
Proposition D.7 that for any M > R = | Hyllys 12 = | B2l 12 = Szt M)

e—1 Zn>1 >\n2
P(”gHLz(M) 2> M) < exp (—26)\12]\42 T .
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E Proofs for Convergence Analysis

The lemmas for the main theorem are re-stated and the proofs are provided here.

E.1 Continuous-time Convergence Analysis

E.1.1 Proof Sketch for Lemmas

The proof of Lemma 5.3 is relatively straightforward using the chain rule. In contrast, the proof of
Lemma 5.4 is lengthy and relies on two sub-lemmas inspired by the analysis of SSRGD (Li, 2019) in
Euclidean spaces.

Lemma E.1: small increase by perturbation. This lemma ensures that the increase in the objective
function due to perturbation is upper bounded by Fiy,os With high probability.

Lemma E.2: large decrease by WGF. Put simply, this lemma asserts that a small deviation in
the direction of the eigenvector corresponding to the smallest eigenvalue of the Hessian results
in exponential decrease in the objective under WGF. This result is derived from the fact that the
dynamics of slightly deviated two points evolve approximately under H,:, causing their “distance"
to grow exponentially over time.

By combining these results, namely that the objective function does not increase significantly and
decreases substantially after perturbation, the lemma is proven.

E.1.2 Proof of Lemma 5.3

Lemma 5.3. For a curve of probability measures L following the WGF; the following holds:
t
Fluo) = Fu) = [ IV, o
Proof. We have

t d t 9
F —F = —*F - F 2 )
() = Flu) = [ =P )dr = [ 19, ) 7

due to the chain rule. ]

E.1.3 Proof of Proposition 5.4

Proposition 5.4. Set n = O(1) and let &, 6, Ny, Tihres, Finres be chosen as in Theorem 5.2.
Suppose ut € P$(R?) satisfies HV#F(M)HH(,J) < eand Ny = AminH,+ < —0. Generating

¢ ~ GP(0,k,) and setting o = (Id + 1,€)tu’ as the initial point of the WGFE, we have with
probability 1 — (’:

F(/’LT) - F(/’LTEI,WS) > Fthres-

Intuitively, Proposition 5.4 indicates that when a perturbation is applied near the saddle point, the
objective function decreases over a period of time Tiy,,es With high probability, which corresponds to
escaping the saddle point. As discussed above, the approach is based on the argument by Li (2019)
and utilizes Lemma E.1 and Lemma E.2. These two lemmas postulate that the L?-norm [|£|| r2(u) of
the Gaussian process & is uniformly bounded. This corresponds to the condition that perturbations
in Euclidean space are sampled from spheres with a fixed radius, thus the perturbation size was
uniformly bounded. In infinite-dimensional spaces, such uniform sampling cannot be used, which
is one of the reasons why the Gaussian process is employed. In this case, the norm of the Gaussian
process can take arbitrarily large values even though with low probability. Therefore, it is necessary
to exploit tail probability estimates of the norm of the Gaussian process, as in the following.

Lemma D.8. Let K,, be the Hessian-based kernel introduced in (11). Then, the Gaussian process
& ~ GP(0, K,,) satisfies the following :
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* <wn7§>L2(HT) NN(O7)\n2)

e P-almost surely, it occurs that ¢ € R(H,) C Tan,P2(R%). In particular, from the
assumptions, Id+n,¢ gives the optimal transport map from  to (Id+n,&)# . for sufficiently
small g, > 0 P-a.s.

ol

» For any constant M > Ry > (an1 )\nz) , the following holds :

e—1 Don>1 An?
P<||§HL2(M) 2 M) < exp (— 26)\12]\42 + Tf .

Let?

- 6R12 2 % 4\/5 %_ ~
M—<61(1+210g<,)) \/2R1<log C’) =0(1). (29)

From Assumption 1,

Ry* > / V2 F(n, 2,9)|[an®2(dady) = 3 A > A%,

n>1
so that

€R12 2
M? > 1+2log —
_61( + 0g</)

(& 2 2e 2 2

> An A2log =

_eflng:l +€71 1 Ogé—/

holds. Then it follows that

2
e—1 Y on>1n ¢
exp | — M? + = <2
p( 2eN > o2 )T 2

Therefore, from Lemma D.8,

€2y < M = O(1) occurs with probability at least 1 — %

We now take the hyperparameters 7),, Fihres, Tthres as follows:
1
6
1. logg
( IOg 1 < )a
1) 52!

2Fthrcs = <53 3)
= =0 — Ad2 30
T M (e + V2L Fies) G0

1

2 16L,2 M
Tinres = 710g6%
o Vedzr

I
(@)

|
Q

€
-1 log £\ ° 1\ !
_ 3_—1 ¢’ 3
=0| é°c <log C') <log 5;0) Ad2 <log C’) log
. /I’thres_3 2 3 A/ 83
Fitres = 157, + L2 %8 2 = 00

It should be noted that Fip,es = 1, Me + %1277172M 2 holds.

M2
a2
of H,,. This result is utilized later in the proof of Proposition 5.4.

>The right-hand side implies the upper bound v/2 exp (— ) < %, where \g is the smallest eigenvalue
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Lemma E.1. Consider the situation of Proposition 5.4, and let it be an (e, §)-saddle point, let the
initial point be po = (Id + npg)#;ﬂ, and the hyperparameters 1y, Fiy e be taken as in (30). If the
L2-norm of the Gaussian process ¢ satisfies ||€|| r2(uy) < M, then it holds that

F(MO) - F(HT) < Fthres-

Proof. Let vy, = (Id + hnp&)tu' for h € [0, 1], joining p' and po = (Id + 1,&)#u'. From Lemma
C.6,

d
@F(Nh) = 1p (VuF(vn) o (Id + h”pé)v@ﬂ(m)
< 0p||VuF (va) o (Id + hnpf)Hm(m)anw(m)

< np(”qu(MT)HLz(#T) + Hqu(Vh) © (Id + hnpﬁ) - VMF(NT)HLz(m)) ||§||L2(m)
<1y (E + Ly (/ |z — yl*(1d x (Id + hnpf))#uT(dwdy)> 2) €0 22ty

2
= 7717||§||L2(m)E + LanHfHL?(m)ho

Here, the Cauchy-Schwarz inequality was used in the second line, the conditions ||V, F'(1)||; » w <€

and the gradient’s Lipschitz continuity were applied in the fourth line, and Proposition B.4 was
invoked in the fifth line. Therefore,

d

F(po) = F(ut) = /O 3, ' (kn) dh

Ly 2
< 771)H§||L2(,ﬁ)5 + 777§||§||L2(,ﬂ)

L
<npMe + ?11712,M2

= Fthres .

The third line follows from (€[> (,,+) < M and the fourth line follows from the choice of 7, in
(30). O

Lemma E.2. Consider the situation of Proposition 5.4. That is, let u' be an (¢, 9)-saddle point,
o = (Id + npf)#/ﬁ , and the hyperparameters 1y, Finres be taken as (30). Furthermore, we set
fo = (Id + npé)ﬁ/ﬂ, where & = & + rg, v € R is a constant, and 1)y is the eigenvector of the
Hessian operator H,, corresponding to the smallest eigenvalue \g.

Letting py, fiy be WGF initialized at ug, fig respectively, then H§HL2(MT) < M and M <
|r| < 2M implies that there exists t € [0, Tinres) satisfying

(F(po) = F(pe)) vV (F(fio) = F(fir)) = 2Ftnres-

Proof. We prove this lemma by contradiction. We assume that for any ¢ € [0, Tinyes), it holds that
(F(po) = F(pe)) V (F(fro) — F(fie)) < 2Finres-

We denote the characteristics of the vector fields —V,, F'(y¢) and =V, F'(fi¢) as X, X, respectively.
That iS, Ut = Xt#,u(], ﬁt = Xt#/lo, and

d
th = —VMF(,U/t) o Xt,

d -~ N ~
dt th = —VMF(,LLt) o Xt.

dt
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It is worth noting here that

t
1, — 1] ) = H/O (=Y, F(ur) 0 X,)dr

L2(po)

t
< [ NPl 07

1
N t 2
<t ([ 19, a7

S (Tthres(F(NO) - F(:u't))) )

(NI

where the first line follows from the fact that X, is the characteristic of —V, F'(), the second
from the properties of the Bochner integral, the third from Jensen’s inequality, and the fourth from
Proposition 5.3. Similarly, || X; — Id|[z2(z0) < (TinresF (fio) — F'(fi¢)) holds. Furthurmore, we set

Ho

Y; == X; 0 (Id + 1,€) and V; = X; o (Id + 1,€), which satisfy

12 = 1)l oy < X — 0+ 1062y + 10l 2ty
1
< (Tinres(F(po) — F(pe)))? JFUpr”p(,ﬁ)
1 1
S \/§ tflresF‘cflres + an7 (31)

and

~ - - 1 ~
19 = 1) 2ty < (Tonwes(Fit0) = F(ie))* + 1y €]

L2(ut)
~ ~ 1
< (Tinres(F'(f10) — F(ft)))? + 77P||€||L2(m) + Npr
1 1
S \/iTtiresFtires + an + npr. (32)

We analyze the vector w; = Y; — Y;. The goal is to obtain a contradiction by confirming that
[ || 12(,t) becomes large. To achieve this, we investigate how w; evolves with respect to time:

d d ~ d
ETRAE TR TRl

d - ~ d
= aXt © (Id + 771)5) - aXt © (Id + Upf)
= _qu(ﬂt) oXio (Id + Tlpé) + qu(Ht) oX;o (Id + npf)

1
d
_ /0 SV F () 0 Vi), (33)

where vy, is a curve connecting iy and fig; vy, = ((1 — h)Y; +~hﬁ)|jpﬁ (h €10,1]), o = p¢ and

v1 = [i; hold. Moreover, its direction vector is always w; = Y; — Y}, so the integrand of (33) is
obtained by operating w;. Specifically,

S (uF ) 0 Yi) @)
- / V2 F (1, i (2), Ya(w))we ()it (dy) + TV, F (o, Yi ()i ()

holds. Let

d

1
&wt = —Hmwt - (/ At,hdh)wt = —Hmwt — Agwy, (34)
0
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where A, 1, is an operator on L?(i')?, which satisfies
At,hf (33)

- / (V2F(vn, Ya(x), Ya(y) — V2F(ut, ,9) f(y)ut (dy)
+ VV . F(vn, Yi(x)) f(x)
- / (Vi F (vn, Yi (). Yi(4)) = VR F () £ ()" (d)
+ (VYL F (v, Ya(2)) = YV, F (il 7)) f(2)
+ V(i 2) f(x). (35)

Moreover, the operator A, is defined as A; = fol Ay pdh, the norm of which is bounded as

O (lereSFires +1p + 5) from (31), (32), and (35). It should be noted that from (34), w; evolves

according to —H,+ unless [|A¢[[2(,+) is small. Since

d d
&(emﬂ wt> = Mt (dtwt + Hmwt) = —e"ut Ay

holds from (34), by integrating we have
t
ety —wy = —/ et Aw,dr,
0
and so

¢ ¢
—tH —O)H _ “O)H |
wy =e ety — / TTOHGA . dr = e Aotnpm/)o — / (7Y ot A w,dT,
0 0

where we used the equation wy = Yy — Yy = 1, (E—¢) = npribo. Then, it holds that

||wt||L2(,ﬁ) - 67>\0t77p7" = ’”wt”L"’(u*) - Heontind}OHLQ(m)’

< ||wt - eikntnprqz/}OHLz(uf)

t
< / He(T_t)H“T
0

L2 (ut) ||AT||L2(NT) ||wT||L2(m)dT

t
< /0 T INA L2ty lwr [l 2ty d- (36)
Here we use He(T_t)HuT HLQ(M) = (=Y which is implied by \g = Amin(H,1) and 7 —t < 0.
From (35) and the inequality | H},;[| 2(.i) < RV, F(u")| 2,1, < Rae, it follows from (31) and
(32) that

||At,h||L2(m) < (La + L3)||Yn — IdHL?(M) + Roe
= (1= h)(L2 + L3)[|Y: — 1d||

+h(La + LS)’

(ut)

i/t 71(1” +R2€
L2(pt)

1 1
< (L2 + Ls) (‘/iTtiresFtires +npM + hnpr) + Rae.
Therefore, it holds that

1
||At||L2(,n) §/0 HAt,h”Lz(m)dh

NoTe o 1
S (L2 + L3) 2TthresFthres + nPM + 577177“ + R2€'

IN

(LQ + LS) (\/ﬁTthres%Fthres% + 277pM) + R25
= A.
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By manipulating the inequality (36), the following is obtained:

t
&wwhmm—%rSAAeWwwywﬂr

The application of Gronwall’s inequality to the upper bound yields e*o* ||w,|| L2(ut) < npreAt. Then
it holds that

t
lwell 2y = mpre” " = Aedgt/ e/\OTHthL?(m) dr

0
t
> npre_’\ot (1 — A/ AT d’T)
0
At)

=mre (2 —e (37)

The left side of (37) is upper-bounded as
gy < |V =10, ¥ = Tall g

< QﬁTthrcs%FthrCS% + 277;DM + Mp™
S 4\/§Tthres%Fthres%a

where in the last line it follows from TthreséFthreS% = 0(6)7 npyM = 0(6), n, = 0(9).
On the other hand, using 7, M Tinres = 0(1), €Tihres = 0(1) and the definition of Fipyes, We have

tA S ,thhresA
= ((LQ + L3)(\/§Tthrcs%Fthrcs% + 277pM) + R25)ﬂhrcs
= \/i(LZ + LS)Tthres%Fthres% + 2(-[/2 + LB)anTthres + R25Tthres

= 110g§—|— 1log§ -I—llog§
3 2 3 2 3 2
= log §
2
Then the right side of (37) is lower-bounded as
npre_)“’t(2 _ eAt) > % St

> %(e&‘)%egt7

where we used in the second line the inequality es < \/Eas% as x = 0t. Letting t = Tippes and
transforming (37) yields

8\/§Fthres%
Ve 6%171,7“
16L,7 M
S 1 .
Ve §zr

e%Tthres <

where the second line is implied by
2F; thres

€+ vV €2 + 2L1 Finres

> 2F‘thres
T 2+ V 2LlF‘thres

> 1 2Fthres )
—2\V I,

Here it follows from the definition of 7 and the assumption 6> > (L2 + L3)e. Since we set

1
Tihres = 2 log (1?;1 21M> , this leads to a contradiction. O
(&

d2r

npyM =
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Proof of Proposition 5.4. From the discussion provided after Lemma D.§, by setting M
1
2 ~ . ~ . -
(:fl (1 + 2log %)) = O(1), it holds that [[{]|;2(,) < M = O(1) with probability 1 —
At this point, by choosing the hyperparameters as in (30), we have 7, = 0 (5 3A §>7 Tihres =

O(%), Fihres = 0(63), and Lemma E.1, Lemma E.2 can be applied. There exists ¢ € [0, Tihres)
such that

P (F(10) = F(i) < 2Fses) = P(Flpto) = F(1e) < 2Finwes,

o

(Y0, €) 2| < M)

1 x?
. e (- o B[ 2
el R\(_ 27\'|:\0|C/)\/ﬂ‘20‘</) 27r|)\0| p( 2)\()2) <w0 §>L (HT) )

/ / _ M2

>1-—
- \/27T|)\0‘ 8
/ !
SRR
- 4 4
’
:l—c—’
2

where several previously established results are used. We provide a detailed explanation below:

* The first line is straightforward.

* The second line is followed by Lemma E.2 as shown below. The key point of Lemma E.2 is
that when considering two points respectively perturbed but the v/y-direction of perturbation
differs by a fixed amount, the WGF dynamics lead to at least one point having an decrease
of the objective greater than 2 Fi es.

Let 2 be the sample space associated with the randomness of the Gaussian process &, and
define a random variable X as X = (10, &) 2 (,t)-

Take wy,ws € Q such that | X (wq)| V | X (w2)| < M, &(w2) = &(w1) + ribg, where 7 is a
real constant satisfying the assumption in Lemma E.2. We consider applying Lemma E.2 in
this setting.

Since | X (w1)| < M, | X (ws)| < M implies |r| = | X (w1) — X (w2)| < 2M, from Lemma

E.2, we obtain that if |r| > |ro|, ro = M, then at least one of the samples wy,wo

satisfies F'(0) — F'(1t) > 2Fihres - — — — (%)

Based on this, consider the following two cases:

— There exists a point g € [—M, M] such that X (w) = zg = F(uo) — F(u:) <
2F1thres~
— For all points zg € [-M, M|, X (w) =0 = F(p0) — F(4t) > 2Finres-
In the former case, by (x), X € [-M, M]\ (xo — 10,20 +70) = F(po) — F(ue) >
2 Finres holds. Therefore, in either case, the following holds:
P (F(p0) — F(pe) < 2Finress | (o0, ) r2(uty| < M)
>P (X € [-M, M]\ (xo — 0,20 + 10))

1 22
_ e 2Xodx
/[M,M]\(xoro,wo+To) \/ﬂ)\o

1 22 1 o2
> e 2o dx — / e 2o dx
/R\(:I/’oro,zoJrro) V27 Ao R\(—M,M) V27 Ao

Here, the first term is minimized at zo = 0, which justifies the bound used in the second
line above.

¢ The third line : The lower bound of the first term follows from the fact that the Gaussian
PDF reaches its maximum ﬁ atz = 0.
| Ao
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The lower bound of the second term comes from the Gaussian tail bound. (This follows
from Proposition D.6 by taking X = (10, &) 12(,t), () = exp (%) )
0

¢ The fourth line follows from the definition of M.

. oy g’
Thus, with probability 1 — T, We have

F(NO) - F(/fft) > 2Finres-
Finally, combining with Lemma E.1, the following holds:

F(u') = Fpry,..) = F(ut) = Fuo) + F(po) — Fluzy,..)
Z *Fthrcs + 2F‘thrcs
= Fthres~

This occurs with probability more than 1 — (% + %) =1-¢". O
E.2 Discrete-time Convergence Analysis

In this section, we prove the convergence of discrete-time PWGF (Theorem 5.5). For the discretization,
the following Lipschitz continuity of the Wasserstein gradient is utilized to bridge the gap with
continuous time.

Lemma E.3. Let F : Po(RY) — R be sufficiently smooth and suppose that the Wasserstein gradient
V. F be Ly-Lipschitz continuous.® Then, it holds that for any u,v € P2(RY), v € T'(p, v),

F) = F(u) < [ (VuPla)y =) ldady) + 5 [ o=yl y(dady).

Proof. Let py = (1 —1)p1 +tp2)#y € Po(R?), 7 = (Id x (1 = t)py +tpa))#7 € T(p, pu1). The
application of Lemma C.6 implies

GE) = [V G, (1= 0 4 ty),y - 2) 1 (dody)

- / (Y, F (. 2),y — ) (dady)
+ / <VALF(:u’ta (1 - t)ZC + ty) - VILF(Mv I), Yy — ':C> ’Y(dl‘dy)

< / (V. F(, ),y — ) (dady)

} b
i [l wittasan) ([l - l*tasan)
— [(VuF ).y = 0)2(dedy) + Lut [ o~ ylPr(dody).
In the third line, we use the Cauchy-Schwarz inequality and Lipschitz continuity. Then, we have
' d
FO) = Fu) = [ 3 F(u)d
0

— [(VuF )y~ o)a(asdy) + 5 [ o= yl(dady)
O

The following proposition is a discrete version of Gronwall’s inequality, which will be used in
subsequent proofs.

8See Assumption 3.
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Proposition E4. Let {ay}, - be real-valued sequence and b # 0, c € R. Then,

k-1
akfcgbZal (Vk>0) = akfaogc(bJrl)k.
1=0

Proof. Letting dj, == Zf:o ay, we have

di+ 5 Sap+dir+7 < (b+Ddioy +ot

= 0+ 1) +5) < b+ 1)L

Then it holds that

ar < c+bdy_y < c+bg((b+1)k —1) = c(b+ 1),

The following proposition corresponds to Lemma 5.3 in continuous time and serves to prove two key
points: the evaluation of the decrease in I’ when the gradient is large, and the ability to reduce the
objective function near saddle points.

Proposition E.5. Let { p® }f be a sequence of probability measures generated by discrete-time
PWGF (Algorithm 2) with step size 1 < 1-. Then it holds that

F(u©) ~ F(u) 2 ZZNW}?!M

L2 (a0’

Proof. By Lemma E.3, it holds that forany [ =0,--- |k — 1,

F(ut)) — P(u) < / (VuF (0, 2,y — ) (10 x (1d = gV, F () ) (dedy)
+ % / |z — y||2(1d x (Id — nvﬂp(#(l)))) #4D (dzdy)
“o1- 5ot

2
= 77Hv Flu )‘ L2(u®’

L2 (p®

Then we have

k

I
-

F(u®) = F(u®) =

[ﬁ

(P () = F ()

k—1
v,
=0

Il
l\')\d o

L2(p®’



In discrete-time PWGF, we take hyperparameters 17, Finres, Kthres, 1 as follows:

2 3
M = <z]i11 <1 + 2log Z)) V 2R <log 4{) =0(1),

1
1
(5)7 (38)

Ty

o}

16V32L2 M
kthres = 10g 1 =
log(1 + nd) Verlog? (14 nd)

—Sk/,f?) B
n thres lo 2 § 0(53)

18(Ly + Ls)® © 2

2Fihres ~ (6 :
p = o :o(m‘%).
M (e + ve? + 2L1 Fynres) 3

Since 7, and M are set in the same way as continuous time (30), Lemma E.1 holds in discrete time
as well. It should also be noted that Fip,es is defined to correspond to Tipyes and nktpyes.

Fthres =

Next, we present the discrete-time counterpart of Lemma E.2.

Proposition E.6. Let ;i be an (¢, §)-saddle point, 10 := (Id +n,&)#ut, and the hyperparameters

Mp, Fihres be taken as in (38). Furthermore, we set u(o) (Id+ npﬁ)lj/ﬂ where f E+rg,r €R
is a constant, and 1 is the eigenvector of the Hessian operator H,, corresponding to the smallest
eigenvalue \g.

Letting p®t, o%) be WGF initialized at 9, i(9) respectively, then HSHLQ(M) < M and
% < |r| < 2M implies that there exists k = 0, - - - | kinres| satisfying

(FE®) = F(u)) v (F(E©) = F(EM)) > 2Fpres

Proof. We give a proof by contradiction. Assume that for any 0 < k < Egpyres,
(F(u®) = F(u™) v (FEO) = F(E) v Ap(A©, i) < 2Fipes.
The following vector fields are used to evaluate how Ap (9, u(®)) and Ap (39, 4(F)) evolve:
Y® = (1d =9V, F(p* V) oo (Id =V, F (1)) o (1d + ,€),
YO = (1d =9V, F(E* V) oo (1d =V, F(A)) o (1d + nyé).

Here, we note that

Hy(k)

(141) )
L2(p©® — 771?||£HL2(/”) + Z HY -Y ‘ L2(u®)

. )
< ﬂprHL?(;ﬁ) + 7712_; HV”F(’M )‘ L2(u®)

L2 (p®)

1
2
LQ(ﬂ(l>)>

2
B 1.1 77 )
= Mpll€ll p2ury + V22 k= ( o HV F(p )‘ Lz(#u)))

k—1
1
= pll€ll L2ty + Mk § EHVMF(MU))’
1=0

k—1
< mplléll L2ty + 77/€< kHV F(u® )’

2

Nl

§77p||§HL2(,u)+\/§77§k2( (1) = F(u™)

< nPM + 277 kthres thres (39)
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The third line is due to Jensen’s inequality and the fifth line is due to Proposition E.5. Similarly,

H?(k) — IdHL2( < 77pM + in + 277 kthres thres (40)
ut

We demonstrate that either ;%) or ji*) significantly decreases the objective function. To this end, we
define the following vector field as a measure of the “distance” between p(¥) and ji(*):

wk) = y&) _y k)
w® follows the recurrence relation given by the following:

wFtD — (R = _UVMF(ﬂ(k)) oY ® 4 UVHF(M(k)) oY)

1
_ d (k)
_—n/o dh(v F(p) 0 Y, )dh

= —nH,w® —nAFw*), (41)
where we set ;¥ = (1 — n)Y®) + hY®) |y = v P gpt = (1= b)Y ® 4 hY ®)#4t and

1
AR = / AP an,
0

A® f(z) = / (V2 F (i, Ya(2), Yilw)) — V2F(ul ) f () (dy)
(VY F (v, Yi(2)) — YV, () £ (2)
LYY, 2) (@),

The recurrence formula (41) yields

k-1
w® = (1 —nH,1)kw® — nZ(l —nH )P AN ®
1=0
k—1
= (1 —nXo)Fw® — nZ(l —nH 1 )P AD O
1=0

Here, we use the fact that w(® = Y(©) — y(0) — np7o. Then, we have

(k)‘ (1 — ) <H (k) _ (1 — pAo)E <0)‘
ww pegey ~ (E7 o)) < = (L= Aot
k—1
S ) TR e C1 WO )
I oL (p L2(ut) L2(ut)
k—1
S T

=0

-

k—1
<nA Y (1= o) |w®|
=0

L2ut) L2(ut)’

where the constant A upper bounds the norm of A¥) and set in the same manner as in continuous
time:

1 1
A = (Lz + Ls) (21} Ky pes Fifyes + 25 M) + Rae > ||A®)]

L2(ut)
Using the discrete version of Gronwall’s inequality (Proposition E.4) with a; = (1 —
ﬁAo)_k"w(k)Hm(m), b= %7 ¢ = n,r, we obtain the following:

!
< npr (1 + 74 )
L2(ut) 1 —nXo

44

(1= n20) ||




From this, we have

(I —=nXo)™ Hw H>77p1"—77AZI—77)\0 ll”w”‘

L2(uh)

k—1 l
nA < nA )
>nr|ll1l— 1+
_77p< 1—77/\0;0 1—nXo
k

where the last line holds as nkn,es A < log % in the same manner as in continuous time,

=

nkthresA S nkthres ((LQ + LS)(Qn

< 2Ly + L) (kenres)  F2

thres

kthresFtilres + 277PM) + RQE)

+ 2(L2 + LS)annkthrcs + Ranthrcs€

1 3 3
< -log=--3=log-.
s glogy-3=logg
Then we have
o] 2 %0y
> B2 (1 4 o)
> ek (1+76)" log? (14 nd). 42)
On the other hand,
o] < |7 —1al],,,., + [y -1q]
L2(put) L2(put)

1.1 1
< 4772 ktzhresFtires + QHPM + TipT
< 877 kthreb threb’

where in the second line (39) and (40) are used, and in the third line n%kthms%ﬂhms%

O((S), npM = 0(9), npr = 0(d). Letting k& = Kynres, it follows from (42), (43) and n,M >

l 2Fthres
5\~ that

s _ 16nth§1res
Venyrlog? (1+no)
16V2L2 M
- er log? (1+ 7]5).

This leads to a contradiction, as we had set kipres as in (38). O]

(1+ns) 4=

The following proposition corresponds to the discrete-time version of Proposition 5.4.
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Proposition E.7. Let ¢, §, (' > 0 be chosen such that (Ly + L3) € < 6% Suppose puf € P§(R?)
satisfies HVMF(M)HL%”) < eand \g ‘= AninH,+ < —0. x Considering & ~ GP(0,k,) and

setting o = (Id + npé“)]i,uT as the initial value of the discrete time PWGF flow pi\¥), with parameters
n=0(1), n, = O((S% A g), kithres = O(%), and Fyyres = O(8°), the following holds with
probability 1 — {’:

F(,UT) - F(H(k““es)) > Fihres-

Proof. From the discussion at the beginning of the previous section, by setting M

<
1
(;fl (1 +2log g)) = O(1). it holds that [I¢]| () < M = O(1) with probability 1 — &.

By choosing the hyperparameters as in (38), we have n = O(1), 7, = (3(6% A %), Kthres =

(3(%)7 Fihres = O(6%) , and Lemma E.1 and Proposition E.6 can be applied. In a similar manner to
the proof of Proposirion 5.4 (continuous version), it follows that there exists 0 < k < ktpyes Such that

!
P (F(H(O)) - F(//f(k)) > 2Fthres> > 1- %7

Thus, with probability 1 — %, we have
F(p9) = F(pt*or)) > F(u®) = F(u™) > 2Fres.
Combining with Lemma E.1, the following holds:
F(/ﬂ) _ F(M(ku,res)) = F(ut) — F(u(o)) + F(M(O)) _ F(u(ku,res))
> _Fthres + 2Fthres
= Fihres-

This occurs with probability more than 1 — (% + %) =1-¢". O

With the above preparations, we finally prove the convergence of discrete-time PWGF to a second-
order stationary point.

Theorem 5.5. Let the initial point be iy € P2(R?) and denote AF = F(ug) — inf e p, ray F(1).
Set 1 = O(1) and let €, 6, N, Tihres, Finres be chosen as in Theorem 5.2. Then, discrete time

PWGEF halts after
~ 1 1
k= O(AF <52 + 64>)

steps and reaches an (e, §)-second-order stationary point with probability 1 — (.

Proof. Lete, 6, ¢ > 0 be chosen arbitrarily chosen such that (L + L3) € < 6%, and set ¢’ > 0 such
that ¢’ is polynomial in % and ¢ up to logarithmic factors, provided later. By the settings of 7, 1,

Ethres, and Finyres as in Proposition E.7, we have n = O(1), n, = 0(5% A g) , kittres = O(%), and
Finres = 0(53)
From Proposition E.7, perturbations occur at most m = [ FﬁF -] times. Thus, the probability of

failure after m perturbations is at most 1 — (1 — ¢’)™ < m(’. Setting ¢’ = % ensures that the
algorithm reaches an (g, §)-second order stationary point with probability at least 1 — .

Discrete time PWGF determines whether the objective decreases by at least Fij,e5 after a certain
number of iterations kip s following the application of a perturbation. Then, we define the period
between the application of a perturbation and this evaluation as State 1, and all other times as State
0. Let ko denote the total time spent in State 0, where ||V#F(u)||L2(H) > ¢. By Lemma 5.3, the
decrease in the objective function during this time is at least e2kg, implying ko < %. Moreover,
the total time k; in State 1 is upper bounded by k1 < mTipes = Az{jf# = 0(6%). Hence, the

algorithm halts in ko + k; = O(AF(%2 + 51)) iterations. O
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F Numerical Experiments

F.1 ICFL Functional

2.00
175
1.50
125
1.00

0.75

050 —— static
—— isotropic
—— hessian

0.00
0.0 0.5 10

epochs (1le4)

Figure 1: Trajectories of the training loss for no-noise (“static), isotropic noise (“isotropic”) and
Hessian guided noise (“hessian”) settings.

We conducted numerical experiments using the loss functional of in-context learning of Transformers
from Kim & Suzuki (2024) as the objective functional. See below for details.

We compared the dynamics of the loss function under three variants of WGF; WGF without noise
(static), WGF with isotropic noise (isotropic), and WGF with noise guided by the Hessian (hessian).

As Figure 1 shows, the loss decreases gradually in the “static” case, whereas the “isotropic” and
“hessian” cases exhibit a significant reduction in loss, leading to saturation. Furthermore, the Hessian-
based noise demonstrates a more efficient decrease in loss.

Experimental details. We provide a minimal explanation of the loss function used in our numerical
experiments for in-context learning in Transformers. For an in-depth exposition on the problem setup,
derivation of the loss functional, and an analysis of the loss landscape, we refer to the work by Kim
& Suzuki (2024).

We consider a mean field two-layer neural network with a sigmoid activation function, which takes
l-dimensional data inputs and k-dimensional data outputs :

hu(z) = /hw(z)u(dx) = /aa(w AHu(dr) (z = (a,w) € RF x RY,

where z € R! is a given data and follows a certain distribution. We also define the following matrices

S = B [ ()] (v € Po(REH)).

We consider performing in-context learning using h, as feedforward layer, followed by a
reparametrized linear self-attention mechanism which can be described by a single attention matrix
W € R**k. The optimal value of W is determined to satisfy 0 ,W = ¥,0 , %1 with given p.
Thus, the objective with optimal W is derived as follows:

ot

Ihli

Fp) = %E{Hh#u(z) — Zpo Ty (2] (44)

where 11© € Py(RF) is the true feature and 0 4, (2) = hyo (2) = S0 1,5, by (2). The Wasserstein
gradient of the objective (44) is computed as

_ Elliz oE [ (w Zg )}
ViuF (p, a,w) = < LD Vo i /E;;::Ez[ "(w’ Z)C/:Zvﬂﬂ( )z" ]>

s
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Algorithm 3 PWGD ( time/ space discrete )

initialize m(lo), ...:L'S\O,), w0 — + Z;\f:l 0,0
for k = 0, 1, ’
1fHV F(u HLz( ) <eand k — kp > Ethres then
&~ GP(0, k#(k))

k k
(€1, 6w) = (€. s lay)))
:L';) ()+np§J (j=1,..,N)
p® = LT 6,
kp <k
end if
if k = kp + kinres and F(u*0)) — F(u(®)) < Fijyes then
return (Fr)
end )
x; <—:1: —nV F(u)(p® 2™, (5 =1,...,N), pF+D) NZ] 15§k+1)

J X
end for

Furthermore, Hessian ViF at a first-order optimal point u is computed as

2 _ (Hi1 Hi
V,LF(u,a,w,b,v) - (H21 H22>

where
Hyi(p,a,w,b,v)

L 52F

b 52

= (Bl 2)o (07 2)] ~ Bulo(w” 2) ()] b o (07 2y (2)) By By B i s
+Ez[o(w 2)Cue u(2)] " Ea[o (0 2)Cu0 u(2)] 00

=V.V (1, a,w, b,v)

and

HlQ(M,a w, b, U) = H21(Mabvvvaaw)—r

=V VI(; Z(u,a,w,b,v)
= 5,0 e S u Sy b
. (E [o(wT2)0" (v 2)2T] = E. [o(w" 2)h,(2)] 7 LE. [h#(z)a’(v—rz)z—r])
_E;,lubE [ (w z Cu i T] [Cu ol (”Tz)z—r}
+ (EZ [J(UITZ) ] ) M;LOE [CH M( ) I(’UTZ)ZT]’
as well as
H22(/~L7a7w7b7 ’U)
= (aTZ;,LZH,H"EH“aMZ;,Lb)
(Bilz0’ (w'2)o' (v 2)2 "] — E, [za’(sz)hu(z)T]Z;,LEz [hu(2)0’ (vT2)2"])
- (aT2;7Lb)EZ [z0” (W 2) (o u(2) "Bz [Cuo p(2)0” (0 2)2 ]
+E, [zo’(w—rz)h#(z)—r]Z;’LbaTE;I S e B [Cue aw(2)o’ (W’ )ZT}
+ B [20" (W 2)Cuo u(2) 1| S S5 ba T S5 B [hy(2)0’ (v 2)2 T

The experimental setup is as follows. We compared the dynamics of the loss function under three
variants of WGF; WGF without noise (static), WGF with isotropic noise (isotropic), and PWGF
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(hessian). To ensure a fair comparison of the three algorithms, no stopping criteria were incorporated
into the algorithms.

The input and output dimensions were set to [ = 20, k = 5. We approximated the measure using 400
neurons and generated 800 i.i.d. input data points z from the standard normal distribution N'(0, 1) for
each coordinate. The optimization probability measure was randomly initialized and we conducted
fiveive experiments under the same conditions, plotting the mean and standard deviation. We used
parameters as 1, = 0.015, k¢hres = 100. In addition, SGD was used in the optimization process with
the learning rate n = 10",

F.2 Matrix-Decomposition Functional

Next, we conducted experiments using the matrix decomposition setting presented in Example 1.
Details of the objective function, including analytical expressions for the gradient and Hessian, as
well as a proposition suggesting strict benignity of the matrix decomposition objective, are provided
in Appendix G.

25 25

— static
—— isotropic
2.0 20 .p
—— hessian
15 15
1o 10
—— static
05 . . 3
—— isotropic
—— hessian
0.0 0
0.0 0.5 1.0 0.0 0.5 10

Figure 2: Trajectories of the training loss and the norm of the gradient for no-noise (“static”), isotropic
noise (“isotropic”) and Hessian guided noise (“hessian”) settings.

Due to the stochastic nature of the algorithms, we report the mean and standard deviation over 10
runs, with the corresponding error bars. As shown in Figure 2, the Hessian and isotropic noise
injection methods achieve faster objective reduction and exhibit earlier peaks in the gradient norm,
demonstrating a more efficient escape from the initial critical point. In contrast, the perturbation-free
method tends to stagnate for longer periods. The Hessian method shows the best performance,
although the performance of isotropic noise is comparable. The effectiveness of isotropic noise can
be attributed to the fact that the infinite-dimensional nature of the problem has not yet manifested due
to the number of particles used in the approximation.

In practice, at points where the gradient norm is small, but the point is not a saddle, adding noise may
hinder the gradient descent. This issue is particularly pronounced for the method with Hessian noise,
where the magnitude of the noise depends on the local curvature. Consequently, whether to inject
noise should be determined adaptively in combination with the criteria discussed above.

Experimental details. The input and output dimensions are [ = 15, k = 5. We approximate the
measure using 400 neurons and generate 800 i.i.d. input data points z from the standard normal dis-
tribution A/(0, 1) for each coordinate. Similarly to the ICFL case, SGD was used in the optimization
process and the learning rate 7 = 1075, We set kgnres = 100, 7, = 3 X 1073, Fippes = 1072
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G Landscape Analysis of Matrix Decomposition

We analyze matrix factorization (Example 1) as an example of non-convex stochastic optimization:

F(p) = SE:[llhy(2)hy(2) " = hyo (2) o (2) TI1?)

1
2
= LE[IM(2) ~ Mo (D))
= JE.[IAM, ()],

where we set

hu(z) = /hayw(z),u(dadw)

haw(z) = haw(2)
=ao(w'z

M, (2) = hyu(2)hu(2)"
AM,(2) = My(z) = My (2)

The Wasserstein gradient is computed as:

V}LF(Ma ai, a27w) = 2Ez [va w

s

(Zsz)AMH(Z)hH(Z)]] a1> (45)

The Hessian is computed as:

ViF(u, z,y) = ViF(,u, a,w,b,v) (46)
= E. [Vaha(2) (2M(2) + () [Pk = Myr () (W ()] @7)
From (45) and (47),

s Forany p € Po(RY), 1 = 6 ® fi is a strict saddle point.
= (xIdge) x (Idg:)#u° is a global optima.
Furthermore, by a similar argument to Ge et al. (2017), we can deduce the following proposition.

This proposition asserts that for an e-stationary point x which is not a global minimizer, the objective
function can be strictly decreased. This suggests that I’ possesses strict benignity.

Proposition G.1. Let i1 € P(R?) be e-stationary and not a global optima, i.e; satisfy |V, F ()| < e
and F(p) # 0. If hy,(2) > 0 a.s. ', Assumption 2 and Wa(p1, u°) < C hold, then there exists a curve
e st pio = pandatt =0,

d2
) < Bl (b, — k) )2

Proof. We define a curve iy by g = (1 — ¢)p + tu°. Then we obtain at t = 0
d d T T T
aF(M) E.|tr( | 5 — (A, hyy, = hyoho) (B, hy, — Buoho) ) (2)

—E. {n(((‘; Ay, + hﬂ,j h,, ) (huihh, — hyo h;)(z))] , (48)

"This condition can be regarded as an extension of non-negative matrix factorization.
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& T ds T T -

e s )
T

tI‘( dt ”tdt Mt> (hlith;t _hHOhZo)(Z)>]

d +\ /d d
T T T T
tr < huf iy + Py dth‘“> ( hul, + T, dth’“) (= )>‘|

:Ez[(4 Str((h By = huoh ) (huohl, = o hZo)(Z))}

Mt 'Yy

d d
tr ( <dt h#t dt hl—trt> (h#t hIt hP« hl—tro) (Z)>]

d d d d
E T T
+ z{t (dth“tdth“fdth“tdthm( >>}

. d d T d g T
= [t (dth“f @t e g e g 2 )ﬂ
_3Ez[ ((h W= b)) (huhl, = by h,Tn)(Z))}

Z

Z

+4E,

ey
— 4£F( ) 49)
dt ILLt )
where we used, in the sixth line, the equations;
d2
— =0
d¢2 —o Ht (Z) ’
T T _ T T
E o h/‘thp.t( ) hllt & o h,u,t (Z) - (hH - hllo)hu (2) + hH(h‘P« - h‘Ho) (Z)

= *(huh; = hpohye)(2) = (hy — hye ) (hy — hw’)T(Z)
d d

T T
_(huh# — huoh#o)(z) — a o m E .~ h#t(z),
and in the ninth line;
d T T T T
2 Fwe) L —E. [tr((huh,, — hyohyo) (huh, — huoh,o)(2))]
d d
-E, [u( by, —h) (huh) —h hI)(z))] :
A wetu —0
which are derived from the definition of ;.
Noting that
d, d, .| 2
Hdth’“ dth;t F(z) < 2|y, by, = hyohyo || (2), (50)
t=0

which is obtained by straightforward calculation and the assumption h,, > 0 a.s.;

d d 2
—h tih—rt (Z)
Hdt Hrag r| L

2 (2) = || (oo —

2

2| by, = Byo b || (2) —

10

Ht ltt

t=0
2
=2||huh, — huoh,, (hyo — hy) T (2
= ull* () + e 1*(2) = 20 e [2(2) = Nl = hee | (2)
2
= (I l*2) = e ()" + 4B el = B (2)
>0
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Then we obtain, from (49) and (50),
d2
de?

Flu) < —E[Hhuh; — hyoh

2 d
A& -1 g Fw). (51

t=0

Finally we will show that

d
5| Flw)| = 2|B. [(huo — hy) T 6M,(2)hyu(2)]|
t=0
B CHVLLF(/J)”m(m = 0(¢) (52)
for some C' > 0. For any vy € T'o (1, 1°),

d
— F
dt|,_, (1t)

= 2‘Ez [(hw - hu)TAMM(z))hu(z)] ‘
—o / B [(ha(2) = hy(2)) T AM,(2)hy(2)]7(dardy)
—2 [ (&= ) E:Vheragy-o(:)T AM, () (dody)

=2 [ (0= ) VuPlpa) + o = ) YV, 4+ 8y - 2)) (o~ ) (dody)
< 2Wa (O IVu F (1) 2 + W, 1°)? sup [[VV, F(u, 2|

<2(C + R202)”VHF(/J‘)”L2(N)

where Taylor’s expansion is used and 6, e [0, 1] in the third and fourth lines, the Cauchy—Schwarz
inequality and the definition of the 2-Wasserstein distance in the fifth line, and the assumptions
Wo(p, 1°) < C and Assumption 2 in the sixth line. Setting C' = 2(C + R2C?), we obtain (52) and
hence, from (51),
d2
a2

() < =B [ = by,

i,(z)} +0(e).

t=0
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