Under review as a conference paper at ICLR 2025

USING CONVENTIONAL REINFORCEMENT LEARNING
ALGORITHMS IN PARAMETERISED ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

General purpose reinforcement learning (RL) agents specify exclusively discrete
or continuous actions, meaning that tasks with parameterized actions have re-
quired bespoke algorithm development. We present a method to convert a param-
eterised action space Markov decision process into an equivalent Markov decision
process with each action being of a simple type. This theoretical insight is de-
veloped into a software framework, based on Stable Baselines3 and Gymnasium,
which allows researchers to deploy a pair of unmodified standard RL methods
where one is responsible for selecting the action and the other for selecting the pa-
rameters. Through empirical testing in the Goal and Platform domains we demon-
strate algorithm pairings that, with no hyperparameter tuning, achieve comparable
performance to the custom-designed and tuned Q-PAMDP and P-DQN. We test
this approach in two domains - Robot Soccer and Platform - and compare against
the bespoke existing approaches for these two domains.

1 INTRODUCTION

The process of reinforcement learning (RL) (Sutton & Barto, |2018) produces an approximation to
the optimal policy for a given Markov Decision Process (MDP). However real world scenarios often
feature exceptionally large action spaces such that the “curse of dimensionality” (Bellman| [1966)
limits the rate of convergence to an optimal policy. To offset this complication, structured actions
can be specified when defining the model itself.

One example of this approach is the Parameterised Action-space MDP (PAMDP) (Masson et al.,
2016). In this setting each discrete action chosen requires an associated continuous action-
parameter selection, determining “what to do” and “how to do it” respectively. These are submitted
simultaneously by the agent to the environment, as a pair, to form a single action at each timestep.
The most popular PAMDP’s in the literature are Platform (Masson et al.,2016), in which the agent
must learn to perform in a computer game with actions such as “run” and “leap” and parameters such
as direction and speed, and Goal (Kitano et al.||{1997), a simulated soccer environment with actions
including “shoot” and “run”, and parameters again including direction and speed. Both environ-
ments have been solved to an extent by bespoke algorithms designed and implemented specifically
for the environment, restricting the generalisability of these methods.

The reason that bespoke algorithms have been developed and deployed is that existing general pur-
pose methods for learning purely discrete or continuous action policies are unsuitable for learning
parameterised action policies. Approaches to customise either methods or environments typically
include mapping the action space to a purely continuous space (Hausknecht & Stone} [2016)), or al-
ternating between updating a discrete policy and continuous policy in a bespoke and highly coupled
manner (Masson et al.,[2016).

In this article we introduce a general purpose decomposition of PAMDPs into an equivalent MDP
where at each time point we select either an action or an action-parameter, but not both. We go
on to demonstrate this in practice, implementing a Gymnasium (Towers et al.l 2023) wrapper to
provide an MDP-based interface to any PAMDP-based environment. Forgoing the need for case-by-
case engineering, we then introduce a modular class of hybrid agents, composed of arbitrary pairs
of pre-existing “Stable Baselines 3 (SB3)”-class (Raffin et al.| 2021) RL agents (one discrete, and
one continuous per pair). To benchmark the performance of these hybrid agents, we trial various

Under review as a conference paper at ICLR 2025

compositions across two widely known PAMDP-based environments (namely the aforementioned
Platform and Goal).

By enabling the reuse of existing reinforcement learning algorithms, our method ensures that de-
velopments in conventional reinforcement learning can immediately be reused in the parameterised
action space case, thereby raising the ability to find solutions to PAMDP’s. Additionally, the mod-
ular nature of our implementation enables rapid experimentation to identify optimal hybrid policy
compositions for parameterised action-space reinforcement learning.

1.1 RELATED WORK

Masson et al.|(2016)) originally introduced the concept of a PAMDP, and the Q-PAMDP algorithm to
solve it, utilising “direct alternating optimisation” which alternates between updating both a discrete-
action policy and a parameter policy in turn. This method is not modular, relying on a highly coupled
bespoke implementation. A simpler direct policy search method is introduced and demonstrated
using "eNAC”. Tests are conducted on two domains — Robot Soccer (Kitano et al., [1997)) and
Platform (the latter itself the author’s contribution) — to demonstrate the algorithms’ performances,
with Q-PAMDP proving superior. Additionally the authors prove that Q-PAMDP converges to a
local optimum.

Hausknecht et al.| (2016) introduces a freely available implementation of the Half Field Offense
(HFO) domain which features a parameterised action space akin to that described by |Masson et al.
(2016). Building on this, [Hausknecht & Stone|(2016)) introduce the PADDPG algorithm - an actor-
critic method based on DDPG (Lillicrap et al.l 2016) which works by relaxing the parameterised
action space into a continuous approximation for the critic, whilst producing an actor which si-
multaneously chooses both a discrete action and associated parameter. This simultaneous decision
making is highlighted as a key difference of PADDPG from|Masson et al.[s Q-PAMDP. Notably, the
authors do not provide an empirical comparison of Q-PAMDP’s performance to compare against
that of PADDPG, potentially due to the long training time spent to train each agent in their results.

Also building on Masson et al.[s work, Wei et al.| (2018)) introduce PATRPO and PASVG(0) (based
on TRPO Schulman et al.[(2015) and SVG (Heess et al.,[2015)) respectively), comparing these algo-
rithms with PADDPG in both the HFO and Platform domains. The results demonstrate unstable yet
improved return when using PATRPO over PADDPG or PASVG(0).

Xiong et al.| (2018) introduce two new domains: “Simulation” which involves the movement of a
point mass in two dimensions towards a target (with two available variants referred to as “Moving”
and “Sliding” respectively (Hirtz, [2022)), and “King of Glory” which is a MOBAF_-] game with 200
million monthly active players as of July 2017. They also introduce the P-DQN algorithm, alongside
an asynchronous variant, and test it in the two new domains in addition to the standard HFO domain.
The P-DQN algorithm’s performance is compared against PADDPG (Hausknecht & Stonel [2016)
and DQN (Mnih et al.| 2015) (with the latter only tested in HFO using a simplified discrete action
space instead). The authors note that P-DQN converges faster and to a more stable policy than the
two other methods tested.

2 MATHEMATICAL FRAMEWORK

A PAMDP consists of a set of states s € .S, and a set of (composite) actions
A= {(aa,0)]0 € 04},

ag€Ay
where A, is a discrete set of “actions” and for each ay € Ay the set ©,, C R is the set of
“action-parameters”. In addition we have the standard MDP components:
Reward function 7 : S x A — R
Transition function p: S x A x S — [0, 1]
Discount factor ~y € [0, 1]

'https://en.wikipedia.org/wiki/Multiplayer_online_battle_arena

https://en.wikipedia.org/wiki/Multiplayer_online_battle_arena

Under review as a conference paper at ICLR 2025

To act in a PAMDP, we consider a policy
m(aq, 0 | s) =g (aq | $)mp(0 | 5,a4),

the product of a “discrete-action” policy 7%, and an “action-parameter” policy Ty, Where w and
denote parameters of the respective policies.

The expected future discounted reward starting in state s and following the policy determined by
w, 1 is given by V,, (s) solving Bellman’s equation:

Vo () = B omomy |75 (0, 0) +7 3 pls, (04, 0),) Vi (5)].
s’esS
Optimal policy parameters (w*, 1*) satisfy Vj,« 4+ (s) = maxy, ¢ Vi, () =: V*(s); to ease expo-
sition of this article we assume a solution to this optimisation exists, rather than contend with finding
the parameters which minimise the Bellman gap, as is necessary if no solution exists.

2.1 DECOMPOSED MDP

We decompose this framework into an MDP which represents alternating between action selection
and action-parameter selection. We will show that the value function of the decomposed MDP is the
same as the value function of the PAMDP. But we will then have an MDP, which will allow us to de-
ploy conventional MDP-based algorithms against PAMDPs, allowing for both faster development of
solutions in PAMDPs, and comparison of PAMDP-specific algorithms with standard RL algorithms.

Our approach is to double the number of time steps, with each step of the PAMDP corresponding to
two steps of an MDP. We select the action on odd timesteps, and the corresponding action-parameter
on even timesteps. This method of conversion can be paired with a hybrid policy, formed by pairing
any two conventional discrete and continuous reinforcement learning algorithms respectively, and
exposing each to one of two component MDP “views” whose dynamics are based in part on the
other policy, and whose action space is either entirely discrete or continuous in nature.

We now show that the resulting MDP has an identical value function as the original PAMDP, mean-
ing that optimal strategies of the MDP transfer directly to being optimal strategies of the PAMDP.

Consider a PAMDP (S, A, 7, p,). We form the decomposed MDP (S, A, r, p, %) by specifying each
component in the following manner:

¢« §:=S5U Sp where Sy := S x Ay, so that as well as the original states in .S we also have
states (s, aq) which enhance the original states with the action selection.

A= A4 U Ao where Ag := U O, are the actions from states sy = (s,aq) € Sp.

. . .adeAd d
Clearly not all actions are valid in all states, and we simply mask off the invalid actions in
order to avoid notational overload.

e Giveni € Sanda € /L define

#(5.8) {0 1 ifsesS

vy 2r(s,(a,0,)) ifs=(s,a) € Sp,a=10, € O,

* Given 5,5 € S,and @ € A, define

1 ifsesS, ae Ay §=(35a)
p(3,a,s") =< p(s,(a,0,),5) ifs=(s,a) €Sy, a=0,€0,, §€S8
0 otherwise

07}/:72

When a discrete action is selected, we allocate no reward, and transition to the “enhanced” state con-
sisting of the origin state and the discrete action. When an action-parameter is selected in enhanced
state (s, aq) we allocate a corrected reward, and transition to the state that the PAMDP would tran-
sition to from state s when supplied with the the discrete action component of the enhanced state,
ag, and the selected action-parameter. The discount factor 7 in the decomposed MDP is the square
root of the original discount factor + since it is applied twice as often in the MDP as in the PAMDP.

Under review as a conference paper at ICLR 2025

Proposition 1. The decomposed MDP (, T, D7) has policy value function Vw,zp, and optimal
value function V*, that satisfy V,, () = Vi, (s) and V*(s) = V*(s) forall s € S.

Proof. Start by considering the wa of the decomposed MDP for fixed policy 7, . Consider an
arbitrary state s € S. We have that

Vi () = Bagror, [F(s,00) +7 D 55 00,8V (3]

§es
1~
=Eagnm, [0 + 72 Vo ((s, ad))})
since no reward is given from states s € S and transition to §' = (s, a4) is deterministic given ag.

Now consider the term for the enhanced state:

Vw,w((&ad)) =Egor, |T [((s,aq),0) +4 Z (s,aq), /)Vwﬂ/,(g/)}
5e8

= Eonory [17 375, (00,0)) + 73 3 pls, (a0, 0),) Voro(5)
s'eS

where again the summation range is restricted to the states for which the transition probability is
non-zero, which this time is the original non-enhanced states of the PAMDP.

Combining these two expressions, we see that for s € S

Vw,w(s) = EadNﬂ'w,GNﬂ',J, (ad7 + Y Z ada 7 I)Vw,w(sl)] .
s'esS

Since this is the Bellman equation for the original PAMDP, we see that V (s) = V(s) forall s € S.

Since V*(s) and V*(s) are both obtained from V, ,;(s) and V,, ,(s) by maximising over w and),
we see that also V*(s) = V*(s) forall s € S. O

We have demonstrated how to construct an associated MDP for any given PAMDP, with a shared
optimal value function. An optimal policy for one process is also optimal for the other. Hence
learning an optimal policy for the decomposed MDP is sufficient to solve the PAMDP. We there-
fore proceed to develop methods to automatically convert PAMDPs into the decomposed MDP, and
deploy standard reinforcement learning methods to solve the MDP.

3 SOFTWARE IMPLEMENTATION

We introduce a modular and extensible framework for conducting reinforcement learning experi-
ments in parameterised action spaces, with a strong emphasis on clarity, reproducibility, and flexi-
bility. Its defining contribution lies in a “converter” wrapper and an associated “hybrid policy” ob-
ject. The hybrid policy is a novel method of combining two distinct reinforcement learning agents:
one operating over discrete actions, the other over continuous action-parameters. This hybrid pol-
icy is then trained using an MDP-based environment derived (using the converter) from a given
PAMDP-based environment for compatibility with otherwise incompatible discrete and continuous
action-space algorithms.

This sophisticated architecture is designed specifically to ensure existing reinforcement learning
algorithms may be applied to the parameterised action space setting with minimal overhead, sup-
porting the reuse of new state of the art algorithms which would otherwise require extensive be-
spoke engineering to achieve. In this way we enable fast experiment design and iteration to explore
novel approaches within this problem setting. The system, described in Fig. [T} takes as input a
given Gymnasium-based environment whose parameterised action space is modelled as a gymna-
sium Tuple containing two objects - a Discrete space and a second Gymnasium tuple of Box
spaces - representing the discrete action space and continuous action-parameter spaces respectively.
PAMDP-based Gymnasium environments not modelled in this manner may utilize an observation
wrapper to achieve compatibility with our system.

Under review as a conference paper at ICLR 2025

train.py
< - chosen_script
SARL/outputs
job_config
‘SARL/sarl/config/experiment/ [
converter_use.py
_getloggingSetup()
ﬁi _runConverter()
SB3 _getAgent() J _getMDP() T
‘ converter.py
HybridPolicy PamdpToMdp PamdpToMdpView
+ agent: Dict + action_parameter_indices_mapping + action_parameter_indices_mapping: Dict
+ continuousPolicy: function + action_parameter_space + action_space action_space_is_discrete: bool
+ discretePolicy: function + discrete_action_choice + combine_continuous_actions: bool
+ name: str + discrete_action_space + Internal_pelicy: function
+env_name: str + observation_space + observation_space: Gymnasium.Space
+ seed: int + param_highs
+ param_lows metadata
+ _getMeanReturn() + previous_step_output np_random
+ Eeam() reward_range
+ predict() +_getParamindices() 5pen
+ combine()
+ stey
+ uncombineAction() + reEept?)
+ getComponentMdp(): PamdpToMDPView (€
+ expectingDiscreteAction() + close()
+step() + render()
+reset()

Figure 1: Class diagram for the framework’s converter usage. The train.py file is provided a specific
function from converter_use.py based on the user-specified job_config. The converter.py file contains
the three components discussed in detail.

This method of agent composition is made possible through three novel components which construct
a single policy from the prediction output of the two component agents, and which derive an MDP
interface to the PAMDP by intelligently deciding which action space is presented to the composite
agent. The result is a training process which utilises the . 1earn method of each Stable Baselines3
agents in an alternating manner taking actions within a derived gymnasium environment which acts
as an interface to the converted PAMDP. To explain this we explore the components individually in
turn below.

3.1 COMPONENTS

Our hybrid reinforcement learning approach is enabled by a coordinated interaction between three
key software components: the PAMDP-to-MDP converter (PamdpToMdp), the HybridPolicy
class, and the PamdpToMdpView abstraction, illustrated in Fig. E}

3.1.1 PAMDP-TO-MDP WRAPPER (PamdpToMdp)

Our core innovation is a Gymnasium-compatible wrapper that transforms a PAMDP into a form
accessible by conventional MDP-based agents. To manage the alternating nature of discrete and
continuous decisions, the wrapper augments each state observation with an additional variable ag4.
This variable encodes the expected action type:

1. If ag = —1, a discrete action is expected.
2. If ag > 0, the agent is expected to provide the continuous parameter for discrete action aq.

Upon receiving a discrete action a4, the wrapper caches it internally, returns zero reward, and re-
turns the augmentated state, ready to receive the corresponding action-parameter in the following
timestep. When an action-parameter is received, it is submitted together with the discrete action as
a single perceived action to the wrapped PAMDP. Output from the PAMDP is then returned to the

Under review as a conference paper at ICLR 2025

accessing agent, ensuring a seamless interaction despite the difference in perceived timesteps and
expected inputs/outputs.

3.1.2 COMPONENT MDP VIEWS (PamdpToMdpView)

The purpose of our work is to allow the use of standard SB3 agents to solve parameterised action
space reinforcement learning problems. When we instantiate the combined agent to learn the prob-
lem, we therefore need to instantiate two component SB3 agents. Namely, one agent to select from
the discrete actions, and one agent to select the associated action-parameter.

Unfortunately SB3 agents require fully defined MDPs with consistent action spaces at the point
of instantiation. To meet this requirement, the PamdpToMdp wrapper offers partial MDP views
via the PamdpToMdpView class. These act as partial representations of the full PAMDP, expos-
ing either the discrete or continuous action-space independently. Internally, they interface with the
shared environment state but present SB3-compatible surfaces, allowing conventional agents to op-
erate seamlessly together on otherwise incompatible spaces. This is achieved by passing the action
selection method of each agent to the other agent’s PamdpToMdpView. The view can then use the
current policy of the other agent to form each parameterised action when receiving action submis-
sions from the learning agent. In other words, first the discrete action learner can update its policy
whilst acting within its environment view (where the view obtains its action-parameter selections
from the action-parameter learner. This is followed by the action parameter learner updating its pol-
icy via its own environment view, whilst the now temporarily fixed discrete action policy provides
the missing components for each parameterised action submission.

3.1.3 HYBRID PoLICY COMPOSITION (HybridPolicy)

To enable training over the full PAMDP, we define a HybridPolicy class that composes a discrete
and a continuous agent. When instantiated, this class holds references to two preconfigured SB3
agents and provides a unified . learn () interface, though the policy object is not itself an SB3
agent. Training is conducted internally in cycles using the aforementioned PamdpToMdpView’s,
where the total number of timesteps is divided among discrete and continuous learners according to
a user-defined parameter. During each cycle, the wrapper alternates between training the discrete
agent on the discrete MDP view and the continuous agent on the continuous MDP view, thereby
enabling both components to gradually converge and forge the learned hybrid policy.

In selecting action-parameters, one continuous component agent is used across all action-parameter
spaces, which are presented as a single composite continuous space to this agent. The agents’
outputs are masked to obtain only the relevant action-parameter information at each stage.

4 EXPERIMENTS

We carry out experiments in two standard PAMDP environments, and compare two baseline custom-
built PAMDP algorithms with a set of approaches enabled by the introduction of our framework.
We explore the performance of various SB3-learned policies enabled by our framework, comparing
against the two baselines Q-PAMDP (Masson et al.,|2016) and P-DQN (Xiong et al., [2018)).

We evaluate agents across Gymnasium implementations of the two aforementioned standard bench-
marking environments Plat form-v0 (Masson et al., [2016) and Goal-V0 (a derivative of the
robot soccer domain; Kitano et al., 1997 Both environments are chosen as they subclass
Gymnasium.Env, ensuring compatibility with common reinforcement learning interfaces, each
notably featuring a shared grammar in their method of representing a parameterised action-space
(no consensus standard representation exists at time of writing).

To guarantee reproducibility across different computing setups, we employ Poet ry for dependency
resolution and virtual environment management. This ensures that all required packages, along with
their versions, are consistently installed across platforms. Coupled with Hydra, this allows users to
define experiments either through inline CLI arguments or prewritten YAML files. Each experiment

These environments and all other code will be released in the project’s Github repository (link to be added
later).

Under review as a conference paper at ICLR 2025

Table 1: Performance on Plat form-V0 (mean best learned policy + standard deviation, 50 runs)

Continuous: A2C DDPG PPO SAC TD3
A2C 021£0.11 022+£009 0.14+£0.11 0.40+£0.27 0.19+0.07
Discrete: DQN 030+£0.06 0.79+0.22 0.08+0.02 091+0.02 0.79+0.22
PPO 0.11£0.01 030+£031 0.34+£0.07 0.98+0.06 0.24+0.02
Baselines: QPAMDP: 0.76 £0.02 PDQN: 0.97 £ 0.00

configuration is automatically saved alongside its corresponding results in the .hydra directory.
This preserves the complete experiment specification, facilitating exact reruns at any point in the
future.

We execute the experiments in parallel on Lancaster University’s High-End Computing Cluster
(HEC), with each job assigned a single NVIDIA V100 GPU and 4GB of RAM. Each (policy, en-
vironment) pair, combined with an integer seed, constitutes one unique job submission, supporting
efficient multi-trial experimentation across seeds and hybrid policy compositions. Each (policy,
environment) combination is run n = 50 times to allow averaging across trials.

The combinations to be tested are composed from three discrete-capable algorithms (PPO, A2C,
and DQN (Schulman et al., 2017; Mnih et al., [2016; |2015)), five continuous-capable algorithms
(PPO, A2C, DDPG, SAC, and TD3 (Schulman et al.,2017; [Mnih et al., 2016} [Lillicrap et al., | 2016;
Haarnoja et al.,|2018}; [Fujimoto et al.,|2018)), and the Platform and Goal environments.

Performance of each algorithm is measured during learning by pausing the learning process after
each cycle of updating continuous parameters and discrete parameters, and measuring the perfor-
mance of the current learned policy in the base environment. The reason for this is to avoid compli-
cations arising from using two SB3 algorithms in parallel. For our final performance of the learning
run, we take the highest scoring policy that arose across all trials during learning.

4.1 PLATFORM

The platform domain is a novel domain introduced in Masson et al.| (2016), modelling the action-
selection and reward experience of a player playing a video game of the platforming genre.The state
is composed of 4 variables representing agent position x, agent speed &, enemy position ez, and
enemy speed ex. The agent experiences a constant negative vertical acceleration when not on the
ground, during which time their actions have no effect; the singular enemy moves in an unspecified
manner when the agent is on their platform, and is otherwise stationary; the episode ends when
the agent reaches the goal platform, makes contact with the enemy, or falls below the height of the
platforms. Two primitive actions — run and jump — become a 3-action parameterized action space
A = {run(6,),hop(b2), leap(f3)}, where hop and Leap represent two different kinds of jumps,
and each parameter represents an associated magnitude. The reward at time-step ¢ is specified as

Ty = M where [is the length of the current episode’s level.

The results from the Platform-V0 environment provide a compelling validation of the modular hy-
brid policy framework. As detailed in Table [I] which summarizes the performance metrics from
the experiment, several of the hybrid policy compositions demonstrate comparable performance to
the best of the established baselines. Namely these are DQN-SAC, PPO-SAC, (and then to a lesser
extent) DQN-TD3, and DQN-DDPG; we plot these algorithms’ performance with the baselines’
in Fig. 2| Note that even before undergoing the hyperparameter optimisations found in the base-
line cases, the general-purpose SB3 RL algorithms perform comparably to algorithms specifically
engineered for this problem type.

4.2 ROBOT SOCCER

The first of the two domains used in [Masson et al.| (2016), Robot Soccer (itself a simplified version
of the domain found in RoboCup; Kitano et al., [1997) models an agent playing a game of soccer
attempting to score a goal against an adversarial goalkeeper.

Under review as a conference paper at ICLR 2025

Platform-V0 Evaluation Returns (n=50)

. | Algorithm
o s T AP P g
s 7 Wheni o il T qpamdp

* pdgn
= [pO-Sac
dqn-ddpg
- dqn-sac
— dqgn-td3

Mean Evaluation Return

00 02 04 06 08 10
Training Timesteps 1e6

Figure 2: Time-windowed moving average of the average performance of the top performing com-
posite policies and the two baseline algorithms for the Plat form-V0 environment.

Table 2: Performance on Goal-V0 (mean best learned policy + standard deviation, 50 runs)

Continuous: A2C DDPG PPO SAC TD3

A2C -649+844 135+£9.63 -2.66+x11.1 687+x6.16 -0.15+7.79
Discrete: DQN -8.82+1.79 428+1143 -17.2+£0.33 8.79+11.11 3.82+10.86
PPO -297+£584 -3.06+634 -271+£4.09 242+852 -635%1.41

Baselines: QPAMDP: -6.72+0.25 PDOQN: 22.775+5.22

The state available to our agent .S is composed of the agent, goalkeeper, and ball’s respective po-
sitions and velocities, in addition to the orientations of the agent and goalkeeper. The result is 14
continuous state variables such that S = {(zn,Yn), (", dn),m | n € {1,2,3},m € {1,2}}.
When not in possession of the ball, the agent automatically moves towards the ball until it has pos-
session. The keeper moves towards a stationary ball, or towards the ball’s future location when it is
in motion. If the keeper takes possession of the ball, or the ball either reaches the goal or leaves the
field, the episode ends.

The action space consists of two action types - kick-to(z,y) and shoot-goal(h) - represent-
ing kicking the ball to a given position (z,y), and kicking the ball towards some position h
along the goal line respectively. The authors split the latter action into two, shoot-goal-left(hy,)
and shoot-goal-right(hg), to induce a bias towards faster learning of the optimal policy (as
the author’s note such a policy is discontinuous, as at no point should the agent shoot
the ball towards the keeper). The result is a 3-item parameterized action space of A =
{kick-to(z,y), shoot-goal-left(hy),shoot-goal-right(hgr)}.

A reward of 0 is provided for all non-terminal actions. Terminating with a goal gives a reward of 50.
Failing to score is given a negative reward, R = —d, where d is the distance from the goal.

From Table [2] we observe a wide disparity between the PDQN baseline and all other algorithms,
including the QPAMDP baseline also. This is only further emphasised through Fig. 3] In this more
complex setting it becomes clear the value of fine tuning, whereby the tailored hyperparameter

Under review as a conference paper at ICLR 2025

Goal-V0 Evaluation Returns (n=50)

Algorithm
L R ot FUPPPY [TTTL L i I — dgn-sac
—— ppo-sac
20 — A7C-58C
& pdgn
15 —_— dqn_—td:i
vanilla_pdgn
gpamdp
10

Mean Evaluation Return

0 100000 200000 300000 400000 500000 600000 TOOOOO
Training Timesteps

Figure 3: Time-windowed moving average of the average performance of the top performing com-
posite policies and the two baseline algorithms for the Goal-V0 environment.

choices and initial values inherent to PDQN’s experiment configuration significantly aid in the rate
of its convergence towards an optimal policy, and the magnitude of returns its successive policies
can obtain. Notably, further exploratory PDQN trials without user-provided domain knowledge in
the form of initial action weights and biases resulted in dramatically reduced evaluation returns (less
than 0) therein demonstrating this baseline’s limitations compared to our work.

We can observe in Figure [3] that all of the best performing algorithm combinations are continuing
to rise throughout the training timesteps. This would suggest that each of DQN-SAC, PPO-SAC,
A2C-SAC and DQN-TD3 may attain a greater maximum evaluation return if assessed over a longer
training period. We also observe the poor performance of ‘vanilla PDQN’, where it has not been sup-
plied with custom initial values. Lastly we can observe Q-PAMDP’s inability to perform desirably
in this setting, even with domain-knowledge based initialisation weights.

5 CONCLUSIONS

We have presented a method for solving parameterised action-space MDPs using appropriate com-
binations of standard reinforcement learning algorithms for either discrete or continuous action-
spaces. The decomposition to a standard MDP with alternatic discrete and continuous action selec-
tions is shown to have an identical optimal policy to the original PAMDP. The implementation of
this approach is detailed, outlining how a pair of Stable Baselines3 agents may form a hybrid policy,
each provided one of two MDP “views” within which to learn. Each view acts as an interface to the
converted PAMDP, necessary to satisfy the requirements of SB3 agents themselves.

Our experiments demonstrate that pairs of Stable Baseline agents can outperform the state of the art
with no hyperparaneter tuning in the Plat form-V0 environment, and perform moderately well
with no hyperparameter tuning in the Goal-V0 environment. However they are outperformed by a
highly tuned version of the PDQN baseline on this more complex environment.

Our general purpose framework, with the classes PamdpToMdp, PamdpToMdpView and
HybridPolicy all acting generically on Gymna s i um-compliant PAMDP environments, presents
an opportunity for more rapid development of solutions to PAMDP problem:s.

Under review as a conference paper at ICLR 2025

REFERENCES
Richard Bellman. Dynamic programming. Science, 153(3731):34-37, 1966.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
In International Conference on Learning Representations, 2016.

Matthew Hausknecht, Prannoy Mupparaju, and Sandeep Subramanian. Half field offense: An en-
vironment for multiagent learning and ad hoc teamwork. In AAMAS Adaptive Learning Agents
(ALA) Workshop, 2016.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, 2015.

Thomas Hirtz. gym-hybrid, 2022. URL |https://github.com/thomashirtz/
gym—hybrid.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa. RoboCup: The
robot world cup initiative. In International Conference on Multiagent Systems, 1997.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with parame-
terized actions. In AAAI Conference on Artificial Intelligence, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529-533, 2015.

Volodymyr Mnih, Adria Puigdomeénech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-Baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22:1-8, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. arXiv:1707.06347.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, 2023. URL | https://zenodo.org/record/8127025.

Ermo Wei, Drew Wicke, and Sean Luke. Hierarchical approaches for reinforcement learning in
parameterized action space, 2018. arXiv:1810.09656.

10

https://github.com/thomashirtz/gym-hybrid
https://github.com/thomashirtz/gym-hybrid
https://zenodo.org/record/8127025

Under review as a conference paper at ICLR 2025

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep Q-networks learning: Reinforcement learning
with discrete-continuous hybrid action space, 2018. arXiv:1810.06394.

11

	Introduction
	Related Work

	Mathematical Framework
	Decomposed MDP

	Software Implementation
	Components
	PAMDP-to-MDP Wrapper (PamdpToMdp)
	Component MDP Views (PamdpToMdpView)
	Hybrid Policy Composition (HybridPolicy)

	Experiments
	Platform
	Robot Soccer

	Conclusions

