Improving Branching Language via Self-Reflection

Kolby Nottingham Rachel Dong
University of California Irvine Riot Games
Irvine, CA 92697 Santa Monica, CA 90064
Ben Kasper Wesley Kerr
Riot Games Riot Games
Santa Monica, CA 90064 Santa Monica, CA 90064
Abstract

While most language is formatted linearly, applications such as planning, trees of
thought, and branching narrative are represented in a tree structure. Generating
branching outputs from a language model (LM) is trivial, but representing trees of
text in a one dimensional input is problematic. This makes popular self-reflection
methods of improvement prohibitive for branching language. In this work, we
address this limitation by proposing a new method for improving trees of branching
language. Our method iterates between reflecting on sampled paths through a tree
and resampling problematic subtrees. We evaluate our method on a branching
narrative task with the objective of improving every path through the tree. Our
method creates narrative that is preferred 60% more than unmodified narrative trees
by an LM judge. Our method also scales to tree depths that cause naive methods of
self-reflection to fail.

1 Introduction

Self-Reflection methods improve the quality of language model (LM) outputs by iteratively critiquing
and revising generated responses [Bai et al., 2022 [Shinn et al., [2023] [Wang et al., [2024]]. Unlike
many other blackbox optimization algorithms, self-reflection is conditioned on its previous model
outputs. This detail is inconsequential for applications in which the LM is generating linear language
that can be maintained in the LM context. However, many LM use cases are emerging that utilize
outputs other than linear language.

Popular applications such as planning, trees of thought, and branching narrative require generating
outputs in a tree structure. Many language model agents utilize a tree search over generated future
plans to help select the next best action to take [Nottingham et al.| 2023 |Liu et al.,[2023| Zhou et al.|
2024]. The reasoning method, Tree of Thoughts, searches over a tree structure of reasoning paths to
find the best response [Yao et al.|[2024]. Branching narrative, popular in interactive text adventures
and choose-your-own-adventure style novels, have a long history of using trees of branching language
for entertainment [Li and Riedl, [2010! [Li et al., [2013| |/Ammanabrolu et al., 2020, Leandro et al., [2024]).
Unlike examples that use branching language for search, branching narrative prioritizes overall tree
quality as opposed to the quality of the best path through the tree.

Unfortunately, naively applying self-reflection to improving branching language requires representing
large trees of text in-context and fails as the depth of the tree increases. Additionally, the naive
approach requires regenerating the entire tree at each iteration of self-reflection even though much
of the tree may not require modification. To address these concerns, we propose a new method for
applying self-reflection to branching language outlined in Figure[I] Our method starts by sampling
a random path through the tree. It then critiques that path and selects a node to start an edit. It

Language Gamification Workshop 2024.

1. Sample a path through the tree

Node 1: Node 2: Node 3:
« The player gives the locket to Andy « The player shoos away the cow « The player charms Blake
« Andy shares that it contains amaptoa « Cam moves to the river « Blake says his sword was crafted in an
secret grove « Blake is now friendly ancient forge
« Andy is now grateful « Blake is now charmed

2. Self-reflect and select a node to edit

Critique:

The story quality begins to lose coherence at Node 2. The connection between shooing the Cow and the changes it brings (such as
Andy sharing a tip, Cam moving to the river, and Blake's attitude changing to friendly) is unclear and lacks logical progression. These
outcomes feel abrupt and not directly related to the player's action, which detracts from the story's overall coherence.

3. Condition a new subtree on reflection

Node 1: Node 2: Node 3:
« The player gives the locket to Andy « Player charms Andy « The player charms Blake
« Andy shares that it contains a map to a « Andy shares that the grove holds the « Blake now has the goal to visit the grove
secret grove secrets to the artifact Blake seeks « Blake is now friendly
« Andy is now grateful « Andy is now very friendly

4. Sample unvisited path and repeat...

Node 1: Node 2: Node 3:
« The player gives the locket to Andy « The player charms Andy « The player picks up the potion
« Andy shares that it contains a map to a « Andy moves to the forest « The player moves to the forest
secret grove « Andy is charmed

Fo PR e

« Andy is now grateful

Figure 1: Our method identifies and resamples problematic subtrees to improve overall tree quality.
This tree represents alternative paths through a narrative. Each node in the tree corresponds to player
action and plot points that occur at that node. By critiquing and resampling subtrees, we efficiently
improve the overall story that the tree represents.

resamples the subtree beginning at the selected node, conditioned on the generated critique. This
process is repeated until all nodes of the tree have been visited.

We test our method on generating branching narrative events and compare to baseline methods using
a LM judge prompted to asses narrative quality. We find that trees generated using our method are
preferred over trees without self-reflection by 60% when using an LM judge. We also compare to
a naive implementation of self-reflection that critiques entire trees in-context represented as json.
While this naive approach is competitive with our method on shallow trees, errors quickly emerge as
tree depth increases.

2 Related Work

2.1 Self-Reflection

Bai et al.|[2022] helped popularize self-reflection with the method they call Constitutional Al that
iteratively critiques and revises output based on instructions. A more recent method called Mixture
of Agents works by iteratively generating outputs from an ensemble of LMs and then critiquing
and and revising those outputs [Wang et al.l 2024]. Many language model agents utilize reflection
methods in interactive environments by leveraging environment feedback as a critique [Shinn et al.|
2023, Zhao et al.| 2023, Majumder et al., [2023| Nottingham et al.| 2024]. All of these applications
of self-reflection target linear language outputs and are not designed with branching language in
mind. We compare our method to naive adaptations of self-reflection by representing an entire tree of
outputs in json.

2.2 Tree-based Generation

Tree-based search using branching outputs from LMs are another popular method for improving
LM outputs. For example, Language Agent Tree Search and Reason for Future, Act for Now utilize

Monte Carlo Tree Search (MCTS) via prompting LMs for language and embodied tasks [Zhou et al.
2024, Liu et al., [2023]]. Tree of Thoughts uses a similar tree search to reason about general language
tasks [Yao et al., 2024]. The above methods prioritize finding the best path in a tree as opposed to
improving all paths. However, LMs are also used to generate branching outputs in which all paths
matter. For example, Nottingham et al.| [2023]] use an LM to generate a directed acyclic graph to
guide a reinforcement learning policy to explore potential subgoals.

2.3 Narrative Generation

Narrative generation has long utilized branching structures such as trees or directed acyclic graphs
to represent potential ordering of plot points in narrative [Li and Riedl, 2010, [Li et al., 2013
Ammanabrolu et al.|2020]. In the past, LMs needed a significant amount of assistance to generate
coherent narrative [Ammanabrolu et al., 2020} [Rashkin et al.| 2020[]. However, modern LMs are
much more proficient at generating stories and branching narrative [Leandro et al.|[2024]. While
modern LMs continue to improve in this regard, they still often output uninteresting or generic stories.
An approach such as self-reflection can have a big impact on improving overall story quality.

3 Method

We believe that self-reflection will be a powerful tool

. :) . Algorithm 1 Subtree Self-Reflection
for improving branching language. However, naively

representing a tree in the context of a language model Require: .X
with a technique such as json, tuples, or path enumera- vLst ted g

. L while |visited| < | X| do
tion performs poorly. Also, unlike linear output, not all path < SamplePath(X, visited)
paths in a tree are dependent on each other. This means critique, x < Reflect(path, visited)
that we can modify problematic portions of a tree while if z # null then
leaving the rest untouched, potentially speeding up the X' < Resample(z, critique)
self-reflection process. X <« Update(X, X") /
With this in mind, we design a new method for applying els:wlted ¢ visited Upath U X
self-reflection to trees by regenerating problematic sub- visited « visited U path
trees while conditioning on critiques of paths through end if

the tree. A single iteration of this process is detailed in end while

Algorithm [T} We begin with a tree X, from which we return X

randomly sample a path, or sequence of nodes, through

the tree. We prompt a LM with the path to generate a

textual critique and select the most problematic node, labeled x, for editing. We then resample a
subtree, X', starting from x conditioned on the critique. The LM can also opt to skip resampling a
subtree if the critique is positive. This process repeats until all subtrees have been visited.

We mark all nodes that occurred in a path or were part of a regenerated subtree, X', as visited. In
Algorithm[I] SamplePath and Re flect are conditioned on visited nodes. This is to indicate that
SamplePath will only return a path if at least one node in the path has not been visited. Likewise,
Re flect will not return a visited node as x. Once all nodes are visited the iteration of self-reflection
terminates and the fully updated tree is returned.

The naive implementation of self-reflection we consider requires O(1) time complexity when cri-
tiquing a tree and O(n?) time complexity when resampling a tree, where 7 is the branching factor and
d is the depth and the time complexity measures the number of calls to the LM. Our method requires
worst case O(n?~!) time complexity when critiquing a tree and worst case O(n?) time complexity
when resampling a tree. However, both values are empirically far smaller since the more critiques
we generate, the fewer nodes we need to resample. we can also resample subtrees concurrently
and our method may choose to skip entire subtrees, further reducing the time it takes us to perform
self-reflection. In our experiments, our method is actually 9% faster than the naive method.

Our method also improves space complexity with respect to the context length of the LM. A naive
implementation would maintain the entire tree, O(n?), during the critique step. However, our method
only includes tree paths in-context which has a complexity of O(d).

Tree Depth 3 Tree Depth 5

0.8 :
Reflection Method

0.7 --- None

06 —— Whole Tree
o —— Subtrees (No Critique)
§ 0.5 —— Subtrees
=
S04

0.3

0.2

0 1 2 3 4 5 0 1 2 3 4 5
Reflection Iteration Reflection Iteration

Figure 2: Our method, labeled Subtrees, is the only method that successfully scales to improving
deeper trees. An naive self-reflection method that reflects on the W/ole Tree at once is competitive
with our method at shallow depths but is less efficient and does not scale as far. Resampling subtrees
with No Critique in-context utilizes our method for identifying subtrees to resample but ablates
including the generated critique in-context when resampling.

4 Experimental Results

We compare our method to several baselines on a branching narrative task. This task involves
continuing a story by generating a tree of narrative events that branch around character decisions. At
each node, the LM selects 1-3 child nodes from a set of potential character actions. The LM must
also select from a set of potential effects that update the state based on that action. Each path through
the branching narrative represents a story continuation.

We evaluate a narrative tree by performing pairwise comparisons between randomly sampled paths
from different tree generation methods. A LM judge is prompted to summarize each path and select
the continuation that is the most interesting, coherent, and logical. The same criteria are used in all
self-reflection methods we evaluate on. We generate and evaluate on 10 different story initializations.
The initial tree, critiques, edits, and judging are done by GPT-40 with a temperature of 0.7.

Figure 2]reports win rates between our method and baselines after multiple iterations of self-reflection.
All methods are able to outperform originally generated trees with no self-reflection. We first compare
to a naive baseline that includes the whole tree in-context in json, labeled Whole Tree. This method
performs comparably to ours on small trees but fails to scale to larger trees and takes 9% longer
to run. It also consistently has higher variance across the 10 story initializations we evaluate on as
indicated by the error regions in Figure 2]

We also ablate including the generated critigue when resampling a subtree, labeled No Critique. The
fact that No Critique improves over the baseline, demonstrates that our method successfully identifies
poorly performing nodes to resample. However, including the critique greatly improves performance.

5 Discussion & Conclusion

We develop a method for efficiently performing self-reflection on large trees of branching language.
By iteratively critiquing linear paths through the tree and only editing problematic subtrees, our
method scales to deeper trees, maintains lower variance, and is 9% faster when compared to baselines.

Our method is especially well suited when applied to the objective of improving overall tree quality,
as is the case in our branching narrative task. However, the majority of applications that generate
trees of text are used for search, which only optimizes for the best path through the tree. We believe
that our method can also be applied to tree search for language by critiquing and resampling subtrees
throughout the search. We leave the investigation of this application to future work.

As use cases for LMs continue to grow, non-linear language generation will continue to become more
common. LMs will need to be able to process branching language as well as language in graph-based
or multiple spatial dimensions. Our work represents early steps in this direction as we investigate
how well LMs can process non-linear language.

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 8634-8652. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
1b44b878bb782e6954cd888628510e90-Paper-Conference. pdf.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. Do embodied agents dream of pixelated sheep: Embodied decision making
using language guided world modelling. In International Conference on Machine Learning, pages
26311-26325. PMLR, 2023.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled framework for autonomous llm agents with provable sample
efficiency. arXiv preprint arXiv:2309.17382, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Boyang Albert Li and Mark O. Riedl. An offline planning approach to game plotline adaptation. Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
2010. URL https://api.semanticscholar.org/CorpusID:11061580.

Boyang Albert Li, Stephen Lee-Urban, George Johnston, and Mark O. Riedl. Story generation with
crowdsourced plot graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 2013.
URL https://api.semanticscholar.org/CorpusID: 16270356,

Prithviraj Ammanabrolu, Wesley Cheung, William Broniec, and Mark O. Riedl. Automated
storytelling via causal, commonsense plot ordering. ArXiv, abs/2009.00829, 2020. URL
https://api.semanticscholar.org/CorpusID:221446544.

Jorge Leandro, Sudha Rao, Michael Xu, Weijia Xu, Nebojsa Jojic, Chris Brockett, and Bill Dolan.
Geneva: Generating and visualizing branching narratives using llms. In IEEE Conference on Games
2024, August 2024. URL https://www.microsoft.com/en-us/research/publication/
geneva-generating-and-visualizing-branching-narratives-using-1lms/.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm
agents are experiential learners. arXiv preprint arXiv:2308.10144, 2023.

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra, Peter Jansen, Oyvind Tafjord, Niket Tandon,
Li Zhang, Chris Callison-Burch, and Peter Clark. Clin: A continually learning language agent for
rapid task adaptation and generalization. arXiv preprint arXiv:2310.10134, 2023.

Kolby Nottingham, Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra, Sameer Singh, Peter
Clark, and Roy Fox. Skill set optimization: Reinforcing language model behavior via transferable
skills. In Forty-first International Conference on Machine Learning, 2024.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and Jianfeng Gao. Plotmachines: Outline-conditioned
generation with dynamic plot state tracking. ArXiv, abs/2004.14967, 2020. URL https://api.
semanticscholar.org/CorpusID:216868683.

https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:11061580
https://api.semanticscholar.org/CorpusID:16270356
https://api.semanticscholar.org/CorpusID:221446544
https://www.microsoft.com/en-us/research/publication/geneva-generating-and-visualizing-branching-narratives-using-llms/
https://www.microsoft.com/en-us/research/publication/geneva-generating-and-visualizing-branching-narratives-using-llms/
https://api.semanticscholar.org/CorpusID:216868683
https://api.semanticscholar.org/CorpusID:216868683

	Introduction
	Related Work
	Self-Reflection
	Tree-based Generation
	Narrative Generation

	Method
	Experimental Results
	Discussion & Conclusion

