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ABSTRACT

A significant proportion of queries to large language models ask them to edit user-
provided text, rather than generate new text from scratch. While previous work
focuses on detecting fully AI-generated text, we demonstrate that AI-edited text is
distinguishable from human-written and AI-generated text. First, we propose us-
ing lightweight similarity metrics to quantify the magnitude of AI editing present
in a text given the original human-written text and validate these metrics with hu-
man annotators. Using these similarity metrics as intermediate supervision, we
then train EDITLENS, a regression model that predicts the amount of AI editing
present within a text. Our model achieves state-of-the-art performance on both
binary (F1=94.7%) and ternary (F1=90.4%) classification tasks in distinguishing
human, AI, and mixed writing. Not only do we show that AI-edited text can be
detected, but also that the degree of change made by AI to human writing can be
detected, which has implications for authorship attribution, education, and policy.
Finally, as a case study, we use our model to analyze the effects of AI-edits applied
by Grammarly, a popular writing assistance tool. To encourage further research,
we commit to publicly releasing our models and dataset.

1 INTRODUCTION

Large language models (LLMs) generate text that is difficult to distinguish from human writing,
enabling malicious applications such as academic plagiarism and fake review farms, thus motivating
the need for accurate AI detection. While existing detectors frame the task as binary classification
(fully human vs. fully AI-generated), mainstream LLM usage increasingly involves co-writing,
where LLMs are used for editing and brainstorming via services like Grammarly,1 Sudowrite,2 or
Google Docs’ Gemini integration. In fact, a recent OpenAI study of over 1M ChatGPT conversations
(Chatterji et al., 2025) shows that “about two-thirds of all Writing messages ask ChatGPT to modify
user text (editing, critiquing, translating, etc.) rather than creating new text from scratch.” Binary
AI detection systems are not well-suited to detect such mixed-authorship texts: for example, Saha
& Feizi (2025) find that binary detectors often flag AI-polished text as AI-generated, limiting their
utility in situations where light AI editing is acceptable but fully AI-generated text is not.

In this paper, we develop EDITLENS, the first AI detector that estimates the extent of AI editing in a
text as a continuous score. Previous work on detecting mixed AI and human text has treated the task
as either a boundary detection problem (Kushnareva et al., 2024; Lei et al., 2025), a sentence-wise
classification task (Wang et al., 2023), or a ternary classification problem between human, AI, and
mixed text (Abassy et al., 2024; Wang et al., 2025). However, modern collaborative editing involves
layered revisions, suggestions, and refinements that blur traditional notions of authorship, making it
challenging to definitively attribute specific segments to either human or AI authors and rendering
boundary detection and sentence-level tasks ill-posed. Although the ternary classification approach
does not require assigning direct authorship to discrete segments, it is unable to quantify the degree
or the magnitude of AI editing: Was the text lightly edited for spelling and grammar, or completely
rewritten and restructured? Rather than classifying a text category, our model directly regresses a
score that indicates the degree of AI involvement in the production of the text as a whole.

1https://www.grammarly.com/
2https://sudowrite.com/
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Figure 1: AI edits exist on a continuous spectrum from fully human written to fully AI generated.

Our contributions are the following:

1. We introduce a comprehensive dataset spanning a full taxonomy of AI-edits to human-
written texts.

2. We quantify the amount of AI editing applied to each text via lightweight similarity met-
rics, and validate that the similarity metrics correlate with the judgments of expert human
annotators trained to detect AI writing styles.

3. We use these similarity metrics to finetune a regression head on an open-source large lan-
guage model to detect the amount of AI-editing present given only the edited text.

4. When converted from a regression model to a binary or ternary classification model, we
show that our model, EDITLENS, achieves state of the art performance, outperforming
the best binary classifiers by 8%, and outperforming the best ternary classifiers by 16%
(macro-F1).

5. We also show that unlike the discrete classifiers, the regression model is able to show
nuance in progressively classifying more intense edits with higher scores, with case studies
on APT-Eval, Beemo, and Grammarly.

Our findings have wide-ranging implications for AI text detection policy. By enabling measurement
for the level of AI involvement, more flexible policies acceptable usage of generative AI models
can be consistently enforced. Furthermore, our work can help mitigate false positives, a critical
limitation of existing binary AI text classifiers. With the ability to control the amount of AI editing
allowed, a much lower false positive rate can be achieved under the policy cap framework suggested
by Jabarian & Imas (2025) for implementation in high-stakes settings such as academic integrity.

2 QUANTIFYING AI EDIT MAGNITUDE

2.1 HOMOGENEOUS VS. HETEROGENEOUS MIXED AUTHORSHIP

To better motivate our work, we first introduce the concepts of heterogeneous and homogeneous
mixed authorship texts.

In the heterogeneous case, authorship of each segment of text can be directly attributed to a human
or AI. An example of this is a situation where a human writes one paragraph and asks the AI to
write the following paragraph. In cases like this, there exist one or more boundaries between human
and AI segments. One can create token-level labels for heterogeneous mixed texts: every token was
authored by either human or AI. Heterogeneous mixed text detection (also called fine-grained AI

2
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Lucy’s Vietnamese is one of my favorite 
dinner spots in Williamsburg! I’ve been 
literally so many times, all during the work 
week, and never had a bad experience. By 
farrrr, my favorite thing to get is the 
Chicken Banh-Mi, which always comes out 
warm and fresh out of the oven. 



Finish this review by adding what I got for 
dessert! 

Lucy’s Vietnamese is one of my favorite dinner spots in 
Williamsburg! I’ve been literally so many times, all during the work 
week, and never had a bad experience. By farrrr, my favorite thing 
to get is the Chicken Banh-Mi, which always comes out warm and 
fresh out of the oven. And if I’m still hungry after, I can’t resist 
finishing the meal with dessert — the pandan waffles are so fluffy 
and fragrant, perfectly paired with a scoop of ice cream. It’s the 
kind of sweet ending that makes the whole meal feel complete.

HETEROGENEOUS-MIXED TEXT

Human AI
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Make my review more descriptive!

Lucy’s Vietnamese is hands down one of my go-to dinner spots in 
Williamsburg. I’ve lost track of how many times I’ve been—it’s 
become almost a ritual during the work week—and not once have I 
walked away disappointed. The space itself has this cozy, 
unpretentious charm that makes it just as easy to swing by for a 
quick solo bite as it is to linger with friends.

My absolute favorite order, every single time, is the Chicken Banh 
Mi. The bread arrives warm...


AI Edited

HOMOGENEOUS-MIXED TEXT

Figure 2: Heterogeneous vs. Homogeneous Mixed Text. In heterogeneous mixed text, authorship of
each token is clearly attributable.

text detection) has been previously studied by Kushnareva et al. (2024), Wang et al. (2023), and Lei
et al. (2025).

In the homogeneous case, authorship is entangled by the editing process. An example of this is a
situation where a human writes a paragraph and asks an AI to paraphrase it. Even if AI replaces every
word in the paragraph with a synonym, authorship is still mixed. As such, token-level binary labels
are insufficient measures of authorship in this case, as both parties have provided input throughout
the entire document. Despite its increasing prevalence, homogeneous mixed AI text is understudied,
and we focus the rest of the paper on detecting this kind of mixed text.

2.2 TASK DEFINITION: HOMOGENEOUS MIXED TEXT

In many practical scenarios, a human-written document x is subsequently edited to yield a new doc-
ument y, where multiple sequential edits may have been performed by one or more agents (human
or AI) in an indistinguishable fashion to produce y. Unlike the heterogeneous mixed-text setting,
where each segment is assumed to be authored wholly by either a human or an LLM, here authorship
is latent and entangled within the editing process. Our objective is not to attribute authorship, but to
predict the magnitude of change between x and y according to a similarity metric that agrees with
expert judgments of the magnitude of AI writing style and semantics.

We model the edited text as the image of an editing operator Eλ applied to x:

y = Eλ(x; z), z ∼ p(z), λ ∈ Λ,

where z denotes a (latent) sequence of micro-edits (insertions, deletions, substitutions, reorderings)
possibly performed by a mixture of editor types (humans or AIs) and λ summarizes an edit intensity.
In the homogeneous setting, the editor identity within z is unobserved and not required at training
or inference time. For simplicity, in this study, we focus on the case where a human text is edited
in one pass by a single AI language model, but we also present results for multiple passes, and
human-edited AI text as case studies in generalization.

Similarity-driven target. Let sim : X × X → [0, 1] be a fixed similarity functional. We define a
change magnitude functional ∆ : X × X → [0, 1] by a monotone transformation of similarity (or
distance):

∆(x, y) = g
(
sim(x, y)

)
, e.g., g(s) = 1− s

3
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Figure 3: EDITLENS architecture. We use similarity metrics as intermediate supervision, and simul-
taneously train edit classification/regression and prompt classification tasks in multi-task learning.

where sim is a nonnegative distance. ∆(x, y) = 0 for identical texts (no edits) and increases as
heavier editing is applied to form y. We motivate the particular choice of sim below via agreement
with expert annotators’ perception of the amount of AI pervasiveness within a text, and it is assumed
known during training and evaluation.

Inference with edited text only. In most practical settings, only the edited document y is available
at inference time. We therefore learn a single-input predictor that maps y directly to a change
magnitude without reconstructing or retrieving a source x:

f ssi
θ : X → [0, 1], ∆̂(y) = f ssi

θ (y).

Training remains supervised using pairs {(x(i), y(i))}Ni=1 only to compute targets ∆(i) =
∆(x(i), y(i)); the model never conditions on x at inference. Concretely, we optimize

min
θ

1

N

N∑
i=1

L
(
f ssi
θ

(
y(i)

)
, ∆

(
x(i), y(i)

))
.

The Bayes-optimal predictor for this objective is the conditional expectation

f⋆(y) = E[∆(X, y) | Y = y] ,

but crucially we do not estimate this expectation via reconstruction of x. Instead, f ssi
θ learns discrim-

inatively from y alone, absorbing the necessary inductive biases (e.g., lexical volatility, style drift,
fluency/consistency cues) to approximate f⋆ from labeled examples.

For additional discussion of the precise differences between homogeneous and heterogeneous mixed
detection formulations, see the Appendix.

3 TRAINING A MODEL TO DETECT AI EDITS

3.1 CREATING A HOMOGENEOUS MIXED TEXT DATASET

Because no dataset of homogeneous mixed AI-generated text exists at scale, we create a training set
for this task.

We begin by collecting a source dataset of fully-human and fully-AI-generated texts. We select
human-written texts from prior to the release of large language models in 2022 from 4 domains: re-
views from Amazon (Zhang et al., 2015) and Google (Li et al., 2022), creative writing samples from

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Reddit Writing Prompts (Fan et al., 2018), general educational web articles from FineWeb-EDU
(Lozhkov et al., 2024), and news articles from XSum (Narayan et al., 2018) and CNN/DailyMail
(See et al., 2017). As a holdout domain to measure out-of-distribution performance, we also include
the Enron email dataset (Cohen, 2015).

Then, we generate an AI example corresponding to each human example following the synthetic
mirroring procedure introduced in Emi & Spero (2024). We use GPT-4.1, Claude 4 Sonnet, and
Gemini 2.5 Flash. We also include Llama-3.3-70B-Instruct-Turbo as a holdout LLM to measure
performance on out-of-distribution LLMs. Our final train, test, and val splits contain 60k, 6k, and
2.4k examples respectively. We estimate the cost of creating this dataset to be roughly $530. Addi-
tional dataset summary statistics can be found in Tables 10 to 14.

3.2 EDIT PROMPTS

We collected a set of editing prompts by first prompting ChatGPT 4o, Claude Sonnet 4, and Gem-
ini 2.5 Pro. When prompting the LLMs, we asked them to categorize the edit prompts, and we
consolidated the categories across models into 9 prompt types. We also added a small number of
human-written prompts written by the authors and self-categorized them. In total, we collected 303
editing prompts. The full list of prompts and summary statistics about the categories and contrib-
utors can be found in Tables 8 and 9. While this list of prompts is not exhaustive, it encompasses
a significant coverage of the different ways that people use AI to edit texts. We split this list of
prompts into train, test, and validation splits so that the model cannot overfit to a particular set of
prompts.

3.3 INTERMEDIATE SUPERVISION METRICS

We experiment with two methods for labeling the “difference” ∆(x, y) in a text before and after AI
editing. The first is the cosine distance (1 - cosine similarity) between the Linq-Embed-Mistral (Choi
et al., 2024) embeddings of the source text and the AI-edited version. We chose this embedding due
to its strong all-around performance on the MTEB benchmark (Muennighoff et al., 2023).

The second is a precision-based method similar to the embedding-based ROUGE proposed by Ng &
Abrecht (2015): given a minimum (a) and maximum (b) sequence length, we enumerate all phrases
(including overlaps) of between a and b words in the source and edited texts. We compute the
pairwise cosine similarity between phrases in the source and edited texts, then count the number of
phrases in the edited text with a cosine similarity above a threshold τ for any phrase in the source
text. This count is divided by the total number of phrases in the edited text, making it a precision-
based metric. We refer to this metric as the soft n-grams score throughout the paper. Soft n-grams
reduces to n-gram overlap between source and target when τ = 1. We choose soft n-grams because
it expresses similarity when the AI editor replaces a phrase or word with a semantically similar one
rather than requiring exact matching. We note that this supervision metric is shortening-invariant,
i.e., simply deleting text from the source still yields a soft n-grams score of 1.

3.4 HUMAN AGREEMENT WITH INTERMEDIATE SUPERVISION METRICS

How well do these automatic metrics actually capture the extent of AI editing in a text? To support
our choice of intermediate supervision metric, we conduct a study that asks human annotators to
compare two AI-edited versions of the same text after findings by Russell et al. (2025) that humans
are effective detectors of AI-authored text.

Task setup. Annotators are shown 3 texts side-by-side: a human written source text alongside 2
AI-edited versions of the source text. The labeling interface can be seen in Figure 7. Between the
two AI texts, annotators are asked to select which text contains more AI edits. Annotators may also
answer that there is a “Tie,” i.e. both texts contain roughly the same amount of AI edits. Annotators
have the option to leave freeform comments on each task, but were not required to do so. We
recruited 3 annotators with extensive daily exposure to both human writing and AI-generated texts.
Each annotator completed all 100 tasks in approximately 6 hours and was compensated at a rate of
$30 (USD) per hour.

5
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Task generation procedure. We randomly sample 100 human-written texts of between 50 and
300 words from our test set. We then generate multiple AI-edited versions of each source text using
randomly assigned prompts until we have two AI-edited versions that are within 15 words of the
source text. We impose this length restriction on the edited texts to encourage annotators to consider
the actual text, rather than simply the length when selecting the version with more AI edits.

Agreement with metrics. We report Krippendorff’s α (Krippendorff, 1980) for our 3 annotators

Figure 4: AI Polish distributions

and each of our two supervision metrics by treating each metric
as a fourth annotator. When considering human annotators’ ties
as abstentions and designating the higher scoring text as the
metric’s selection, α = 0.67 ± 0.06 for cosine and α = 0.66 ±
0.05 for soft n-grams. We also compute α when considering ties
in Table 3, but we note that no value is under 0.48, indicating
moderate agreement.

3.5 MODELING DETAILS

Using QLoRA Dettmers et al. (2023), we finetune models of be-
tween 3 and 24B parameters from the Mistral and Llama fam-
ilies. We use QLoRA to sweep the widest possible range of
sizes of base models to use as a backbone that fit in VRAM
on a single GPU. We leave other finetuning and modeling ar-
chitecture choices to future work. We experiment with directly
training a regression head using MSE loss as well as training
an n-way classification model, then decoding the output to a
score, using weighted-average decoding rather than traditional
argmax decoding. As an auxiliary task, we also train the model
to classify the prompt category using an additional head trained
with a cross-entropy loss. Additional details can be found in the
Appendix.

4 RESULTS

EDITLENS demonstrates significantly more nuanced AI detec-
tion than existing classifiers through both quantitative metrics
and qualitative analysis. We compare EDITLENS with sev-
eral open- and closed-source AI detection baselines. On the
AI Polish dataset (APT-Eval), EditLens achieves substantially
stronger correlations with edit magnitude metrics compared to
binary detectors (correlation 0.606), markedly outperforming
the best binary baseline Pangram (correlation 0.491). This
quantitative superiority is complemented by clear qualitative
differences: while binary classifiers like Pangram predict scores
clustered near 0 or 1, EditLens produces a nuanced distribution
that appropriately tracks increasing levels of AI polish from mi-
nor to major edits. The model’s regression-based approach en-
ables it to achieve state-of-the-art performance across evalua-
tion paradigms, delivering 94.0% accuracy in binary classifica-
tion (human vs. any AI) and 90.2% accuracy in ternary classi-
fication (human vs. AI-edited vs. AI-generated), substantially

outperforming existing binary and ternary detection methods. Additionally, EditLens generalizes ef-
fectively outside its training distribution: to unseen prompts, LLMs, and domains, to human-edited
AI text in the BEEMO dataset, and to AI-edited AI text as well as multi-edited AI text.

4.1 AI POLISH DATASET

We first compare the performance on the AI Polish dataset (APT-Eval) of EDITLENS against the
best-performing binary AI classifier, Pangram. APT-Eval contains both degree-based AI-edited text,

6
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(a) Human vs. Any AI
Model (Threshold) Acc. (%) F1
FastDetectGPT 0.009 69.1 80.5
Binoculars 0.362 68.6 81.4
Pangram 0.001 80.7 83.7
EDITLENS (Cosine) 0.039 93.8 95.4
EDITLENS (SNG) (0.041) 94.0 95.6

(b) Fully AI vs. AI-Edited + Human
Model (Threshold) Acc. (%) F1
FastDetectGPT 0.889 90.6 84.4
Binoculars 0.601 31.4 47.7
Pangram 0.998 92.3 89.0
EDITLENS (SNG) (0.998) 94.3 90.2
EDITLENS (Cosine) (0.960) 96.4 94.1

Table 1: Accuracy and F1-score on two binary classification tasks: (a) human vs. any AI generated
or edited texts and (b) fully AI-generated texts vs. AI-edited and human texts. Thresholds were
calibrated using the val set. “SNG” denotes EDITLENS trained with soft n-grams supervised data.

with 4 discrete categories (extreme minor, minor, slight major, and major polish levels), as well as
percentage-based AI-edited text, where LLMs were asked to edit a certain percentage of the text,
varying from 1-75%.

While there are no direct or exact labels, the score should generally monotonically increase as the
amount of requested polish increases. In Figure 4, we qualitatively assess the distribution of the
model prediction scores on the degree-based edits. We can see a clear difference between the be-
havior of EDITLENS versus the behavior of Pangram. Pangram almost always predicts a score very
close to 0 or 1, while EDITLENS is able to quantify the increasing levels of polish applied. We show
the equivalent distributions for percentage-based polishing in the Appendix.

Quantitatively, we also report the correlation value between the EDITLENS predicted score and the
similarity metrics between source and target provided by APT-eval in Table 4. For EDITLENS and
all binary classification baselines, we measure the Pearson correlation coefficient (r) between the
prediction scores and the semantic similarity (-0.606), Levenshtein distance (0.799), and Jaccard
distance (0.781) metrics between the pre-AI-polished and post-AI-polished documents. Stronger
correlation values mean that the model is able to faithfully track edit magnitude across examples and
assign higher scores as semantic similarity decreases (and Levenshtein/Jaccard distances increase),
and lower scores when the edited text remains close to the source. EDITLENS exhibits a significant
correlation between these similarity metrics and its scores, while the binary AI detectors correlate
less strongly with these metrics.

4.2 PERFORMANCE AS A BINARY CLASSIFIER

In the binary classification setting, how does EDITLENS treat mixed text? Different use cases may
have different standards for what they consider an acceptable amount of AI-generated text–a profes-
sor may allow the use of AI assistance for proofreading, but disallow fully AI-generated essays.

To measure the flexibility of our model and the baselines to be able to adjust to different sen-
sitivity levels, we calibrate and compute the performance of each model on two settings: fully
human-written vs. any AI-edited or AI-generated text, fully human-written and AI-edited text vs.
AI-generated text. Model accuracy and F1-scores can be found in Table 1. Notably, EDITLENS
outperforms our three binary baselines, FastDetectGPT, Binoculars, and Pangram, on our test set
consisting of fully human-written, fully AI-generated, and AI-edited texts.

4.3 PERFORMANCE AS A TERNARY CLASSIFIER

To compare with categorical mixed AI detection models, we evaluate each model on three classes:
human, AI-generated, or AI-edited. To convert each binary classifier into a ternary classifier, we find
two thresholds using the calibration procedure above on a held-out validation set, optimizing the F1
score between the human/mixed and mixed/AI classes. The decoding procedures for GPTZero and
DetectAIve are detailed in the Appendix.

4.4 OUT-OF-DOMAIN PERFORMANCE

During dataset creation, we hold out both a model and a domain to test the ability of our model
to generalize to out-of-distribution texts. We created an OOD model test set of 3k examples with
Llama-3.3-70B-Instruct-Turbo generated and edited texts as well as an OOD domain test set using

7
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Model Type Accuracy Macro-F1 Human F1 AI-Gen. F1 AI-Edited F1
Binoculars Binary 48.5 50.1 54.7 58.4 37.4
FastDetectGPT Binary 60.6 56.8 25.1 84.4 61.0
Pangram Binary 73.0 69.5 76.4 89.0 43.2
DetectAIve Ternary 57.8 52.5 79.9 16.1 61.5
GPTZero Ternary 74.7 72.7 77.3 89.8 50.9
EDITLENS Soft N-Grams Regression 89.7 89.9 89.6 94.1 86.1
EDITLENS Cosine Regression 90.2 90.4 90.4 94.1 86.8

Table 2: Ternary classification performance across different model types.

the Enron email dataset (Cohen, 2015) as source texts, and measure the degradation in macro-F1
score of our best model, EDITLENS with cosine supervision.

On the OOD domain dataset, macro-F1 on the ternary classification task decreases from 0.904 to
0.866 (-0.038). On the OOD LLM dataset, macro-F1 on the ternary classification task decreases
from 0.904 to 0.850 (-0.054).

4.5 PERFORMANCE ON MULTI-EDITED AI TEXT

We also examine the case where multiple AI-edits have been applied to a single piece of text. We test
our model on this case by applying a series of 5 edits to a piece of human-written text and measuring
the EDITLENS score after each subsequent edit. In 5, we show that for each edit, the mean score
increases.

4.6 GENERALIZATION TO AI-EDITED AI TEXT

To ensure EDITLENS estimates the extent of AI-editing rather than the presence of edits of
any kind, we evaluate our detector’s mean score difference on AI-edited, AI-generated text.

Figure 5: ”Trajectory” of EDITLENS scores after
a number of subsequent AI edits to a single text.

We take synthetic mirrors of our original human
dataset, considered to be ’AI-generated docu-
ments’ and edit them using our held-out prompt
set. On a dataset size of n=412, the mean score
difference for a single edit pass on an originally
human text is 0.38. The mean score difference
for a single edit pass on an originally AI text is
-0.05.

4.7 GENERALIZATION
TO HUMAN-EDITED AI TEXT (BEEMO)

While the majority of our studies focus on AI-
edited human writing, we also evaluate the per-
formance of EDITLENS on human-edited AI

text using the BEEMO (Artemova et al., 2024) dataset, which includes human expert-edited ver-
sions of AI model outputs. We find that the model adequately generalizes to human-edited AI
text. The average decrease in score from the model output to the human-edited model output is
0.33±0.30, with the score decreasing after human-editing in 88.9% of the documents. More details
are presented in the Appendix.

4.8 CASE STUDY: GRAMMARLY EDIT DATASET

Grammarly3 is a popular subscription-based AI writing assistant that allows users to edit text using
both pre-filled and custom prompts within a native word processor. We manually collect a dataset of
1768 samples using 9 of the default prompts offered by Grammarly to simulate typical user queries

3https://www.grammarly.com/
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EditLens Score

Fix any mistakes
Paraphrase it

Improve it
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Sound fluent
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Make it more descriptive
Make it more detailed

Summarize it

Figure 6: Distribution of EDITLENS scores on dataset from Grammarly by edit instruction.

for AI editing by sampling 1974 human-written source texts and applying each of the 9 edits to them
in the Grammarly web interface. In Figure 6, we present the distributions of EDITLENS scores on
examples from each editing instruction sorted by the median. Perhaps counterintuitively, EDITLENS
considers “Fix any mistakes” the most minor of all edits, while “Summarize this” and “Make it more
detailed” are the most invasive edits. In Figures 8 and 9 we show this is also true according to both
the cosine and soft n-grams scores of the examples.

5 RELATED WORK

Binary AI-Generated Text Detectors. Several works have explored the binary setting of distin-
guishing fully-human from fully-AI-generated text. DetectGPT (Mitchell et al., 2023), FastDetect-
GPT (Bao et al., 2024), DNA-GPT (Yang & Cheng, 2024), Binoculars (Hans et al., 2024), Ghost-
busters (Verma et al., 2024), and numerous other open-works have been invented. Commercial
closed-source solutions such as GPTZero (Tian & Cui, 2023) and Pangram (Emi & Spero, 2024)
have also emerged as effective AI text classifiers. Heterogeneous Mixed Text Detection. As de-
scribed above, previous work on mixed AI and human text detection focuses on the heterogeneous
case: where distinct boundaries can be drawn between fully AI-generated and fully human-written
segments. Examples of these works include AI Boundary Detection with RoFT Kushnareva et al.
(2024), SeqXGPT Wang et al. (2023), HaCo-Det Su et al. (2025), and PALD Lei et al. (2025). Cat-
egorical Mixed Text Detection. Alternatively, some previous work has instead focused on mixed
text as an additional category or categories in addition to human and AI. DetectAIve Abassy et al.
(2024), HERO Wang et al. (2025), and GPTZero Tian & Cui (2023) are all examples where mixed
categories have been added. We find the limitation of this approach is that the amount of editing
cannot be quantified: all mixed text is treated as the same. Human-Edited AI Text. In addition
to our problem setting of AI-edited human written text, there are also studies and datasets focus-
ing on human-edited AI-generated text. Beemo Artemova et al. (2024) is a benchmark focusing on
expert-edited AI text. LAMP Chakrabarty et al. (2025) is a corpus of LLM-generated paragraphs
that have been improved by professional writers according to a defined taxonomy. Paraphrasers
and Humanizers. Several previous works have studied the effects of automated paraphrasers (Kr-
ishna et al., 2023; Russell et al., 2025) and “humanizers” (Masrour et al., 2025) on how they degrade
AI-generated text. We explore the effect of AI rewriting of AI outputs as it relates to our model in
the results.

6 CONCLUSION

In this study, we introduce the task of continuous fine-grained AI edit prediction, and show ED-
ITLENS, based on simple embedding-based supervision on a finetuned language model, significantly
outperforms existing AI detection approaches. We release our dataset and models to encourage fu-
ture research in this area.

4Occasionally, Grammarly would abstain, leaving us with fewer than 197 * 9 samples.
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7 ETHICS STATEMENT

Our research involved using 3 human subjects to annotate the degree of AI-editing present in a text.
We obtained informed consent from the subjects and fairly compensated them for their labor. We
commit to maintaining their privacy.

Inaccurate AI detection software can cause harm as false accusations of AI misconduct can result in
serious consequences, including emotional trauma, reputation damage, and undue punishments for
academic misconduct. We acknowledge that our model has a non-zero error rate and its errors may
result in such harms. We commit to continuing to engage with the academic community to educate
others on appropriately contextualizing and communicating the results of AI detection software. We
also commit to releasing the model for non-commercial use only and responsibly vetting access to
researchers and educators.

We intend for our contribution to the research on AI detection to ultimately mitigate harm by provid-
ing a more nuanced picture of AI usage than binary AI detection classifiers. The ability to calibrate
the sensitivity level of the regression model is also a step towards mitigating the false positive rate
and lowering the overall number of false accusations of AI misconduct.

8 REPRODUCIBILITY STATEMENT

We will release the dataset, source code, and final model weights at a later date to be determined.
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Raw scores 4 buckets 5 buckets 6 buckets

Cosine Distance 0.67 ± 0.06 0.50 ± 0.05 0.52 ± 0.05 0.55 ± 0.05
Soft N-Grams 0.66 ± 0.05 0.48 ± 0.05 0.50 ± 0.05 0.52 ± 0.05

Table 3: Agreement (Krippendorff’s α with bootstrap SE) between human annotators and proposed
intermediate supervision metrics under different bucketing schemes for scores.
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A DIFFERENCES WITH THE HETEROGENEOUS MIXED TEXT DETECTION
TASK

The PALD (Lei et al., 2025) formulation considers a text x segmented as x = x1 · · ·xn, where each
segment xi is assumed to originate from either a human or an LLM, i.e., xi ∼ Phuman or xi ∼ PLLM.
The learning objective is to infer latent per-segment authorship labels a1:n ∈ {human,LLM}n (and
optionally segment boundaries), estimating pθ(a1:n | x) and predicting â1:n = argmax pθ(a1:n |
x). In contrast, our homogeneous mixed text prediction task dispenses with provenance as super-
vision and regresses an authorship-agnostic edit magnitude aligned to a similarity metric. Given
pre/post pairs only to derive targets, inference relies on a single-input predictor f ssi

θ (y) that maps
the edited text y directly to ∆̂(y) ∈ [0, 1], without segment labels, boundary inference, or recon-
struction of the source. This reframing changes (i) the assumptions (binary authorship mixture vs.
latent, entangled edits), (ii) the outputs (label sequence a1:n vs. scalar/regional magnitudes ∆), (iii)
the supervision (segment-level authorship vs. metric-aligned change signals), and (iv) the evalua-
tion (classification metrics such as accuracy/F1 vs. correlation and error against ∆, plus calibration).

B HUMAN AGREEMENT WITH INTERMEDIATE SUPERVISION METRICS

We compute the score for each pair of source and AI-edited texts, then assign each AI-edited text
to one of n buckets according to the bucketing scheme described in Section C. All α values are
reported in Table 3.

C MORE MODELING DETAILS

We use QLoRA to sweep both Llama and Mistral families of backbones between 3B and 24B pa-
rameters. We experiment with both a direct regression head and a N-way classification head with
weighted-average decoding.

Determining thresholds for fully human and fully AI texts Some edits are too small to be
detectable, such as adding a single comma, correcting a typo, etc. We choose a minimum threshold
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of 0.03 for cosine distance threshold and 0.06 for soft n-grams in order to supervise it as AI-edited,
chosen through manual inspection and validation of edits we would consider small enough such that
the authorship is still entirely human.

Additionally, there are cases on the other end of the spectrum where AI was so pervasive in a text that
it essentially rewrote the entire document and it became fully AI-generated. To measure the upper
threshold where we would consider a text fully AI-generated, we analyzed the similarity metrics
between the sources and their corresponding fully AI-generated synthetic mirrors. We selected
thresholds that best separate fully AI-generated synthetic mirrors from the heaviest AI-edited text,
which were 0.15 for cosine distance and 0.72 for soft n-grams.

C.1 REGRESSION FORMULATION

Let s denote the raw similarity score and τlow and τhigh be the low and high thresholds, respectively.
We define the scaled similarity score as:

s̃ =


0.0 if s ≤ τlow

1.0 if s ≥ τhigh
s−τlow

τhigh−τlow
otherwise

(1)

The regression model directly predicts the scaled similarity score ŝ using a mean squared error loss:

LMSE =
1

n

n∑
i=1

(s̃i − ŝi)
2 (2)

where n is the number of training examples.

C.2 CLASSIFICATION FORMULATION

For the classification approach, we discretize the similarity scores into N buckets, where N ∈
{4, 5, 6}. Given minimum and maximum thresholds τmin and τmax, we define the bucket assignment
function:

b(s) = min

(
N − 1,

⌊
s− τmin

τmax − τmin
·N

⌋)
(3)

The midpoint of bucket j is given by:

mj = τmin +
(j + 0.5) · (τmax − τmin)

N
(4)

We train the classification model using cross-entropy loss:

LCE = − 1

n

n∑
i=1

log p(b(si)|xi) (5)

where p(j|xi) is the predicted probability for bucket j given input xi.

During inference, we decode the final similarity score using a weighted average strategy:

ŝ =

N−1∑
j=0

p(j|x) ·mj (6)

where p(j|x) is the predicted probability for bucket j and mj is the corresponding bucket midpoint.
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C.3 ARCHITECTURE AND OPTIMIZATION

We train the model for 1 epoch with AdamW using a batch size of 24 and a constant learning rate
of 3e-5. We initialize the model with pretrained weights from the base model and target all linear
layers: self-attention QKV, output, and all linear layers in the MLP. We use a LayerNorm and single
linear layer as the head for both prompt classification and edit heads and supervise both jointly in
a multi-task learning routine. On 8 A100 GPUs, this takes approximately 8 hours for the largest
model.

D TERNARY CLASSIFIER DECODING

GPTZero reports probabilities of three classes: “human”, “AI”, and “mixed,” so we simply use
argmax decoding to select the highest probability class. DetectAIve reports probabilities of four
classes: “human”, “AI”, “AI Polished”, and “AI humanized”. We attempted to group “AI human-
ized“ predictions with both the “AI” and the “AI Polished” categories for ternary classification, and
found that grouping with ”AI” produced a higher F1 score. Therefore, we group “AI Humanized”
and “AI” into a single category for purposes of comparison.

E TERNARY CLASSIFICATION CONFUSION MATRICES

Analyzing the confusion matrix, we see that EDITLENS exhibits much stronger performance on the
AI-edited text category than the strongest ternary classifier, GPTZero. While both EDITLENS and
GPTZero are nearly perfect at distinguishing fully AI-generated text from fully human-written text,
EDITLENS is the only model able to also consistently detect AI-edited text as a distinct category
from fully human and fully AI.

F CORRELATION BETWEEN EDITLENS PREDICTIONS AND AI POLISH
SIMILARITY METRICS

Model r, semantic sim. ↓ r, Levenshtein ↑ r, Jaccard ↑
FastDetectGPT -0.287 0.331 0.280
Binoculars -0.291 0.326 0.274
Pangram -0.491 0.615 0.556
EDITLENS (Ours) -0.606 0.799 0.781

Table 4: Pearson correlation coefficients by model.
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Figure 7: Data Annotator tasks were set up as above.

G DATA GENERATION MODELS

Checkpoint Name API Provider # Params Open Source

claude-sonnet-4-20250514 Anthropic (2025) Anthropic API ? No
meta-llama/Llama-3.3-70B-Instruct-Turbo Meta (2024c) Together.ai API 70B Yes
gpt-4.1-2025-04-14 OpenAI (2025) OpenAI API ? No
gemini-2.5-flash Google (2025) Gemini API ? No

Table 5: Models used for dataset generation

H EMBEDDING MODELS

Checkpoint Name # Params Dim. Size

Linq-AI-Research/Linq-Embed-Mistral Choi et al. (2024) 7B 4096
sentence-transformers/all-MiniLM-L6-v2 Reimers et al. (2021) 22.7M 384

Table 6: Embedding models used for supervision

I BASE MODELS

Checkpoint Name # Params Open Source

mistralai/Mistral-Nemo-Base-2407 Mistral (2024) 12B Yes
mistralai/Mistral-Small-24B-Base-2501 Mistral (2025) 24B Yes
meta-llama/Llama-3.1-8B Meta (2024a) 8B Yes
meta-llama/Llama-3.2-3B Meta (2024b) 3B Yes

Table 7: Base models used for training
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J MORE RESULTS ON HUMAN-EDITED AI TEXT

We focus on the human-edited AI versions of “Generation” and “OpenQA” categories of BEEMO,
because the other categories, such as “Rewrite” and “Summarize”, are already themselves AI-edited
versions of human text, “Closed QA” the answers are so tightly constrained we would consider the
answers to be human-written, and we would not consider the model outputs fully AI-generated. We
also measure the correlation coefficient between our similarity metrics and the model scores. The
intuition for this is that if the human edit is more invasive, we would expect the similarity metrics
to increase, and the model score to decrease. As expected, we find a moderate negative correlation
between our model’s scores and the similarity, with −0.396 for cosine distance and −0.501 for soft
n-grams.

Here we present the output distribution of EDITLENS for Beemo’s Generation and OpenQA splits,
on the fully AI-generated text (orange) and human-edited version (blue).
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As is shown in the figures, the predicted score distribution moves significantly towards human-
generated following editing, as expected.

K EDITING PROMPTS
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Table 8: Full list of editing prompts by split with category and contributor.

TRAIN

Editing Prompt Contributor

Tone and Style Adjustments
Write this in a way that a business person would get it Human
Edit this to sound more polite Human
Inject more personality and warmth into this text Gemini 2.5 Pro
Adjust the tone to be more persuasive and convincing Gemini 2.5 Pro
Make this sound more professional and authoritative Gemini 2.5 Pro
Rewrite this to be more empathetic and understanding Gemini 2.5 Pro
Make this sound more urgent and compelling Gemini 2.5 Pro
Make this sound more objective and unbiased Gemini 2.5 Pro
Adopt a more academic and scholarly tone Gemini 2.5 Pro
Make this more direct and confrontational Claude Sonnet 4
Make this more memorable and quotable Claude Sonnet 4
Make this sound more diplomatic and tactful Claude Sonnet 4
Make this more emotionally resonant Claude Sonnet 4
Make this more formal Claude Sonnet 4
Simplify for customers with no technical background Claude Sonnet 4
Make this suitable for social media sharing Claude Sonnet 4
Inject enthusiasm and energy into this writing Claude Sonnet 4
Translate this for a teenage audience Claude Sonnet 4
Soften the tone while maintaining the message Claude Sonnet 4
Make this more relatable to the reader’s experience Claude Sonnet 4
Make this more inspiring and motivational Claude Sonnet 4
Add gravitas and weight to this statement Claude Sonnet 4
Adopt a more skeptical and questioning tone Claude Sonnet 4
Make this more casual Claude Sonnet 4
Adjust for a peer-reviewed academic journal Claude Sonnet 4
Convert to a more analytical and logical approach Claude Sonnet 4
Make this appropriate for C-suite executives Claude Sonnet 4
Change this so it fits what a business person would want ChatGPT 4o
Make this sound more sure and strong ChatGPT 4o
Edit this for people who don’t know the topic well ChatGPT 4o
Make this more direct and bold ChatGPT 4o
Make this sound fair and not take sides ChatGPT 4o
Make this sound more serious and important ChatGPT 4o
Make this sound more excited and energetic ChatGPT 4o
Make this easier for someone who doesn’t know that much about it ChatGPT 4o
Make this more accessible to a non-expert reader ChatGPT 4o
Adapt this for readers with no prior background in the topic ChatGPT 4o
Write this like you’re talking to someone ChatGPT 4o
Make this sound more doubtful and questioning ChatGPT 4o
Adjust the voice to sound more academic. ChatGPT 4o
Make this sound more relaxed and friendly ChatGPT 4o
Write this in a way that top company leaders would like ChatGPT 4o
Make this more formal and proper ChatGPT 4o
Make this easier to remember and repeat ChatGPT 4o
Tailor this message to suit a lay audience ChatGPT 4o
Make this sound more exciting and well written ChatGPT 4o
Make this sound more serious and proper ChatGPT 4o
Use a smart and serious tone like in official stuff ChatGPT 4o
Edit this to sound more urgent and important ChatGPT 4o

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Editing Prompt Contributor

Make this more convincing and easier to understand ChatGPT 4o
Change this so it’s easy for a teen to read ChatGPT 4o
Make this more logical and fact-based ChatGPT 4o
Make the consequences feel more important ChatGPT 4o
Make this sound uplifting and encouraging ChatGPT 4o
Rewrite this to align with a formal tone ChatGPT 4o
Make this more convincing and clear ChatGPT 4o
Change this so a 5th grader can understand it ChatGPT 4o
Take out hard words and explain them in a simple way ChatGPT 4o
Fix this to make it more interesting ChatGPT 4o
Change this to make it as strong as possible ChatGPT 4o
Rewrite this to better suit a business audience ChatGPT 4o
Use simpler words so anyone can understand this ChatGPT 4o
Make this sound more like school writing ChatGPT 4o
Make this sound nicer and more fun ChatGPT 4o
Change this to sound more thoughtful ChatGPT 4o
Make this funnier and more lighthearted ChatGPT 4o
Use better words to make this sound smarter ChatGPT 4o
Add some personality to this ChatGPT 4o
Make this sound more like professional writing ChatGPT 4o

Adding Detail
Make this more descriptive Human
Make this more detailed Human
Please add more details to make my argument better Human
Add vivid imagery and sensory details to bring this to life Claude Sonnet 4
Add backstory or context to enrich understanding Claude Sonnet 4
Add depth and context to make this more comprehensive Claude Sonnet 4
Include specific measurements, colors, and physical characteristics Claude Sonnet 4
Flesh out these ideas with supporting information Claude Sonnet 4
Provide concrete examples to illustrate these points Claude Sonnet 4
Add sensory details to make this more vivid Claude Sonnet 4
Use more precise and colorful adjectives Claude Sonnet 4
Add dialogue and quoted speech to make scenes more vivid Claude Sonnet 4
Elaborate on the key points with concrete details Claude Sonnet 4
Add storytelling elements to increase engagement Claude Sonnet 4
Add descriptive metaphors and similes to enhance understanding Claude Sonnet 4
Expand with real-world applications Claude Sonnet 4
Use more evocative and powerful verbs Claude Sonnet 4
Include expert opinions or research findings Claude Sonnet 4
Incorporate specific brand names, locations, and proper nouns Claude Sonnet 4
Paint a clearer picture with specific visual descriptions Claude Sonnet 4
Use figurative language to make concepts more tangible Claude Sonnet 4
Include personal anecdotes or case studies Claude Sonnet 4
Give examples to help make this clearer ChatGPT 4o
Edit this with clear examples to help explain this better ChatGPT 4o
Add details that create a mood or feeling ChatGPT 4o
Tell some of the story behind this to help understand it ChatGPT 4o
Explain more about what this means and why it matters ChatGPT 4o
Explain the main points using real examples ChatGPT 4o
Add descriptions of sounds, smells, textures, and how things feel ChatGPT 4o
Include exact sizes, colors, and what things look like ChatGPT 4o
Add details about the setting and background ChatGPT 4o
Add details that help readers see, hear, and feel what’s happening ChatGPT 4o
Add conversations and quotes to make scenes more real ChatGPT 4o
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Editing Prompt Contributor

Develop this text further by explaining the implications ChatGPT 4o
Help readers picture this more clearly with specific details ChatGPT 4o
Describe how things look, sound, or feel more ChatGPT 4o
Use more interesting and specific describing words ChatGPT 4o
Add comparisons to help explain things better ChatGPT 4o
Use real-life examples to show what you mean ChatGPT 4o
Add background facts to back up these points ChatGPT 4o
Add true stories or examples from real life ChatGPT 4o
Use specific names of places, brands, and things ChatGPT 4o
Add more ideas or facts that support what you’re saying ChatGPT 4o
Add details about the place and situation ChatGPT 4o
Share what experts think or what research shows ChatGPT 4o
Use real examples to explain this better ChatGPT 4o
Use stronger, more exciting action words ChatGPT 4o
Add illustrative examples to clarify these points ChatGPT 4o

Fluency and Flow
Rearrange this Human
Can you make this sound fluent? Human
Improve the transitions between the paragraphs Gemini 2.5 Pro
Create a more effective and engaging opening Gemini 2.5 Pro
Make this read like it was written by a native speaker Claude Sonnet 4
Make this sound more conversational and engaging Claude Sonnet 4
Improve the rhythm and readability of this writing Claude Sonnet 4
Make the progression of ideas feel effortless Claude Sonnet 4
Create smoother connections between these ideas Claude Sonnet 4
Improve the natural rhythm of this text Claude Sonnet 4
Smooth out the awkward phrasing in this passage Claude Sonnet 4
Eliminate any choppy or awkward sentences Claude Sonnet 4
Ensure the sentences transition smoothly from one idea to the next ChatGPT 4o
Help the ideas move from one to the next easily ChatGPT 4o
Make the ideas connect better ChatGPT 4o
Make the language flow more fluidly without sounding forced ChatGPT 4o
Can you fix parts that sound choppy or off? ChatGPT 4o
Make this writing smoother and better ChatGPT 4o
Make the words fit together better ChatGPT 4o
Make this easier and smoother to read ChatGPT 4o
Help the ideas connect more smoothly ChatGPT 4o
Make this sound like someone who speaks English well wrote it ChatGPT 4o
Make the sentences flow better ChatGPT 4o
Make the rhythm of the sentences better ChatGPT 4o

Concision
Rewrite to be more concise and powerful Human
Clarify the main idea Gemini 2.5 Pro
Remove any filler words Gemini 2.5 Pro
Remove any jargon or technical terms and explain them in plain language Gemini 2.5 Pro
Replace complex words with simpler alternatives Gemini 2.5 Pro
Identify and eliminate any redundant phrases or words Gemini 2.5 Pro
Make this more concrete and less abstract Gemini 2.5 Pro
Simplify this text for a 5th-grade reading level Gemini 2.5 Pro
Remove every unnecessary word and phrase Claude Sonnet 4
Trim the fat without losing the muscle Claude Sonnet 4
Make this more concise without losing important information Claude Sonnet 4
Eliminate wordy expressions and redundancies Claude Sonnet 4
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Editing Prompt Contributor

Tighten this writing by removing unnecessary words Claude Sonnet 4
Remove all extra words and phrases ChatGPT 4o
Trim this down while keeping the tone and meaning intact ChatGPT 4o
Remove extra or repeated words ChatGPT 4o
Use clearer words but keep the meaning ChatGPT 4o
Get rid of long or confusing parts ChatGPT 4o
Make this shorter and more direct ChatGPT 4o
Take out anything extra but keep the good parts ChatGPT 4o
Say this in fewer words but still make it strong ChatGPT 4o
Take out words that aren’t needed to make this better ChatGPT 4o
Take out words that don’t add anything ChatGPT 4o
Cut this down but keep the same meaning and style ChatGPT 4o

Structure and Organization
Group related ideas together more effectively Gemini 2.5 Pro
Ensure a clear introduction, body, and conclusion Gemini 2.5 Pro
Arrange these points in order of importance Claude Sonnet 4
Create better section breaks and headers Claude Sonnet 4
Create a more compelling narrative arc Claude Sonnet 4
Build toward a stronger climax or conclusion Claude Sonnet 4
Reorganize this for better logical flow Claude Sonnet 4
Use parallel structure to enhance readability Claude Sonnet 4
Break this into clearer paragraphs with smooth transitions Claude Sonnet 4
Rearrange this content for a clearer argument progression ChatGPT 4o
Put this in a better order ChatGPT 4o
Put similar ideas together more clearly ChatGPT 4o
Build up to a strong ending ChatGPT 4o
Put this in an order that makes more sense ChatGPT 4o
Set this up in a way that’s easier to read ChatGPT 4o
Group ideas that go together and add connections ChatGPT 4o
Move things around to make the main points stand out ChatGPT 4o
Split this into paragraphs that connect better ChatGPT 4o
Make sentences match and sound good together ChatGPT 4o
Put the most important stuff first ChatGPT 4o
Organize this information in a more reader-friendly format ChatGPT 4o
Tell the story in a more interesting way ChatGPT 4o

General Improvement
Can you help my essay get a better grade? Human
Rewrite this so it sounds good Human
Make my essay better Human
Make this essay look better Human
Can you improve this? Human
Make this an A paper Human
Revise this to make it more engaging Claude Sonnet 4
Enhance the overall effectiveness of this passage Claude Sonnet 4
Refine this writing to make it more professional Claude Sonnet 4
Enhance this text while maintaining the original meaning Claude Sonnet 4
Optimize this text for maximum impact Claude Sonnet 4
Strengthen this writing by improving word choice and structure Claude Sonnet 4
Transform this into more compelling prose Claude Sonnet 4
Polish this text for clarity and readability Claude Sonnet 4
Upgrade the sophistication of this writing Claude Sonnet 4
Make this work better overall ChatGPT 4o
Make this writing more polished and effective ChatGPT 4o
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Editing Prompt Contributor

Refine this text to improve its overall impact ChatGPT 4o
Fix this but keep the same meaning ChatGPT 4o
Fix this but keep the main point the same ChatGPT 4o
Improve this passage while preserving its original intent ChatGPT 4o

Paraphrasing
Remake all of this in a different way Human
Rewrite all of this in different words Human
Recast these ideas in a different style Claude Sonnet 4
Rephrase this text to avoid repetition Claude Sonnet 4
Express these ideas using alternative phrasing Claude Sonnet 4
Say the same thing but in a fresh way Claude Sonnet 4
Present the same information from a fresh angle Claude Sonnet 4
Reframe this argument using different terminology Claude Sonnet 4
Restate this using different vocabulary and sentence structure ChatGPT 4o
Use easier words that mean the same thing ChatGPT 4o
Share this idea from a new point of view ChatGPT 4o
Say this in a new way ChatGPT 4o
Use different words to say the same thing ChatGPT 4o
Say this using different words and sentence types ChatGPT 4o
Say this using different words and ideas ChatGPT 4o
Say this in a new and interesting way ChatGPT 4o
Paraphrase this to make it simpler and easier to understand ChatGPT 4o

Clarity and Precision
Can you fix the problems with my argument? Human
Emphasize the key points Human
Add precise measurements and timeframes Claude Sonnet 4
Define any terms that might be unclear Claude Sonnet 4
Eliminate any ambiguous or vague language Claude Sonnet 4
Make the cause-and-effect relationships clearer Claude Sonnet 4
Explain any hard words so people know what they mean ChatGPT 4o
Fix parts that sound weird or hard to read ChatGPT 4o
Say clearly who or what each word is talking about ChatGPT 4o
Make this clear and easy to read ChatGPT 4o
Make sure one idea leads to the next clearly ChatGPT 4o
Make it obvious what causes what ChatGPT 4o
Say this in a clear and simple way ChatGPT 4o

Grammar and Mechanics
Make my grammar sound better Human
Fix any grammatical mistakes in this text Gemini 2.5 Pro
Correct any grammar, punctuation, or spelling errors in this text ChatGPT 4o
Use better words and fix how the sentences are written ChatGPT 4o

VAL

Tone and Style Adjustments
Edit this into a blog post I can share online Human
Rewrite this in a more conversational and approachable style Gemini 2.5 Pro
Make this sound more confident and authoritative Claude Sonnet 4
Adapt this for international readers Claude Sonnet 4
Make this connect better with people’s feelings ChatGPT 4o
Make this sound more like a friendly conversation ChatGPT 4o
Make this easier for readers to relate to ChatGPT 4o
Make this easier for someone new to the topic to get ChatGPT 4o
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Editing Prompt Contributor

Make this sound more businesslike and serious ChatGPT 4o

Paraphrasing
Rewrite all of this Human
Translate this into more accessible language Claude Sonnet 4
Find alternative ways to express these concepts Claude Sonnet 4
Rework this using varied sentence structures Claude Sonnet 4
Change how the sentences are written ChatGPT 4o
Say this in another way ChatGPT 4o

Adding Detail
Add atmospheric details to create mood and setting Claude Sonnet 4
Add environmental and contextual descriptions Claude Sonnet 4
Include contextual information to support these claims ChatGPT 4o
Give more background so it’s easier to understand ChatGPT 4o
Use creative comparisons to make ideas clearer ChatGPT 4o

Concision
Rewrite this to be more direct and to the point Gemini 2.5 Pro
Make this easier to understand ChatGPT 4o
Use simpler language anyone can get ChatGPT 4o

Structure and Organization
Restructure this to emphasize the main points Claude Sonnet 4
Add better breaks and section titles ChatGPT 4o

Fluency and Flow
Connect these thoughts more seamlessly Claude Sonnet 4
Help the paragraphs connect better ChatGPT 4o

Grammar and Mechanics
Proofread this for spelling and grammar errors Human

General Improvement
Elevate the quality of this writing Claude Sonnet 4

Clarity and Precision
Remove anything confusing or unclear ChatGPT 4o

TEST

Tone and Style Adjustments
Lighten the tone and add a touch of humor Gemini 2.5 Pro
Adjust the tone to be more friendly Claude Sonnet 4
Increase the emotional stakes Claude Sonnet 4
Make this sound more formal and school-like ChatGPT 4o
Make this nicer but keep the main point ChatGPT 4o
Change this so people from other countries can get it too ChatGPT 4o

Adding Detail
Make this longer with more evidence Human
Expand this text with more specific examples and details Claude Sonnet 4
Show rather than tell by adding scene-setting details Claude Sonnet 4
Include sounds, smells, textures, and other sensory elements Claude Sonnet 4
Add a short story to make this more interesting ChatGPT 4o
Show how this works in real life ChatGPT 4o

Concision
Simplify this text Human
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Editing Prompt Contributor

Make this more specific Human
Reduce wordiness while amplifying impact Claude Sonnet 4
Say this in fewer words without losing meaning ChatGPT 4o
Edit this to be punchier and more direct ChatGPT 4o

Fluency and Flow
Make this text flow more naturally Claude Sonnet 4
Improve how the sentences sound together ChatGPT 4o
Refine the pacing and cadence of this paragraph ChatGPT 4o
Write a better and more interesting beginning ChatGPT 4o

Clarity and Precision
Write this in a way that my teacher would get it Human
Can you make my paper more persuasive? Human
Make the main idea clearer ChatGPT 4o
Improve this to make it stronger and clearer ChatGPT 4o

Paraphrasing
Paraphrase this Human
Rewrite this in different words while keeping the same meaning Claude Sonnet 4
Reword this to improve clarity while keeping the meaning ChatGPT 4o

Structure and Organization
Make sure there’s a beginning, middle, and end ChatGPT 4o
Group related ideas and use transitions to improve structure ChatGPT 4o

Grammar and Mechanics
Can you fix any spelling, grammar, or punctuation issues? Human

Train Val Test All

Categories
Tone and Style Adjustments 28.5% (69) 30.0% (9) 19.4% (6) 27.7% (84)
Adding Detail 19.8% (48) 16.7% (5) 19.4% (6) 19.5% (59)
Concision 9.9% (24) 10.0% (3) 16.1% (5) 10.6% (32)
Fluency and Flow 9.9% (24) 6.7% (2) 12.9% (4) 9.9% (30)
Paraphrasing 7.0% (17) 20.0% (6) 9.7% (3) 8.6% (26)
Structure and Organization 9.1% (22) 6.7% (2) 6.5% (2) 8.6% (26)
General Improvement 8.7% (21) 3.3% (1) 0.0% (0) 7.3% (22)
Clarity and Precision 5.4% (13) 3.3% (1) 12.9% (4) 5.9% (18)
Grammar and Mechanics 1.7% (4) 3.3% (1) 3.2% (1) 2.0% (6)

Contributors
ChatGPT 4o 52.9% (128) 50.0% (15) 48.4% (15) 52.1% (158)
Claude Sonnet 4 31.4% (76) 33.3% (10) 25.8% (8) 31.0% (94)
Human 7.9% (19) 10.0% (3) 22.6% (7) 9.6% (29)
Gemini 2.5 Pro 7.9% (19) 6.7% (2) 3.2% (1) 7.3% (22)

TOTAL COUNTS 242 30 31 303

Table 9: Distribution of prompt categories and contributors across Train, Val, and Test splits shown
as percentages with raw counts in parentheses.
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Unique source texts

Train 22690
Validation 1391
Test 3809

Table 10: Count of unique source texts across Train, Val, and Test datasets.

Human AI-edited AI-generated Total
Train 18810 22381 18809 60000
Validation 753 894 753 2400
Test 1881 2238 1881 6000

Table 11: Distribution of examples by label across Train, Val, and Test datasets.

Claude Sonnet 4 GPT-4.1 Gemini 2.5 Flash

Train AI-edited 7528 7521 7332
Train AI-generated 6205 6243 6361
Validation AI-edited 298 298 298
Validation AI-generated 256 235 262
Test AI-edited 739 795 704
Test AI-generated 627 627 627

Table 12: Distribution of source LLM for AI-edited and AI-generated examples, across Train, Val,
and Test datasets.

Train Validation Test

Tone and Style Adjustments 6477 301 459
Adding Detail 4142 116 426
Fluency and Flow 2302 57 301
Structure and Organization 2110 71 176
Concision 2037 76 301
Paraphrasing 1679 176 229
Clarity and Precision 1229 33 290
Grammar and Mechanics 400 27 70
General Improvement 2005 37 0

Table 13: Composition of the AI-edited dataset, by split

Mean Word Count Min Word Count Max Word Count

Train Human 330.45 75 799
Train AI-edited 328.11 75 799
Train AI-generated 302.88 76 799
Validation Human 331.02 75 798
Validation AI-edited 324.29 75 799
Validation AI-generated 299.81 79 797
Test Human 241.47 75 799
Test AI-edited 258.37 76 798
Test AI-generated 218.05 76 792

Table 14: Word count statistics across splits for Human, AI-edited, and AI-generated texts in the
dataset.
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Table 15: Ternary Classification (Soft N-Grams)

Model # buckets # params Acc. Macro F1 Human F1 AI F1 AI-edited F1

Mistral-Small-24B-Base-2501 4 24B 0.897 0.899 0.896 0.941 0.861
Mistral-Small-24B-Base-2501 5 24B 0.873 0.876 0.913 0.875 0.840
Mistral-Small-24B-Base-2501 6 24B 0.882 0.886 0.886 0.918 0.853
Mistral-Small-24B-Base-2501 Regression 24B 0.861 0.865 0.880 0.887 0.828
Mistral-Nemo-Base-2407 4 12B 0.896 0.899 0.895 0.941 0.860
Llama-3.1-8B 4 8B 0.895 0.898 0.895 0.942 0.856
Llama-3.2-3B 4 3B 0.858 0.861 0.888 0.876 0.820

L LLM USAGE STATEMENT

Large Language Models (LLMs) were used in the experiments for the paper as described, to assist in
writing the code to run the experiments, brainstorm the formalization of the task, assist in generating
the figures for the paper, assist with LaTeX formatting, and review the paper to help the authors
with constructive feedback. The authors did not use LLMs directly in the original writing of the
manuscript, but did use LLMs to help with wording and phrasing in some sections. The authors take
full responsibility for the factuality and originality of the content in this manuscript.
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Figure 8: Soft N-Grams Score vs. Grammarly Prompt
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Figure 9: Cosine Similarity vs. Grammarly Prompt
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Table 16: Ternary Classification (Cosine Similarity)

Model # buckets # params Acc. Macro F1 Human F1 AI F1 AI-edited F1

Mistral-Small-24B-Base-2501 (selected) 4 24B 0.902 0.904 0.904 0.941 0.868
Mistral-Small-24B-Base-2501 5 24B 0.874 0.878 0.880 0.912 0.841
Mistral-Small-24B-Base-2501 6 24B 0.855 0.859 0.872 0.882 0.822
Mistral-Small-24B-Base-2501 Regression 24B 0.857 0.861 0.883 0.879 0.820
Mistral-Nemo-Base-2407 4 12B 0.889 0.896 0.900 0.939 0.845
Llama-3.1-8B 4 8B 0.861 0.865 0.877 0.899 0.819
Llama-3.2-3B 4 3B 0.852 0.855 0.883 0.878 0.804

Table 17: Binary Classification (Soft N-Grams)

Model # buckets # params Human vs Rest Acc. Human vs Rest F1 AI vs Rest Acc. AI vs Rest F1

Mistral-Small-24B-Base-2501 4 24B 93.967 95.542 94.333 90.151
Mistral-Small-24B-Base-2501 5 24B 94.400 95.857 92.983 87.533
Mistral-Small-24B-Base-2501 6 24B 93.033 94.969 95.233 91.833
Mistral-Small-24B-Base-2501 Regression 24B 92.683 94.664 93.433 88.419
Mistral-Nemo-Base-2407 4 12B 93.267 94.993 96.467 94.147
Llama-3.1-8B 4 8B 93.033 94.780 96.483 94.157
Llama-3.2-3B 4 3B 92.783 94.664 93.367 88.322

N PROMPT CLASSIFICATION RESULTS

We train EDITLENS with an additional classification head for the task of edit prompt classification,
where the model is asked to predict the type of editing prompt that was used to generate the input
text. On our test set, EDITLENS achieves an accuracy of 41.2% and a weighted F1 score of 41.9%
on the 9-way edit prompt classification task. From the confusion matrix shown in Figure ??, we
see that certain types of prompts are easier to detect than others–for instance, the model frequently
classifies “Adding detail” prompts correctly, but struggles to classify “Grammar and mechanics”
prompts, often classifying them as “Concision” prompts instead. We surmise that overlap between
editing prompt categories (for example, the “Create a more compelling narrative arc” is labeled as
“Structure and Organization” but could just as well be considered a “Fluency and Flow” prompt),
the varying “General Improvement” prompts, and the small size of some editing prompt categories
in the test set are hindering model training. We look to improve on the prompt classification task, in
terms of formulation, data, and model performance in future work.
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Table 18: Binary Classification (Cosine Similarity)

Model # buckets # params Human vs Rest Acc. Human vs Rest F1 AI vs Rest Acc. AI vs Rest F1

Mistral-Small-24B-Base-2501 (selected) 4 24B 93.783 95.377 96.433 94.062
Mistral-Small-24B-Base-2501 5 24B 92.583 94.608 94.867 91.170
Mistral-Small-24B-Base-2501 6 24B 92.167 94.332 93.317 88.202
Mistral-Small-24B-Base-2501 Regression 24B 92.583 94.534 93.183 87.867
Mistral-Nemo-Base-2407 4 12B 93.475 94.568 96.448 93.847
Llama-3.1-8B 4 8B 92.017 94.055 94.183 89.869
Llama-3.2-3B 4 3B 92.133 94.046 93.083 87.776
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