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ABSTRACT

As the deployment of automated face recognition (FR) systems proliferates, bias
in these systems is not just an academic question, but a matter of public concern.
Media portrayals often center imbalance as the main source of bias, i.e., that
FR models perform worse on images of non-white people or women because
these demographic groups are underrepresented in training data. Recent academic
research paints a more nuanced picture of this relationship. However, previous
studies of data imbalance in FR have focused exclusively on the face verification
setting, while the face identification setting has been largely ignored, despite being
deployed in sensitive applications such as law enforcement. This is an unfortunate
omission, as ‘imbalance’ is a more complex matter in identification; imbalance
may arise in not only the training data, but also the testing data, and furthermore
may affect the proportion of identities belonging to each demographic group or
the number of images belonging to each identity. In this work, we address this
gap in the research by thoroughly exploring the effects of each kind of imbalance
possible in face identification, and discuss other factors which may impact bias in
this setting.

1 INTRODUCTION

Automated face recognition is becoming increasingly prevalent in modern life, with applications
ranging from improving user experience (such as automatic face-tagging of photos) to security (e.g.,
phone unlocking or crime suspect identification). While these advances are impressive achievements,
decades of research have demonstrated disparate performance in FR systems depending on a subject’s
race (Phillips et al., 2011; Cavazos et al., 2020), gender presentation (Alvi et al., 2018; Albiero et al.,
2020), age (Klare et al., 2012), and other factors. This is especially concerning for FR systems
deployed in sensitive applications like law enforcement; incorrectly tagging a personal photo may
be a mild inconvenience, but incorrectly identifying the subject of a surveillance image could have
life-changing consequences. Accordingly, media and public scrutiny of bias in these systems has
increased, in some cases resulting in policy changes.

One major source of model bias is dataset imbalance; disparities in rates of representation of different
groups in the dataset. Modern FR systems employ neural networks trained on large datasets, so
naturally much contemporary work focuses on what aspects of the training data may contribute to
unequal performance across demographic groups. Some potential sources that have been studied
include imbalance of the proportion of data belonging to each group (Wang & Deng, 2020; Gwilliam
et al., 2021), low-quality or poorly annotated images (Dooley et al., 2021), and confounding variables
entangled with group membership (Klare et al., 2012; Kortylewski et al., 2018; Albiero et al., 2020).

Dataset imbalance is a much more complex and nuanced issue than it may seem at first blush. While
a naive conception of ‘dataset imbalance’ is simply as a disparity in the number of images per group,
this disparity can manifest itself as either a gap in the number of identities per group, or in the number
of images per identity. Furthermore, dataset imbalance can be present in different ways in both the
training and testing data, and these two source of imbalance can have radically different (and often
opposite) effects on downstream model bias.

Past work has only considered the verification setting of FR, where testing consists of determining
whether a pair of images belongs to the same identity. As such, ‘imbalance’ between demographic
groups is not a meaningful concept in the test data. Furthermore, the distinction between imbalance
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Figure 1: Examples of imbalance in face identification. Top left: data containing more female
identities than male identities. Top right: data containing the same number of male and female
identities, but more images per male identity. Bottom: two possible test (gallery) sets showing how
the effects of different kinds of imbalance may interact.

of identities belonging to a certain demographic group versus that of images per identity in each
demographic group has not been carefully studied in either the testing or the training data. All of these
facets of imbalance are present in the face identification setting, where testing involves matching a
probe image to a gallery of many identities, each of which contains multiple images. We illustrate
this in Figure 1.

In this work, we unravel the complex effects that dataset imbalance can have on model bias for face
identification systems. We separately consider imbalance (both in terms of identities or images per
identity) in the train set and in the test set. We also consider the realistic social use case in which a
large dataset is collected from an imbalanced population and then split at random, resulting in similar
dataset imbalance in both the train and test set. We specifically focus on imbalance with respect to
gender presentation, as (when restricting to only male- and female-identified individuals) this allows
the proportion of data in each group to be tuned as a single parameter, as well as the availability of an
ethically obtained identification dataset with gender presentation metadata of sufficient size to allow
for subsampling without significantly degrading overall performance.

Our findings show that each type of imbalance has a distinct effect on a model’s performance on each
gender presentation. Furthermore, in the realistic scenario where the train and test set are similarly
imbalanced, the train and test imbalance have the potential to interact in a way that leads to systematic
underestimation of the true bias of a model during an audit. Thus any audit of model bias in face
identification must carefully control for these effects.

The remainder of this paper is structured as follows: Section 2 discusses related work, and Section 3
introduces the problem and experimental setup. Sections 4 and 5 give experimental results related to
imbalance in the training set and test set, respectively, and Section 6 gives results for experiments
where the imbalance in the training set and test set are identical. In Section 7.1, we evaluate randomly
initialized feature extractors on test sets with various levels of imbalance to further isolate the effects
of this imbalance from the effects of training. In Section 7.2, we investigate the correlation between
the performance of models trained with various levels of imbalance and human performance.

2 RELATED WORK

2.1 IMBALANCE IN VERIFICATION

Even before the advent of neural network-based face recognition systems, researchers have studied
how the composition of training data affects verification performance. Phillips et al. (2011) compared
algorithms from the Face Recognition Vendor Test (Phillips et al., 2009) and found that those
developed in East Asia performed better on East Asian Faces, and those developed in Western
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countries performed better on Caucasian faces. Klare et al. (2012) expanded on these results by
comparing performance across race, gender presentation, and age cohorts, observing that training
exclusively on images of one demographic group improved performance on that group and decreased
performance on the others. They further conclude that training on data that is “well distributed across
all demographics" helps prevent extreme bias.

Multiple verification datasets have been proposed in the interest of eliminating imbalance as a source
of bias in face verification. The BUPT-BalancedFace dataset (Wang & Deng, 2020) contains an
approximately equal number of identities and images of four racial groups1. Balanced Faces in
the Wild (Robinson et al., 2020) goes a step further, balancing identities and images across eight
categories of race-gender presentation combinations. Also of note is the BUPT-CBFace dataset
(Zhang & Deng, 2020), which is class-balanced (each identity possesses the same number of images),
rather than demographically balanced.

Some recent work in verification has questioned whether perfectly balanced training data is in fact
an optimal setting for reducing bias. Albiero et al. (2020) studied sources of bias along gender
presentation; among their findings, they observe that balancing the amount of male and female
training images and identities in the training data reduces, but does not eliminate, the performance
gap between gender presentations. Similarly, Gwilliam et al. (2021) trained models on data with
different racial makeups, finding that models which were trained with more images of African subjects
had lower variance in performance on each race than those which were trained on balanced data.

2.2 BIAS IN IDENTIFICATION

Although the effect of imbalance on bias has only been explicitly studied in face verification, there is
some research on identification which is relevant. The National Institutes of Standards and Technology
performed large-scale testing of commercial identification algorithms, finding that many (though not
all) exhibit gender presentation or racial bias (Grother et al., 2019). The evaluators speculate that
the training data or procedures contribute to this bias, but could not study this hypothesis due to the
proprietary nature of the models. Dooley et al. (2021) evaluated commercial and academic models
on a variant of identification in which each probe image is compared to 9 gallery images of distinct
identities, but belonging to the same skin type and gender presentation. They find that academic
models (and some, but not all, commercial models) exhibit skin type and gender presentation bias
despite a testing regime which makes imbalance effectively irrelevant.

2.3 IMBALANCE IN DEEP LEARNING

Outside the realm of facial recognition, there is much study about the impacts of class imbalance in
deep learning. In standard machine learning techniques, i.e., non-deep learning, there are many well-
studied and proven techniques for handling class imbalances like data-level techniques (Van Hulse
et al., 2007; Chawla et al., 2002; 2004), algorithm-level methods (Elkan, 2001; Ling & Sheng, 2008;
Krawczyk, 2016), and hybrid approaches (Chawla et al., 2003; Sun et al., 2007; Liu et al., 2008). In
deep learning, some take the approach of random over or under sampling (Hensman & Masko, 2015;
Lee et al., 2016; Pouyanfar et al., 2018). Other methods adjust the learning procedure by changing the
loss function (Wang et al., 2016) or learning cost-sensitive functions for imbalanced data (Khan et al.,
2017). We refer the reader to Buda et al. (2018); Johnson & Khoshgoftaar (2019), for a thorough
review of deep learning-based imbalance literature. Much of the class-imbalance work has been on
computer vision tasks, though generally has not examined specific analyses like we present in this
work like network initialization, face identification, or intersectional demographic imbalances.

2.4 OTHER SOURCES OF BIAS IN FACIAL RECOGNITION

Face recognition is a complex, sociotechnical system where biases can originate from the algo-
rithms (Danks & London, 2017), preprocessing steps (Dooley et al., 2020), and human interpreta-
tions (Chouldechova & Roth, 2020). While we do not explicitly examine these sources, we refer the
reader to Mehrabi et al. (2021); Suresh & Guttag (2019) for a broader overview of sources of bias in
machine learning.

1This work also introduces BUPT-GlobalFace, which instead approximately matches the distribution across
races to that of the world population.
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3 FACE IDENTIFICATION SETUP

Face recognition has two tasks: face verification and face identification. The first refers to verifying
whether a person of interest (called the probe image) and a person in a reference photo are the same.
This is the setting that might be applied, e.g., to phone unlocking or other identity confirmation.
In contrast, face identification involves matching a probe image against a set of images (called the
gallery) with known identities. This application is relevant to search tasks, such as identifying the
subject of a photo from a database of driver’s license or mugshot photos.

In a standard face recognition pipeline, an image is generally first pre-processed by a face detection
system which may serve to locate and align target faces to provide more standardized images to
the recognition model. State-of-the-art face recognition models exploit deep neural networks which
are trained on large-scale face datasets for a classification task. At test time, the models work as
feature extractors, so that the similarity between a probe image and reference photo (in verification)
or gallery photos (in identification) is computed in the feature space. In verification, the similarity
score is then compared with a predefined threshold, while in identification a k-nearest neighbors
search is performed using the similarity scores with the gallery images.

We focus on the face identification task in our experiments and explore how different kinds of data
balance affect the models performance across demographic groups (specifically, the disparity in
performance on male and female targets). We also analyze how algorithmic bias correlates with
human bias on InterRace, a manually curated dataset specifically designed for bias auditing, with
challenging face recognition questions and provided annotations for gender presentation and skin
color Dooley et al. (2021).

Our experiments use state-of-the-art face recognition models. We train MobileFaceNet (Chen et al.,
2018), ResNet-50, and ResNet-152 (He et al., 2016) feature extractors each with a CosFace and
ArcFace head which improve the class separability of the features by adding angular margin during
training (Deng et al., 2019; Wang et al., 2018). For training and evaluation we use the CelebA
dataset (Liu et al., 2015), which provides annotations for gender presentation. As our main research
questions focus on the impact of class imbalance, we pay special attention to the balance of the
gender presentation attribute in our training. The original dataset contains more female identities. As
such, we create a balanced training set containing 140,000 images from 7,934 identities with equal
number of identities and total number of images from each gender presentation. We also create a
perfectly balanced test set containing 14,000 images from 812 identities. The identities in the train
and test sets are disjoint. We call these the default train and default test sets. All models are trained
with class-balanced sampling to ensure equal contribution of identities to the loss. We additionally
include results for models trained without over-sampling in Appendix A.5.

Recall that our research question is to investigate how class imbalances affect face identification. In
order to answer this question, we train models on a range of deliberately imbalanced subsamples of the
default training set, and test models on a range of deliberately imbalanced subsamples of the default
test set, in order to explore the impact on the model’s performance for each gender presentation.

To evaluate the models, we compute rank-1 accuracy over the test set. Specifically, for each test
image we treat the rest of the test set as gallery images and find if the closest gallery image in the
feature space (as defined by cosine similarity) of a model is an image of the same person.

When we make comparisons with human performance (Section 7.2), we use the InterRace dataset
Dooley et al. (2021). Since the InterRace dataset is derived from both the CelebA and LFW (Huang
et al., 2007) datasets, we additionally train models on the InterRace-train split of CelebA, containing
images of identities not included in the InterRace dataset. Similar to other experiments, we train
models with varying levels of either identity and image imbalance.

4 BALANCE IN THE TRAIN SET

4.1 BALANCING THE NUMBER OF IDENTITIES

Experiment Description. To explore the effect of train set balance in the number of identities
on gender presentation bias, we construct train data splits with different ratios of female and male
identities, while ensuring that the average number of images per identity is the same across gender
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Figure 2: Train Set Imbalance. Results of experiments that change the train set gender presentation
balance. Top row: male and female accuracy are plotted against the proportion of male data in the
train set. Bottom row: for an alternate view, female accuracy is flipped horizontally, so that it is
plotted against the proportion of female data in the train set. All models are tested on the default
balanced test set.

presentations. Therefore, in all splits we have the same total number of images and total number of
identities, but the proportion of female and male identities varies. We consider splits with 0 : 10,
1 : 9, 2 : 8, ..., 10 : 0 ratios, each having 70,000 total images from 3967 identities. We evaluate the
models on the (perfectly balanced) default test set and report rank-1 face identification accuracy as
described in Section 3. More details of train set splits can be found in Table 1.

Results. We compute accuracy scores separately for male and female test images for models trained
on each of the train splits and depict them in Figure 2 with solid lines. From the first row plots,
we observe that a higher proportion of male identities in the train set leads to an increase in male
accuracy and decrease in female accuracy, with the most significant drops occurring near the extreme
10 : 0 imbalance. This indicates that it is very important to have at least a few identities from the
target demographic group in the train set; once the representation of the minority group reaches 10%,
the marginal gain of additional identities becomes less. We also observe that for most models, the
female accuracy drops slightly when the proportion of female identities exceeds 80% of the training
data, which does not happen to the male group. Consult Table 2 for the numerical results.

Regarding the model architectures, MobileFaceNet models trained with both CosFace and ArcFace
heads outperform ResNet models on both female and male images and have smaller absolute accuracy
gap. However, the error ratio is similar across the models, see Table 2. Finally, the accuracy gap is
closed for all models when the train set consists of about 10% male and 90% female identities.

In addition, in the second row of Figure 2 we compare how similar these trends are for females and
males by plotting female accuracy against the proportion of female identities in the train set. One can
see that for MobileFaceNet models the accuracy on male and female images increases similarly when
increasing the proportion of “target" identities up to 80%. However, for ResNet models adding more
female identities in the train set results in smaller gains compared to the effect of adding more male
identities on male accuracy.

4.2 BALANCING THE NUMBER OF IMAGES PER IDENTITY

In the previous subsection, we fixed the average number of images per identity in each gender
presentation and adjusted the number of identities. We now will do the reverse: fix the number of
identities and vary the images per identity.

5



Under review as a conference paper at ICLR 2023

0.00 0.25 0.50 0.75 1.00

0.8

0.9

1.0

Ac
cu

ra
cy

MobileFaceNet CosFace

Male

Female

0.00 0.25 0.50 0.75 1.00

ResNet-152 CosFace

0.00 0.25 0.50 0.75 1.00

MobileFaceNet ArcFace

0.00 0.25 0.50 0.75 1.00

ResNet-152 ArcFace

0.00 0.25 0.50 0.75 1.00

0.8

0.9

1.0

Ac
cu

ra
cy

Male

Female

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

X-axis: proportion of male identities (solid) or images (dashed) in the test set (for both blue and orange)

X-axis: proportion of male (blue) or female (red) identities (solid) or images (dashed) in the test set

Figure 3: Test Set Imbalance. Results of experiments that change the test set gender presentation
balance. Top row: male and female accuracy are plotted against the proportion of male data in the
test set. Bottom row: for an alternate view, female accuracy is flipped horizontally, so that it is plotted
against the proportion of female data in the test set. All models are trained on the default balanced
train set. For each experiment, the test set was split with 5 random seeds, and the results are averaged
across seeds.

Experiment Description. We change the average number of images per male and female identity,
but fix the number of identities of each gender presentation. We consider ratios 2 : 8, ..., 8 : 2, each
having 70, 000 images from 7, 934 identities. We do not consider more extreme ratios, which would
result in identities with fewer than 3 images.

Results. The dashed lines in Figure 2 illustrate the accuracy of the models trained on described data
splits. From the first row plots we see that, similar to the previous experiment, increasing the number
of male images in the train set leads to increased accuracy on male and decreased accuracy on female
images. Interestingly, we observe a decrease in performance for both demographic groups when the
images of that group constitute more than 60% of train data; this is most easily visible in the second
row of Figure 2. However, we find that this effect results from the widely used class-balanced sampling
training strategy, and models trained without the default oversampling are more robust to imbalance
in the number of images per identity, see details in Section A.5 and Figure 8. The “fair point" where
female accuracy is closest to male accuracy occurs when around 20% of images are of males.

When comparing the effect of imbalance in the number of identities and the number of images
per identity (solid and dashed lines respectively in Figure 2), we see that ResNet models are more
susceptible to image imbalance than to identity imbalance, which is also a phenomenon specific to
the common class-balanced sampling.

5 BALANCE IN THE TEST SET

5.1 BALANCING THE NUMBER OF IDENTITIES

Experiment Description. Analogous to the train set experiments, we split the test data (the gallery)
with different ratios of female and male identities, while keeping the same average number of images
per identity for both demographic groups. For each ratio, we split the test data with 5 random seeds
and report average rank-1 accuracy of the models trained on default train data. The results are shown
in the solid lines of Figure 3, as well as in Table 4.

Results. We observe that increasing the proportion of identities of a target demographic group in the
test set hurts the model’s performance on that demographic group, and this trend is similar for male
and female images. Intuitively, this is because face recognition models rarely match images to one
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Figure 4: Train & Test Set Imbalance. Results of experiments that adjust the gender presentation
balance in both the train and test set. Top row: male and female accuracy are plotted against the
proportion of male data used in both the train and test set. Bottom row: for an alternate view, female
accuracy is flipped horizontally, so that it is plotted against the proportion of female data in both the
train and test set. For each experiment, the test set was split with 5 random seeds, and the results are
averaged across seeds.

of a different demographic group; therefore by adding more identities of a particular demographic
group, we add more potential false matches for images from that demographic group, which leads to
higher error rates. We also see that ResNet models are more sensitive to the number of identities in
the gallery set than MobileFaceNet models.

5.2 BALANCING THE NUMBER OF IMAGES PER IDENTITY

Experiment Description. Now, we investigate how increasing or decreasing the number of images
per identity affects the performance and bias of the models. Again, we split the test sets with different
ratios of total number of images across gender presentations, but same number of identities, each
with 5 random seeds. These results are recorded as dashed lines in Figure 3, as well as in Table 5.

Results. Unlike the results with identity balance, increasing the average number of images per
identity leads to performance gains, since this increases the probability of a match with an image
of the same person. Also, image balance affects the performance more significantly than identity
balance, and these trends are similar across all the models and both gender presentations. Finally, we
note that the “fair point" for image balance in the test set occurs at about 30% male images; contrast
this with identity balance, for which no fair point appears to exist.

6 A CAUTIONARY TALE: MATCHING THE BALANCE IN THE TRAIN AND
GALLERY DATA

Using our findings from above, we conclude that common machine learning techniques to create train
and test splits can lead to Simpson’s paradoxes which lead to a false belief that a model is unbiased. It
is standard practice to make random train/test splits of a dataset. If the original dataset is imbalanced,
as is commonly the case, the resulting splits will be imbalanced in similar ways. As we have seen
above, the effects of imbalance in the train and test splits may oppose one another, causing severe
underestimation of model bias when measured using the test split. This occurs because the minority
status of a group in the train split will bias the model towards low accuracy on that group, while
the correspondingly small representation in the test split will cause an increase in model accuracy,
partially or entirely masking the true model bias. The results for these experiments are presented in
Figure 4 and Tables 6, 7.
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Balancing the number of identities We create train and test sets with identical distributions of
identities. Recalling the results from prior experiments, increasing the number of identities for the
target group in the training stage improves accuracy on that group, while adding more identities in
the gallery degrades it. Interestingly, when we increase the proportion of male identities in both train
and test sets, we observe gains in both male and female accuracy, and that trend is especially strong
for ResNet models.

Balancing the number of images per identity Having more images is beneficial in both train and
test stages. Therefore, the effect of image balance is amplified when both train and test sets are
imbalanced in a similar way. Similar to the train set experiments, having more than 70% female
images in both train and test sets leads to slight drops in female accuracy on ResNet models, which
again is a result of the default class-balanced oversampling strategy.

7 BIAS COMPARISONS

We ask two concluding questions: one about whether class imbalance captures all the inherent bias
and the other about how the bias we see compares to human biases. First, we explore how data
imbalances cause biases in random networks and find surprising conclusions. Then, we ask how class
imbalances in machines compare to how humans exhibit bias on face identification tasks.

7.1 BIAS IN RANDOM FEATURE EXTRACTORS
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Figure 5: Random Feature Extractors. The
plot illustrates male (blue) and female (orange)
accuracy of random feature extractors against the
proportion of male images in the test set. The
standard deviation is computed across 10 random
initializations.

Given a network with random initializations, we
would expect that evaluation on a balanced test set
would result in equal performance on males and
females, and likewise that male performance on a
set with a particular proportion of male identities
would be the same as female performance when
that proportion is reversed. However, this is not
the case. We test randomly initialized feature ex-
tractors on galleries with varying levels of image
imbalance. Figure 5 summarizes the results of
these experiments. We observe that both models
have higher male performance when the test set is
perfectly balanced, and that performance on males
is higher when they make up 80% of the test set
than female performance when they make up 80%
of the test set. This provides strong evidence that
there are sources of bias that lie outside what we
explore here and which are potential confounders
to a thorough study of bias in face identification;
further work on this is warranted.

7.2 ARE MODELS BIASED LIKE HUMANS?

Numerous psychological and sociological studies have identified gender, racial, and other biases in
human performance on face recognition tasks. Dooley et al. (2021) studied whether humans and
FR models exhibit similar biases. They evaluated human and machine performance on the curated
InterRace test questions, and found models indeed tend to perform better on the same groups as,
and with comparable gender presentation bias ratios to, humans. In this section, we use their human
survey data to explore two related questions: how correlated are model and human performance at
the question level, and how does this change with different levels of imbalance in training data?

To answer these questions, we define a metric which allows us to distinguish how well a model
performs on each InterRace identification question. Let

L2 ratio =
∥vprobe − vfalse∥2

∥vprobe − vtrue∥2 + ∥vprobe − vfalse∥2
,
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where vprobe, vtrue, vfalse are the feature representations of the probe image, the correct gallery
image, and the nearest incorrect gallery image, respectively.2 This value is 1 when the probe and
correct image’s representations coincide, 0 when the probe and incorrect image’s representations
coincide and 0.5 when the probe’s representation is equidistant from those of the correct and incorrect
image. Figure 7 depicts examples of scatterplots comparing model confidence to human accuracy on
each InterRace question.

Figure 6 shows the correlation between L2 ratio and human performance for various models at each
of the training imbalance settings that we have considered in earlier experiments. We see that the
correlation between these values over all questions tends to rise as the proportion of male training
data increases. However, the correlation when separately considering male and female questions does
not rise as monotonically, or as much, from left to right as the overall correlation does. This suggests
that the correlation between human and machine performance is largely driven by the fact that models
and humans both find identifying females more difficult than identifying males, and that this disparity
is exacerbated when the model in question is trained on male-dominated data. On the other hand, the
particular males and females that are easier or harder to identify appear to differ between models and
humans, which suggests the reasons for bias in humans and machines are different.

8 ACTIONABLE INSIGHTS

We note five actionable insights for machine learning engineers and other researchers from this work.
First, overrepresenting the target demographic group can sometimes hurt that group. Sometimes
having more balanced data is the key. Also, class-balanced sampling might hurt representation
learning when the data is not balanced with respect to the number of images per identity. Second,
gallery set balance is as important as train set balance, contrary to how face verification class
imbalances work. Third, having the same distribution of identities and average number of images
per identity is not an unbiased way to evaluate a model, since the effects of balance in train and
test sets can be amplified (in case of images) or cancel each other (in case of identities). Fourth, train
and test class imbalances are not the only cause of bias in face identification evaluation since even
random models do not perform equally poorly on female and male images. Finally, even though both
humans and machine find female images more difficult to recognize, it seems that the reasons for
bias are different in people and models. We know that this work sheds light on common mistakes
in bias computations for many facial recognition tasks and hope that auditors and engineers will
incorporate our insights into their methods.

2We note that other measures of confidence in a k-nearest neighbors setting, such as those discussed in
(Dalitz, 2009), are inappropriate for this application.
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9 REPRODUCIBILITY STATEMENT

We include the code and instructions for reproducing the results of our experiments in the
supplementary materials. In our experiments we use CelebA facial dataset, which is pub-
licly available for research purposes only (Liu et al., 2015) and can be downloaded at
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. We also include details on hyperparameters used
to train the models in Appendix A.2
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A APPENDIX

A.1 BROADER IMPACT AND LIMITATIONS

In this work we explore the effects of various forms of data imbalance on bias in face identification,
and we hope that practitioners will take our findings into account when performing bias auditing.
However, it is important to understand that biases can originate from various sources besides data
imbalance and therefore models should be carefully evaluated for other bias factors.

The availability of high quality datasets, which are suitable for the identification task (as opposed to
verification), have demographic metadata/annotation for both train and test sets, and contain enough
identities and images belonging to each demographic group to allow for subsampling, is extremely
limited. For this reason we focus solely on gender bias and leverage CelebA dataset, which meets
these criteria. Also, using a binary demographic attribute (such as gender, when restricting only to
male- and female-presenting identities) allows the proportion of data in each group to be conveniently
tuned as a single parameter, which in turn makes interpreting results more straightforward.

A.1.1 DETAILS ON CELEBA

CelebA is a publicly available dataset, which is constructed from CelebFaces dataset Sun et al. (2014)
and contains face images collected from the Internet.

A.2 TRAINING DETAILS

We pre-process CelebA images by aligning them using the provided facial landmarks and cropping to
112x112 size. All face recognition models are trained with Focal loss Lin et al. (2017) using SGD
for 100 epochs with learning rate of 0.1, momentum of 0.9 and weight decay of 5e-4. The learning
rate is reduced by 10 times at epochs 35, 65 and 95. Horizontal flip data augmentation is used
during training. For the model architectures, we use implementation from publicly available github
repository face.evoLVe.PyTorch3. We run our experiments on NVIDIA GeForce RTX 2080
Ti machines and each experiment takes from 6 to 12 hours of compute time on one GPU.

A.3 EXPERIMENTAL DETAILS

Table 1: Details on the number of identities, total number of images and average number of images
per identity used in experiments with train and test data balance. We also report statistics for the
default train and test sets. M denotes male, F denotes female.

Setting M ids F ids Total M imgs Total F imgs M imgs/id F imgs/id Total ids Total imgs

Train default 3967 3967 70k 70k 17.65 17.65 7934 140k
Train id balance 0 - 3967 0 - 3967 0 - 70k 0 - 70k 17.65 17.65 3967 70k
Train img balance 3967 3967 14k - 56k 14k - 56k 3.53 - 14.11 3.53 - 14.11 7934 70k
Test default 406 406 7k 7k 17.24 17.24 812 14k
Test id balance 0 - 406 0 - 406 0 - 7k 0 - 7k 17.24 17.24 406 7k
Test img balance 406 406 1.4k - 5.6k 1.4k - 5.6k 3.45 - 13.80 3.45 - 13.80 812 7k

A.4 MODEL VS. HUMAN SCATTERPLOTS

Figure 7 shows two example scatterplots comparing model L2 ratio (our proxy for confidence defined
in section 7.2) against human accuracy on each question in the InterRace identification dataset
(Dooley et al., 2021).

A.5 RESULTS FOR MODELS TRAINED WITHOUT CLASS-BALANCED SAMPLING.

To explore the effect of class-balanced sampling on the results of our experiments, we train additional
models without any oversampling strategies. Figures 8 - 10 show results of our experiments for
MobileFaceNet and ResNet-152 models trained without oversampling. We find that most trends are

3https://github.com/ZhaoJ9014/face.evoLVe
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Figure 7: Scatterplots of model L2 ratio vs. human accuracy on each question in the InterRace
identification dataset. Both models are MobileFaceNets trained with CosFace loss. (Left) a model
trained on exclusively female images. (Right) a model trained on exclusively male images.

similar to ones observed in the models trained with class-balanced sampling, however models trained
without oversampling are more robust to balance in the number of images per identity, see Figure 8.
In particular, the effect of balancing the number of images (dashed lines) is similar to the effect of
balancing the number of identities (solid lines) for all models, but ResNet-152 trained with ArcFace
head. This leads us to a conclusion that using class-balanced sampling strategy is not beneficial in
scenarios of severe imbalance in number of images per identity in face recognition models.
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Figure 8: Train Set Imbalance Results of experiments that change the train set gender presentation
balance for MobileFaceNet and ResNet-152 models trained without class-balanced sampling. Top
row: male and female accuracy are plotted against the proportion of male data in the train set. Bottom
row: for an alternate view, female accuracy is flipped horizontally, so that it is plotted against the
proportion of female data in the train set. All models are evaluated on the default balanced test set.

A.6 ADDITIONAL PLOTS AND TABLES

Figures 11 - 14 supplement those in sections 5 - 6. Figure 11 shows the results of the train set
imbalance experiment when evaluated on the InterRace test set. Figures 12 - 14 show results for
ResNet-50 (with ResNet-152 results shown again for comparison). Tables 2 - 7 precisely detail the
number of male and female identities and images used in each experiment, as well as the accuracy on
male and female targets and the female-to-male error ratio.
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Figure 9: Test Set Imbalance. Results of experiments that change the test set gender presentation
balance for MobileFaceNet and ResNet-152 models trained without class-balanced sampling. Top
row: male and female accuracy are plotted against the proportion of male data in the test set. Bottom
row: for an alternate view, female accuracy is flipped horizontally, so that it is plotted against the
proportion of female data in the test set. All models are trained on the default balanced train set. For
each experiment, the test set was split with 5 random seeds, and the results are averaged across seeds.
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Figure 10: Train & Test Set Imbalance. Results of experiments that adjust the gender presentation
balance in both the train and test set for MobileFaceNet and ResNet-152 models trained without
class-balanced sampling. Top row: male and female accuracy are plotted against the proportion of
male data used in both the train and test set. Bottom row: for an alternate view, female accuracy is
flipped horizontally, so that it is plotted against the proportion of female data in both the train and
test set. For each experiment, the test set was split with 5 random seeds, and the results are averaged
across seeds.
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Figure 11: Train Set Imbalance. Results of experiments testing models trained with different gender
presentation balance on the InterRace dataset. These plots are analogous to the first row of Figures 2
and 12.
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Figure 12: Train Set Imbalance. Results of experiments that change the train set gender presentation
balance for ResNet-152 and ResNet-50 models. Top row: male and female accuracy are plotted
against the proportion of male data in the train set. Bottom row: for an alternate view, female accuracy
is flipped horizontally, so that it is plotted against the proportion of female data in the train set. All
models are evaluated on the default balanced test set. Cf. Figure 2.
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Figure 13: Test Set Imbalance. Results of experiments that change the test set gender presentation
balance for ResNet-152 and ResNet-50 models. Top row: male and female accuracy are plotted
against the proportion of male data in the test set. Bottom row: for an alternate view, female accuracy
is flipped horizontally, so that it is plotted against the proportion of female data in the test set. All
models are trained on the default balanced train set. For each experiment, the test set was split with 5
random seeds, and the results are averaged across seeds. Cf. Figure 3.
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Figure 14: Train & Test Set Imbalance. Results of experiments that adjust the gender presentation
balance in both the train and test set for ResNet-152 and ResNet-50 models. Top row: male and
female accuracy are plotted against the proportion of male data used in both the train and test set.
Bottom row: for an alternate view, female accuracy is flipped horizontally, so that it is plotted against
the proportion of female data in both the train and test set. For each experiment, the test set was split
with 5 random seeds, and the results are averaged across seeds. Cf. Figure 4.
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Table 2: Train Set Id Imbalance. The female and male accuracy computed over the default balanced
test set for models trained on data with various ratios of number of male and female identities. See
details of the experiment in Section 4.1

Model Ids Ratio M ids F ids M imgs F imgs M acc F acc Error Ratio

MFN CosFace

0 : 10 0 3967 0 70k 0.918 0.938 0.76
1 : 9 397 3570 7k 63k 0.941 0.939 1.03
2 : 8 793 3174 14k 56k 0.946 0.941 1.09
3 : 7 1190 2777 21k 49k 0.952 0.942 1.21
4 : 6 1587 2380 28k 42k 0.958 0.940 1.43
5 : 5 1984 1984 35k 35k 0.961 0.940 1.54
6 : 4 2380 1587 42k 28k 0.964 0.936 1.78
7 : 3 2777 1190 49k 21k 0.965 0.935 1.86
8 : 2 3174 793 56k 14k 0.964 0.928 2.00
9 : 1 3570 397 63k 7k 0.968 0.924 2.37
10 : 0 3967 0 70k 0 0.968 0.887 3.53

MFN ArcFace

0 : 10 0 3967 0 70k 0.911 0.937 0.71
1 : 9 397 3570 7k 63k 0.937 0.940 0.95
2 : 8 793 3174 14k 56k 0.948 0.939 1.17
3 : 7 1190 2777 21k 49k 0.952 0.939 1.27
4 : 6 1587 2380 28k 42k 0.953 0.941 1.26
5 : 5 1984 1984 35k 35k 0.958 0.937 1.50
6 : 4 2380 1587 42k 28k 0.965 0.937 1.80
7 : 3 2777 1190 49k 21k 0.963 0.934 1.78
8 : 2 3174 793 56k 14k 0.966 0.925 2.21
9 : 1 3570 397 63k 7k 0.966 0.914 2.53
10 : 0 3967 0 70k 0 0.966 0.886 3.35

ResNet-152 CosFace

0 : 10 0 3967 0 70k 0.854 0.887 0.77
1 : 9 397 3570 7k 63k 0.902 0.894 1.08
2 : 8 793 3174 14k 56k 0.918 0.896 1.27
3 : 7 1190 2777 21k 49k 0.927 0.894 1.45
4 : 6 1587 2380 28k 42k 0.931 0.892 1.57
5 : 5 1984 1984 35k 35k 0.936 0.897 1.61
6 : 4 2380 1587 42k 28k 0.944 0.893 1.91
7 : 3 2777 1190 49k 21k 0.949 0.889 2.18
8 : 2 3174 793 56k 14k 0.951 0.886 2.33
9 : 1 3570 397 63k 7k 0.951 0.872 2.61
10 : 0 3967 0 70k 0 0.952 0.822 3.71

ResNet-152 ArcFace

0 : 10 0 3967 0 70k 0.803 0.868 0.67
1 : 9 397 3570 7k 63k 0.856 0.860 0.97
2 : 8 793 3174 14k 56k 0.885 0.866 1.17
3 : 7 1190 2777 21k 49k 0.897 0.859 1.37
4 : 6 1587 2380 28k 42k 0.908 0.857 1.55
5 : 5 1984 1984 35k 35k 0.913 0.863 1.57
6 : 4 2380 1587 42k 28k 0.920 0.850 1.88
7 : 3 2777 1190 49k 21k 0.928 0.853 2.04
8 : 2 3174 793 56k 14k 0.932 0.832 2.47
9 : 1 3570 397 63k 7k 0.931 0.814 2.70
10 : 0 3967 0 70k 0 0.937 0.748 4.00

ResNet-50 CosFace

0 : 10 0 3967 0 70 0.828 0.873 0.74
1 : 9 397 3570 7 63 0.881 0.876 1.04
2 : 8 793 3174 14 56 0.897 0.877 1.19
3 : 7 1190 2777 21 49 0.910 0.879 1.34
4 : 6 1587 2380 28 42 0.917 0.881 1.43
5 : 5 1984 1984 35 35 0.927 0.880 1.64
6 : 4 2380 1587 42 28 0.934 0.878 1.85
7 : 3 2777 1190 49 21 0.931 0.868 1.91
8 : 2 3174 793 56 14 0.938 0.868 2.13
1 : 9 3570 397 63 7 0.944 0.853 2.63
0 : 10 3967 0 70 0 0.940 0.807 3.22

ResNet-50 ArcFace

0 : 10 0 3967 0 70 0.773 0.846 0.68
1 : 9 397 3570 7 63 0.836 0.852 0.90
2 : 8 793 3174 14 56 0.871 0.854 1.13
3 : 7 1190 2777 21 49 0.881 0.847 1.29
4 : 6 1587 2380 28 42 0.893 0.845 1.45
5 : 5 1984 1984 35 35 0.897 0.845 1.50
6 : 4 2380 1587 42 28 0.913 0.843 1.80
7 : 3 2777 1190 49 21 0.917 0.834 2.00
8 : 2 3174 793 56 14 0.924 0.823 2.33
1 : 9 3570 397 63 7 0.926 0.797 2.74
0 : 10 3967 0 70 0 0.927 0.734 3.64
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Table 3: Train Set Img Imbalance. The female and male accuracy computed over the default
balanced test set for models trained on data with various ratios of number of images per male and
female identity. See details of the experiment in Section 4.2

Model Img Ratio # M ids # F ids # M imgs # F imgs M Acc F Acc Error Ratio

MFN CosFace

2 : 8 3967 3967 14k 56k 0.932 0.927 1.07
3 : 7 3967 3967 21k 49k 0.949 0.931 1.35
4 : 6 3967 3967 28k 42k 0.955 0.931 1.53
5 : 5 3967 3967 35k 35k 0.956 0.930 1.59
6 : 4 3967 3967 42k 28k 0.959 0.929 1.73
7 : 3 3967 3967 49k 21k 0.957 0.918 1.91
8 : 2 3967 3967 56k 14k 0.957 0.892 2.51

MFN ArcFace

2 : 8 3967 3967 14k 56k 0.944 0.937 1.13
3 : 7 3967 3967 21k 49k 0.953 0.939 1.30
4 : 6 3967 3967 28k 42k 0.962 0.940 1.58
5 : 5 3967 3967 35k 35k 0.962 0.939 1.61
6 : 4 3967 3967 42k 28k 0.963 0.937 1.70
7 : 3 3967 3967 49k 21k 0.961 0.929 1.82
8 : 2 3967 3967 56k 14k 0.960 0.914 2.15

ResNet-152 CosFace

2 : 8 3967 3967 14k 56k 0.855 0.868 0.91
3 : 7 3967 3967 21k 49k 0.908 0.886 1.24
4 : 6 3967 3967 28k 42k 0.923 0.890 1.43
5 : 5 3967 3967 35k 35k 0.935 0.888 1.72
6 : 4 3967 3967 42k 28k 0.934 0.862 2.09
7 : 3 3967 3967 49k 21k 0.931 0.824 2.55
8 : 2 3967 3967 56k 14k 0.928 0.753 3.43

ResNet-152 ArcFace

2 : 8 3967 3967 14k 56k 0.839 0.851 0.93
3 : 7 3967 3967 21k 49k 0.899 0.873 1.26
4 : 6 3967 3967 28k 42k 0.916 0.881 1.42
5 : 5 3967 3967 35k 35k 0.924 0.873 1.67
6 : 4 3967 3967 42k 28k 0.928 0.856 2.00
7 : 3 3967 3967 49k 21k 0.925 0.823 2.36
8 : 2 3967 3967 56k 14k 0.922 0.748 3.23

ResNet-50 CosFace

2 : 8 3967 3967 14k 56k 0.829 0.845 0.91
3 : 7 3967 3967 21k 49k 0.879 0.858 1.17
4 : 6 3967 3967 28k 42k 0.909 0.870 1.43
5 : 5 3967 3967 35k 35k 0.917 0.864 1.64
6 : 4 3967 3967 42k 28k 0.920 0.844 1.95
7 : 3 3967 3967 49k 21k 0.922 0.817 2.35
8 : 2 3967 3967 56k 14k 0.914 0.722 3.23

ResNet-50 ArcFace

2 : 8 3967 3967 14k 56k 0.808 0.823 0.92
3 : 7 3967 3967 21k 49k 0.875 0.845 1.24
4 : 6 3967 3967 28k 42k 0.900 0.853 1.47
5 : 5 3967 3967 35k 35k 0.916 0.853 1.75
6 : 4 3967 3967 42k 28k 0.915 0.837 1.92
7 : 3 3967 3967 49k 21k 0.917 0.798 2.43
8 : 2 3967 3967 56k 14k 0.909 0.717 3.11
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Table 4: Test Set Id Imbalance. The female and male accuracy for models trained on default train
set computed on test set with various ratios of number of male and female identities. See details of
experiment in Section 5.1.

Model Ids Ratio # M ids # F ids # M imgs # F imgs M Acc F Acc Error Ratio

MFN CosFace

0 : 10 0 406 0 7000 - 0.961 -
1 : 9 41 365 700 6300 0.983 0.961 2.25
2 : 8 81 325 1400 5600 0.981 0.960 2.04
3 : 7 122 284 2100 4900 0.981 0.960 2.09
4 : 6 162 244 2800 4200 0.981 0.962 2.00
5 : 5 203 203 3500 3500 0.980 0.961 1.95
6 : 4 244 162 4200 2800 0.980 0.963 1.83
7 : 3 284 122 4900 2100 0.979 0.964 1.77
8 : 2 325 81 5600 1400 0.979 0.969 1.45
1 : 9 365 41 6300 700 0.978 0.962 1.72
0 : 10 406 0 7000 0 0.978 - -

MFN ArcFace

0 : 10 0 406 0 7000 - 0.959 -
1 : 9 41 365 700 6300 0.980 0.959 2.07
2 : 8 81 325 1400 5600 0.980 0.960 1.98
3 : 7 122 284 2100 4900 0.981 0.958 2.17
4 : 6 162 244 2800 4200 0.981 0.960 2.05
5 : 5 203 203 3500 3500 0.979 0.961 1.89
6 : 4 244 162 4200 2800 0.979 0.963 1.81
7 : 3 284 122 4900 2100 0.979 0.962 1.84
8 : 2 325 81 5600 1400 0.979 0.968 1.50
1 : 9 365 41 6300 700 0.977 0.963 1.58
0 : 10 406 0 7000 0 0.978 - -

ResNet-152 CosFace

0 : 10 0 406 0 7000 - 0.944 -
1 : 9 41 365 700 6300 0.981 0.943 2.94
2 : 8 81 325 1400 5600 0.979 0.945 2.58
3 : 7 122 284 2100 4900 0.977 0.946 2.37
4 : 6 162 244 2800 4200 0.977 0.947 2.28
5 : 5 203 203 3500 3500 0.974 0.947 2.01
6 : 4 244 162 4200 2800 0.974 0.949 1.99
7 : 3 284 122 4900 2100 0.974 0.952 1.87
8 : 2 325 81 5600 1400 0.973 0.957 1.59
1 : 9 365 41 6300 700 0.971 0.958 1.47
0 : 10 406 0 7000 0 0.971 - -

ResNet-152 ArcFace

0 : 10 0 406 0 7000 - 0.920 -
1 : 9 41 365 700 6300 0.974 0.920 3.09
2 : 8 81 325 1400 5600 0.971 0.921 2.72
3 : 7 122 284 2100 4900 0.968 0.922 2.42
4 : 6 162 244 2800 4200 0.966 0.928 2.12
5 : 5 203 203 3500 3500 0.963 0.928 1.96
6 : 4 244 162 4200 2800 0.962 0.933 1.76
7 : 3 284 122 4900 2100 0.961 0.936 1.65
8 : 2 325 81 5600 1400 0.961 0.944 1.43
1 : 9 365 41 6300 700 0.959 0.950 1.20
0 : 10 406 0 7000 0 0.958 - -

ResNet-50 CosFace

0 : 10 0 406 0 7000 - 0.931 -
1 : 9 41 365 700 6300 0.973 0.931 2.54
2 : 8 81 325 1400 5600 0.972 0.933 2.35
3 : 7 122 284 2100 4900 0.969 0.933 2.15
4 : 6 162 244 2800 4200 0.967 0.937 1.89
5 : 5 203 203 3500 3500 0.965 0.936 1.83
6 : 4 244 162 4200 2800 0.965 0.939 1.74
7 : 3 284 122 4900 2100 0.964 0.942 1.61
8 : 2 325 81 5600 1400 0.964 0.950 1.38
1 : 9 365 41 6300 700 0.961 0.949 1.31
0 : 10 406 0 7000 0 0.961 - -

ResNet-50 ArcFace

0 : 10 0 406 0 7000 - 0.904 -
1 : 9 41 365 700 6300 0.964 0.905 2.66
2 : 8 81 325 1400 5600 0.960 0.908 2.33
3 : 7 122 284 2100 4900 0.957 0.907 2.18
4 : 6 162 244 2800 4200 0.956 0.912 1.99
5 : 5 203 203 3500 3500 0.952 0.914 1.82
6 : 4 244 162 4200 2800 0.950 0.920 1.60
7 : 3 284 122 4900 2100 0.950 0.924 1.52
8 : 2 325 81 5600 1400 0.950 0.935 1.29
1 : 9 365 41 6300 700 0.946 0.940 1.11
0 : 10 406 0 7000 0 0.946 - -
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Table 5: Test Set Img Imbalance. The female and male accuracy for models trained on default train
set computed on test set with various ratios of number of images per male and female identities. See
details of the experiment in Section 5.2

Model Img Ratio # M ids # F ids # M imgs # F imgs M Acc F Acc Error Ratio

MFN CosFace

2 : 8 406 406 1400 5600 0.941 0.957 0.72
3 : 7 406 406 2100 4900 0.959 0.956 1.06
4 : 6 406 406 2800 4200 0.962 0.952 1.27
5 : 5 406 406 3500 3500 0.967 0.946 1.64
6 : 4 406 406 4200 2800 0.970 0.940 2.01
7 : 3 406 406 4900 2100 0.973 0.925 2.75
8 : 2 406 406 5600 1400 0.975 0.894 4.23

MFN ArcFace

2 : 8 406 406 1400 5600 0.939 0.956 0.72
3 : 7 406 406 2100 4900 0.956 0.954 1.03
4 : 6 406 406 2800 4200 0.961 0.951 1.26
5 : 5 406 406 3500 3500 0.966 0.947 1.54
6 : 4 406 406 4200 2800 0.969 0.941 1.91
7 : 3 406 406 4900 2100 0.972 0.928 2.58
8 : 2 406 406 5600 1400 0.974 0.901 3.87

ResNet-152 CosFace

2 : 8 406 406 1400 5600 0.921 0.938 0.78
3 : 7 406 406 2100 4900 0.946 0.934 1.21
4 : 6 406 406 2800 4200 0.952 0.927 1.51
5 : 5 406 406 3500 3500 0.958 0.921 1.89
6 : 4 406 406 4200 2800 0.962 0.912 2.32
7 : 3 406 406 4900 2100 0.965 0.894 3.01
8 : 2 406 406 5600 1400 0.967 0.855 4.37

ResNet-152 ArcFace

2 : 8 406 406 1400 5600 0.888 0.912 0.79
3 : 7 406 406 2100 4900 0.916 0.909 1.09
4 : 6 406 406 2800 4200 0.930 0.901 1.42
5 : 5 406 406 3500 3500 0.940 0.889 1.85
6 : 4 406 406 4200 2800 0.946 0.878 2.27
7 : 3 406 406 4900 2100 0.950 0.853 2.92
8 : 2 406 406 5600 1400 0.954 0.798 4.38

ResNet-50 CosFace

2 : 8 406 406 1400 5600 0.905 0.924 0.80
3 : 7 406 406 2100 4900 0.932 0.921 1.17
4 : 6 406 406 2800 4200 0.940 0.914 1.43
5 : 5 406 406 3500 3500 0.947 0.904 1.80
6 : 4 406 406 4200 2800 0.952 0.894 2.23
7 : 3 406 406 4900 2100 0.956 0.872 2.87
8 : 2 406 406 5600 1400 0.958 0.827 4.14

ResNet-50 ArcFace

2 : 8 406 406 1400 5600 0.870 0.893 0.82
3 : 7 406 406 2100 4900 0.904 0.888 1.17
4 : 6 406 406 2800 4200 0.916 0.879 1.45
5 : 5 406 406 3500 3500 0.925 0.866 1.79
6 : 4 406 406 4200 2800 0.933 0.853 2.20
7 : 3 406 406 4900 2100 0.936 0.826 2.74
8 : 2 406 406 5600 1400 0.940 0.766 3.90
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Table 6: Train & Test Set Id Imbalance. The female and male accuracy for models trained and
tested on data with the same ratios of male and female identities. See details of experiment in Section
6.

Model Ids Ratio M Acc F Acc Error Ratio

MFN CosFace

0 : 10 - 0.945 -
1 : 9 0.963 0.943 1.54
2 : 8 0.966 0.947 1.56
3 : 7 0.964 0.943 1.57
4 : 6 0.967 0.945 1.63
5 : 5 0.965 0.943 1.63
6 : 4 0.968 0.947 1.63
7 : 3 0.968 0.946 1.66
8 : 2 0.969 0.946 1.72
1 : 9 0.971 0.951 1.68
0 : 10 0.972 - -

MFN ArcFace

0 : 10 - 0.945 -
1 : 9 0.962 0.946 1.42
2 : 8 0.962 0.947 1.42
3 : 7 0.962 0.943 1.52
4 : 6 0.961 0.945 1.41
5 : 5 0.964 0.944 1.54
6 : 4 0.968 0.944 1.72
7 : 3 0.967 0.946 1.61
8 : 2 0.969 0.947 1.71
1 : 9 0.968 0.949 1.63
0 : 10 0.969 - -

ResNet-152 CosFace

0 : 10 - 0.901 -
1 : 9 0.943 0.906 1.65
2 : 8 0.947 0.907 1.75
3 : 7 0.947 0.902 1.86
4 : 6 0.946 0.907 1.70
5 : 5 0.946 0.912 1.64
6 : 4 0.952 0.916 1.73
7 : 3 0.955 0.919 1.79
8 : 2 0.956 0.925 1.69
1 : 9 0.954 0.931 1.49
0 : 10 0.956 - -

ResNet-152 ArcFace

0 : 10 - 0.880 -
1 : 9 0.925 0.874 1.67
2 : 8 0.924 0.878 1.61
3 : 7 0.926 0.877 1.67
4 : 6 0.925 0.877 1.63
5 : 5 0.928 0.882 1.64
6 : 4 0.930 0.890 1.58
7 : 3 0.938 0.893 1.73
8 : 2 0.937 0.900 1.59
1 : 9 0.936 0.906 1.46
0 : 10 0.942 - -

ResNet-50 CosFace

0 : 10 - 0.890 -
1 : 9 0.933 0.886 1.69
2 : 8 0.930 0.890 1.57
3 : 7 0.934 0.892 1.63
4 : 6 0.934 0.895 1.60
5 : 5 0.936 0.898 1.58
6 : 4 0.942 0.901 1.70
7 : 3 0.940 0.900 1.66
8 : 2 0.945 0.917 1.52
1 : 9 0.948 0.921 1.52
0 : 10 0.947 - -

ResNet-50 ArcFace

0 : 10 - 0.862 -
1 : 9 0.911 0.862 1.56
2 : 8 0.915 0.870 1.53
3 : 7 0.913 0.865 1.54
4 : 6 0.916 0.865 1.61
5 : 5 0.917 0.865 1.63
6 : 4 0.924 0.877 1.61
7 : 3 0.926 0.879 1.64
8 : 2 0.930 0.888 1.61
1 : 9 0.932 0.900 1.46
0 : 10 0.933 - -
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Table 7: Train & Test Set Img Imbalance. The female and male accuracy for models trained and
tested on data with the same ratios of number of images per male and female identity. See details of
experiment in Section 6.

Model Img Ratio M Acc F Acc Error Ratio

MFN CosFace

2 : 8 0.821 0.923 0.43
3 : 7 0.901 0.922 0.78
4 : 6 0.928 0.919 1.12
5 : 5 0.942 0.906 1.62
6 : 4 0.952 0.892 2.24
7 : 3 0.951 0.848 3.12
8 : 2 0.954 0.740 5.70

MFN ArcFace

2 : 8 0.854 0.932 0.46
3 : 7 0.916 0.933 0.79
4 : 6 0.937 0.927 1.16
5 : 5 0.951 0.919 1.64
6 : 4 0.955 0.907 2.09
7 : 3 0.957 0.871 3.01
8 : 2 0.958 0.779 5.31

ResNet-152 CosFace

2 : 8 0.657 0.859 0.41
3 : 7 0.832 0.873 0.76
4 : 6 0.879 0.866 1.11
5 : 5 0.912 0.848 1.74
6 : 4 0.916 0.798 2.41
7 : 3 0.922 0.695 3.90
8 : 2 0.922 0.483 6.66

ResNet-152 ArcFace

2 : 8 0.638 0.840 0.44
3 : 7 0.817 0.859 0.77
4 : 6 0.870 0.855 1.12
5 : 5 0.899 0.832 1.66
6 : 4 0.911 0.792 2.34
7 : 3 0.917 0.708 3.51
8 : 2 0.915 0.488 6.02

ResNet-50 CosFace

2 : 8 0.611 0.839 0.41
3 : 7 0.777 0.843 0.71
4 : 6 0.854 0.844 1.07
5 : 5 0.889 0.820 1.63
6 : 4 0.899 0.766 2.31
7 : 3 0.911 0.688 3.51
8 : 2 0.908 0.449 6.00

ResNet-50 ArcFace

2 : 8 0.579 0.817 0.43
3 : 7 0.786 0.837 0.76
4 : 6 0.844 0.824 1.13
5 : 5 0.887 0.817 1.62
6 : 4 0.895 0.763 2.27
7 : 3 0.905 0.666 3.50
8 : 2 0.901 0.450 5.56
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