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Abstract

Different camera sensors have different noise patterns, and thus an image denoising
model trained on one sensor often does not generalize well to a different sensor.
One plausible solution is to collect a large dataset for each sensor for training or
fine-tuning, which is inevitably time-consuming. To address this cross-domain
challenge, we present a novel adaptive domain learning (ADL) scheme for cross-
domain RAW image denoising by utilizing existing data from different sensors
(source domain) plus a small amount of data from the new sensor (target domain).
The ADL training scheme automatically removes the data in the source domain that
are harmful to fine-tuning a model for the target domain (some data are harmful
as adding them during training lowers the performance due to domain gaps).
Also, we introduce a modulation module to adopt sensor-specific information
(sensor type and ISO) to understand input data for image denoising. We conduct
extensive experiments on public datasets with various smartphone and DSLR
cameras, which show our proposed model outperforms prior work on cross-domain
image denoising, given a small amount of image data from the target domain
sensor.

1 Introduction

Noise generated by electronic sensors in a RAW image is inevitable. Over the past few years, learning-
based methods have made significant progress in RAW image denoising [5, 22, 25, 42]. However,
building a large-scale real-world dataset with noise-clean pairs for training a denoising model is
time-consuming and labor-intensive. It is hard to collect ground truth that is noise-free and has no
misalignment with the input noisy data. Moreover, due to the different noise distributions of different
sensors (such as read noise and shot noise), the collected data from a particular sensor usually cannot
be used to train the denoising model of other sensors, which causes a waste of resources. Therefore,
it is important to develop a method to solve this problem.

Existing solutions to data scarcity in RAW image denoising can be divided into two categories,
noise calibration [42, 47, 27] and self-supervise denoising [22, 18, 25, 41, 20]. Noise synthesis and
calibration methods first build a noise model, optimize for noise parameters according to a particular
camera, and then synthesize training pairs from the noise model to train a network. Self-supervised
denoising is designed based on the blindspots schemes. When the input noisy image masks out some
pixels and forms a similar but different image from the input, the network learns to denoise instead of
identity mapping. Therefore, the network can learn to denoise without pairwise noise-clean data.
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While the noise synthesis and calibration methods are top-performing ones for RAW data denoising
and self-supervised denoising does not need to collect pairwise data, both of them have their practical
limitations. First, noise synthesis and calibration methods are not able to obtain the exact noise model
of the real noise. For example, fixed pattern noise such as dark signal non-uniformity (DSNU) and
Photo-response non-uniformity (PRNU) are not included in the model. As a result, some of the
sampled noise training pairs might be harmful to the training of the denoising model (i.e., decrease
in performance). Second, building a calibration model still needs to collect data under particular
circumstances. Third, these models can only be used to synthesize training data for specific sensors,
which leads to a waste of resources. On the other hand, self-supervised denoising is designed
under some unverified assumptions of noise distribution. First, the noise distribution has zero
means. Second, the noise in different pixels is independent of each other. These assumptions do not
match the noise in the real world, especially when the noise distribution is complicated. Therefore,
self-supervised denoising does not achieve state-of-the-art denoising performance.

Different from prior work, we solve this problem by proposing a cross-domain RAW image denoising
method, adaptive domain learning (ADL). Our method can utilize existing RAW image denoising
datasets from various sensors (source domains) combined with very little data from a new sensor
(target domain) together to train a denoising model for that new sensor. Some data in a source domain
may be harmful to fine-tuning a model due to the large domain gap: for instance, synthetic data may
be harmful to training a model for real-world applications if the synthetic data imposes unrealistic and
unreasonable assumptions. In such cases, our method dynamically evaluates whether a data sample
from a source domain is beneficial or harmful by evaluating the performance on a small validation set
of the target domain, before and after fine-tuning the model on this data sample. If the performance
improves after fine-tuning, we can use this data sample for training; otherwise, we should ignore
it. As for the network architecture, we design a modulation network that takes sensor-dependent
information as input (sensor types and ISO), which aligns the features from different sensors into the
same space and ensembles useful common knowledge for denoising.

To evaluate our proposed model with ADL, we compare our model against prior methods on diverse
real-world public datasets [2, 42, 5] captured by both smartphone and DLSR cameras. The results
demonstrate that our method outperforms the prior work and shows consistent state-of-the-art
performance with ADL on RAW data denoising, given a small amount of data in the target domain.
We also demonstrate that our ADL can be applied to fine-tuning existing noise calibration models
with cross-domain data to further improve its performance.

The contributions of this work can be summarized as follows.

• We propose a novel adaptive domain learning (ADL) strategy that can train a model with
little data from a new sensor (target domain), by automatically leveraging useful information
and removing useless data from existing RAW denoising data from other sensors (source
domains).

• A customized modulation strategy is applied to provide sensor-specific information, which
helps our network adapt to different sensors and noise distributions.

• Our model outperforms prior methods in cross-domain image denoising in the target domain
with little data.

2 Related Work

2.1 Raw Data Denoising

In recent years, methods based on RAW data denoising draw a lot of attention [29, 5, 42, 47, 4,
44, 25, 1, 48, 27]. SID [5] shows that RAW image denoising can perform well with a naive U-net
architecture. Besides, they find difficulties in collecting large-scale datasets. Aware that collecting
datasets is the research bottleneck, many approaches attempt to synthesize more realistic data. UIP [4]
and CycleISP [44] attempt to inverse the image signal processing pipeline and synthesize noise in
RAW space to train a RAW denoising framework. However, the generated pseudo-RAW data still
has great differences compared to real RAW data. Jin et al. [16] utilize different noise distribution
parameters to form a simulation camera to train a network. However, they still need to build a noise
model to synthesize data. Another kind of approach is the noise calibration method [42, 47, 27, 45].
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Figure 1: The overall pipeline of our adaptive domain learning (ADL) algorithm. The network
parameter θ0 is first initialized, then the small target domain training set will be used to train a model
with parameter θ. In the source domain adaptive learning stage, in iteration t, data from the source
domain will be used to update the network parameter from θt−1 to θ′. Then a dynamic validation set
will judge whether the data is useful. If so, set θt = θ′ and repeat the process. If not, retrieve the
network parameter from θ′ to θt−1. Finally, the target domain data will be used to fine-tune θ′ to θT

.

Wei et al. [42] and Zhang et al. [47] analyze the noise source from the electronic pipeline of the
DSLR cameras and build corresponding noise model to synthesize data. However, the domain gap
still exists between the synthetic noise and the real noise. Besides, the noise calibration model is
usually designed for a specific sensor, and hence no generalization ability and is not reusable. Our
ADL can overcome the domain gap between real and synthetic data by removing harmful data. We
can also utilize our ADL algorithm to fine-tune the existing noise calibration method to further
improve its performance. Lehtinen et al. [22] find that pairs of two low-quality images with very
similar content are enough to train a denoise model, forming the self-supervised denoising field.
As the modified version of Noise2noise, methods that can learn to denoise with a single image are
developed [18, 21, 41, 12, 20, 31, 14, 45]. They design a blind-spot network to force the model to
learn the mapping from noisy to noise-free. In such cases, no paired data is needed for training.
However, their method has some assumptions about noise distribution, which is usually not the case
in the real world. Due to the above constraints, these methods usually cannot reach state-of-the-
art performance compared to other noise-to-clean supervised methods. Our method can solve the
problem of data collection while keeping state-of-the-art performance.

2.2 Meta-transfer learning in low-level vision

The gap between different domains (synthetic and real, daylight and night, etc.) is a great challenge
in the field of low-level vision. To solve the problem, a set of approaches based on meta-transfer
learning is proposed [32, 35, 17, 6, 43, 39, 40, 34, 15, 8]. Park et al. [32] and Soh et al. [35] utilize
MAML algorithm [9] in super-resolution to obtain a model with better initialization implicitly from
the source domain, then fine-tune it to fit the target domain better. Kim et al. [17] transferred the
useful features from the synthesis noise model to the real-world noise model to overcome the domain
gap problem between real-world noise and synthetic noise with an adaptive instance normalization
layer [37, 13, 24, 33] to help the synthetic noise better adapt to real-world noise. For the meta-
transfer learning method, it is very hard to tell whether the implicitly learned information is useful
or not. Some of the transferred features might be harmful. In contrast, our ADL can learn common
knowledge and remove harmful information explicitly.

3 Method

In this section, we introduce the three steps in our adaptive domain learning pipeline: target domain
pretraining, source domain adaptive learning, and target domain fine-tuning. The overall pipeline is
illustrated in Figure 1.
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3.1 Adaptive Domain Learning Algorithm

3.1.1 Target Domain Pretraining

Given the small training set of the target domain T adp, we first pre-train a model for the target domain
by minimizing pixel-wise L1 Loss.

Target domain pre-training has benefits in two aspects. First, although the domain gap exists between
the source domain and the target domain, denoising is a task that shares similar implicit feature
representations. Therefore, pre-training can provide better initialization for the adaptive domain
learning stage. Second, there is only very little data from the target domain, and the data from the
source domain can be 100 times more than the data in the target domain. Pre-training on the target
domain can improve the robustness and ensure the dominant position of the target domain data in the
whole training process to prevent our model from overfitting to the source domain.

3.1.2 Source Domain Adaptive Learning

However, due to the domain gap between the source domain and the target domain, not all the data
from the source domain contribute to the training of the target domain, some data might be harmful
and will lead to performance reduction. Therefore, we proposed adaptive domain learning (ADL), to
eliminate harmful data and make use of the one that has contributions to our model.

In each iteration t, we sample a batch of training data S′ from some source domain S(i), and adapted
our pretrained parameter θt−1 to θ′ by

θ
′
← θt−1 − α∇θt−1

L(S′), (1)

where α is the learning rate and L(S′) is the L1 loss defined on S′.

Dynamic validation set To tell whether the data batch S′ has contributions to our model, we evaluate
the updated parameter θ′ on a target domain validation set T val that is sampled from the target domain
dataset T adp. The selection of the validation set in each iteration t is crucial to the performance of
our method. Fixed validation set selection for each iteration may make the training stuck in the local
minima and easily overfit to the validation set. To avoid these problems from happening, in each
iteration t, we randomly sampled a dynamic validation set V ′ of size k from the target domain dataset
T adp to let our model explore the feature space in a stochastic way. On the other hand, the rest of the
dataset from T adp, denoted as TTrain, will combined with S′ to provide the correct direction for the
training process. At the beginning of the training, k is set to 20% of the size of T adp and increases
during the training process. At the end of the training, 50% of T adp will be used.

Moreover, inspired by [16], when the size of T adp is extremely small, i.e., smaller than 10, we
intentionally select the data that has very diverse system gain from T adp to form V ′ in each iteration
to avoid the over-fitting problem.

Dynamic average PSNR We evaluate whether the data batch S′ is useful or not by comparing
the PSNR of the result of the updated network parameter θ′ to the PSNR of the result of previous
iteration θt on the sampled validation set V ′. However, hard criteria based on PSNR usually make
the training procedure unstable under the setting of the dynamic validation set. When the size of
the dynamic validation set V ′ is small, the variance of PSNR is large and thus is not that reliable.
Some useful data might be removed accidentally. In such cases, we want our model to take a data
batch S′ as useful data if S′ has a trend to improve the performance of our model. We design soft
criteria based on PSNR by maintaining a priority queue Qeval of max size M that stores the value of
highest PSNR value in the history during the training process. Qeval is ranked by the value of PSNR
in ascending order. We denote the PSNR on our dynamic validation set V ′ of model θ′ at iteration t
in our training process as Eval(V ′, θt). At the beginning of the adaptive domain learning stage, we
push Eval(V ′, θt=0) into Qeval. During the training, if the PSNR of the updated parameter θ′ on
the dynamic validation set V ′, Eval(V ′, θ′), is higher than the average PSNR in Qeval, we keep the
updated parameter θ′ and push Eval(V ′, θ′) into Qeval and pop out the first element in Qeval if it is
full. Else, we retrieve the network parameter from θ′ to θt−1. This process can be characterized as

θt =

θ′, Eval(V ′, θ′) >
1

m

m∑
i=1

Qeval
i

θt−1, otherwise

(2)
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Algorithm 1 Adaptive domain learning (ADL)
Require: S1, . . . , Sn: training sets of n source domains
Require: T adp: The small target domain dataset

Require: Qeval: priority queue with max length M that stores the PSNR.
1: Initialize a model of θ0 by pretraining on T adp

2: for t← 1 to T do
3: Randomly sample images S′ from some domain Si

4: Randomly sample images V ′ from T adp, the rest part T train = T adp − V ′

5: Merge S′ and T train by S′ = T train + S′

6: θ
′ ← θt−1 − α∇θt−1L(S′)

7: if Eval(V ′, θ′) > 1
m

m∑
i=1

Qeval
i then

8: θt = θ′

9: if Q.size() == M then
10: Qeval.pop()

11: Qeval.push(Eval(V ′, θ′))
12: else
13: θt = θt−1

14: Fine-tune the model of θT on T adp

In the final stage, we fine-tune the network parameter θ′ obtained in the previous stage using the
target domain training set and update the network parameter to θT . The detail of our adaptive domain
learning algorithm is illustrated in Algorithm 1

3.2 Channel-wise Modulation Network

To let our network better utilize the information from sensors that have different noise distributions,
we need to adjust the feature space of different inputs. For a RAW data D captured by a CMOS
sensor, we can model its noise by:

N = I +KNdep +Nindep, (3)

where K is the system gain, Ndep is the signal dependent noise and Nindep is the signal independent
noise. Based on this modeling, we propose a channel-wise modulation network to adjust the feature
space by embedding two easy-to-access parameters, the sensor type and the ISO in our network. ISO
is proportional to system gain K, while the sensor type can help the network know how to utilize the
ISO to learn the signal-dependent noise Ndep and recognize the signal-independent noise Nindep.

Given the one-hot encoding of the sensor type p ∈ R1×n and the corresponding ISO s ∈ R1×n

(duplicate n times in the vector), our channel-wise modulation layer transfers the concatenated
metadata (p, s) into a channel-wise scale γ and shifts β by

γ = 1 + tanh(MLPγ(p, s)), (4)
β = MLPβ(p, s), (5)

where γ, β ∈ R1×C , and MLPβ and MLPγ are two four layer Multi-Layer Perceptrons. Let the
feature map of the i-th convolution layer be Fi ∈ RH×W×C , we embed the sensor-specific data to
Fi by a channel-wise linear combination by

F ′
i = γ × Fi + β. (6)

Note that the type of the input metadata of our channel-wise modulation strategy is not fixed. The
input concatenated vector can be extended as long as more meta information is provided along with
the data.
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Figure 2: The error map of our method compares against state-of-the-art approaches. The first
row is the result from the SIDD dataset, and the second row is the result from the SID dataset. We
can see that our method is able to generate the image with smaller errors and less noise compared to
previous work.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the performance of our ADL and modulation on the dataset captured by
smartphones in normal light conditions (SIDD dataset [2]), and the dataset captured by DLSR cameras
in extremely low light conditions (ELD [42] and SID [5] dataset). Compared to RAW data captured
by smartphones, RAW data captured by DSLR cameras in extremely low light environments is more
difficult to denoise because the noise distribution is more complicated and the noise level is larger.
Moreover, the domain gap between the RAW data captured by different DSLR cameras is larger than
the domain gap between the RAW data captured by smartphones.

SIDD [2] is a popular RAW denoising dataset that contains 160 pairs of noisy and ground-truth RAW
data from 5 different smartphone cameras (G4, GP, IP, N6, S6) of different scenes. ELD Dataset [42]
contains RAW data captured by 3 different brands of DSLR cameras (Nikon, Canon, Sony) with
different ISO and light factors, while the SID dataset captured RAW data using 2 different brands
of DSLR cameras (Sony and Fuji). Note that the ELD dataset and SID dataset [5] are using the
same DSLR camera (Sony A7S2). We only use the data captured by this camera from SID dataset to
keep the domain gap between each set of domains. Besides, the input RAW data of the ELD and
SID datasets are captured in extremely low light environments, while the ground truth is captured in
normal light conditions. We follow the training strategy in [5] by multiplying a light factor by the
input RAW data to keep the input RAW data and ground-truth RAW data in the same space.

Baselines and training settings. To evaluate the performance of our framework, we compare
our method against several baselines: the fundamental baselines pre-train and then fine-tune. Self-
supervise denoising methods: Blind2unblind [41], ZS-N2N [26], and DIP [38]. Meta transfer
learning method MZSR [35], Prabhakar et al. [34] and Kim et al. [17] (denoted as transfer learning).
Traditional approach BM3D [7]. Calibration Free Method Led [16]. Note that we try our best to find
all possible work that has the same goal as our method for the comprehensive baseline comparisons.
Although the approach might be different, we make the experiment as fair as possible with proper
settings.

We compare the performance of our method against the above baselines by cross-validation on each
sensor of all three datasets. In each experiment, we take one sensor as the target domain to represent
the sensor with a very small number of data (around 20 pairs of data). The data from all other sensors
will form the source domain, which represents the existing dataset. For the baselines, we only use
the data from the target domain for the training of all self-supervised denoising methods, no data
from the source domain is used since cross-domain data will reduce the overall performance of these
methods. For fine-tuning, we first pre-train the model with the data from the source domain using
U-net, then use the data from the target domain for fine-tuning. For DIP [38], the model is trained on
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Method G4 GP IP N6 S6 Avg.
Fine-tuning 50.17/0.968 43.53/0.914 52.77/0.977 43.86/0.917 37.88/0.863 45.58/0.928
BM3D [7] 50.08/0.968 42.14/0.909 52.39/0.972 43.40/0.916 35.52/0.855 44.71/0.924
DIP [38] 46.91/0.931 39.88/0.896 48.81/0.955 41.73/0.906 35.23/0.855 42.51/0.909

ZS-N2N [26] 48.86/0.941 41.54/0.909 50.06/0.968 41.88/0.910 35.07/0.856 43.48/0.917
MZSR [35] 51.84/0.972 44.58/0.921 53.74/0.982 45.07/0.924 37.21/0.868 46.49/0.933

Transfer learning [17] 52.28/0.974 44.96/0.923 53.04/0.982 44.77/0.923 40.10/0.898 47.03/0.940
Blind2Unblind [41] 51.78/0.970 44.91/0.919 54.12/0.985 46.02/0.928 38.85/0.892 47.14/0.939
Prabhakar et al. [34] 51.76/0.972 44.68/0.919 53.82/0.983 44.92/0.922 38.67/0.878 46.34/0.933

Ours 52.55/0.975 45.18/0.923 54.37/0.987 46.13/0.932 40.16/0.901 47.68/0.944

Method Sony Fuji Nikon Canon Avg.
Fine-tuning 35.94/0.857 36.37/0.862 35.22/0.853 35.63/0.855 35.79/0.857
BM3D [7] 35.61/0.856 35.88/0.857 35.37/0.853 35.07/0.852 35.48/0.855
DIP [38] 31.02/0.696 29.44/0.611 30.71/0.652 30.53/0.641 30.42/0.650

ZS-N2N [26] 32.15/0.724 30.39/0.632 30.46/0.643 31.34/0.707 31.09/0.677
MZSR [35] 36.21/0.861 36.98/0.866 36.14/0.860 35.89/0.857 36.31/0.861

Transfer learning [17] 36.92/0.864 37.33/0.869 36.49/0.862 35.77/0.858 36.63/0.863
Blind2Unblind [41] 36.71/0.866 36.57/0.866 35.88/0.857 35.49/0.855 36.16/0.861
Prabhakar et al. [34] 36.12/0.859 36.33/0.864 35.47/0.854 35.72/0.857 36.01/0.861

Ours 37.28/0.871 37.58/0.872 36.74/0.866 36.45/0.868 37.01/0.868

Table 1: The quantitative PSNR and SSIM results compared to the baselines on the SIDD (G4,
GP, IP, N6, and S6), ELD (Nikon, and Canon), and SID (Fuji and Sony) datasets. “Fine-tuning”
means training on source domain data and then fine-tuning on target domain data. The camera name
on the top row means that we keep this camera as the target domain and use data from other cameras
as the source domain.

each test data. We first split the whole dataset into two parts, the training set, and the test set. The
training set T adp is used for the training of the baselines. All training RAW data will first be packed
into 4-channel according to the Bayer pattern and then cropped into patches with shape 256× 256.
We train our ADL in 300k iterations, using AdamW as the optimizer with a learning rate of 3× 10−3.

4.2 Results on Real Data

We quantitatively evaluate our method by comparing the PSNR against other baselines on the smart-
phone dataset SIDD and DSLR camera dataset ELD and SID. Note that we only report PSNR [11]
because there are no other systematic evaluation metrics designed for RAW data. Other popular
evaluation metrics like LPIPS [46] is not suitable for RAW data. We also present the SSIM [11]
metrics in the supplementary material. The result is illustrated in Table 1. Here, “fine-tuning” denotes
the experiment training on the source domain and fine-tuning on the target domain. The camera name
on the top row means that we take this sensor as the target domain while keeping the other sensors as
the source domain. For example, “G4” in Table 1 means that this experiment takes G4 as the target
domain and all data from the other four sensors, GP, IP, N6, and S6 will form the source domain
dataset. From the table, we can see that our proposed method has the best performance on both
the smartphone dataset and the DSLR dataset. To be specific, our method has 0.71dB and 0.39dB
performance gains on average compared to MZSR [35] and transfer learning [17] baseline. The PSNR
values in the table of the ELD and SID dataset are much lower than those in the table of the SIDD
dataset because the ELD and SID datasets are captured in extremely low light environments: the noise
level is higher, and the scenes are much more complicated than the SIDD dataset. Note that although
the AIN module in Kim et al. [17] has a similar function and architecture to our modulation strategy,
they can only estimate the noise level, which is very limited when the source domain contains data
from many sensors. Our modulation strategy is more extensible and can somehow provide more
hyper information(if provided in the dataset) and can let the network know the difference between
the sensors.

Qualitative Result Since the PSNR of the RAW denoising is relatively high and difficult to tell the
difference from the human visual perspective, We evaluate our method qualitatively by comparing
the error map against all three baselines. As illustrated in Figure 2, since the RAW data is hard to
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Dataset Sensor Zhang et al. Single Multiple
FT ADL FT ADL

SIDD
GP 45.36 45.47 45.62 45.32 45.83
S6 43.17 43.45 43.44 42.66 43.69
IP 54.93 55.24 55.37 55.11 55.68

ELD Sony 44.86 44.93 44.98 44.68 45.17
Nikon 43.21 43.26 43.34 42.96 43.54

(a) The PSNR result of applying our ADL to fine-tune the existing noise
calibration model. “FT” means naive fine-tuning, “Single” means only
using data from the corresponding sensor to fine-tune, while “Multiple”
means using data from all sensors in the corresponding dataset to fine-tune.

Sensor Led [16] Ours
Sony 36.89 37.28
Fuji 36.95 37.58

Nikon 36.26 36.74
Canon 36.17 36.45

(b) The PSNR result of our
ADL comparing to Led on
the existing data from various
sensors.

Table 2: The analysis of calibration model and non-calibration model. The SSIM result is included in
the supplementary material.

visualize, we transfer the ground truth into the sRGB domain using LibRAW to better demonstrate
the color and details. For the restored RAW images, it is hard to use a well-designed ISP (Image
Signal Processing) pipeline to obtain visually pleasant sRGB images for different sensors, we only
demonstrate the result on RAW space. The error map is calculated in RAW space. We can see that
the error between the ground truth and our output noise-free image is much smaller compared to all
baseline methods. For more qualitative results, please refer to supplementary material.

4.3 Analysis of Calibration-related Methods

Noise calibration methods Although the noise calibration method is powerful, the calibrated model
still does not include out-of-model noise such as fixed-pattern noise. Thus, fine-tuning using real data
can further improve the performance of the model trained by those synthetic data. However, when the
real data used for fine-tuning is scarce, the improvement is usually marginal. In such cases, we may
want to utilize more data from different domains to further improve the result. In this section, we
analyze the performance of applying our ADL to fine-tune the existing noise calibration model with
data from multi-domain. We utilize the noise calibration method proposed by Zhang et al. [47]. The
result is illustrated in Table 2 (a). Here “Single” means that only the data from that corresponding
sensor is used for fine-tuning, while “Multiple” means that the data from all sensors in that dataset
is used for fine-tuning. The result shows that when utilizing limited data from a single domain, the
improvement of both naive fine-tuning and ADL is marginal. When we use more data from multiple
domains, naive fine-tuning cannot learn useful information from various domains and thus leads to a
drop in the final performance. However, our ADL can remove the harmful data, and ensemble the
useful information from the different domains to help the training.

Calibration-free methods Different from the noise calibration method, the calibration-free method
Led [16] embed noise distribution from the simulated camera into the pre-train model. Although
LED is a calibration-free method, the network also has no prior knowledge of the noise distribution
of the target domain data during the pre-train stage. The large intensity distribution gap between
the simulation cameras and the test set will lead to low performance. However, our ADL has prior
knowledge of the target domain noise intensity distribution throughout the training process, which
can gain similar robustness to the calibration method. As illustrated in Table 2 (b), we replace the
synthetic data from the well-calibrated simulated camera in Led [16] with the data from the source
domain(data from existing sensors), which is the same as our method in the experiments. Our method
can outperform Led [16] in this case. This is because the performance of Led [16] highly depends on
the prior knowledge of noise distribution learning from the simulated camera. Our method will not
use data with a huge gap in intensity distribution between the source domain and the target domain.

PMN [8] PMN [8] aims to overcome the bottleneck of the learnability in real RAW denoising by
reforming the data. It can be generalized and applied to all real RAW image denoising methods and
improve their performance including our ADL. As illustrated in Table 3, the performance of our
ADL can be improved by applying the training strategy proposed in PMN.
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Method G4 GP IP N6 S6 Avg.
Ours 52.55/0.975 45.18/0.923 54.37/0.987 46.13/0.932 40.16/0.901 47.68/0.944

Ours+PMN 52.78/0.976 45.32/0.923 54.48/0.988 46.29/0.933 40.30/0.902 47.74/0.944

Method Sony Fuji Nikon Canon Avg.
Ours 37.28/0.871 37.58/0.872 36.74/0.866 36.45/0.868 37.01/0.868

Ours+PMN 37.43/0.872 37.89/0.874 36.91/0.869 36.63/0.868 37.19/0.871

Table 3: The quantitative PSNR and SSIM results with and without the training strategy
proposed in PMN [8] on the SIDD (G4, GP, IP, N6, and S6), ELD (Nikon, and Canon), and SID
(Fuji and Sony) datasets. PMN can improve the performance of our ADL. The camera name on the
top row means that we keep this camera as the target domain and use data from other cameras as the
source domain.
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Figure 3: The ablation study of the size of the validation set. Our dynamic validation set strategy
can overcome the overfitting problem when the size of the target domain dataset is extremely small.

4.4 Analysis on Useful and Harmful Data

The domain gap in the deep learning model of other tasks is usually caused by the scene between the
training data and test data. As for RAW image denoising, the difference in noise intensity among
different sensors is more crucial. For example, if the noise intensity of two sensors is the same, then
the noise model trained on one sensor can be generalized to the other. On the contrary, the model will
fail if the noise intensity between these two sensors is very different. Based on this observation, we
can say that the source domain data with similar noise intensity to the target domain data is useful,
while the data with a large noise intensity difference is harmful. However, in cross-domain training,
the harmful data has a more negative impact, because in cross-domain training, the model will tend to
compromise different domains to reach the global minimum. As illustrated in Table 5, we utilize the
target domain data from the ELD dataset as the base set, and we build two Harmful datasets. Here
“Harmful1” is synthesized by using the ground truth of the SIDD dataset that is captured in bright
light conditions and naive Gaussian noise with noise level ”harmful” σ = 30, and “Harmful2” set is
the data pairs that have mis-alignment. For example, the input and ground truth are from different
scenes, or the ground truth is black. In these cases, even though we add more data, the performance
still drops. However, our ADL ignores the harmful data and always optimizes the model towards the
noise intensity of the target domain.

4.5 Ablation Study

ADL and Modulation Strategy We conduct an ablation study on the effectiveness of our ADL and
modulation strategy. The ablation study is conducted on SID and ELD datasets with the same training
settings and configuration as in the previous section. We ablate over the strategies of our method by
training models without applying the target domain pretraining, source domain adaptive learning,
and modulation(including sensor type and ISO modulation). As illustrated in Table 4, the result
demonstrated that the target domain pretraining, source domain adaptive learning, ISO and sensor
type modulation, and dynamic validation set all contribute to the final result. The source domain
adaptive learning, which automatically evaluates whether data from the source domain is harmful or
not, is the most crucial strategy in our framework.
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ADL ISO Type Pre Dyn Sony Fuji Nikon Canon
✓ ✓ ✓ ✓ 36.15/0.858 36.44/0.859 36.52/0.861 36.00/ 0.857
✓ ✓ ✓ ✓ 37.13/0.868 37.41/0.871 36.66/0.860 36.27/0.857
✓ ✓ ✓ ✓ 36.81/0.862 36.93/0.864 36.46/0.858 36.11/0.855

✓ ✓ ✓ 35.88/0.855 36.14/0.856 35.97/0.856 34.69/0.788
✓ ✓ ✓ ✓ 36.89/0.866 37.41/0.871 36.42/0.862 36.23/0.861
✓ ✓ ✓ ✓ ✓ 37.28/0.871 37.58/0.872 36.74/0.866 36.45/0.864

Table 4: The PSNR and SSIM result of the ablation study on the ELD and SID datasets. The
camera name on the top row means that we keep this camera as the target domain and use data from
other cameras as the source domain. “ADL” means Adaptive domain learning, “ISO" means use ISO
in modulation, “Type" means use sensor type in modulation “Pre” means target domain pretraining,
and “Dyn” means dynamic validation set.

Sensor Base Base+Harmful1 Base+Harmful2
FT FT ADL FT ADL

Sony 35.01/0.805 34.59/0.772 35.13/0.812 19.06/0.216 34.99/0.808
Fuji 34.97/0.806 34.69/0.771 35.21/0.823 20.14/0.244 35.06/0.807

Nikon 34.68/0.782 34.42/0.765 35.85/0.853 21.26/0.297 34.62/0.782
Canon 34.76/0.794 34.37/0.752 34.88/0.797 21.17/0.268 34.71/0.792

Table 5: The PSNR and SSIM result of our ADL comparing to naive fine-tuning on base set and
synthetic harmful dataset. Here “FT” means naive fine-tuning, “Base” means only using data from
the corresponding sensor to fine-tune, while “Harmful1” means using naive Gaussian synthetic data
with the different light conditions to fine-tune, and “Harmful2” means using the misaligned input and
ground truth data to fine-tune.

Size of the Target Domain Data To evaluate how our method performs on different sizes of the
target domain data, we conduct the ablation study on two sensors, G4 in the SIDD dataset and Sony
in the SID dataset. Figure 3 demonstrates the PSNR against the size of the target domain dataset
T adp compared to the fundamental baseline fine-tuning and our method without using the dynamic
validation set strategy and diverse system gain selection strategy. It can be observed that our method
can outperform fine-tuning when the size of the target domain data is extremely small. Besides, our
dynamic validation set strategy also prevents the training from over-fitting when the target domain
data is scarce.

5 Conclusion

We have proposed a novel adaptive domain learning (ADL) scheme for cross-domain image denoising.
We leverage the data from other sensors to help the training of the data from new sensors in a smart
fashion: ADL removes harmful data and utilizes useful data from the source domain to improve the
performance in the target domain. Our proposed modulation strategy provides extra camera-specific
information, which helps differentiate the noise patterns of input data. We evaluate our method on
smartphone and DSLR camera datasets, and the results demonstrate that our method outperforms
state-of-the-art approaches in cross-domain image denoising. Moreover, we show that ADL can also
be easily extended to image deblurring. We believe ADL is general and can be generalized to other
cross-domain tasks, which can be further explored in the future.
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(a) Target Domain: G4 (b) Target domain: Sony

Figure 4: The heatmap of the training process of our model. The x-axis is the number of epochs,
and the y-axis is the sensor. The value in each block ranging from 0-1 indicates the percentage that is
judged to have contributed to the training of the target domain. (a) is the training process of sensor
G4 in the SIDD dataset. (b) is the training process of sensor Sony in SID dataset.

A Appendix

A.1 Network Architecture

We present the detail of our network architecture. The detail design of our modulation strategy is
illustrated in figure 6. We utilize Dense-Unet as our backbone. We downsample the input feature map
4 times and the number of channels is set to 64, 128, 256, 512, and 1024 respectively. There is a total
of 5 layers in each dense block. Leaky ReLU [30] is used as the activation function in each layer.

A.2 Analysis on the Training Process

We investigate how our network uses the data from the source domain to help the training of the
target domain. We draw a heatmap to demonstrate the training process of our network. As illustrated
in Figure 4, we show the training process of sensor G4 on the SIDD dataset. The x-axis represents
the epoch number during the training, and the y-axis represents the type of sensor. Each block in
the figure represents the percentage of the data that is judged to have contributed to the training of
the target domain in a particular epoch. For example, the value in the top left corner in Figure 4 is
0.75, which means that 75% of the data from sensor GP has contributed to the training of the target
domain in the first epoch. It can be seen that at the beginning of the training, most of the data from
the source domain contributed to the training of the target domain. As the epoch number and the size
of the dynamic validation set increase, more and more data has no contribution to the training of the
target domain, which means the useful information hidden in the source domain has been discovered.

Another information we can observe from this heatmap is which sensor from the source domain has a
much smaller domain gap compared to the target domain. As illustrated in Figure 4 (a), sensor S6 has
only 15% of data that has contributed to the training of the target domain, and the percentage quickly
reduces to zero in the following epoch. This indicates that there is a huge domain gap between sensor
S6 and the target domain sensor G4, and the data from sensor S6 has almost no contribution to the
training of G4. In contrast, the percentage of data usage from sensor IP keep at a high range as the
epoch number increases, which indicates that sensor IP has the smallest domain gap to the target
domain compared to the other sensors. Moreover, comparing 4 (a) and (b), we can tell that the data
captured by the DSLR camera has a larger domain gap than the data captured by the smartphone.
This is because the sensor of a DSLR camera is more complicated and has more noise sources than
the sensor of a smartphone. Based on the observations, we can sample data with different percentages
of the sensors from the source domain and shorten the training time.

A.3 Extention to Image Restoration Tasks

We demonstrate that our framework can also be applied to image deblurring and image dehazing
to overcome the domain gap between the synthetic data and real data. For image deblurring, we
synthesize blur kernel with three different sizes 21 × 21, 31 × 31, 41 × 41 by following the blur
generation method proposed in [19]. We perform our experiment by training a Dense-Unet [10] on

14



Task Method PSNR SSIM

Deblur
Direct 28.61 0.918

Fine-tuning 29.26 0.923
Ours 30.17 0.927

Dehazing
Direct 17.34 0.618

Fine-tuning 19.38 0.658
Ours 19.87 0.661

Table 6: Comparison of our method against other normal approaches in image deblurring and
image dehazing. “Direct” means a model trained on synthetic blurry images and then tested on the
Gopro dataset. “Fine-tuning” means a model trained on synthetic blurry images, then fine-tuned on a
small set of real-world blurry images, and finally testing on the Gopro dataset.

Dataset Sensor Zhang et al. Single Multiple
FT ADL FT ADL

SIDD
GP 0.928 0.929 0.930 0.927 0.933
S6 0.917 0.918 0.918 0.911 0.921
IP 0.986 0.989 0.991 0.987 0.991

ELD Sony 0.923 0.923 0.923 0.921 0.925
Nikon 0.916 0.917 0.919 0.913 0.921

(a) The SSIM result of applying our ADL to fine-tune the existing noise
calibration model. Here “FT” means naive fine-tuning, “Single” means
only using data from the corresponding sensor to fine-tune, while “Multiple”
means using data from all sensors in the corresponding dataset to fine-tune.

Sensor Led [16] Ours
Sony 0.866 0.869
Fuji 0.867 0.872

Nikon 0.862 0.868
Canon 0.862 0.865

(b) The PSNR result of our
ADL comparing to Led on
the existing data from various
sensors.

Table 7: The analysis of calibration model and non-calibration model. The SSIM result is included in
the supplementary material.

a popular deblurring dataset Gopro [28]. We apply synthetic blur kernels on the ground-truth clear
images and form 320 training image pairs as the source domain, and randomly select other 8 training
pairs in the Gopro dataset as the target domain training set T train and 16 images to form the target
domain validation set T val. The other 50 images are used as the test set, with no overlapping on the
scene between the validation set, training set, and test set. For image dehazing, we utilize the real-
world indoor dehazing dataset, I-haze [3] as the target domain and the synthetic dataset RESIDE [23]
as the source domain. We employ the state-of-the-art dehazing method Dehazeformer [36] as the
backbone. We evaluate the performance of our result by comparing it with the fine-tuning pipeline
using two evaluation metrics, PSNR and SSIM. The quantitative results are illustrated in Table 6. Here,
“direct” means training on synthetic data and directly testing on real data without any fine-tuning. The
quantitative result demonstrates that our method has higher PSNR and SSIM than fine-tuning.

A.4 Additional Qualitative Result

We demonstrate additional qualitative results of our method against Blind2unblind [41] and trans-
fer [17] on smartphone dataset SIDD [2] and DLSR datasets ELD [42] and SID [5], as illustrated in
Figure 5. We can see that the error between the ground truth and our output noise-free image is much
smaller compared to all baseline methods.

We also demonstrate the qualitative result of our method compared to the fundamental baseline
fine-tuning on image denoising and image dehazing in figure 7. Our method is able to recover images
that are much cleaner and finer.

15



Ground truth [41] [17] Ours

0 1

Figure 5: The error map of our method compares against state-of-the-art approaches. The first
row is the result from the SIDD dataset, and the second row is the result from the SID dataset. We
can see that our method is able to generate the image with smaller errors and less noise compared to
previous work.

𝑭 𝑭’

MLP

(𝒑, 𝒔)

𝜷 𝜸

Figure 6: The illustration of modulation strategy. The camera-specific metadata p and s (denote
the phone code and ISO in our experiments) are transformed into a channel-wise scale β and shift
γ by MLP. Then the convolutional feature F in the network is multiplied by β and added by γ and
obtain F ′. Note that our modulation strategy is more flexible and can provide more hyper information
than the prior work [17, 13, 24, 33].
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Figure 7: Comparison between our framework and the fine-tuning pipeline on image deblurring
and image dehazing. Our method is able to generate an image that is much clearer. Zoom in for
details.
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Figure 8: The ablation study of the size of the validation set. Our dynamic validation set strategy
can overcome the overfitting problem when the size of the target domain dataset is extremely small.

A.5 Additional Quantitative Result

We demonstrate the SSIM value for section 4.3 and section 4.5. The results are demonstrated in
Table 7 and Table 8.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide experiment result to support the assumption.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details to reproduce the experiment in the first subsection of
experiments and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release the code in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the hyperparameters in the method and experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not include the error bar in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the compute resources in the experiment and supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are with NeurIPS code of ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper have no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mentioned them explicitly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23


	Introduction
	Related Work
	Raw Data Denoising
	Meta-transfer learning in low-level vision

	Method
	Adaptive Domain Learning Algorithm
	Target Domain Pretraining
	Source Domain Adaptive Learning

	Channel-wise Modulation Network

	Experiments
	Experimental Setup
	Results on Real Data
	Analysis of Calibration-related Methods
	Analysis on Useful and Harmful Data
	Ablation Study

	Conclusion
	Appendix
	Network Architecture
	Analysis on the Training Process
	Extention to Image Restoration Tasks
	Additional Qualitative Result
	Additional Quantitative Result


