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ABSTRACT

In multimodal alignment, meta-alignment and multi-level alignment play impor-
tant roles. However, it is challenging to integrate meta-alignment into a multi-level
multimodal alignment framework involving the operation on both reducible sub-
stances (e.g., molecules and spectrum) and irreducible elements (e.g., atoms and
spectral peaks). It not only inherits the challenges from meta-alignment (e.g., het-
erogeneity, loss of nuance, interference, and conflicting similarities) but also intro-
duces new challenges: navigating the interactions among reducible substances and
irreducible elements and recognizing objects at each level. Many existing align-
ment methods suffer from inaccurate component relation estimation and potential
bias, as they hold manual definitions of pair closeness. In response, we introduce
Multi-level Multimodal Alignment with Knowledge-Guided Instance-Wise Dis-
crimination (K-M3AID), an innovative approach that utilizes continuous knowl-
edge variables with inherent natural ordering for meta-alignment. K-M3AID ef-
fectively addresses these challenges by promoting both reliable distance learn-
ing and unbiased alignment within the context of cross-modality alignment for
multi-level structures. Extensive empirical studies conducted on complex molec-
ular structures underscore the substantial efficacy of K-M3AID. It significantly
improves matching accuracy while augmenting multi-level alignment capabili-
ties. This novel approach holds great promise for advancing alignment techniques
across diverse molecular contexts, offering a more robust foundation for ongoing
research in chemical analysis and beyond.

1 INTRODUCTION

Multimodal alignment (MMA), as a critical aspect of multimodal deep learning, aims at establishing
connections between contextually related information across heterogeneous modalities (such as text,
images, audio, video, sensor data, etc) (Liang et al. (2023); Jabeen et al. (2023)). Its subject may take
the form of either a reducible substance (RS) or an irreducible element (IE) within a reducible
substance. RS-MMA signifies a form of high-level alignment, exemplified by semantic alignment,
which enables models to extract and understand the rich semantics and meanings across different
modalities (Rocco et al. (2018); Wu et al. (2022); Yang et al. (2023); Liang et al. (2023)). IE-MMA,
in conjunction with meta-learning(Vilalta & Drissi (2002); Vanschoren (2018); Nichol et al. (2018)),
converges into multimodal meta-alignment (IE-Meta-MMA), which carries great potential for cog-
nitive processing, generalization, and the remarkable capacity to execute zero-shot tasks (Ma et al.
(2022)). While multi-level MMA (MLMMA) has been demonstrated for visual-textual alignment
(Hu et al. (2019); Khan et al. (2022)), these frameworks remain limited to the only combination
of multi-level RS-MMA, not involving IE-Meta-MMA. The potential integration of RS-MMA and
IE-Meta-MMA can result in a synthesis of the advantages and benefits offered by both approaches,
creating a unique paradigm of MLMMA.

Does the introduction of IE-Meta-MMA into MLMMA pose a significant challenge? The incorpo-
ration of IE-Meta-MMA into the MLMMA framework will not only inherit substantial challenges
from Meta-MMA, such as notable data heterogeneity, limited data annotation and labeling, loss of
nuance, interference, conflicting similarities, generality and transferability, but also introduce new
challenges: the dependence between RS-MMA and IE-Meta-MMA. A successful MLMMA model
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must attain the following capabilities: a) preform effective representation learning for multimodal
information with varied data formats, scales, and noise levels; b) proceed dynamic communication
between RS-MMA and IE-Meta-MMA that accommodate the dependence and interaction among
different level alignments; c) decipher complex relationships between RSs and IEs within dynamic
environments. MLMMA calls for algorithmic sophistication, interdisciplinary collaboration, and a
holistic understanding of data interplay.

MMA has also emerged as a catalyst to revolutionize the field of chemistry, particularly establishing
the correspondence between molecules and their functionalities (Finlayson et al. (2020)) or expres-
sions through a variety of spectroscopes (Yang et al. (2021)). In view of that molecules come into
existence by the union of atoms, these molecular-level interplays are categorized into RS-MMA.
Apparently, these interplays don’t offer profound atomic-level insights. A solid understanding of
atomic characteristics and functions with specific local contexts can enhance our understanding
of molecular-level phenomena. And these meta-knowledge can be generalized and applied to di-
verse situations with a high degree of precision, even in zero-shot scenarios. Potentially, it could
aid in solving isomer recognition, one of the most challenging tasks in chemistry (Bifulco et al.
(2007); Duddeck & Dı́az Gómez (2009); Hussaini et al. (2020)). Isomers typically fall into two
main categories: structural isomers, which share the same chemical formula but display distinct
atom connectivity, and spatial isomers, which share the same topology graph but diverge in their
three-dimensional arrangement (see Appendix D.1). These complex isomers require years of exper-
tises in chemical bonding and spatial relationships to distinguish. Definitely, this is an opportunity
to enhance the mentioned understanding of molecular structures, behaviors, and functions, through
MLMMA model, incorporating atomic-level alignment, referring to IE-Meta-MMA.

In view of these challenges and opportunities, we propose a novel framework K-M3AID (Multil-
Level Multimodal Alignment with Knowledge-Guided Instance-Wise Discrimination) incorporating
RS-MMA and IE-Meta-MMA, to solve challenging Nuclear Magnetic Resonance (NMR) (Slichter
(2013)) spectral alignment task in chemistry (see Figure 1). The overview of our K-M3AID frame-
work is a dual-coordinated contrastive learning architecture, which contains three key components:
RS-MMA Module, IE-Meta-MMA Module, and Communication Channel. RS-MMA module es-
tablishes the correspondences of molecules with their individual 13C NMR spectra. Each molecule,
with its unique arrangement of atoms and bonding patterns, gives rise to a distinct spectral signature.
Thus, we adapt simple cross entropy loss for contrastive learning in RS-MMA module. IE-Meta-
MMA module aligns each C atom within the molecules with their signals on the spectrum. In
contrast to the diverse and distinctive molecular spectral signatures, many atoms exhibit chemical
symmetric and magnetic equivalence within the same molecule, corresponding to the same signals.
Meanwhile, atoms with different local surroundings can still presents significant similarity on the
spectrum, which introduces heightened level of complexity. In view of these complex scenarios,
we come up with knowledge-guided instance wise discrimination based contrastive learning in IE-
Meta-MMA module (see Figure 2).

In summary, our contribution comprises three major aspects: Conceptually: We integrate IE-Meta-
MMA into MLMMA framework, which which facilitates rapid adaptation and enhances the effi-
ciency of learning for multimodal zero-shot tasks. Methodologically: We present knowledge-guided
instance wise discrimination for cross-modal contrastive learning, which take advantage of contin-
uous and domain-specific features with natural ordering. To the best of our knowledge, this is the
first to demonstrate knowledge-guided instance wise discrimination based cross-modal contrastive
learning. Empirically: We demonstrate the effectiveness of K-M3AID in multiple zero-shot tasks:
molecular and atomic alignment, spectrum to molecules retrieval, and isomer recognition.

2 RELATED WORK

In general, MLMMA involves three key techniques: multimodal contrastive learning, instance-wise
discrimination and meta-alignment.

Multimodal Contrastive Learning Mechanism: The paradigm, exemplified by models like CLIP
(Contrastive Language-Image Pretraining) (Radford et al. (2021); Li et al. (2021)), accommodates
scenarios featuring multiple data modalities. It simultaneously acquires representations for both
text and images through two pre-trained unimodal encoders, maps embeddings into a joint space
via complemented projection layers, and aligns them through contrastive loss. The overall picture
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Figure 1: The Architecture of K-M3AID. RSs refers to molecular spectrum and molecules, IEs refers
to peaks and atoms. S for spectrum embedding, G for graph embedding, P for peak embedding and
N for node embedding.

of CLIP is an end-to-end mechanism, which typically exhibits a symmetric gradient flow in the
training process.

Multimodal Instance-Wise Discrimination: Instance discrimination (Le-Khac et al. (2020);
Zolfaghari et al. (2021); Morgado et al. (2021); Liu et al. (2023)), as a form of self-supervised
learning, distinguishes individual instances without explicit class labels. Moving into multimodal
contrastive learning, it can be categorized into two general approaches: strong-pair-based (van den
Oord et al. (2019); Jaiswal et al. (2021); Liu et al. (2023)) and weak-pair-based (Salakhutdinov &
Hinton (2007); Frosst et al. (2019); Liang et al. (2021)) instance-wise discrimination. The strong-
pair-based NCE method enforces a precise one-to-one correspondence for real samples with artifi-
cially generated noise samples. An example of positive pair can be a noise-added picture of zebra
with the text description of zebra. Instead of one-to-one correspondences, weak-pair-based approach
relaxes the positive pairs to more boarder semantic correspondences. An example of positive pair
can be a picture of zebra with the text description of horse, but not with the text description of tiger.

Multimodal Meta-Alignment: As viewed through the lenses of intermediate-level alignment and
irreducible element-level alignment, multimodal meta-alignment represents a multifaceted approach
to ensuring organizational coherence and effectiveness (Ma et al. (2022)). Exemplary instances of
intermediate-level meta-alignment, as seen in works like Cross-Modal Generalization (Chen et al.
(2017); Li et al. (2020); Liang et al. (2021); Zhang et al. (2021)) and Livestreaming Product Recog-
nition (Yang et al. (2023)), typically function at both the objective level and the patch level. The
exploration of multimodal meta-alignment at the level of irreducible element remains relatively un-
derdeveloped in the current landscape.

3 OUR METHOD

In this section, we firstly present the architecture of K-M3AID framework, an end-to-end system
designed for MLMMA. Then, we introduce the constrastive learning loss in K-M3AID along with
the principles of Knowledge-Guided Instance-Wise Discrimination.

3.1 ARCHITECTURE

The K-M3AID framework is a dual-CLIP architecture (see Figure 1), which consists of three critical
components: RS-MMA module, IE-Meta-MMA module and comunication channel. The RS-MMA
module adapts a gradient-asymmetric CLIP mechanism. While two unimodal encoders work in con-
junction, only the from-scratch graph encoder (GIN, Xu et al. (2018)) undergoes dynamic training
throughout the process, the pre-trained spectrum encoder (Yang et al. (2021)) remains fixed. Both
encoders are complemented by dedicated projection layers, which facilitate the mapping of embed-
dings into a joint space. The IE-Meta-MMA module adapts a gradient-symmetric CLIP mechanism.
It is equipped with two from-scratch unimodal encoders, node encoder and peak encoder, as well as
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Figure 2: Knowledge Span Mechanism. Ki and Kj represents the corresponding knowledge span
label for ith and jth items.

their dedicated projection layers. The graph encoder in RS-MMA module shares part of the weights
with node encoder in IE-Meta-MMA module, serving as the communication channel. (See the detail
features of respective encoders in Appendix B)

3.2 CONTRASTIVE LEARNING LOSS

The synergy between these two modules is pivotal, collectively contributing to our loss function,
expressed as

L = CLRS + CLIE , (1)
where CLRS represents the contrastive learning loss in the RS-MMA module by Equation 3, and
CLIE the contrastive learning loss in IE-Meta-MMA module by Equation 6.

Let i denote the ith reducible substance, and j denote the jth reducible substance. Then xi denotes
the raw input in modality A for the ith reducible substance and yj denotes the raw input in modality
B for the jth reducible substance. Suppose fx (·) represent the encoder function for modality A, and
fy (·) denote the encoder function for modality B. In RS-MMA module, these two unimodal encoder
functions, should map xi and yj to a proximate location in the joint embedding (inter-modality) if
i = j.

CLRS(i) = log
eδ(xi,yi)∑

1≤j≤N

eδ(xi,yj)
(2)

= log(softmax(δ(xi, yi)) (3)

Where δ(xi, yj) =
(
fx(xi)

T · fy(yj)
)
, N is the total number of reducible substances from the

current batch.

Thus, the total CLRS is expressed as following:

CLRS =
1

N

∑
1≤i≤N

CLRS(i) (4)

This design for the loss aims to match the same reducible substance cross different modalities.

3.3 KNOWLEDGE-GUIDED INSTANCE WISE DISCRIMINATION CONTRASTIVE LEARNING

Knowledge Span, in which we define as some continuous and domain-specific feature exhibiting
natural ordering and offering guidance, can potentially offer valuable insights into the contrastive
learning process. As such, we propose a novel and general approach to contrastive learning called
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knowledge-guided instance-wise discrimination. This approach expands the scope of contrastive
learning from confined comparisons (pre-determined negative and positive pairs) to unrestricted
comparisons (no need for pre-determination). This extension removes the necessity of explicitly
defining such pairs, thus mitigating the potential introduction of human bias.

Suppose M is the set of irreducible elements in the reducible substances. A ⊂ Rd1 is the set of
tunable irreducible elements’ embeddings in modality A, B ⊂ Rd1 is the set of tuable irreducible
elements’ embeddings in modality B, and K ⊂ Rd2 is the corresponding fixed knowledge span
label that can guide the relative distance learning between components in A and B. Thus, the size
of A, B, K are |M|, respectively.

Let Ai be the ith irreducible element embedding of A, and Bj be the jth irreducible element embed-
ding of B. We define the distance function between Ai and Bj as dE(Ai,Bj) = Ai · Bj → R+, and
calibration function d(Ki,Kj) → R+ with a monotonic property and constraint

∑|M|
j=1 d(Ki,Kj) =

1, in which Ki and Kj serve as the designated Knowledge Span Label. We introduce the Knowledge
Span Guided Loss (KSGL) as follows:

KSGL(i) = −
∑

1≤j≤|M|

d(Ki,Kj) log
edE(Ai,Bj)∑

1≤k≤|M|

edE(Ai,Bk)
(5)

= −
∑

1≤j≤|M|

d(Ki,Kj) log(softmax(dE(Ai,Bj))) (6)

In particular, when it reaches ideal optimum, d(Ki,Kj) and dE(Ai,Bj) reaches the following rela-
tion:

d(Ki,Kj) = softmax(dE(Ai,Bj)) (7)

For detail proof, please refer to Appendix A As a result, the corresponding CLIE is expressed as
following:

CLIE =
1

|M|
∑

1≤i≤|M|

KSGL(i) (8)

3.4 CHOSEN KNOWLEDGE SPAN-PPM

13C NMR uncovers molecular structures by providing the chemical environments of carbon atoms
and their magnetic responses to external fields, and quantifies these features in parts per million
(ppm) relative to a reference compound like tetramethylsilane (TMS), simplifying comparisons
across experiments. Thus, continuous peak positions, measured in ppm, can serve as a robust knowl-
edge span to facilitate instance-wise discrimination for this contrastive learning task.

For IE-Meta-MMA module in the case of ppm guide, A is the set of learned node embeddings for
Carbon atoms and B is the set of learned peak embeddings for respective Carbon atoms, K is the set
of ppm value for each corresponding Carbon atom in A and B. Suppose ppmi is the ppm for the ith
Carbon Atom and ppmj is the corresponding ppm for jth peak. d(·, ·) is then defined as following:

d(Ki,Kj) = d(ppmi, ppmj) = softmax(
τ2

|ppmi − ppmj |+ τ1
) (9)

where τ1 and τ2 are temperature hyper-parameter. For further discussion of selection about τ1 and
τ2, please refer to Appendix C.2. Then, the final form of contrastive loss for irreducible atom level
according to Equation 6 is as following:

KSGL(i) = − 1

|M|
∑

1≤j≤|M|

d(ppmi, ppmj) log
edE(Ai,Bj)∑

1≤k≤|M| e
dE(Ai,Bk)

(10)
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND TASKS

In the training of K-M3AID model, the dataset comprises over 20,000 data points sourced from
nmrshiftdb2 (Steinbeck et al. (2003)). In this dataset, molecule are aligned with their respective
13C NMR spectra, and atomic alignments with peaks are also included. The quality of the dataset
was further validated by experienced organic chemists. In zero-shot isomer recognition task, the
dataset were never appeared in the training dataset, and each of the isomer groups contains at least
10 molecules, which are structural isomers or spatial isomers to each other (see details for isomers in
Appendix D). In the task of zero-shot molecular retrieval, 1000 spectra (never appeared in training
dataset) was used, the molecules were collected over 1 million from Pub-Chem (Kim et al. (2023)),
and randomly chosen for the experiments.

4.1.2 BALANCE OF CLRS AND CLIE

In order to gain insights into how the interplay between CLRS and CLIE impacts on both
molecular-level accuary in RS-MMA and atomic-level alignment accuracy in IE-Meta-MMA, we
introduced a parameter α to adjust the weights of CLRS and CLIE :

L = α ∗ CLRS + (1− α) ∗ CLIE , (11)

and conducted a series of studies regarding α, where 0 ≤ α ≤ 1 (see Table 1 and Appendix C.3).

To begin, when utilizing CLRS at full capacity with α = 1, the accuracy of molecular alignment
reaches approximately 94.6%. However, the accuracy of atomic alignment is approximately 17.6%,
as the CLIE for atomic alignment was omitted. Conversely, when neglecting CLRS with α = 0 and
relying solely on CLIE , the accuracy for molecular alignment experiences a dramatic decrease to
merely around 0.7%, but the accuracy for atomic alignment significantly improves to approximately
90.4%. These findings imply that the success of molecular alignment can offer certain degree of
guidance for atomic alignment, but the fulfillment of on atom alignment proves inadequate for di-
recting molecular alignment in the desired direction. Thus, we continue to alter the value of α from
0 to 1, the accuracy for molecule alignment undergoes an initial increase followed by a subsequent
decline, finding its optimal performance of 95.5% at α = 0.5. On the other hand, the accuracy
of atomic alignment remains stable at approximately 90% for α ranging from 0 to 0.2. However,
when α exceeds 0.2, a decrease can be observed on the accuracy of atomic alignment. It indicates
an excessive emphasis on molecular alignment leads to a decrease on the performance of atomic
alignment. Thus, we decide α = 0.2 is the optimal setting for the following experiments.

Table 1: Balancing CLRS and CLIE via α ablation study to evaluate accuracy with epochs = 200,
τ1 = 101 and τ2 = 10−5.

α 0.00 0.10 0.20 0.50 0.80 0.90 1.00
RS-MMA 0.7±0.3 94.3±0.1 94.7±0.4 95.5±0.4 95.1±0.2 94.8±0.5 94.6±0.4

IE-Meta-MMA 90.4±0.2 90.3±0.3 90.3±0.1 89.6±0.0 86.3±0.8 83.7±0.4 17.6±3.1

4.2 RESULTS OF K-M3AID

4.2.1 PERFORMANCE ON RS-MMA

K-M3AID model achieves an validation accuracy of above 94% for molecular-level alignments in
RS-MMA module after 200 epochs. Subsequently, we evaluate the capability of our trained model
by conducting retrieval of specific molecule based on the given spectrum (Spec2Mol) on various
dataset sizes (see Table 2). For a molecular dataset containing 100 entries, the K-M3AID model
consistently achieves approximately 95% accuracy in retrieval within the top 1%, 5%, 10%, and 25%
of results. For a molecular dataset with a size of 103, the K-M3AID model consistently achieves
retrieval accuracies more than 97.0% within the top 5%, 10%, and 25%. In the case of a molecular
dataset with a size of 104, the K-M3AID model maintains an accuracy level of 85.9% for the top
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Figure 3: Atomic Alignment in IE-Meta-MMA Module
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10% retrieval and approximately 93% for the top 25% retrieval. Notably, for a molecular dataset
with a size of up to 105 entries, the K-M3AID model attains an average accuracy as 53.1% for the
top 10% retrieval and 68.2% for the top 25% retrieval. These results set the K-M3AID model apart
from other methods, making it an exceptional choice in such scenarios.

Table 2: Zero-shot Spec2Mol task on molecular datasets with different number of molecules

Accuracy 102 103 104 105 106

Top 1(%) 95.4±0.6 77.3±2.5 44.7±3.3 16.2±3.6 4.4±2.3
Top 5(%) 100.0±0.2 97.3±0.4 77.5±2.7 40.2±4.8 12.3±4.8
Top 10(%) 100.0±0.1 99.1±0.5 85.9±1.9 53.1±4.2 18.5±5.3
Top 25(%) 100.0±0.1 99.8±0.3 93.3±0.8 68.2±3.1 29.7±6.4

4.2.2 PERFORMANCE ON IE-META-MMA

K-M3AID model achieves an validation accuracy of above 90% for atomic-level alignment in IE-
Meta-MMA module after 200 epochs as shown by Figure 3. Within the validation set from 5-fold
experiments, there are 12771 molecules containing fewer than 10 carbon atoms, 7043 molecules
with carbon atom counts between 10 and 20, and 1138 molecules with more than 20 carbon atoms.
Specifically, our model achieves 100% accuracy in 74.1% of the molecules containing fewer than
10 C atoms. For molecules with 10 to 20 C atoms, our model achieves 100% accuracy in 37.2%
of cases. Furthermore, it attains an accuracy exceeding 80% in more than 50% of the molecules
containing more than 20 C atoms.

In complex natural product molecules, it is a common situation that the local contents of some
atoms within the same molecule exhibit a high degree of similarity. It gives rise to challenges for
the atomic alignment, as some atoms correspond to ppm values in close proximity. However, our
K-M3AID model is capable of recognizing each of the atoms with effective learnt embeddings and
deciphering the correspondences among the atoms and the peaks at zero-shot. Two complex natural
product molecules with multiple rings (4 and 4, respectively) and multiple chiral centers (6 and 8,
respectively) are taken to showcase the effectiveness of atomic alignment (see Figure 4).

4.3 COMPARISON TO EXISTING INSTANCE WISE DISCRIMINATION APPROACHES

In K-M3AID, knowledge-guided instance-wise discrimination (K-ID) is adapted into IE-Meta-
MMA module. As strong-pair-based (SP-ID) and weak-pair-based (WP-ID) instance-wise discrim-
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ination are general apparoches in contrastive leraning, we replace K-ID with SP-ID and WP-ID to
conduct a comparative analysis for the impact of K-ID, SP-ID and WP-ID on the molecular and
atomic alignment. SP-ID confines the irreducible elements (atoms and peaks) have a precise match
across different modalities with the sole correct pairs established in the training process. However,
WP-ID extends the scope from one precise match to multiple matches within the chosen threshold
set for the distance of their corresponding ppm. In this context, the mathematical definition of strong
pair and weak pair are given as follows:

Strong Pair: |ppmi − ppmj | = 0, (12)

Weak Pair: |ppmi − ppmj | ≤ th, (13)

where Ai ∈ A, which stands for atoms; Pj ∈ P , which stands for peaks; th is the abbreviation of
threshold. In addition, ppmi is the ppm for the ith Carbon Atom and ppmj is the corresponding
ppm for jth peak.

Table 3: Validation accuracy of SP-ID-based and WP-ID-based models with epochs = 200 and
α = 0.2.

Method SP-ID WP-ID(th=1) WP-ID(th=2) WP-ID(th=5) WP-ID(th=10) K-ID
RS MMA 93.5±0.6 91.3±0.8 90.6±0.4 90.3±0.6 88.4±1.4 94.7±0.4
IE MMA 89.3±0.4 83.7±0.6 83.2±0.2 79.8±0.5 66.1±2.5 90.2±0.1

4.3.1 COMPARISON ON RS-MMA

K-ID outperforms SP-ID and WP-ID in molecular-level alignment in RS-MMA module (see Ta-
ble 3). K-ID enables the molecular-level alignment to achieve an validation accuracy rate around
94%, 1 to 6% higher than other approaches. Meanwhile, K-ID distinguishes itself prominently over
SP-ID and WP-ID approaches in the task of zero-shot isomer recognition by giving 100% accuracy
for multiple groups of isomers (see Table 4). Furthermore, as for zero-shot Spec2Mol task, along
the size of the molecular dataset increases, our K-ID-based model consistently exhibits superiority
over existing methods such as SP-ID and WP-ID (see Table 2 and Table 5). These empirical find-
ings underscore the benefits of K-ID based IE-Meta-MMA in the context of Spec2Mol, indicating
its positive impact to RS-MMA.

Table 4: Zero-Shot Isomer Recognition Accuracy with SP-ID-based, WP-ID-based and K-ID-based
models. For detail demo of C7H11NO3, please refer to Appendix D.2

Formula #Isomers SP-ID (%) WP-ID (th=1) (%) K-ID(%)
C4H6O 15 86.7 86.7 100.0
C9H9N 15 86.7 80.0 100.0

C7H11NO3 14 78.6 85.7 100.0
C6H13NO 23 91.3 91.3 100.0
C8H7NO4 13 92.3 84.6 100.0
C15H24O 16 93.8 93.8 100.0
C11H14 10 90.0 80.0 100.0

C7H15NO 14 85.7 85.7 100.0
C10H16O2 26 92.3 84.6 100.0
C8H15N 11 81.8 90.9 100.0

4.3.2 COMPARISON ON IE-META-MMA

K-ID pushes the validation accuracy of atomic-level alignment above 90%, 1 to 24% higher than SP-
ID and WP-ID approaches in IE-Meta-MMA module (see Table 2 and Table 3). This superiority
arises from the inherent limitations of both strong and weak pair definitions, which is failing to
precisely calibrate the diverse relationships among the elements. This finding is further supported by
the significant decreases in the accuracy of atomic alignment as the threshold of weak pair increases.
The limitation of either SP-ID or WP-ID becomes notably significant in the following two scenarios:
1) when local contents of some atoms exhibit a high degree of similarity; 2) when some atoms exhibit
symmetric mapping within the same molecule.
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Table 5: Zero-Shot Spec2Mol Accuracy with SP-ID and WP-ID on Pub-Chem Database

Method Accuracy 102 103 104 105 106

SP-ID

Top 1(%) 95.3±0.8 78.6±2.7 35.8±3.8 12.9±1.6 3.4±0.9
Top 5(%) 95.4±0.1 77.3±0.7 44.7±2.3 16.2±2.4 4.4±1.5
Top 10(%) 100.0±0.0 97.3±0.7 77.5±2.3 40.2±2.4 12.3±1.5
Top 25(%) 100.0±0.0 99.1±0.2 85.9±1.0 53.1±3.0 18.5±1.8

WP-ID(th=1)

Top 1(%) 92.9±0.6 71.7±1.0 32.7±1.3 10.7±0.5 3.6±0.7
Top 5(%) 99.6±0.1 93.8±0.8 63.9±1.5 29.3±1.5 10.2±1.2
Top 10(%) 99.9±0.0 97.1±0.4 76.8±0.7 39.3±0.9 15.7±1.5
Top 25(%) 100.0±0.0 99.1±0.2 88.2±0.6 55.7±1.1 26.5±2.0
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Br Br

Br Br0
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45
6

Acc. 100.0% Acc. 57.1%

23
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K-ID SP-ID PPM differenceMolecule WP-ID (th=1)
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(B)

Acc. 57.1%

Figure 5: Case study of IE-Meta-MMA. Yellow cells in the PPM differerence represent the ground
truth alignment, and red cross represents the wrong alignment.

In the former scenario, exemplified by molecular A in Figure 5, atom 0 and atom 4 are secondary
carbons (attaching to 2 carbons and 2 hydrogens), nearly symmetric on the same 5-member ring,
corresponding to the ppm of 27.0 and 29.8, respectively. The similar local content of these two
atoms fools SP-ID and WP-ID. Meanwhile, atom 1 and atom 3 are tertiary carbons (attaching to 3
carbons and 1 hydrogen), nearly symmetric on the same 5-member ring, corresponding to the ppm
of 54.5 and 44.1, respectively. Only WP-ID fails to distinguish and align them. In the later sce-
nario, exemplified by molecular B in Figure 5, there exist instances one-to-one and one-to-many for
atomic-level alignment within the molecular configuration. Both SP-ID and WP-ID method mis-
aligns certain atoms with other atoms with small ppm differences (less than 3 ppm in this case),
rather than aligning them with themselves or their symmetric counterparts. In contrast, K-ID ap-
proach excels in both scenario by discerning each one of the atoms, which is attributed to the full
utilization of ppm difference distance learning (see additional examples in Appendix E).

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced the Knowledge-Guided Multi-Level Multimodal Alignment with
Instance-Wise Discrimination (K-M3AID) framework, incorporating RS-MMA and IE-Meta-
MMA. Its effectiveness was demonstrated through multiple zero-shot tasks: molecular and atomic
alignment, Spec2Mol and isomer recognition. And we highlighted the significance of knowledge-
guided instance-wise discrimination via a few metrics and case studies. Furthermore, we presented
experiments aimed at accommodating the dynamic interactions between RS-MMA and IE-Meta-
MMA. While our framework achieves an atomic-level alignment overall accuracy of 100% for 55%
of cases, it drops significantly to 9.8% when dealing with molecules containing more than 20 car-
bon atoms. Currently, our graph encoder is implemented on 2D-molecular graph with basic node
and edge features, potentially limiting its ability to produce precise node embeddings to distinguish
atoms in the extremely complex scenarios. In the future developments, the incorporation of a 3D-
based graph holds a great potential to improve performance in this regard.
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Appendix

A REVISITING KNOWLEDGE SPAN GUIDED LOSS

Theorem 1 (Knowledge Span Guided Loss). Suppose M is the set of irreducible elements in the
reducible substances. A ⊂ Rd1 is the set of tunable irreducible elements’ embeddings in modality
A, B ⊂ Rd1 is the set of tuable irreducible elements’ embeddings in modality B, and K ⊂ Rd2 is
the corresponding fixed knowledge span label that can guide the relative distance learning between
components in A and B. Thus, the size of A, B, K are |M|, respectively.

Let Ai be the ith irreducible element embedding of A, and Bj be the jth irreducible element embed-
ding of B. We define the distance function between Ai and Bj as dE(Ai,Bj) = Ai · Bj → R+, and
calibration function d(Ki,Kj) → R+ with a monotonic property and constraint

∑|M|
j=1 d(Ki,Kj) =

1, in which Ki and Kj serve as the designated Knowledge Span Label. We introduce the Knowledge
Span Guided Loss (KSGL) as follows:

KSGL(i) = −
∑

1≤j≤|M|

d(Ki,Kj) log
edE(Ai,Bj)∑

1≤k≤|M|

edE(Ai,Bk)
(A.1)

= −
∑

1≤j≤|M|

d(Ki,Kj) log(softmax(dE(Ai,Bj))) (A.2)

Proof. In order to optimize the loss KSGL(i), we need to set the following partial derivative to be
0 for each dE(Ai,Bj) with 1 ≤ j ≤ |M|. Here are the detail process:

∂KSGL(i)

∂dE(Ai,Bj)
=

∂

∂dE(Ai,Bj)

(
−d(Ki,Kj) log

edE(Ai,Bj)

edE(Ai,Bj) +
∑

k ̸=j e
dE(Ai,Bk)

)
︸ ︷︷ ︸

When the numerator includes edE(Ai,Bj)

+
∂

∂dE(Ai,Bj)

∑
k ̸=j

−d(Ki,Kk) log
edE(Ai,Bk)

edE(Ai,Bj) +
∑

k ̸=j e
dE(Ai,Bk)


︸ ︷︷ ︸

When the numerator does not include edE(Ai,Bj)

= −(d(Ki,Kj)− d(Ki,Kj) · softmax(dE(Ai,Bj))

−
∑
k ̸=j

d(Ki,Kk) · softmax(dE(Ai,Bj))

= −

d(Ki,Kj)− (d(Ki,Kj) +
∑
k ̸=j

d(Ki,Kk)) · softmax(dE(Ai,Bj))


Since

∑|M|
l=1 d(Ki,Kl) = 1, we can further simplify it as

∂KSGL(i)

∂dE(Ai,Bj)
= −(d(Ki,Kj)− softmax(dE(Ai,Bj))

In order to optimize, we need to set the respective partial derivative to be 0:

∂KSGL(i)

∂dE(Ai,Bj)
= −(d(Ki,Kj)− softmax(dE(Ai,Bj)) = 0

In addition, the corresponding second partial derivative denoted as ∂KSGL(i)
∂d2

E(Ai,Bj)
manifests as follows:

∂KSGL(i)

∂d2E(Ai,Bj)
= softmax(dE(Ai,Bj))(1− softmax(dE(Ai,Bj)))

12
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As softmax(dE(Ai,Bj)) takes values within the open interval (0,1), it follows that ∂KSGL(i)
∂d2

E(Ai,Bj)
is

always positive. Consequently, the pinnacle of optimization emerges as a global minimum.
Furthermore, when it comes to optimum:

d(Ki,Kj) = softmax(dE(Ai,Bj))

dE(Ai,Bj) = log(d(Ki,Kj)) + log

 ∑
1≤l≤|M|

edE(Ai,Bl)


It is easy to show that when it reaches optimum, dE(Ai, Bj) is consistent with Knowledge Span
Guidance d(Ki,Kj). Without loss of generosity, suppose d(Ki,Kj) > d(Ki,Kj′) :

dE(Ai,Bj)− dE(Ai,Bj′) = log(d(Ki,Kj)) + log

 ∑
1≤l≤|M|

edE(Ai,Bl)


−

log(d(Ki,Kj′)) + log

 ∑
1≤l≤|M|

edE(Ai,Bl)


= log(d(Ki,Kj))− log(d(Ki,Kj′))

= log

(
d(Ki,Kj)

d(Ki,Kj′)

)
> 0

B ENCODER

The following Table B.1 explains the features used in respective encoders.

Table B.1: Features code for respective encoders in K-M3AID

Encoder Feature Data type

Graph/Node

Atomic Number (node feature) Categorical
Chiral tag (node feature) Categorical
Hybridization (node feature) Categorical
Bond type (edge feature) Categorical
Bond direction (edge feature) Categorical

Spectrum peak intensity Continuous value
peak position Continuous value

Peak peak multiplicity Categorical
peak position Continuous value

C FURTHER ABLATION STUDY ABOUT PARAMETER CHOICES

C.1 ABLATION STUDY ABOUT THE CHOICE OF GIN STRUCTURE AND PROJECTION.

We choose GIN(Xu et al. (2018)) as our graph encoder. By Table C.1, ”GIN Depth” signifies the
number of layers in the GIN, ”GIN Embedding Dim” denotes the dimensionality of the embeddings
generated by the GIN model, and ”Projection Dim” indicates the resulting dimensionality after
transforming the GIN-produced embeddings. In particular, the best performance is observed when
the GIN model has 5 layers, GIN Embedding Dim is 128, and projection Dim is 512.

C.2 ABLATION STUDY ABOUT THE CHOICE OF τ1 AND τ2 .

We also conducted a further ablation study exploring different combinations of τ1 and τ2 as shown
in Table C.2. For this analysis, we fixed the GIN depth at 5, set the GIN embedding dimensionality

13
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Table C.1: GIN structure and projection ablation study

GIN Depth GIN Embedding Dim Projection Dim Validation accuracy (%)
3 128 128 86.6
3 256 128 86.8
3 512 128 86.3
5 128 128 89.4
5 256 128 89.6
5 512 128 89.3
3 128 256 86.6
3 256 256 86.8
3 512 256 86.3
5 128 256 89.4
5 256 256 89.6
5 512 256 89.3
3 128 512 86.6
3 256 512 86.5
3 512 512 86.2
5 32 512 84.0
5 64 512 87.5
5 128 512 90.0
5 256 512 89.4
5 512 512 88.9

to 128, and maintained a projection dimension of 512. Additionaly, the ratio of CLRS referred by
Equation 4 to CLIE referred by Equation 8 is 1:1. We observe that the best performance is achieved
when τ1 = 10−5 and τ2 = 101.

Table C.2: Ablation Study about tau1 and tau2. We have 5 layers and 128 dimension as the final
representation. In the loss function, CLM : CLA = 1:1 after 200 epochs

τ1 τ2 Molecular Alignment Accuracy (%) Atom Alignment Accuracy (%)
10−1 101 94.9 89.6
10−1 102 95.2 89.8
10−1 103 95.6 89.6
10−1 104 95.1 88.9
10−1 105 95.0 89.3
10−2 101 95.5 89.8
10−2 102 94.8 89.8
10−2 103 95.4 88.8
10−2 104 94.8 87.2
10−2 105 95.1 89.4
10−3 101 95.0 89.2
10−3 102 95.1 89.1
10−3 103 95.2 89.0
10−3 104 95.3 89.7
10−3 105 95.0 89.4
10−4 101 95.0 89.8
10−4 102 95.1 89.7
10−4 103 95.0 89.8
10−4 104 95.3 89.5
10−4 105 95.1 88.4
10−5 101 95.4 89.9
10−5 102 95.0 89.5
10−5 103 95.8 89.6
10−5 104 95.2 89.7
10−5 105 95.0 89.7
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C.3 FURTHER ABLATION STUDY OF ALPHA

As mentioned previously, in order to gain insights into how the interplay between CLRS and CLIE

impacts on both molecular-level accuary in RS-MMA and atomic-level alignment accuracy in IE-
Meta-MMA, we introduced a parameter α to adjust the weights of CLRS and CLIE by Equation 11.
The Figure C.1 about alpha shows more configuration about alpha.

100

95

90

85

80

0

5

10

15

Figure C.1: alpha change

D MORE DISCUSSION ABOUT ISOMERS

D.1 BRIEF INTRODUCTION ABOUT ISOMER CATEGORY

Isomers typically fall into two main categories: constitutional (structural) isomers, which share the
same chemical formula but display distinct atom connectivity, and stereoisomers (spatial isomers),
which share the same topology graph but diverge in their three-dimensional arrangement (see Fig-
ure D.1). Constitutional isomers are NMR-variant, meaning that different isomers produce distinct
NMR spectrum. In the sub-categories of stereoisomers, enantiomers are NMR-variant, but diastere-
omers and cis-trans isomers are NMR-variant.

D.2 ISOMERS GROUP FOR C7H11NO3

Here is an example for isomer groups. In this isomer group of C7H11NO3, they all share the same
chemical formula in Figure D.2. The first 10 are constitutional (structural) isomers of each other
(cycled green), the last 4 are two pairs of diastereomers (cycled brown). Each of these isomers
corresponds to a distinct NMR spectrum.

E EXTRA CASE STUDIES OF IE-META-MMA

In molecular A in Figure E.1, atom 13 and atom 14 are tertiary carbons (attaching to 3 carbons and 1
hydrogen) and on the same 5-member ring, corresponding to the ppm of 34.3 and 35.6, respectively.
The similar local content of these two atoms fools SP-ID and WP-ID. In addition, WP-ID fails with
more atomic alignments. The molecular B is chemical symmetric regarding atom 0. Thus, atom 1
and atom 3 correspond to the same peak on the spectra. The ppm of atom 1 and atom 3 is 114.2, the
ppm of atom 2 and atom 4 is 110.0. While there is 4.2 difference, SP-ID and WP-ID fails to pick up
right alignment for atom 1 and atom 3. In contrast, K-ID succeed to align the atoms with peaks in
both molecules.
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Figure E.1: Extra case studies of IE-Meta-MMA.Yellow cells in the PPM differerence represent the
ground truth alignment, and red cross represents the wrong alignment.
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