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Abstract

Hallucinations in large language models (LLMs) pose significant safety concerns
that impede their broader deployment. Recent research in hallucination detection
has demonstrated that LLMs’ internal representations contain truthfulness hints,
which can be harnessed for detector training. However, the performance of these
detectors is heavily dependent on the internal representations of predetermined
tokens, fluctuating considerably when working on free-form generations with
varying lengths and sparse distributions of hallucinated entities. To address this,
we propose HaMI, a novel approach that enables robust detection of hallucinations
through adaptive selection and learning of critical tokens that are most indicative
of hallucinations. We achieve this robustness by an innovative formulation of the
Hallucination detection task as Multiple Instance (HaMI) learning over token-
level representations within a sequence, thereby facilitating a joint optimisation
of token selection and hallucination detection on generation sequences of diverse
forms. Comprehensive experimental results on four hallucination benchmarks show
that HaMI significantly outperforms existing state-of-the-art approaches. Code is
available at https://github.com/mala-lab/HaMI.

1 Introduction

Recent progress in Large Language Models (LLMs) has demonstrated impressive capabilities across
a wide range of applications. However, the ever-growing popularity of LLMs also gives rise to
concerns about the reliability of their outputs [12, 22]. Some research has indicated that LLMs are
susceptible to hallucinations, which can be described as unfaithful or incorrect generations [2, 18, 33].
This tendency not only impedes the broader applications of LLMs but also poses potential safety risks,
especially in high-stake fields such as legal and medical services. Therefore, the reliable detection of
hallucinations is critical for the safe deployment of LLMs.

Various approaches have been developed to detect hallucinations. Recent studies indicate that predic-
tive uncertainty can serve as useful detection features [9, 15, 25], as predictions with low confidence
often correlate with the presence of hallucinated content. Some research focuses on the evaluation
of a single generation [6, 34] while some harness the information contained in multiple generations.
Compared to single-generation methods, approaches utilising multiple generations demonstrate
greater effectiveness since they capture a broader set of hallucination signals. Such signals include
semantic consistency [17] for the repeated queries, as well as behaviour inconsistency when LLMs
are presented with a set of unrelated follow-up questions [38] after the initial question. Neverthe-
less, these methods are mainly based on the final generation output, rendering them ineffective in
leveraging important semantics in the internal representations.
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In parallel, another line of research focuses on the utilisation of the internal representations of LLMs
for hallucination detection [5, 32]. These internal representations can encode information about the
truthfulness direction of the generations. Motivated by this, great efforts have been made to explore
the characteristics of these representations, most commonly by training a binary classifier on them.
Various supervision signals, including accuracy labels [30], converted semantic entropy labels [26],
and eigenvalue-related labels [14], have been harnessed to train the classifier for detection tasks. One
major challenge for these methods is that a majority of tokens in an incorrect/hallucinated response
may not contribute to truthfulness. To address this issue, most methods utilise predetermined tokens,
such as the first generated token, the last generated token, or the one before the last [7, 21, 52].
However, the exact location of the most indicative tokens for hallucination can vary significantly, as
illustrated in Figure 1, since the generation responses are of free-form with varying lengths and have
sparse distributions of hallucinated entities. As a result, they can overlook important tokens where
hallucinated information is actually concentrated.

Figure 1: Tokens that contain the most sufficient
information related to correctness may appear at
various positions within the sequence.

To address this challenge, we propose HaMI, namely,
Hallucination detection as Multiple Instance learn-
ing, a novel approach that jointly optimises token
selection and hallucination detection in an end-to-end
fashion. The joint optimisation enables adaptive to-
ken selection from internal state representations for
stable and accurate hallucination detection on gen-
eration responses of varying length. In HaMI, we
reformulate the task as a multiple instance learning
(MIL) problem [10], where each response sequence
is treated as a bag of token instances, with a bag-level
label as either hallucinated (positive) or trustworthy
(negative), and the objective becomes binary classifi-
cation of the token bags. This way takes advantage of
the fact that only a few token instances in the positive
bag are positive since hallucinated content typically manifests in only a small subset of tokens within
a sequence, whereas all token instances in the negative bag are always negative. In doing so, the MIL
approach enables the exploitation of the hallucination labels at the sequence (bag) level to adaptively
select the most responsive tokens for sequence-level hallucination detection.

To be more specific, LLMs are first prompted to generate response sequences with varying length.
The MIL-driven hallucination detector is then optimised in HaMI to assign hallucination scores
to all individual token instances and adaptively select the most indicative tokens in both positive
and negative bags for the sequence-level prediction. The optimisation results in a detector that can
distinguish the most positive hallucinated token instances from the hard negative token instances (i.e.,
the tokens that have the highest hallucination scores in a negative bag). Additionally, recognising
that predictive uncertainty serves as an important indicator of correctness, we further propose a
representation enhancement module in HaMI, where we integrate multiple levels of uncertainty
information into the original representation space for more effective training of our HaMI detector.

In summary, our contributions are as follows:

• We propose HaMI, a novel MIL-based framework for hallucination detection, which enables
an end-to-end joint optimisation of token selection and hallucination detection. This warrants
adaptive selection of hallucinated tokens that are optimal for the learned detector, effectively
mitigating the performance instability on response generations of varying length. To our
best knowledge, this is the first approach allowing such a joint optimisation.

• We further introduce a module that incorporates internal representations with uncertainty
scores to provide more indications of hallucination for the joint optimisation in HaMI.

• Comprehensive empirical results with widely adopted LLMs on four popular benchmark
datasets show that HaMI can significantly outperform state-of-the-art (SotA) methods.

2 Related Work

The term hallucination, under the closed-book setting, can refer to unfaithful or fabricated generations
[22, 50]. Having gained wide interest, hallucination detection is crucial for LLMs to maintain high
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reliability in various specific tasks. These methods can be categorised into two main lines: uncertainty
measurement and internal representation analysis.

Uncertainty Measurement-based Methods. Uncertainty measurement has been widely explored
for hallucination detection. Some research focuses on token-level uncertainty [15, 40, 46] with the
assumption that low predictive logits or high entropy over tokens’ predictive distribution indicate a
high possibility of hallucination. Some studies target sentence-level uncertainty to capture a more
holistic view of the whole response. The uncertainty can be measured by (weighted) aggregation of
all token logits, such as Perplexity [42], Mars [6] and G-NLL [3], or obtained by directly instructing
LLMs to express the truthfulness of their generations with simple but effective prompts [25,31,34,51].

To further enrich semantic understanding and improve the detection accuracy, researchers also
explore LLMs’ behaviour among multiple generations [13, 36]. For example, Farquhar et al. [17]
propose Semantic Entropy as an evaluation of semantic consistency among multiple generations
for hallucination detection, while Pacchiardi et al. [38] present that behaviour inconsistency over
predefined follow-up unrelated questions can also indicate the correctness of the response to the
initial question. Although effective, the performance of these methods relies on external tools and
ignores the important semantics embedded in the internal representations of LLMs.

Internal Representation-based Methods. Recently, a branch of work suggests that the internal
representations of LLMs encode more knowledge than they express and can reveal truthfulness
direction [8,19,44,49]. The majority of this line employs probes [4] to better understand head-wise or
layer-wise representations and predict the correctness of generations [9, 11, 30, 35]. Recent research
extends these methods by proposing new supervision signals, such as an automated membership
estimation score presented in HaloScope [14] and the aforementioned semantic entropy value [26],
which has been proven to be preferable to accuracy labels for supervised training. Most of these works
leverage predefined token representations, but the truthfulness information is concentrated in specific
tokens. Some research attempts to prompt an LLM to find the “exact token” in the sequence [37],
but the reliability of detection is greatly influenced by the capability of the employed LLM. Unlike
existing methods that separate token selection and hallucination detection into two stages and require
external assistance, we propose to train a ranking model to automatically select the critical tokens for
hallucination detection in an end-to-end manner.

3 Preliminaries

Given a sequence of input tokens x = {x1, x2, . . . , xm} consisting of a specific question q, an
LLM will generate a sequence of tokens y = {y1, y2, . . . , yt}. Generally, each token yi∈{1,2,...,t}
is decoded from the next predictive distribution over the model’s vocabulary set V , formulated as
yi = argmaxy∈V P (y|y<i,x), and the predictive probability is denoted by pi for short. By accessing
the internal states of the model, we can extract the internal representation hi,l ∈ Rd at layer l for each
token yi, where d is decided by the dimensions of the internal states of the LLM. The correctness of
generated response is evaluated by GPT-4.1 [1] with label z ∈ {0, 1}.

Given a datset D = {(qn, an)}Nn=1, where {qn}Nn=1 and {an}Nn=1 are questions and ground-truth
answers respectively, LLMs will generate answers decoded from a token list yn accompanied
with predictive probabilities, hidden representations hn and correctness labels zn ∈ {0, 1}. The
representation space for all samples is denoted as H = {hn}Nn=1 Our MIL-based hallucination
detection is to identify the most representative tokens in incorrect responses and the hard negative
tokens (i.e., the most likely hallucinated tokens within correct responses) that are optimal for training
the subsequent detector, i.e., a joint optimisation of token selection and hallucination detection.

4 Methodology

Our proposed HaMI aims to distinguish hallucination-free and hallucination-containing text genera-
tions by adaptive token selection that jointly optimises token selection and hallucination detection.
Additionally, we introduce a predictive uncertainty-based module to integrate more hallucination
features in HaMI and enhance its discriminative capability. The overall framework is presented in
Figure 2. Below we introduce these two modules in detail.
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Figure 2: The framework of our proposed HaMI. The LLM is prompted to generate answer tokens accompanied
by token representations hi. The network receives sequences of token representations for both positive B+ and
negative B− bags as inputs at the training stage. The hallucination detector assigns a hallucination score to each
token instance. We choose the top k largest scores from both bags, subsequently maximising the discriminative
margin between them by minimising a MIL loss as described in Eq. 2. Given the sequential nature of the
generations, a constraint on the smoothness of hallucination scores of adjacent tokens is also added to HaMI.

4.1 MIL-driven Adaptive Token Selection

For a given sentence, its correctness is often determined by just a few words, such as noun entities [12],
suggesting that truthfulness information may be encoded in the internal representations of specific
tokens. Nevertheless, the correctness label is typically assigned to the entire sequence. The key idea
of our approach is to adaptively identify the most salient tokens, upon which we can train a reliable
hallucination detector. To this end, we introduce Multiple Instance Learning (MIL) to this domain.

In MIL, instead of finding the classification boundary for samples with different identities, it tries
to distinguish between the hard instance from sample bags of various categories. To make it clear,
there are positive bags and negative bags containing multiple instances. All the instances in negative
bags are negative while only a few instances in positive bags are positive. MIL aims to separate the
positive instances and the hard negative instances from negative bags. This objective aligns with our
assumption that there are only several tokens containing information of hallucination.

Therefore, we reformulate hallucination detection with adaptive token selection as an MIL problem.
Particularly, the generated sequence can be regarded as a bag of tokens. Generations without
hallucinations are labelled as negative bags B− (label ‘0’), while those with hallucinations are
labelled as positive bags B+ (label ‘1’). The representations of the positive and negative sequences
are denoted as h+ and h− respectively and h = {hi}ti=1. Intuitively, the detector is expected to
assign higher scores to token instances from the positive bag compared to those from the negative
bag. Given the hallucination sparsity insight mentioned before, we choose the token instances with
the top k highest hallucination scores as the salient tokens in each sequence, which can be defined as

Itop-k = {i1, i2, . . . , ik} s.t.
{

fθ(hi1) ≥ fθ(hi2) ≥ · · · ≥ fθ(hik)
fθ(hik) ≥ fθ(hij ), ∀ij /∈ Itop-k

(1)

where ik ∈ {1, 2, · · · , t}, and fθ is the hallucination detector we aim to learn with the parameters
θ, as presented in Figure 2. As such, we are able to locate the most hallucinated token instances in
the positive bag and the top hard negative token instances resembling a hallucination in the negative
bag as the salient tokens. Our approach then seeks to distinguish between positive and negative bags
by maximising the distance between the selected token instances from these two categories in the
representation space. The training MIL objective can be formulated as follows:

LMIL = 1− ∥1
k

∑
i+∈I+

top-k

fθ(hi+)∥2 + ∥1
k

∑
i−∈I−

top-k

fθ(hi−)∥2, (2)
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where hi+ is selected from h+
n ∈ B+ and hi− is from h−

n ∈ B−, and I+
top-k and I−

top-k are index sets
for tokens in sequences from B+ and B− respectively. In doing so, the adaptive token selection can
mitigate the limitations caused by predefined token location.

Note that the next token is conditioned on all previous tokens, so the token generation process contains
a sequential nature. As depicted in Figure 2, on the same side of the peak, the hallucination scores for
two adjacent tokens tend to be more similar. Therefore, we exploit sequential smoothness via the
following loss:

LSmooth = (fθ(hi)− fθ(hi−1))
2, (3)

where i ∈ {2, · · · , t}. Through this, we aim to ensure the consistency of the hallucination scores of
neighbouring tokens. The effectiveness of LSmooth is discussed in Appendix B in detail. Finally,
HaMI is optimised by minimising the following overall loss:

LATS = LMIL + LSmooth. (4)

4.2 Augmenting Internal State Representations with Predictive Uncertainty

Many studies have demonstrated that both uncertainty measurements and internal representations can
capture truthfulness-related information, motivating us to explore the synergy of them to enhance
hallucination detection. Moreover, internal states encode broader linguistic patterns than truthfulness,
so it is intuitive to investigate whether integrating uncertainty can act as a source of truthfulness
to amplify the internal representations. In this work, we seek to determine whether incorporating
uncertainty metrics into the original token representation space can enhance their discriminative
capability in identifying hallucinations.

The collection of predictive uncertainty measurements can be categorised into three levels: i) token-
level uncertainty, i.e., predictive probabilities:

P t
uncertainty = P (y|y<i,x), (5)

where x are prompt tokens, y are generated tokens and i ∈ {1, 2, · · · , t}; ii) sentence-level perplexity,
which is monotonically related to the mean of the negative log-likelihood of the sequence:

P s
uncertainty = − 1

T

T∑
t=1

logP (y|y<i,x), (6)

and iii) semantic consistency across multiple samples, where the uncertainty value can be quantified by
the number of semantic-equivalence generations over the whole generations based on the entailment
results. We choose Semantic Entropy here [17]. Specifically,

P c
uncertainty =

M∑
1

Ic = cm
M

, (7)

where M is the total number of generations, cm is the identified cluster and Ic is the assigned cluster
identity of a given sample.

These uncertainty metrics can be directly leveraged for hallucination detection, and on average, the
semantic consistency outperforms the other two metrics. However, it requires more computational
cost while the other two metrics can obtained from just one generation as long as we can access the
internal states of LLMs. To augment the internal representations with the uncertainty information, we
define the final input representation for each token as follows:

h′ = (1 + λ · Puncertainty) · h, (8)

where Puncertainty can be instantiated by one of the above three measurements, and λ is used to control
the impact of uncertainty metrics. The improvements gained by various uncertainty measurements
and the choice of λ are evaluated and discussed in Section 5.3.

5 Experiments

Datasets and Models. We evaluate our method on four popular benchmark datasets across a
range of question-answering (QA) domains, including (1) Trivia QA [24], a relatively complicated
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confabulation QA datasets; (2) Stanford Question Answering Dataset (SQuAD for short) [41], which
is based on Wikipedia and generated by humans through crowdsourcing; (3) Natural Questions
(denoted as NQ) [28], containing search information from real users on Google search and (4) a
biomedical QA corpus BioASQ [27]. For each dataset, we randomly extract 2, 000 QA pairs for
training and 800 pairs for testing. For multi-sampling approaches, we prompt LLMs six times
for each question for the test set generation. Following [17], we have a total of 500 questions
randomly sampled from the generated test set, with approximately 400 questions retained as the
final inputs at the testing stage for evaluation. The refined set from the remaining 300 QA pairs
is used as a validation set for selecting the optimal layer for representation extraction. We employ
representative open-sourced LLMs, LLaMA [16, 47] and Mistral family [23], and evaluate our
approach on LLaMA-3.1-8B and Mistral-Nemo-Instruct (12B), as well as a larger version of LLaMA,
namely LLaMA-3.3-Instruct-70B, which is deployed with 8-bit quantisation [48]. All answers are
generated under the temperature of 0.5 and with context-free zero-shot prompts. Please see more
details for the setup in Appendix A.2.

Baselines. We compare our method with a series of state-of-the-art (SotA) methods, covering both
uncertainty-based methods and internal representation-based methods. The uncertainty-based meth-
ods include: p(True) [25], that asks LLMs to express the correctness of given answers themselves;
Perplexity [42], which is based on Eq. 6; Semantic Entropy (SE) [17], semantic-equivalence mea-
surement across multiple samples, where GPT-3.5 is used for entailment evaluation; MARS [6], that
performs a weighted aggregation of token logits, and its enhanced version (MARS-SE), augmented
with semantic entropy. For internal representation-based methods, probing classifiers with various
supervision signals are included: CCS [9], utilising contrast-consistent discovering for correctness
probability measurements; SAPLMA [5], trained with correctness labels; HaloScope [14], which
proposes an automated membership estimation score and converts the score to binary labels for
classification; CED [29], exploiting specially designed auxiliary and oracle samples to enhance the
distinction between in-distribution and out-of-distribution data; and LLM-Check [45], employing
token logits and eigenvalue analysis of internal representation for detection, from which we choose
the best-performing hidden state (LLM-Check-h) and attention-based variations (LLM-Check-a).
All these methods are based on the last generated token as settled in their original paper. Notably,
SAPLMA utilises a four-layer multilayer perception (MLP) with ReLU non-linearity while the other
methods, including HaMI, employ a detector with two layers. We also assess the performance of
HaMI using varying number of layers in Section 5.3.

Different variants of HaMI are evaluated in our experiments depending on the instantiation of Eq. 8.
HaMI uses P c

uncertainty in Eq. 8 by default due to its superior performance, while HaMI∗ is the basic
variant of HaMI that does not involve Eq. 8, using solely the original features. λ in Eq. 8 is set to 1.0
by default. Unless otherwise specified, the hidden dimension of the two-layer MLP is set to 256. k in
Eq. 1 is dynamically determined by the generated token length (l), defined as k = ⌊0.1× l⌋+ 1.

Evaluation. Following [17, 42], we evaluate the model’s capability for hallucination detection by
calculating the area under the receiver operating characteristic curve (AUROC). The ground-truth
labels indicating the correctness are given by GPT-4.1 [1], which is instructed to determine if the
answer is correct or not based on the consistency between generated answers and gold answers and
its own knowledge. The prompt template follows [17] (see more details in Appendix A.2). Note
that since GPT-4.1 makes mistakes mostly for the positive samples, we ask GPT-4.1 to rejudge
samples labelled as positive and discard samples if the result is inconsistent with the first result. For
this reason, the final sizes of the training and testing sets vary around 1, 900 and 400, respectively.
Additionally, we also conduct experiments where answers are evaluated with BLEURT score [43].
Results are presented in Appendix D.

5.1 Main Results

In Table 1, we evaluate our proposed HaMI by comparing it with eight SotA competing detection
methods on four diverse QA datasets in LLMs from two different families of various sizes. As
depicted in the table, our approach achieves superior performance compared with other methods in all
three LLMs. In particular, HaMI∗ consistently and substantially outperforms all methods that do not
require assistance from external LLMs, including Perplexity, CCS, SAPLMA, HaloScope, CED, and
LLM-Check. When compared to approaches that leverage LLMs at the post-generation stage, HaMI∗
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LLaMA-3.1-8B Mistral-Nemo-Instruct (12B) LLaMA-3.3-Instruct-70B
Trivia QA SQuAD NQ BioASQ Trivia QA SQuAD NQ BioASQ Trivia QA SQuAD NQ BioASQ

p(True) [25] 0.666 0.614 0.650 0.673 0.862 0.749 0.772 0.749 0.563 0.596 0.530 0.573
Perplexity [42] 0.732 0.649 0.659 0.709 0.720 0.662 0.646 0.675 0.671 0.626 0.619 0.583
SE [17] 0.828 0.787 0.773 0.757 0.795 0.752 0.813 0.800 0.819 0.643 0.769 0.772
MARS [6] 0.766 0.663 0.661 0.706 0.765 0.693 0.700 0.710 0.704 0.648 0.635 0.610
MARS-SE [6] 0.824 0.780 0.777 0.744 0.797 0.743 0.786 0.798 0.794 0.676 0.772 0.769
CCS [9] 0.675 0.596 0.628 0.662 0.551 0.579 0.615 0.553 0.597 0.575 0.592 0.562
SAPLMA [5] 0.835 0.769 0.781 0.821 0.860 0.797 0.836 0.859 0.842 0.672 0.817 0.748
HaloScope [14] 0.610 0.669 0.637 0.635 0.653 0.621 0.568 0.676 0.656 0.655 0.622 0.556
CED [29] 0.745 0.776 0.710 0.695 0.693 0.680 0.669 0.674 0.709 0.699 0.714 0.703
LLM-Check-h [45] 0.666 0.614 0.610 0.673 0.696 0.659 0.673 0.668 0.678 0.639 0.642 0.702
LLM-Check-a [45] 0.651 0.644 0.626 0.675 0.715 0.677 0.690 0.670 0.691 0.657 0.653 0.713

HaMI∗ (Ours) 0.854 0.783 0.788 0.823 0.883 0.813 0.843 0.873 0.858 0.765 0.820 0.813
HaMI (Ours) 0.897 0.826 0.820 0.836 0.903 0.837 0.867 0.888 0.891 0.774 0.846 0.825

Table 1: AUROC results of HaMI and its competing methods on four datasets with three LLMs. HaMI∗ denotes
a basic HaMI using the original representations as inputs. The best results are in red and second-best are in blue.

(a) (b)

Figure 3: (a) AUROC results of cross-dataset generalisation on four datasets using LLaMA-3.1-8B. (b) AUROC
w.r.t. dimensionality of the feature layer (left) and the number of network layers (right) based on LLaMA-3.1-8B.

achieves similar superiority across all cases except on the SQuAD dataset with LLaMA-3.1-8B,
where its performance is comparable to the best score achieved by the SE method.

Moreover, with the augmentation of the uncertainty measurement, we observe that HaMI significantly
outperforms all SotA methods by a large margin. It gains as large as 8.1% to 11.9% averaged
AUROC improvement over MARS-SE, which also leverages entailment information among various
generations, in three LLMs. Notably, p(True), MARS and Semantic Entropy all resort to external
LLMs for assistance, but their capability for hallucination detection differs significantly. Following
the configurations described in their respective original studies, p(True) and MARS employ relatively
smaller and less capable models, whereas Semantic Entropy harnesses the more powerful GPT-3.5
model. This variation underscores that the performance of uncertainty-based methods requiring
multiple sampling is highly dependent upon the capabilities of the selected assistant LLM.

Furthermore, among methods based on internal representations, supervised approaches generally
outperform the semi-supervised/unsupervised ones. For example, SAPLMA and our approach exhibit
superior performance to CCS and HaloScope. Notably, both HaMI∗ and HaMI outperform SAPLMA
and demonstrate consistently strong results across all four benchmarks. This superiority is due to not
only the predictive uncertainty enhancement but also the effectiveness of adaptive token selection on
generation responses of diverse forms (see Section 5.3 for more detailed analysis).

Comparing the performance on LLaMA models with various scales, we observe that HaMI achieves
a notably larger margin of improvement compared to baselines for larger LLaMA-3.3-Instruct-70B.
For instance, on the LLaMA-3.1-8B model, HaMI surpasses SE and SAPLMA by an average of
7.4% and 5.5%, respectively. On the larger model, these improvements increase to 11.5% and 8.7%,
representing a relative improvement of over 50%.
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LLaMA-3.1-8B Mistral
Trivia QA SQuAD Trivia QA SQuAD

First 0.849 0.774 0.844 0.799
Before Last 0.878 0.778 0.849 0.807
Last 0.890 0.804 0.873 0.825
Ours 0.897 0.826 0.903 0.837

LLaMA-3.1-8B Mistral
Trivia QA SQuAD Trivia QA SQuAD

Original 0.854 0.783 0.883 0.813
P t

uncertainty 0.856 0.782 0.884 0.825
P s

uncertainty 0.871 0.787 0.897 0.831
P c

uncertainty 0.897 0.826 0.903 0.837

Table 3: Ablation study results on the ATS module (left) and uncertainty-enabled representation module (right).

5.2 Cross-dataset Generalisation Ability

The ability to generalise across datasets is essential to facilitating real-world applications of LLMs
in diverse domains. We conduct experiments on the aforementioned four datasets to assess whether
the proposed HaMI can effectively generalise among various datasets, with three strong competing
methods in the line of internal-representation analysis as baselines. For each dataset, we report
the average AUROC scores of detectors trained on one of the other three datasets. The results are
illustrated in Figure 3a. It is clear that our method HaMI consistently achieves the best generali-
sation performance across all four datasets, outperforming the best competing method SAPLMA
by 7% - 9%. Compared to the within-dataset performance in Table 1, the maximum performance
decline in HaMI is no more than 4.5%, observed on the BioASQ dataset, which is significantly
lower than that of the competing methods. We also compare the generalisation capability of HaMI
with training-free baselines. The results for HaMI trained on one dataset and evaluated on oth-
ers separately are presented in Table 2, where the results for the training-free baselines are the
best AUROC of training-free methods—p(True), Perplexity, SE, MARS, MARS-SE, CED, LLM-
Check-h, and LLM-Check-a—on each dataset. Notably, across all settings, HaMI can consistently

Trivia QA SQuAD NQ BioASQ

Trained on Trivia QA - 0.802 0.818 0.796
Trained on SQuAD 0.850 - 0.794 0.804
Trained on NQ 0.870 0.804 - 0.791
Trained on BioASQ 0.853 0.790 0.781 -
Training-Free Baselines 0.828 0.787 0.777 0.757

Table 2: Cross-dataset generalization capability compared
with training-free baselines.

outperform training-free/non-learnable
baselines on unseen target datasets, regard-
less of which dataset it is trained on. The
observation is similar to the one with the
results aggregated over multiple detectors.
These findings affirm the effectiveness of
HaMI as a reliable hallucination detector
in unseen datasets.

5.3 Ablation Study

Figure 4: Adaptive token selection results showing
tokens with the top-2 highest hallucination scores.

Analysis of MIL-based Adaptive Token Selection.
Unlike existing methods that predetermined critical
tokens for capturing truthfulness information, HaMI
proposes the MIL-based adaptive token selection
(ATS) module. Table 3 Left compares the perfor-
mance of our ATS module with commonly used meth-
ods, including the First generated token, the Last gen-
erated token, and the Before Last generated token.
The results show that our ATS method outperforms
the alternatives across both Trivia QA and SQuAD
datasets on both LLMs, yielding an average improve-
ment of 6% over the First token, 4% over the Before
Last token and 2% over the Last token.

Furthermore, our ATS module exhibits substantially better robustness to the length of generations
than the competing methods. In particular, the average number of generated tokens for the Trivia
QA dataset with the LLaMA model is 10, which is smaller than the other three cases (Trivia QA
with Mistral model - 13.5, SQuAD with LLaMA model - 17.5, SQuAD with Mistral model - 15).
Despite this variation, the ATS module performs robustly on all four cases and even performs more
effectively as the length increases. In contrast, the performance of the predefined token location
methods is unstable and tends to degrade as the length of the generation grows. Moreover, the Last
token achieves better performance across all scenarios, and the First token is just the opposite. It
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(a) (b)

Figure 5: (a) Performance of HaMI w.r.t. internal representations extracted from different layers. (b) The impact
of augmentation strength λ in Eq. 8 on HaMI. All results are based on LLaMA-3.1-8B.

suggests that the last token can capture full semantics under specific length conditions, while the first
token may miss content in the subsequent predictions.

To further support the validity of the token selection process, we conducted an additional study,
a manual evaluation using 100 randomly sampled examples from the Trivia QA dataset. In this
analysis, we manually annotated hallucinated tokens and measured the token detection recall rate
of our method throughout training. Specifically, HaMI can achieve a recall rate at 0.84 as training
progresses. This suggests that our approach enables the model to identify salient tokens even without
token-level supervision. Figure 4 presents an illustrative example of the scoring results over tokens in
a positive bag and a negative bag, where we can observe that there is significant distinguishability
between the positive and negative tokens since the maximum scores of the instances in the positive
bag are substantially greater than those in the negative bag. Tokens denoted by blue characters have
scores that are very close to the largest ones and we find that these tokens can be adaptively identified
by our method as concentrated answers in comparison to ground-truth answers. Additionally, it is
noted that while selected tokens are associated with the exact answer, they may appear at any location
in their vicinity, which can be captured by our smoothness loss.

Analysis of Different Predictive Uncertainty-enabled Features. Here we systematically examine
three uncertainty measuring methods presented in Section 4.2 for the internal representation enhance-
ment as detailed in Eq. 5, 6 and 7 respectively. We use a simple combination strategy as defined in
Eq. 8. In the right panel of Table 3, we can observe that both P s

uncertainty and P c
uncertainty contribute

to improved detection capabilities over the baseline (i.e., the original feature representations) while
the token-level uncertainty P t

uncertainty yields limited effectiveness. Specifically, the enhancements
attributed to semantic consistency P c

uncertainty are the most significant, exhibiting improvements up to
6.7%. These observations suggest that the effectiveness of uncertainty-based enhancement is tied
to the inherent ability of the uncertainty metric to distinguish hallucinations from correct responses.
Notably, although the improvements observed with P s

uncertainty are less pronounced, it surpasses the
performance of SotA multi-sampling approaches (such as SE in Table 1), without incurring the costs
associated with multiple generations and external LLM employments. This highlights the potential of
HaMI for deployments in various practical environments that involve external tools or not.

Performance of HaMI w.r.t. Representations from Different LLM Layers. We evaluate detec-
tion performance using representations extracted from various layers of LLM with LLaMA-3.1-8B
across all benchmarks. We apply both original internal representations and semantic-equivalence-
enhanced representations for investigation. As depicted by the dashed line in Figure 5a, the AUROC
values for original representations exhibit a clear increase, peaking between layers 12 and 16, before
declining to a relatively stable level. This observation suggests that the truthfulness content evolves
across the initial to middle layers. The performance of the uncertainty-enhanced representations
(presented in the solid line) maintains a relatively consistent trend, with the highest AUROC scores
concentrated in the middle layers as well. The comparison of these trends indicates that incorporating
predictive uncertainty enhances the distinctiveness of the representations, particularly in the earlier
layers where less semantic information is typically available.
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Performance of HaMI w.r.t. Various Model Scales. We investigate the sensitivity of HaMI
on the model scale by varying the number of layers and hidden dimensions in the two-layer MLP
network. As illustrated in Figure 3b, HaMI exhibits low sensitivity to both hyperparameters across
all four benchmarks. Specifically, for a two-layer MLP (employed in HaMI and most baselines), the
performance remains steady as the size of the hidden dimension changes from 64 to 512. Similarly,
increasing the number of layers from 1 to 4 yields only marginal changes in AUROC, suggesting that
a shallow architecture is sufficient for effective hallucination detection. These findings highlight the
robustness of our method w.r.t. variations in network architecture.

Performance of HaMI w.r.t. Uncertainty Augmentation Strength (λ). Figure 5b presents results
based on various choice of λ used in Eq. 8. It is clear that the model’s performance is steadily
improved as λ changed from 0.0 towards 1.0. Beyond this point, performance becomes stable.

6 Conclusion

In this paper, we introduce the very first approach that supports joint token selection and hallucina-
tion detection, HaMI, enabling adaptive identification of the most hallucinated tokens for learning
an optimal hallucination detector. This helps largely enhance the robustness of the detection on
generation responses of varying lengths and hallucinated entities. Specifically, HaMI incorporates
a straightforward yet effective MIL formulation to automatically highlight salient tokens that are
optimal for training the subsequent hallucination detector. Additionally, we also explore integrating
uncertainty metrics into the original representations to enrich them with more information about
truthfulness. Extensive empirical results demonstrate that HaMI substantially outperforms existing
SotA methods across diverse popular datasets and LLMs. Our ablation studies offer important
insights into how different designs in HaMI help improve the robustness of the detection. While our
experiments primarily focus on the QA domain, the principles underlying our method are task-free,
suggesting potential applicability to a broad spectrum of other tasks.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect our contributions and scope.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Appendix B.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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Justification: Our paper does not include theoretical results.
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• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: We have fully disclosed the information needed to reproduce the main experi-
mental results of our paper.
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• The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use public datasets for experiments and all references are provided. For
the code, we provide it in the supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the experimental setting details. Please refer to Section 5 and
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive
for some baselines. The average standard deviation of AUROC results of HaMI is 0.018.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
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• If error bars are reported in tables or plots, The authors should explain in the text how
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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Guidelines:
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deviation from the Code of Ethics.
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any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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from (intentional or unintentional) misuse of the technology.
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Answer: [NA]
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properly respected?
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
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Answer: [NA]
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
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LLM) for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM


A Implementation Details

A.1 Setup

For the main results, our hallucination detector fθ(·) utilises a two-layer MLP with a hidden dimension
of 256. The first linear layer is followed by a BatchNorm and ReLU activations and the second
linear layer is accompanied by a sigmoid output. As shown in Figure 3b in our paper, our method
is relatively insensitive to variations in the number of layers and the hidden dimension size. At
the training stage, we use Adam optimiser. For the input representations of our detector, we utilise
representations extracted from a single layer and the layer index is determined by the results of the
validation set.

We implement our method using PyTorch 2.6.0 [39] and transformers 4.51.3 [48] and conduct all
experiments on NVIDIA A100 GPUs. Based on experimental records, the estimated total training and
inference time for each dataset under the main experimental settings is as follows: 0.40 GPU-hours
for LLaMA-3.1-8B, 0.45 GPU-hours for Mistral-Nemo-Instruct (12B) and 0.65 GPU-hours for
LLaMA-3.3-Instruct-70B with 8-bit quantisation. It is important to note that all these results are
based on the assumption that the semantic uncertainty score P c

uncertainty is readily available. Otherwise,
computing this score involves generating multiple responses and evaluating entailment across them,
which introduces nontrivial latency, approximately 7.6 seconds per question for LLaMA-3.1-8B, 8.6
seconds for Mistral-Nemo-Instruct (12B), and 46.1 seconds for LLaMA-3.3-Instruct-70B. In this
work, we also propose a lightweight variant, HaMI∗, using only a single generation, to eliminate the
influence on computational efficiency while maintaining superior performance.

A.2 Prompts for Generation and Evaluation

All prompts utilised in our experiments refer to those used by Farquhar et al. [17]. For the QA tasks,
we prompt selected LLaMA and Mistral models to generate answers without context in a zero-shot
manner. Figure 6 presents the used input prompt. To obtain response labels, we prompt GPT-4.1 [1]
with OpenAI API to evaluate the quality of the response. The prompts are illustrated in Figure 7. It is
observed that GPT-4.1 can make mistakes for the positive samples as checked with the gold answers.
Therefore, we ask GPT-4.1 to rejudge samples labelled as positive and discard samples if the result is
inconsistent with the first result.

Figure 6: Prompts for QA tasks without context.

B Study on the Effectiveness of the Smoothness Loss

The smoothness loss is designed under the assumption of continuity in hallucination scores between
adjacent tokens. We investigate the effectiveness of smoothness loss on four benchmarks with LLaMA-
3.1-8B model. Main results on each individual dataset and cross-dataset results are respectively
presented in Table 4 and Table 5 below. The results are averaged over three independent runs. As
evidenced in the tables, incorporating the smoothness loss consistently yields improved performance
across all the cases. On average, the smoothness loss consistently enhances HaMI, increasing the
performance by 0.7% and 1.1% on the within-dataset and cross-dataset scenarios, respectively. This
demonstrates that the contribution of the smoothness loss is more pronounced in the more challenging
cross-dataset setting. These consistent improvements highlight that the smoothness loss plays a rather
positive role in helping achieve a more robust and generalizable HaMI, which is particularly valuable
in cross-domain scenarios.
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Figure 7: GPT-4.1 evaluation prompts

LMIL Lsmooth Trivia QA SQuAD NQ BioASQ

✓ 0.892±0.005 0.825±0.002 0.812±0.003 0.840±0.015
✓ ✓ 0.898±0.007 0.835±0.006 0.815±0.004 0.845±0.012

Table 4: Ablation study on the MIL and smoothness losses.

LMIL Lsmooth Trivia QA SQuAD NQ BioASQ

✓ 0.852±0.012 0.812±0.005 0.797±0.020 0.790±0.007
✓ ✓ 0.865±0.008 0.820±0.002 0.808±0.012 0.795±0.002

Table 5: Ablation study on the MIL and smooth losses under the cross-dataset setting.

C Study on Top-k Token Selection

HaMI employs a hard top-k selection strategy in its MIL formulation that functions similarly to
max pooling during training. This design aligns with the core assumption in multi-instance learning
(MIL) that if there are any positive instances, the bag should be labelled as positive. This principle is
particularly relevant to our detection task, where the salient hallucinated tokens appear sparsely within
generated sequences. While there exist more sophisticated and learnable aggregation techniques,
previous research has indicated that, given a sufficient number of training bags, different aggregation
methods for a bag tend to converge to similar performance [20]. Based on these observations and the
remarkable performance of our method in our experimental results, despite being simple, the hard
top-k strategy offers a direct, yet effective solution for the detection task. As presented in Section 4.1,
k is dynamically determined by the generated token length l as follows:

k = ⌊rk × l⌋+ 1, (9)

where rk is set to 0.1 by default. In this section, we investigate the sensitivity of our method to the
choice of rk in the adaptive token selection process. As shown in Figure 8, HaMI exhibits stable
performance across a set of rk, ranging from zero to 0.20, on all four datasets with LLaMA-3.1-8B
and Mistral-Nemo-Instruct (12B). HaMI can perform stably across different choices of rk. Notably,
smaller rk values already yield strong results, which implies that only a few high-salience tokens are
sufficient for effective hallucination discrimination.

D Evaluation results with BLEURT score

In addition to labels identified by GPT-4.1 [1], we also use the BLEURT-threshold [43] method
to generate labels and comparing HaMI with five representative baselines. Results are reported
in Table 6, which shows that our methods HaMI and HaMI∗ can also consistently outperform the
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Figure 8: Study on different choices of rk across four datasets with two LLMs.

Method Trivia QA SQuAD NQ BioASQ

Perplexity 0.663 0.638 0.586 0.662
SE 0.709 0.813 0.704 0.714
CCS 0.682 0.657 0.738 0.683
SAPLMA 0.897 0.898 0.867 0.873
HaloScope 0.792 0.845 0.852 0.830

HaMI∗ 0.900 0.928 0.909 0.918
HaMI 0.909 0.937 0.920 0.922

Table 6: AUROC results with labels generated by the BLEURT method. The results are based on LLaMA-3.1-8B.

baselines using the BLEURT-based labelled datasets. These results provide empirical evidence for
the robustness of HaMI from another perspective (i.e., a data labelling perspective).

E Limitations and Broader Impacts

Broader Impacts. With the growing deployment of LLMs, ensuring the truthfulness of their outputs
has become a critical challenge, especially in high-stakes domains such as finance and healthcare. To
enable effective hallucination detection, in this work, we propose a practical and robust approach
that leverages internal representations to identify tokens with a high likelihood of being hallucinated
and enables the following detection. We hope that our proposed method, HaMI, can contribute to
safer and more reliable real-world deployment of LLMs. Although our research focuses on QA tasks,
HaMI can be extended to other tasks as well. For example, in the summarisation task, truthfulness
can be assessed sentence by sentence. Verifying the correctness of each generated sentence can be
reformulated as an entailment query against the source context, allowing hallucination detection to be
performed in a QA-like manner. Furthermore, the similarity between a generated sentence and its
corresponding context could serve as an uncertainty metric for internal representation enhancement.

Limitations. Apart from the aforementioned capabilities of HaMI, there remain some concerns.
Unlike some black-box uncertainty-based approaches, our method requires access to internal repre-
sentations, limiting its deployments to open-source LLMs. Moreover, we also explore integrating
uncertainty metrics into the original representations to enhance their discriminative capability on
correct and incorrect generations. While effective, the integration strategy is relatively simple and
we acknowledge that more sophisticated fusion methods could be explored for better detection
performance in future research.
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