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Abstract

Data Shapley values provide a principled approach for quantifying the contribution
of individual training examples to machine learning models. However, computing
these values often requires computational complexity that is exponential in the
data size, and this has led researchers to pursue efficient algorithms tailored to
specific machine learning models. Building on the prior success of the Shapley
valuation for K-nearest neighbor (KNN) models, in this paper, we introduce a
localized data Shapley framework that significantly accelerates the valuation of data
points. Our approach leverages the distance-based local structure in the data space
to decompose the global valuation problem into smaller, localized computations.
Our primary contribution is an efficient valuation algorithm for a threshold-based
KNN variant and shows that it provides provable speedups over the baseline under
mild assumptions. Extensive experiments on real-life datasets demonstrate that our
methods achieve a substantial speedup compared to previous approaches.

1 Introduction

Data has emerged as the new oil of the digital economy, driving advances across various fields such
as artificial intelligence, healthcare, finance, and beyond. The rapid growth in data collection has
created unprecedented opportunities for building powerful machine learning models that can solve
complex problems. As organizations increasingly rely on data-driven decision making, the quality
and relevance of training data have become a critical factor that determines the success of machine
learning applications and consequently impacts different aspects of our daily lives [1]. This paradigm
shift has highlighted the fundamental importance of data as a valuable resource that requires careful
management, curation, and valuation [2].

Despite the widespread recognition of the importance of data, a significant challenge remains:
how to systematically, fairly, and efficiently value individual data points within large datasets.
This question is increasingly relevant due to the emergence of data marketplaces, the evolution of
privacy regulations, and the development of data-centric AI. Data valuation serves multiple purposes,
including compensating data contributors equitably, identifying high-value data for acquisition, and
removing harmful or misleading examples [3–5].

The Shapley value (SV), originating from cooperative game theory, is a principled and theoretically
grounded approach to addressing the challenge of data valuation [6]. Shapley values provide a
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Figure 1: Illustration of the distribution of Shapley values computed for different test data ratios.

mechanism for fairly distributing the collective value of a coalition among its members. When
applied to machine learning, data Shapley values [7, 8] measure the contribution of each training
example to model performance by considering its marginal value across all possible subsets of the
dataset. This approach satisfies important properties such as fairness, additivity, and symmetry,
making it a reliable measure for data valuation tasks. Note that it differs from the attribution methods
such as SHAP [9], where Shapley values are computed for each feature of a given data point.

However, the computation of data Shapley value is expensive, as it requires enumerating all possible
subsets of data points. In fact, it has been shown to be #P-hard in certain games [10]. A recent
breakthrough by Jia et al. [11] exploits the structure of unweighted K-nearest neighbor models (also
known as KNN models) to efficiently compute the exact data Shapley values. KNN models are a
family of classic machine learning models that predict the label of a data point based on the labels
of its K nearest neighbors. KNN models can be adapted to modern neural networks by using their
learned embeddings as the feature space. The KNN-based Shapley value (KNN-SV) has quickly
become one of the leading data valuation techniques [12–15].

Although KNN-SV offers significant speed improvements over the naive approach, it still struggles
with large datasets due to its linear dependence on the test data size. In KNN-SV, a value attributed
to each test data point is distributed among all training examples based on their contribution to the
prediction. Owing to the local nature of KNN models, an average contribution over a sufficient
number of test points is required for an accurate valuation. See Fig. 1 for an illustration of the data
values computed for different numbers of test points on a real dataset. When the number of test points
is small, the Shapley values have a more dispersed distribution, indicating that the values are less
stable and more extreme. Hence, it is desirable to use a number of test points that is of the same order
of magnitude as the training set size, but this will result in quadratic overall time complexity.

In this paper, we address this key limitation of prior KNN-SV approaches and propose a more efficient
algorithm. Our algorithm leverages the distance-based local structure in the data space to decompose
the global valuation problem into smaller, localized computations. For a threshold-based KNN
variant, our algorithm provides provable speedups over the baseline under mild assumptions. We
validate the proposed algorithm through experiments on real-world datasets, demonstrating practical
improvements over existing methods.

The remainder of the paper is organized as follows. We first review the preliminaries in Section 2 and
present a baseline method that computes KNN-SV by recursion in Section 3. We then present our
proposed methods by starting with landmark-based near neighbor search in Section 4 as a building
block and introducing a fast method for threshold-based KNN in Section 5. The experimental setup
and results are outlined in Section 6. We conclude the whole paper in Section 7.
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2 Preliminaries

In this section, we introduce the framework for data valuation based on the Shapley value (SV) and
establish our notation for applying this concept to K-nearest neighbor (KNN) models.

2.1 Cooperative Game Theory and Shapley Value

The concept of data valuation can be elegantly formalized through the lens of cooperative game theory.
In this framework, we consider a collection of players who can form coalitions to generate collective
utility. Formally, a cooperative game consists of a pair (I, v), where I = {1, . . . , n} represents the
set of players and v : 2I → R is a utility function that assigns a real value to each possible coalition.

A central question in cooperative game theory concerns fair allocation: How should the total utility
be distributed among individual players based on their contributions? The Shapley value, introduced
by Lloyd Shapley [6], provides a time-tested solution to this problem. For each player i, the Shapley
value s(i) represents the average marginal contribution across all possible coalition formations, i.e.,

s(i) =
1

n

∑
S⊆I\{i}

(
n− 1

|S|

)−1

[v(S ∪ {i})− v(S)] . (1)

The Shapley value uniquely satisfies the following four desirable properties, which makes it par-
ticularly suitable for data valuation. That is, there does not exist any other value function that can
simultaneously satisfy all of them. (1) Efficiency: The total utility is completely distributed among
all players, i.e., v(I) =

∑
i∈I s(i). (2) Symmetry: Players with identical marginal contributions

receive equal value, i.e., if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ I \ {i, j}, then s(i) = s(j). (3)
Null Player: Players who contribute nothing to any coalition receive zero value, i.e., s(i) = 0 if
v(S ∪ {i}) = v(S) for all S ⊆ I \ {i}. (4) Linearity: Values under multiple utility functions sum to
the value under the combined utility, i.e., sv1(i) + sv2(i) = sv1+v2(i) for all i ∈ I .

In the context of machine learning, we can reinterpret players as individual data points in the training
set and the utility function as a performance measure of models trained on different subsets of the
data. This naturally leads to a framework for quantifying the contribution of each training data point
to the overall model performance.

2.2 KNN-Based Shapley Value (KNN-SV)

In this subsection, we introduce the KNN-based Shapley values with respect to two different utility
functions, one for the standard KNN classifier and the other for a threshold-based KNN classifier.
These utility functions are specifically targeted for a single test data point, and we conclude with
a discussion on how to extend them to multiple test points, which are required for an accurate and
balanced valuation.

Given a dataset D of size n, where z = (x, y) ∈ D with x ∈ Rd, y ∈ Y , and Y is the label space,
we want to compute the Shapley value s(z | ztest) of z with respect to a test point (xtest, ytest). Let
the weight of z be w(z | ztest) ∈ R+ that indicates the proximity between x and xtest or is simply a
constant in the case of an unweighted KNN. Following the formulation in [11], let v be the weighted
KNN utility function. We have

v(S) =

min(|S|,K)∑
i=1

w(zαi(S) | ztest)1(yαi(S) = ytest), (2)

where αi(S) is the index of the i-th closest element of S to xtest, and we call i the rank of zαi(S)

in S. When w(z | ztest) is a constant, e.g., w(z | ztest) = 1/K, the utility function v is derived
from the standard unweighted KNN classifier. On the other hand, if we write the distance as
d(z, z′) = ∥x− x′∥, and let the weight of z be the Gaussian kernel as

w(z | ztest) = K(d(z, ztest)) = exp(−d(z, ztest)
2/2σ2),

where σ measures the width of the Gaussian kernel, the utility function v is derived from the weighted
KNN classifier instead. Note that one is free to use other metric distances other than the Euclidean
distance.
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We further consider a similar utility function v̄ for a variant of the standard KNN classifier, where
the utility of a subset S takes into account only the nearest K points to ztest that are within a ball of
radius τ centered at ztest. Formally, the utility function is defined as

v̄(S) =

min(|Sτ |,K)∑
i=1

w(zαi(Sτ ) | ztest)1(yαi(Sτ ) = ytest), (3)

where αi(S) is the index of the i-th closest element of S to ztest, Sτ (ztest) = {z ∈ S | d(z, ztest) ≤ τ},
and we write Sτ = Sτ (ztest) for short. This variant is derived from a more robust threshold-based
KNN classifier (TKNN) [14, 16, 17], where a point that is too far away from ztest always has zero
influence on ztest. It has been shown that this variant possesses additional desirable privacy-friendly
properties [14].

With the utility functions defined above, the definition of the Shapley value of a data point z ∈ D is
straightforward, following Eq. (1). Formally, the Shapley value of a data point z ∈ D with respect to
a given test point ztest is defined as

s(z | ztest) =
1

n

∑
S⊆D−z

(
n− 1

|S|

)−1

[v(S + z)− v(S)] , (4)

where we write D − z = D \ {z} and S + z = S ∪ {z} for convenience.

In practice, accurately measuring data values requires multiple test points, which typically increases
proportionally with the size of the dataset, n. Suppose that there are ntest test points in Dtest, and the
data Shapley value of a data point z can be naturally extended as the average over all test points, i.e.,

s(z) =
∑

ztest∈Dtest

s(z | ztest)/ntest. (5)

3 Baseline: KNN-SV by Recursion

In this section, we introduce the analytical solution to the data Shapley values for KNN models,
introduced in [11], and extend it to the utility functions in Eqs. (2) and (3). This results in a dramatic
improvement in time complexity, from O(2n) to O(n log n) for a single test point, over the naive
approach that enumerates all possible subsets S of the dataset D.

We consider a fixed test point ztest throughout this section. Given a subset S ⊆ D, recall that αi(S) is
the index of the i-th closest element of S to ztest. When the context is clear, for simplicity, we write
zαi(D) as zi and w(zαi(D) | ztest) as wi. Similarly, we denote by si the Shapley value s(zi | ztest) for
the data point zi.

We first restate a known result about the pairwise difference of the KNN Shapley values in the
following lemma.
Lemma 1 (Jia et al. [11]). Fixing a test point, for any i, j, we have

si − sj =
1

n− 1

∑
S⊆D−zi−zj

v(S + zi)− v(S + zj)(
n−2
|S|

) .

Based on Lemma 1, we can develop a recursive formula for si in the following theorem.
Theorem 2. Fixing a test point, for any i < n, we have

si = si+1 +min(K, i)
wi1(yi = ytest)− wi+11(yi+1 = ytest)

i
and sn =

K

n
wn1(yn = ytest).

See proof in Appendix A. In summary, in order to compute the Shapley values of all data points
in the dataset D, we start with sn for the farthest data point and then iteratively apply the recursive
formula in Theorem 2 to compute the values of sn−1, . . . , s1, in decreasing order of their distance to
the test point, one data point at a time.

It is easy to see that the recursive formula formed by Theorem 2 also works for threshold-based KNN
models. The only difference is that the recursion is applied to the set of data points that are within the
radius τ of the test point, instead of the entire dataset D.
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Time Complexity. We have described a recursive formula for the data Shapley values when there is
only a single test point. The calculation requires no more than one sorting of the data points by their
distance to the test point, which takes O(dn+ n log n) time. This is a drastic improvement over the
naive approach that enumerates all possible subsets S of D, whose time complexity is O(2n).

However, when considering multiple test points, whose size ntest is often in proportion to the size
of the dataset n, i.e., ntest = Ω(n), one sorting for each test point amounts to a time complexity of
O(dntestn+ ntestn log n), which becomes quadratic in the size of the dataset. This is clearly too slow
for large-scale applications, especially when ntest is large.

4 Landmark-based Near Neighbor Search

In this section, we introduce a core building block for our proposed methods, namely landmark-based
near neighbor search, which allows to effectively and efficiently shrink the search space of the near
neighbors in data Shapley computation. Unlike other near neighbor search methods, our method
exhibits several merits: It is inexpensive in indexing, simple to implement, capable of providing a
lower bound of the distance to the query point for unvisited points, and, last but not least, amenable
to analysis as we will see in the subsequent sections.

The main idea is to pick an arbitrary point zmark as the landmark point, and sort all data points
D ∪Dtest by their distances from zmark in ascending order. Denote by rmark(z) the rank of a point z
in the sorted list and by Bi(ztest) ⊆ D the set of points in D whose differences in rank from that of
ztest are within i, i.e.,

Bi(ztest) = {z ∈ D | |rmark(z)− rmark(ztest)| ≤ i}.

We call i the length of the ball Bi(ztest). We also distinguish the left and right halves of the ball, i.e.,
B−

i (ztest) and B+
i (ztest), where

B−
i (ztest) = {z ∈ D | rmark(ztest)− i ≤ rmark(z) < rmark(ztest)},

and
B+

i (ztest) = {z ∈ D | rmark(ztest) < rmark(z) ≤ rmark(ztest) + i}.

The motivation of using landmark points is that for any test point ztest, a data point z around ztest
along the sorted list is likely to be its near neighbor. More importantly, it is possible to derive a lower
bound of d(z, ztest) by only considering the distances to the landmark point zmark. That is, by triangle
inequality,

d(z, ztest) ≥ |d(z, zmark)− d(zmark, ztest)| . (6)

This is particularly useful. For example, as the ball B−
i (ztest) expands, the distance d(z, zmark) is

non-increasing, and thus d(z, ztest) is also non-decreasing, which gives us valuable information about
d(z, ztest) for any z ∈ B−

i (ztest) even without actually visiting them. The case for B+
i (ztest) is similar.

4.1 Optimized Landmark Selection

The tightness of the lower bound of d(z, ztest) in Eq. (6) is highly dependent on the distance
d(ztest, zmark). That is, the quality of our bounds can be significantly improved if the test points
are close to the chosen landmark point. Therefore, we propose to strategically select multiple
landmark points and assign each test point to its nearest landmark point.

More specifically, we propose to select nL landmark points Dmark ⊆ Dtest with a goal of minimizing
the maximum distance of any test point to its nearest landmark point, i.e.,

min
Dmark⊆Dtest

max
ztest∈Dtest

min
zmark∈Dmark

d(ztest, zmark).

The landmark points Dmark defined above align exactly with our intention and naturally create a
clustering structure through their associated regions of influence, where each region contains points
closer to its landmark than to any other landmark. This is also known as the Voronoi partition induced
by the landmark points. In subsequent sections, we will show that landmark-induced partitions can
effectively reveal inherent structures in the data.
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The above optimization problem turns out to be the well-studied metric k-center problem, which is
known to be NP-hard. Worse still, this problem is impossible to approximate within a factor of 2,
unless P = NP [18].2

Fortunately, there exists a simple greedy algorithm that achieves the best possible approximation ratio
of 2 in the worst case. This algorithm is called farthest-first traversal (FFT) [19], which as the name
suggests, starts from an arbitrary point and iteratively selects the farthest point from the current set of
landmark points until nL landmark points are selected. In other words, the next chosen landmark
point z maximizes the distance against the current set of landmark points, i.e.,

d(z,Dmark) = min
zmark∈Dmark

d(z, zmark).

A straightforward implementation of the FFT algorithm takes O(ntestn
2
Ld) time, which may be too

slow when nL is large.

To speed up the FFT algorithm, we first notice that d(z,Dmark) is non-increasing as Dmark grows.
Thus, we can reduce a factor of nL in the running time by bookkeeping d(z,Dmark) for each point z
and updating it upon the selection of every new landmark point zmark. That is,

d(z,D
(i)
mark) = min{d(z, zmark), d(z,D

(i)
mark)},

where D
(i)
mark is the set of landmark points selected before the i-th iteration and D

(i+1)
mark = D

(i)
mark ∪

{zmark}. This avoids scanning the entire set of landmark points when computing d(z,Dmark) for each
point z. Based on this observation, the running time is reduced to O(ntestnLd).

5 Fast Data Shapley Value Computation for Threshold-based KNN

As discussed previously, given ntest test points, the baseline approach in Section 3 computes the data
Shapley values for all test points in O(dntestn+ ntestn log n) time. In this section, we propose a fast
algorithm to compute the data Shapley values for threshold-based KNN in provably less time.

Our main idea is to exploit the truncated structure of the threshold-based KNN classifier. We leverage
the landmark-based near neighbor search introduced in Section 4 to shrink the search space of the
near neighbors, and it turns out that the size of the search space for any test point can be effectively
bounded when the dataset exhibits a stable clustering structure. In the remainder of this section, we
first describe the proposed algorithm and then analyze its theoretical properties.

5.1 Algorithm Description

We have introduced the landmark-based near neighbor search in Section 4, and in this section, we
show how to utilize it to compute data Shapley values efficiently.

First of all, we need to slightly adjust the FFT algorithm for our purpose. We denote by C(zmark) the
cluster of points that are closer to zmark than any other landmark point. The radius of C(zmark) is the
maximum distance from zmark to any point in C(zmark). In addition, we let τDmark be the maximum
radius of all clusters induced by the landmark points in Dmark. Note that τDmark is non-increasing as
the number of landmark points increases. We make two adjustments to the original FFT algorithm.
First, we run FFT over Dtest ∪D instead of Dtest. Second, we require that τDmark ≤ τ , which can be
easily achieved by continuing the iterative process of FFT until the condition is met. This also means
that it is not required to specify the number of landmark points in advance.

Since the threshold-based KNN classifier only considers data points within a distance of τ from
each test point, an intuitive idea is to explore the search space provided by the landmark-based near
neighbor search until we can certify that all remaining unvisited points are beyond a distance of τ
from the test point. More specifically, we gradually expand the left half of the ball Bi(ztest) centered
at each test point ztest until the first point z such that

|d(z, zmark)− d(zmark, ztest)| > τ.

This immediately implies that the distance d(z, ztest) from any z to ztest outside the left half is at least
τ . We also apply this process to the right half of the ball. Afterwards, we collect into S all points in

2Recall that an algorithm is called γ-approximation if it returns solutions that in the worst case have cost no
more than γ times than the cost of the optimum solution.
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Algorithm 1: Fast Data Shapley Value Computation for Threshold-based KNN
Input: Integer K, radius τ , datasets D and Dtest
Output: Data Shapley values {s(z)}z∈D

1 Select landmark points Dmark from D ∪Dtest by FFT such that τDmark ≤ τ ;
2 Assign each point in Dtest to its nearest point in Dmark;
3 for zmark ∈ Dmark do
4 Sort D ∪Dtest by their distances to zmark in ascending order;
5 Initialize s(z) with a default value of 0 for each z ∈ D;
6 for ztest ∈ Dtest do
7 Let zmark be the landmark point associated with ztest;
8 Expand the ball B−(ztest) until the first point z such that d(zmark, ztest)− d(z, zmark) > τ ;
9 Expand the ball B+(ztest) until the first point z such that d(z, zmark)− d(zmark, ztest) > τ ;

10 S ← {z ∈ B−(ztest) ∪B+(ztest) | d(z, ztest) ≤ τ};
11 Let z1, . . . , z|S| be the points in S sorted by their distances to ztest in ascending order;
12 ϕz|S| ← K

|S|w(z|S| | ztest)1(yz|S| = yztest);
13 for i = |S| − 1, . . . , 1 do
14 ϕzi ← ϕzi+1

+ min(K,i)
i

(
w′

i − w′
i+1

)
, where w′

i = w(zi | ztest)1(yzi = yztest);

15 s(z)← s(z) + ϕz for each z ∈ S;
16 s(z)← s(z)/ntest for each z ∈ D;
17 return {s(z)}z∈D;

the ball that are within a distance of τ from ztest. Finally, we compute the data Shapley values for
all the points in S using the recursive formula in Theorem 2. The detailed procedure is described in
Algorithm 1.

To show that Algorithm 1 can be provably faster than the baseline approach, we need to show that
for any test point, the total number of points visited in the ball is strictly smaller than n. In the next
subsection, we show that this is indeed the case under mild conditions.

5.2 Perturbation Resilience

Before we analyze the theoretical guarantee of Algorithm 1, we introduce a technical notion of
perturbation resilience to help us precisely characterize the structure that exists in a dataset.

Worst-case analysis has been criticized for its over-pessimism and conservatism that fail to capture the
real performance of many algorithms in practice. In particular, it ignores the structure that exists in
real-world datasets. Therefore, in recent years, there is an active trend of beyond worst-case analysis
in the literature to provide more realistic performance guarantees [20]. One notable example is the
notion of perturbation resilience proposed by Bilu and Linial [21], which describes the stability of
the clustering structure of a dataset under small perturbations.

We first define the notion of perturbation, which distorts the original distance function d(·, ·) by a
factor of at most ξ ≥ 1.

Definition 1 (Perturbation). Given a clustering instance (D, d), a ξ-perturbation of d is a new
distance function d′ such that d(x, y) ≤ d′(x, y) ≤ ξd(x, y) for all x, y ∈ D.

Note that the ξ-perturbation of d may no longer be a metric distance. As ξ increases, a larger
perturbation is allowed. Then, we say that a clustering instance is perturbation resilient if its optimal
clustering remains unchanged up to such a small perturbation of d.

Definition 2 (Perturbation Resilience (PR)). A clustering instance (D, d) is said to be ξ-perturbation
resilient if the optimal clustering remains unchanged up to a ξ-perturbation of d.

Here, the optimal clustering depends on the specific clustering objective. For example, in the metric
k-center clustering, the optimal clustering is the one that minimizes the maximum cluster radius for a
specific number of clusters k.
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Intuitively, a clustering instance is ξ-perturbation resilient if the optimal clustering is stable. Con-
versely, if the optimal clustering can easily change under a small perturbation, then it is less meaning-
ful to study the clustering structure of the dataset in the first place. Note that perturbation resilience
does not mean that the clustering will necessarily become easy. In fact, as indicated in [22], no
polynomial-time algorithm can solve the metric k-center clustering problem for ξ-perturbation re-
silient instances with any ξ < 2 unless RP = NP. Although the worst-case approximation ratio of
FFT for metric k-center clustering is at least 2, it turns out that it can recover the optimal clusters in
a clustering instance if it is 2-perturbation resilient.
Theorem 3 (Balcan et al. [22]). Let (D, d) be a clustering instance. If (D, d) is 2-perturbation
resilient, then FFT recovers the optimal clusters of (D, d).

Furthermore, Theorem 3 can be extended to show that any γ-approximation solution can optimally
recover the clusters under any γ-perturbation of d. Theorem 3 opens up a new avenue for analyzing
the performance of our landmark-based near neighbor search, and in turn, of Algorithm 1.

5.3 Theoretical Analysis

In this subsection, we show that Algorithm 1 is provably faster than the baseline approach if the
dataset exhibits perturbation resilience. We first point out that our landmark-based near neighbor
search can be seen as a soft version of the k-center clustering. Then, we show that perturbation
resilience provides sufficient separation between clusters to restrict the computation of the data
Shapley values within each cluster, which leads to a provable speedup.

If we can treat landmark points as the selected centers of the k-center clustering, then they virtually
partition the dataset into nL clusters. Given a landmark point zmark and the sorted list of D ∪Dtest
by their distances to zmark in ascending order, we hope that the points from its cluster C(zmark) are
ranked before the points in other clusters.

The next challenge is how to ensure that every point that is within a distance of τ from ztest is in the
same cluster as ztest. Note that this is non-trivial because ztest may not be a landmark point (i.e., a
center), and there is no guarantee that any two arbitrary points with a distance less than τ will be
in the same cluster, no matter what size the cluster radius is. For example, consider two clusters
that overlap with each other and two points that lie in the overlapping region. This is crucial for the
algorithm to restrict the computation of every test point within the cluster to which it belongs.

We discover that perturbation resilience provides sufficient separation between clusters to address the
above challenges. Formally, we prove the following theorem.
Theorem 4. Let (D ∪Dtest, d) be a clustering instance with ntest = O(n). If it is 3-perturbation
resilient for metric k-center with respect to a cluster number k∗ and a maximum cluster radius
τ∗ ≥ τ , then Algorithm 1 with nL = k∗ returns the exact data Shapley values of each point in D in
O(nLn(d+ log n) + ntests(d+ log s)) time, where s is the size of the largest optimal cluster.

See proof in Appendix A. When k∗ < nL, we will show in Appendix A that the same time complexity
as Theorem 4 still holds, albeit with a slightly larger 4-perturbation. The above results show that
Algorithm 1 provides a provable speed-up for a wide range of numbers of clusters nL. For example,
let ntest = Ω(n), and we can expect a running time of O(n1.5(d+ log n)) with nL =

√
n when the

sizes of the clusters are comparable. This improves over the previous O(n2(d+ log n)) time.

6 Experiments

In this section, we evaluate the performance of the proposed methods on synthetic and real-world
datasets. We aim to answer the following two research questions: (1) What are the effects of the
parameters and design choices on the performance of the fast algorithm for threshold-based KNN
(Algorithm 1)? (Section 6.1) (2) How much faster do the proposed methods compute the data Shapley
values compared to the baseline approach in Section 3? (Section 6.2) Our source code is published
for reproducibility.3

Datasets. We used both synthetic and real-world datasets in the experiments. The former allows us
to experiment freely with a wide range of data characteristics. We select a collection of real-world

3https://github.com/Guangyi-Zhang/tknn-data-shapley
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datasets as listed in Table A1. The dataset size |D| ranges from 10 K to 1 M, and we set |Dtest| to be
0.2%-1% of |D|. Thus, the total size of |D| · |Dtest| is up to the order of 1010.

Experimental Environment. All algorithms were implemented in Python 3.11. All experiments
were carried out on a Linux server equipped with 64 CPUs of Intel(R) Xeon(R) Platinum 8358P CPU
@ 2.60 GHz and 1511 GB RAM.

6.1 Effects of Parameters and Design Choices

In this subsection, we investigate the effects of the parameters and design choices on the performance
of Algorithm 1. The default values for the parameters are K = 5, nL = 50, τ/d = 0.2, σ = 0.1, and
FFT for landmark selection. Note that since the data features are normalized to be in the range of
[0, 1], the value of τ/d measures the maximum proportion of features of a data point that can deviate
arbitrarily from a test point, while the point remains to be considered as a neighbor in threshold-based
KNN models.
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Figure 2: Effect of parameters nL and τ/d on the performance of Algorithm 1.

Effect of the Number of Landmark Points nL. We vary the number of landmark points nL from 1
to 100, and plot the corresponding running time on the 2dplanes dataset in Fig. 2a. As shown, the
running time of Fig. 2a first decreases and then increases when more landmark points are selected.
This is because every test point can be assigned to a landmark point that is closer to it, and the total
number of data points encountered during the ball expansion for a test point is effectively reduced
when there are more landmark points. However, the running time increases later when this benefit is
outweighed by the high overhead of preprocessing the landmark points. Recall that it is necessary to
sort all the data points in D ∪Dtest for each landmark point.

Effect of the Ratio of Radius τ and Dimension d. We vary the value of τ/d from 0 to 0.5, and plot
the corresponding running time on the 2dplanes dataset in Fig. 2b. It is expected that the running
time increases as the radius τ grows, because a larger τ allows more data points to be considered as
neighbors of a test point. But fortunately, a small τ is enough in practice due to the localized nature
of KNN models.

6.2 Performance Comparison

In this subsection, we compare the performance of the proposed methods with the baseline approach
in Section 3 and the state-of-the-art threshold-based approach TNN by Wang et al. [14]. Note that
the baseline approach has to sort all the data points in D for each test point, regardless of the radius
value τ . We report the average running time and standard deviation over three runs in Table 1, where
the fastest running time is highlighted in bold. We also compare their performance for a popular
downstream task of mislabel detection; see Appendix C.1 for more details. The default values for the
parameters are K = 5, nL = 50, and FFT for landmark selection.

Based on the results in Table 1, we observe that our proposed methods consistently outperform the
baseline approach across all datasets. The speedup is substantial, with our fastest method running
up to 25× faster than the baseline and 11× faster than TNN. The performance advantage of our
methods becomes more pronounced as the dataset size increases.
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Table 1: Running time (in seconds) comparison of different methods.

Dataset Baseline Algorithm 1 TNN

N/A τ/d = 0.05 τ/d = 0.1 τ/d = 0.2 τ/d = 0.05

magic 7.05 ± 6.48 2.68 ± 0.02 3.17 ± 0.05 4.70 ± 0.21 1.29 ± 0.06
2dplanes 85.83 ± 3.00 8.44 ± 0.15 11.59 ± 0.24 26.75 ± 0.20 27.28 ± 25.13
cifar10 148.60 ± 0.61 75.83 ± 0.50 86.57 ± 2.35 144.05 ± 1.67 48.16 ± 44.94
dota2 445.44 ± 4.89 249.36 ± 1.74 267.76 ± 7.24 436.65 ± 6.32 142.52 ± 132.03
skin 2035.00 ± 142.90 156.88 ± 1.90 159.37 ± 126.42 243.79 ± 207.22 228.59 ± 2.52

covtype 10324.36 ± 131.70 1918.74 ± 16.94 4135.27 ± 27.07 9107.61 ± 323.44 5009.56 ± 10.33
emnist 6090.47 ± 19.04 2508.41 ± 73.36 3558.89 ± 130.26 5988.33 ± 384.80 3221.94 ± 7.48
poker 12289.43 ± 41.26 488.95 ± 4.73 983.97 ± 0.91 3012.10 ± 46.34 5542.69 ± 23.88

Algorithm 1 excels on lower-dimensional datasets (see a controlled experiment in Appendix C.2),
such as 2dplanes and poker, where it achieves the fastest runtime when the radius is small. As
expected, the performance of Algorithm 1 degrades as the radius increases. However, the running
time never exceeds that of the baseline approach, even when τ/d is as large as 0.2. Actually, its
worst-case running time is about the same as that of the baseline approach, with the negligible
overhead of preprocessing a few landmark points. When the dataset shows well-defined clusters, its
running time can be provably better. These results confirm that the proposed algorithm significantly
accelerates the computation of data Shapley values, while retaining a robust worst-case running time
that is at least as fast as the baseline approach.

7 Conclusion

In this paper, we addressed the challenge of efficiently computing data Shapley values for nearest
neighbor algorithms. We leveraged the distance-based local structure in the data space to decom-
pose the global valuation problem into smaller, localized computations. For threshold-based KNN
classification, we proposed an algorithm with provable speedups under mild assumptions compared
to existing methods. Our comprehensive empirical evaluation on synthetic and real-world datasets
verifies the significant speed-ups offered by our proposed methods.

We acknowledge several limitations of our work. The perturbation resilience condition is hard to verify
in practice. The landmark-based near neighbor search may suffer from the curse of dimensionality.
Potential future research directions include extending our approach to regression tasks, exploring
alternative utility functions, and investigating fast algorithms for more general KNN models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately specify the
contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete (and correct) proof for
each theoretical result in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experimental
results of the paper, including the code and data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the code, with sufficient instructions to faithfully
reproduce the main experimental results. All the data are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details necessary to understand the results
in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported standard deviation of the key results in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources needed to repro-
duce the experiments in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed data valuation framework can be used to value data in a more
transparent and fair way, which naturally leads to positive societal impacts. Our framework
is not tied to any particular application, and there does not exist a direct path to any negative
applications to the best of our knowledge.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit and respect the license and terms of use of the assets used
in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a detailed description of the code released in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs as an important, original, or non-standard component of
the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Missing Proofs

Theorem 2. Fixing a test point, for any i < n, we have

si = si+1 +min(K, i)
wi1(yi = ytest)− wi+11(yi+1 = ytest)

i
and sn =

K

n
wn1(yn = ytest).

Proof of Theorem 2. For sn, i.e., the Shapley value of the farthest data point, it is easy to see that

sn =
1

n

K−1∑
k=0

1(
n−1
k

) ∑
S⊆D−zn,|S|=k

v(S + zn)− v(S)

=
1

n

K−1∑
k=0

1(
n−1
k

) ∑
S⊆D−zn,|S|=k

wn1(yn = ytest)

=
K

n
wn1(yn = ytest). (7)

Since for any S such that |S| ≥ k, zn will not make it into the top-k and thus v(S + zn)− v(S) = 0.

Suppose that we have already computed si+1, . . . , sn, and now we want to compute si. By Lemma 1,
we only need to pay attention to S ⊆ D−zi−zi+1. Divide S into two parts: S1 = S∩{z1, . . . , zi−1}
and S2 = S∩{zi+2, . . . , zn}. Notice that if |S1| ≥ K, v(S+zi) = v(S+zi+1) = v(S). Therefore,
we only need to consider the case when |S1| < K. We have

si − si+1 =
1

n− 1

n−2∑
k=0

1(
n−2
k

) ∑
|S1∪S2|=k,|S1|<K

v(S + zi)− v(S + zi+1)

=
1

n− 1

n−2∑
k=0

1(
n−2
k

) ∑
|S1∪S2|=k,|S1|<K

w′
i − w′

i+1

=
w′

i − w′
i+1

n− 1

n−2∑
k=0

1(
n−2
k

) min(K−1,k)∑
k1=0

(
i− 1

k1

)(
n− i− 1

k − k1

)

=
w′

i − w′
i+1

n− 1

min(K, i)(n− 1)

i

=
min(K, i)

i
(w′

i − w′
i+1),

where w′
i = wi1(yi = ytest). See [11] for more details on the identity in the second to last step.

Theorem 4. Let (D ∪Dtest, d) be a clustering instance with ntest = O(n). If it is 3-perturbation
resilient for metric k-center with respect to a cluster number k∗ and a maximum cluster radius
τ∗ ≥ τ , then Algorithm 1 with nL = k∗ returns the exact data Shapley values of each point in D in
O(nLn(d+ log n) + ntests(d+ log s)) time, where s is the size of the largest optimal cluster.

Proof of Theorem 4. We first prove that 3-perturbation resilience guarantees a useful technical lemma.

Lemma 5. Given a center zmark and any point z from a different cluster than that of zmark, we have
d(z, zmark) > 2τ∗.

Proof. Assume for contradiction that d(z, zmark) ≤ 2τ∗. We can create a 3-perturbation of d such
that a set of centers Dmark − zmark + z yield a 3-approximation of the k-center clustering. This
contradicts the assumption since any 3-approximation solution recovers the optimal clustering,
following Theorem 3.

The 3-perturbation is given as follows.

d′(x, y) =

{
min{3τ∗, 3d(x, y)} if x = z and y ∈ C(zmark),

3d(x, y) otherwise.
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It is easy to verify that d′ is a 3-perturbation of d. Besides, assigning every point x ∈ C(zmark) to the
new center z respects the inequality

d(x, z) ≤ d(x, zmark) + d(zmark, z) ≤ 3τ∗.

The assignments for other data points are either intact or better. Thus, the new centers indeed yield a
3-approximation, completing the proof.

We also need the help from another lemma.

Lemma 6 (Chekuri and Gupta [23]). Under 2-perturbation resilience, for any two different optimal
clusters Ci, Cj , we have

d(x, y) < d(x, z) and τ∗ < d(x, z)

for any x, y ∈ Ci and z ∈ Cj .

As a result, when k∗ = nL, the clusters induced by Dmark recover the optimal clusters by Theorem 3.
This implies that the points assigned to the optimal cluster of zmark will be ranked before the points in
other clusters, following Lemma 6. What is more, by Lemma 5, the subset S for each test point ztest
associated with zmark in Algorithm 1 will collect only points from the optimal cluster ztest belongs to,
because |d(z, zmark)− d(zmark, ztest)| ≥ τ∗ ≥ τ for any z from a different cluster. This verifies the
stated time complexity.

What is left to show is the correctness, i.e., every point that is within a distance of τ from ztest must
stay in the same optimal cluster as ztest, which directly follows from Lemma 6 and τ∗ ≥ τ , and they
will be collected into the subset S as |d(z, zmark)− d(zmark, ztest)| is a lower bound of d(z, ztest). This
completes the proof.

When k∗ < nL, we can show that the same time complexity in Theorem 4 still holds, albeit with a
slightly larger 4-perturbation.

Theorem 7. Let (D ∪ Dtest, d) be a clustering instance with ntest = O(n). If (D ∪ Dtest, d) is
4-perturbation resilient for metric k-center with respect to a cluster number k∗ and a maximum
cluster radius τ∗ ≥ τ , then Algorithm 1 returns the exact data Shapley values of each data point in
D in time O(nLn(d+ log n) + ntests(d+ log s)), where s is the size of the largest optimal cluster.

Proof. We first show a stronger lemma than Lemma 5 under 4-perturbation. We omit the proof since
it is similar to that of Lemma 5.

Lemma 8. Given a optimal center c and any point z from a different cluster than that of c, we have
d(z, c) > 3τ∗.

Lemma 8 implies a stronger variant of Lemma 6.

Lemma 9. If (D, d) is 2-perturbation resilient, then for any two different optimal clusters Ci, Cj ,
we have 2τ∗ < d(x, z) for any x ∈ Ci and z ∈ Cj .

Proof. Let c be the optimal center of Cj . By triangle inequality, we have

d(x, z) ≥ |d(x, c)− d(c, z)| > 2τ∗.

As a result of Lemma 9, we can relax the requirement that every landmark point has to correspond to
an optimal center, and let it be any point instead. The statement can be proved by similar arguments
as in the proof of Theorem 4.
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B Expanded Related Work

B.1 Shapley Values

Shapley values [6] originated in cooperative game theory as a method for fairly distributing gains
among players based on their marginal contributions and have been widely adopted in various
domains such as economics [24]. In machine learning, the most well-known application is attribution
methods such as SHAP [9], where Shapley values are computed for each feature of a given data point
as a form of feature importance scores. Recently, Shapley values have been adapted to quantify the
contribution of individual training examples to model performance [7]. Computing exact Shapley
values is well-known to be expensive and has been shown to be #P-hard in certain games [10]. Such
a computational challenge has motivated various approximation techniques, including mostly Monte
Carlo sampling [25–27] and specialized algorithms for specific games [28]. Our work falls into the
latter category.

B.2 Data Valuation

Data valuation aims to assign importance scores to training examples, with the hope of identifying
valuable or harmful data points [2–4]. The dominant approaches are based on the concept of leave-
one-out (LOO), which measures the marginal contribution of a data point to the utility function when
it is removed from the training procedure. In classification settings, a common choice for the utility
function is the test accuracy of a model trained on the input. Data Shapley [7] and its variants such as
Beta Shapley [29], Data Banzhaf [30], and least core [31], are all based on the LOO principle, but
differ in the way marginal contributions are aggregated.

Beyond Shapley values, there exist other approaches, and we discuss some notable ones below.
Feldman and Zhang [32] simulate the data values by LOO retraining albeit constrained on a small
sample of training data, while DataModels [33] sacrifice the exactness of LOO to achieve better
scalability by model predictions. Another line of popular methods are gradient-based. TracIn [34]
estimates the importance of a training example by tracing the change in test loss caused by the
example during the training process. Variations of influence functions [35, 36] have their roots in
robust statistics [37] and offer a gradient-based approximation of LOO values.

B.3 KNN Shapley Values

The KNN model provides a unique opportunity for efficient computation of data Shapley values. Jia
et al. [11] are the first to discover an efficient algorithm for computing unweighted KNN Shapley
values with a complexity of O(dntestn+ ntestn log n). This is a significant improvement over general
Shapley computation methods, making it feasible for datasets of moderate size. Wang and Jia
[13] provide refinements to the unweighted KNN utility function. Building on this foundation,
Wang et al. [15] tackle the weighted KNN case, which turns out to be more challenging due to the
normalization factor in the utility function. They propose a dynamic programming algorithm for a
hard-label weighted KNN utility function. Furthermore, Wang et al. [14] addressed privacy concerns
in computing KNN Shapley values and offered formal privacy guarantees for a threshold-based KNN
utility function. Note that in their utility function, all near neighbors within the ball around a test
point are equal. Our work focuses on accelerating the computation of KNN Shapley values.

B.4 Clustering and Perturbation Resilience

Clustering is a common technique to exploit the structure of a dataset. Among many clustering
methods, the k-center clustering is one of the most popular. It is well-known that the k-center
clustering problem is NP-hard, and FFT is proved to be 2-approximate in the worst case. To
overcome the over-pessimism and conservatism of worst-case analysis, in recent years, beyond
worst-case analysis (BWCA) has received increasing attention. One popular BWCA approach for
clustering problems is to define a notion of stability, and perturbation resilience is one classic stability
measure [21]. It has been shown that multiple clustering problems admit polynomial-time algorithms
under some degree of perturbation resilience [38, 39]. Balcan et al. [22] analyze the FFT algorithm
as a robust solution in BWCA scenarios. Chekuri and Gupta [23] study k-center clustering in the
presence of outliers. Our work leverages these existing understandings about perturbation resilience
to provably accelerate the computation of KNN Shapley values.
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Table A1: Statistics of datasets used in the experiments.
Dataset |D| |Dtest| d |D| · |Dtest| · d
magic 15 063 153 10 23 046 390

2dplanes 40 360 408 10 164 668 800
cifar10 49 500 500 512 12 672 000 000
dota2 91 722 927 125 10 628 286 750
skin 194 084 1961 3 1 141 796 172

covtype 578 106 2906 54 90 718 705 944
emnist 696 536 1396 512 497 850 499 072
poker 998 000 2000 10 19 960 000 000

C Additional Experimental Results

C.1 Mislabel Detection

We adopt the popular downstream task of mislabel detection, where 5% of the training points are
randomly mislabeled, and we try to detect them using the data points with the lowest data values. We
use the F1 score to evaluate the performance of valuation methods. The F1 score of our method is
slightly worse than that of the un-thresholded baseline (no more than 1% worse), which is unsurprising
given their similar formulations. The F1 score of TNN is 20-50% worse than the others in most
datasets. This is most likely due to the fact that TNN does not utilize the ranking signal among
neighborhood points. We tune the radius on a validation set sampled from the noisy training set. We
use the implementation of TNN by its authors [14].

C.2 Curse of Dimensionality

We conduct a controlled experiment to isolate the “curse of dimensionality” effect. We perform
projections by a Gaussian random matrix on the cifar10 dataset to reduce its dimensionality to 10,
and use the same ratio of τ/d as before. The baseline takes 116s (148s previously) and our method
with τ/d = 0.05 takes 13s (75s previously). The running time of all methods decreases, due to the
smaller overhead for distance computation, but the ratio of the running time of the baseline to ours
increases. Therefore, it is indeed helpful to reduce the dimensionality by random projections.
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