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Abstract

Multi-fidelity Bayesian Optimization (MFBO) is a promising framework to speed
up materials and molecular discovery as sources of information of different accu-
racies are at hand at increasing cost. Despite its potential use in chemical tasks,
there is a lack of systematic evaluation of the many parameters playing a role
in MFBO. In this work, we provide guidelines and recommendations to decide
when to use MFBO in experimental settings. We investigate MFBO methods
applied to molecules and materials problems. First, we test two different families
of acquisition functions in two synthetic problems and study the effect of the
informativeness and cost of the approximate function. We use our implementation
and guidelines to benchmark three real discovery problems and compare them
against their single-fidelity counterparts. Our results may help guide future efforts
to implement MFBO as a routine tool in the chemical sciences.

Among Machine Learning (ML) techniques, Bayesian optimization (BO) has emerged as the go-to
choice for optimizing the design of experiments in the chemical domain1. Bayesian optimization,
grounded in a probabilistic framework2, consists of two main components: a probabilistic model
that serves as a proxy for the experimental process being optimized, and a policy that governs the
acquisition of new experimental data. For instance, a researcher seeking to maximize the yield of
a given reaction would query the model to identify which experimental conditions to be tested to
achieve the desired outcome. This methodology has shown success in diverse optimization tasks
such as chemical reactions1,3,4 and functional molecules5. Iterating through this learning cycle has
recently enabled the rapid identification of optimal conditions within extensive search spaces6,7.

While canonical BO has recently been popularized among experimentalists, the experiment design
may benefit if the practitioner can collect data at different degrees of reliability while paying a lower
price. Additional experimental evidence that may be readily available can be integrated within the
model representing the process to be optimized (e.g., low-precision experiments conducted with bench-
top nuclear magnetic resonance can be integrated into more expensive, high-precision experiments8).
In classical experimental design, the inclusion of such information sources representing different
reliabilities is referred to as multi-fidelity Bayesian Optimization (MFBO). Within this setting, a
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specific cost is assigned to each information source — hereafter defined as fidelity. The multi-fidelity
probabilistic model learns the process of interest by extracting knowledge from data available at
different fidelities and understanding their interplay. The policy for querying new experimental
data at a given fidelity also takes into account the overall cost. By combining low-fidelity (LF) and
high-fidelity (HF) points, the overall optimization cost can be reduced compared to the single-fidelity
BO (SFBO). Figure 1 exemplifies how the iterative cycle of MFBO may reduce the overall cost,
compared to the standard SFBO.

Although MFBO has garnered interest in the past decade within the ML community, leading to
a myriad of model definitions and acquisition policies9–11, researchers have only lately started to
integrate them within their design methodologies. In the chemical domain, there has been recent
interest in incorporating cost awareness into the BO loop12. In the specific multi-fidelity approach,
several studies have successfully applied MFBO to the materials discovery domain13–16. However,
there is a fundamental lack in the assessment of MFBO performance, and due to this, each work
represents MFBO performance in different ways9,11,14. Although some metrics have been proposed13,
the lack of clarity and unified criteria on how to assess the benefits of MFBO in the chemical domain
has hindered its widespread adoption among the experimental community17. Several factors come
into play when assessing its impact, yet the application of MFBO can also be detrimental to the
overall optimization process18. It has been also shown how in the long run the advantage of MFBO
over SFBO can be lost17.

In this work, we propose a series of guidelines on when to use MFBO within the experimental design
pipeline. We conduct an exhaustive experimental investigation on both standard MFBO problems —
ubiquitous in BO literature — as well as chemistry-based ones. Initially, we optimize two synthetic
problems to assess the behavior of a multi-fidelity model in simulated black-box scenarios, detecting
unfavorable situations where the application of MFBO does not offer an advantage over SFBO. We
exhaustively scan MFBO experimental parameters (namely, cost ratio and informativeness of the LF
source) to identify trends that indicate promising experimental settings for when to apply MFBO.
Building on these guidelines, we then progress to chemistry-based problems, tackling three real
challenges in molecular and materials optimization, where MFBO successfully outperforms SFBO.
This work offers a comprehensive view and a reference guide for applying MFBO in the molecules
and materials discovery domain.

Figure 1: Multi-fidelity Bayesian Optimization (MFBO) combines expensive but informative and
cheap but approximate sources of information with a ML model to optimize black-box problems
at an overall reduced budget. The high-fidelity source (HF, e.g., real lab experiment) provides
accurate information but at a high cost. The low-fidelity source (LF, e.g., computer simulation of
real experiment) represents a cheaper approximation of the HF. In the illustration, we show the
surfaces corresponding to the Branin function used in this study at the HF and one LF level, where
the optima are located in different places. The MFBO loop iteratively selects HF or LF to maximize
the information gain while reducing the overall optimization cost.

Methods

Multi-fidelity Bayesian Optimization

BO uses a probabilistic surrogate model and a selection policy (acquisition function) to optimize
black-box problems. These problems are normally expensive to query, and BO accelerates the finding
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of optimal points by minimizing the number of calls to the target function. The optimization problem
can be formulated as

argmax
x∈X

f(x)

where f is the target black-box function and X is the space of all possible input candidates.
Considering D = [(x1, y1), (x2, y2), ...(xn, yn)] a dataset containing pairs of inputs-outputs
(xn, yn) ∈ Rd × R of our problem, we can use a surrogate model to learn the relationships be-
tween the data in the form yi = f(xi) + ϵ, with ϵ ∼ N (0, σ2

ϵ ). The surrogate is commonly a
Gaussian Process (GP), a non-parametric model that provides uncertainty quantification19. GPs are
usually defined as f(x) ∼ GP(0, k(x, x′)), placing a zero-mean prior and a covariance given by a
kernel function cov[f(x), f(x′)] = k(x, x′) that measures the similarity between inputs. Given a
dataset D, the predictive mean and variance are given by the following expressions

µ(x) = kx(K + σ2
ϵ I)

−1y

σ2(x) = k(x, x)− kx(K + σ2
ϵ I)

−1k⊤x

where kx = [k(x, x1), ..., k(x, xn)]
⊤ ∈ Rn, K ∈ Rn×n = (k(xi, xj))1≤i,j≤n and y = [y1, ..., yn].

In order to optimize the target problem, after training the surrogate with the available data, a decision
is made to select the next points by maximizing the acquisition function. Acquisition functions are
heuristics that decide the next point to query by balancing exploration and exploitation. The next
inputs are given by

argmax
x∈X

acqf(x)

where acqf is the acquisition function.

Multi-fidelity BO extends the previous setup by considering an extra input parameter for the surrogate
model, the fidelity l. This parameter indicates which source of information the other inputs correspond
to (e.g., high fidelity, HF, or low fidelity, LF). In our case, we use a discrete fidelity setting, where
l ∈ [l0, l1, ...lm] and lm corresponds to the highest fidelity among the m levels. In all cases, we limit
the analysis to two levels of fidelity (l0 and l1 and m = 1) , but the methodology can be extended to
more levels. Additionally, these models assume that the cost only depends on the fidelity level l and
not on the search space x. We employed a modified GP proposed in10 that extends the previously
described surrogate modelling to the multi-fidelity space of Rn+1 dimensions, chosen due to its
popularity amongst MFBO applications10,14,18. The modified kernel is defined as k((x, l), (x′, l′)),
where fidelity is introduced by defining a separate kernel to model the input space, and a kernel
to model the correlation and interaction between the different fidelity levels. The mathematical
expression is:

k ((x, l) , (x′, l′)) = kI(x, x
′)× kIS(l, l

′)

kI(x, x
′) = exp

(
−1

2

d∑
i=1

λ−1
i (xi − x′

i)
2

)
kIS(l, l

′) = c+ (1− l)1+δ(1− l′)1+δ

Given a dataset of inputs with their associated fidelities and outputs, the model can be trained using
standard maximum log-likelihood optimization to obtain the optimal hyperparameters λi, c and δ.
In the experiments, we set the l values of the HF and LF levels to 1 and 0 respectively following
previous studies that used this kernel in a binary setting14,18.

In the multi-fidelity case, acquisition functions must compute the information gained over the cost of
a query at a given fidelity level. The previous expression for the acquisition function maximization
can be therefore generalized as acqf(x, l) = acqf(x) ·cost(l)−1. The next pair of input and fidelity
query is given by

argmax
(x,l)∈X×[m]

acqf(x, l)
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In the experiments we use two families of acquisition functions, with their single and multi-fidelity
versions: Maximum Entropy Search (MES)11 and Expected Improvement (EI)20. We also initially
tested Knowledge Gradient (KG)10, but we discarded it due to its computational expense.

In all cases, the experiments are run for 20 independent seeds, and the number of initial samples
corresponds to 10% of the total optimization budget, sampled using a Latin hypercube strategy. In the
MFBO case, the budget is split to sample 50% of HF and 50% of LF initial points. In the synthetic
functions, the total budget corresponds to 50 HF queries. In the chemistry and materials benchmarks,
the total budget corresponds to 30 HF queries. Data collection is sequential. All the experiments are
run using BOTorch21 as a standard Bayesian Optimization framework.

Metrics

High-fidelity regret calculation in MFBO Setting

Figure 2: Standardized metrics to compare MFBO
and SFBO. Simple regret traces are computed us-
ing algorithm 1 and provide a direct comparison
between the optimization progress in each method
by computing the equivalent number of steps from
SFBO in the MFBO trace. Discount (∆) reflects
the savings in optimization cost by computing the
normalized difference in budget spent by each algo-
rithm (bsf(r̃∗) and bmf(r̃∗)) to find r̃∗ (horizontal
arrow, see equation 1).

Due to the lack of standardized metrics in the
MFBO field17, we define a standardized simple
regret and a discount metric to quantify the per-
formance of MFBO over SFBO. Let f be the HF
target problem. At a given step t of the SFBO
run, the simple regret is defined as rt = f∗−f∗

t ,
where f∗ is the known global optimum and f∗

t
is the best value of f found so far. The simple re-
gret is computed only at the highest fidelity level
in the multi-fidelity runs. To compare multi-
fidelity and single-fidelity runs it is necessary
to find the corresponding high-fidelity simple
regret in the multi-fidelity setting, which can
query both the low-fidelity or high-fidelity at
a given step. We define a standard algorithm
to identify the corresponding HF simple regret
at a given budget of an MFBO campaign. The
algorithm aligns the r values from the MFBO
to a common cost scale given by the SFBO cost
steps. This makes it possible to compare the per-
formance of the MFBO method at each step of
the associated SFBO run. Algorithm 1 explains
in detail the procedure to compute simple regret
both for single-fidelity and multi-fidelity runs.

In the plots, we compute the average r and standard deviation of an optimization run using the
proposed algorithm from all the different repeats. Figure 2 shows a graphical explanation of the
associated regret traces depicted in orange and purple which have an equal number of datapoints.

Discount as a utility metric for MFBO

We also propose a discount ∆ metric to estimate the savings provided by the MFBO method compared
to the SFBO (see figure 2 for a graphical explanation of this metric). The discount variable reflects
the difference of budgets required to reach a reference regret value between the multi-fidelity and
single-fidelity methods. Specifically, it is computed over two individual SF and MF runs as follows:

∆ =
bsf(r̃∗)− bmf(r̃∗)

bsf(r̃∗)
, (1)

where r̃∗ is the corrected best multi-fidelity regret, defined as r̃∗ = rmf
t τ . The τ correction accounts

for situations where the MFBO method gets to low regrets faster than the SFBO at the beginning
of the optimization, but its performance plateaus in the long term as noted in17. In our experiments,
we set τ = 2 as a reasonable adjustment, given that rmf

t tends to be small. A positive ∆ indicates
cost savings with MFBO, meaning it achieves the minimum regret with a lower budget than SFBO.
Conversely, a negative ∆ implies that MFBO was more expensive than SFBO. If the SFBO method
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is unable to reach r̃∗, ∆ is capped at 1. Note that equation 1 compares individual runs started at the
same seed as displayed in Figure 2, and we report the average ∆ over all the seeds onwards.

LF level cost and informativeness estimation

We use cost ratio and informativeness metrics to compute the characteristics of the low-fidelity
approximation with respect to the high-fidelity. Cost is characterized by the cost ratio ρ, which is
obtained by dividing the LF cost and the HF cost. Informativeness is characterized by the R2 of the
LF approximation. To compute this metric, we uniformly sample 100 points for the given problem
and extract their associated values at the HF and LF levels. Then, the R2 between a linear fitting of
the LF prediction and the true HF value is computed. Supplementary Information A.3 shows the plots
with the sampled points and the computed R2 of each of problems used in this study.

Synthetic functions

Synthetic functions are simulated black-box problems where a mathematical expression is used to
generate points from a surface to be optimized. In the multi-fidelity case, there are lower accuracy
approximations of the target function at a lower cost. These can either have a fixed expression or
be generated by biasing the original function using a given parameter α. In our case, we use the
Branin18 function previously used in MFBO works. We also modify a Park function used in MFBO22

by incorporating a parameter α to modulate the bias with a similar behaviour to the Branin case.
The expressions of the functions can be found in the Supplementary Information A.1. The cost of
querying the high-fidelity level is set to a value of 1, and the cost of the low-fidelity approximations
is set to a fraction of this value.

Chemistry and materials design benchmarks

We use or adapt previously reported benchmarks for real experimental optimization problems in the
chemistry domain. The Covalent Organic Frameworks (COFs) dataset was used in a previous work
on MFBO14, and consists of 608 candidate COFs encoded in a 14-dimensional vector accounting
for their composition and crystal structure. The high-fidelity simulation uses a Markov chain Monte
Carlo simulation to compute the adsorption of Kr and Xe in the material, and the associated Kr/Xe
selectivity. This simulation is expensive, with an average running time of 230 minutes. In this
case, a low-fidelity approximation of the selectivity can be obtained using Henry’s law, reducing the
computing time to 15 minutes, giving a ρ of 0.065 for this problem.

The second benchmark is derived from the Alexandria library23, and it was used in previous
work on MFBO for materials discovery13. It comprises 1134 molecules encoded using RDKit
2D-descriptors24 and reduced to a 10-D vector using PCA. The high-fidelity is the experimental
polarizability, whereas the low-fidelity is the computed polarizability at the Hartree-Fock 6-31G+
level of theory. ρ is set up to 0.167 in this case following the previous study.

The last benchmark is extracted from the FreeSolv library25. It comprises 641 molecules, encoded
using RDKit 2D-descriptors and reduced to a 10-D vector using PCA. The high-fidelity is the
experimental free solvation energy, whereas the low-fidelity is the computed solvation energy using
molecular dynamics. ρ is set up to 0.1 in this case.

Results

Shedding light into MFBO failure modes

We test the performance of MFBO methods over their SFBO counterparts on two different synthetic
functions, Branin and Park (with 2 and 4 dimensions respectively), on two different scenarios
(favorable and unfavorable). Synthetic functions are commonly employed as black-box problems to
test the performance of BO algorithms (see Synthetic functions). In the case of MFBO, the output
of the functions can be biased using a parameter α to provide lower accuracy information sources.
This parameter is related to the informativeness of the LF source (in our case, we quantify the
informativeness of the LF by computing the R2 with respect to the HF, see Metrics). For the favorable
scenario, we tune the α parameter to provide a highly informative LF source (LF R2 > 0.9). We
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set the cost of querying a HF point to 1 and the cost of a LF point to 0.1 (ρ = 0.1). Figure 3 shows
the results for the favorable scenario. In this case, both MFBO methods outperform their SFBO
counterparts, with maximum discounts of 0.5 and 0.58 for Branin and Park respectively. The MFBO
runs get to lower regrets quicker, spending less resources by exploiting the use of LF and HF sources
of information. The resulting optimization runs are therefore desirable as they effectively leverage
the access to the LF to guide the optimization of the HF level.

Although under the previous settings MFBO provides a higher performance than SFBO, a change in
the LF conditions dramatically affects the result of the optimization. In the unfavorable scenario, we
set the cost of the LF source to 0.5 (only half of the HF cost, ρ = 0.5) and decrease the informativeness
of the functions (R2 < 0.75). In this case, the performance of both methods is similar (minimum
∆ of -0.07 and -0.1 for Branin and Park respectively), and the MFBO does not provide a quicker
convergence to low regret values. The previous results illustrate how MFBO performance is affected
by the cost and the informativeness of the LF source, losing its advantage over SFBO if the LF source
is not informative and cheap enough.

Figure 3: MFBO results are dependent on problem conditions. In the favorable scenario (highly
informative and cheap LF source, ρ = 0.1, R2 > 0.9), MFBO offers better performance than SFBO
on the synthetic functions (maximum ∆ of 0.5 and 0.58 for Branin and Park, respectively). The
optimization traces show how lower regrets are found at lower budgets under this scenario. When
the conditions are changed and a low informative and more expensive LF is used (ρ = 0.5, R2 <
0.75), MFBO performance is degraded. Under this scenario, the optimization traces are similar, and
MFBO does not offer an advantage over SFBO (minimum ∆ of -0.07 and -0.1 for Branin and Park,
respectively).

Finding suitable scenarios for MFBO

We investigate in detail the effect of the LF cost and informativeness on MFBO performance
(measured by ∆, see Metrics) for the two previous synthetic functions. We run the MFBO method
with different combinations of LF cost and informativeness and compare it to SFBO. Figure 4 shows
the computed ∆ for each run as a result of the previous parameters. The x axis of the heatmap
represent the α value that was used to bias the synthetic function, and the upper plot shows the
computed R2 for each value. In both cases, a gradient can be observed where the progression towards
cheaper and more informative LF sources provides better MFBO performances (higher ∆). In the
case of Branin, the lower values of R2 in the synthetic functions are associated with a less informative
LF approximation, which translates to lower values of ∆. In the same way, in Park ∆ is also decreased
when the R2 is lower, giving negative results when its value is close to 0. This result is consistent as
a more inaccurate source of information is likely to reduce the performance of the MFBO method. In
terms of cost, there is also an inverse correlation in both cases, where lower ρ (cheaper LF sources)
generate higher discounts. This is an expected trend, as the model can access the approximate sources
at a lower cost, allowing a wider exploration of the problem space for the same price.

The results follow the same trend in both cases independently of the acquisition function. Although
there are differences in the absolute ∆ values between the two problems (due to the specific landscape
of each synthetic function), the regions of high performance are localized in the same areas of the
heatmaps. These results provide a qualitative understanding of the effect of cost and informativeness
on the performance of MFBO. The general high-performance region is located around cheap and
highly informative LF sources, and a good experimental setup for MFBO application should aim to
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Figure 4: Change of ∆ with the cost and informativeness of the LF source. Each heatmap shows
the computed ∆ for each synthetic function and acquisition function family. The heatmap’s y axis
represents the cost of the LF source (ρ), and the x axis its informativeness. The informativeness
of each function is tuned using a parameter α in the definition of the function. Because α cannot
be known in a real experiment, the upper plots show the estimated R2 value for each α value (see
Methods for an explanation of R2 estimation). In all the cases, cheaper and informative LF sources
provide the highest discounts (a gradient in ∆ increasing when ρ decreases and R2 increases can be
observed).

find suitable LF sources. In general, a user should first verify that the cost of the auxiliary experiment
is cheap enough to run MFBO. In the same way, they should check and estimate the degree of
informativeness of the auxiliary experiment to decide if it provides a reasonable approximation
of the real problem (in this case, we propose R2 as a guiding metric, but other informativeness
measurements could be employed). Figure 5 displays a guiding flowchart following the previous
considerations. Using these conditions does not guarantee superior performance over SFBO, but
provides a guiding principle for the successful application of MFBO in real scenarios.
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Should I use MFBO?

Is ρ < τ1 = 0.2?

Is R2 > τ2 = 0.75?run SFBO

run SFBO

run MFBO

yes

no

no
yes

Figure 5: Proposed guidelines to run MFBO. Evaluation of the informativeness and cost of the LF
approximation provides a reasonable estimation of the potential success of the MFBO approach over
standard SFBO. The flowchart illustrates a potential analysis of the scenario to decide if running
MFBO or not by using a threshold of ρ (τ1) and R2 (τ2). If the LF source is cheap enough (ρ < τ1)
and informative enough (R2 > τ2), we recommend running MFBO. We propose τ1 = 0.2 and
τ2 = 0.75 as a soft threshold for this study based on our empirical investigation.

Application of MFBO guidelines to chemistry problems

We translate the previous recommendations to three benchmarks in chemistry and materials science
to showcase their utility in real experimental situations. The tasks correspond to scenarios where
a cheap and informative LF source is available under the proposed guidelines (see Methods for a
detailed explanation of each benchmark). Figure 6a illustrates the results of MFBO and SFBO in
these scenarios. In all cases, the MFBO method can get to lower regrets at a lower cost than the
SFBO by leveraging the cheaper source of information at hand. In the COFs benchmark (problem
settings: ρ = 0.065, R2 = 0.98), the MFBO gets to the COF with the highest computed Kr/Xe
selectivity in the allocated budget, whereas the SFBO does not find it. In the polarizability benchmark
(problem settings: ρ = 0.167, R2 = 0.99), the MFBO provides a maximum discount of 0.6 over the
SFBO. In this case, the use of a cheap Hartree-Fock computation is successfully combined with the
experimental measurements to find the molecule with the highest polarizability. In the solvation
energy benchmark (problem settings: ρ = 0.1, R2 = 0.88), the MFBO finds the molecule with the
highest solvation energy but the SFBO not, as in the COFs case. This example also integrates
computed values with experimental measurements to reduce the spent budget. Figure 6b shows the
proportion of queries to each fidelity level in the different tasks. By distributing the available budget
between the HF and LF levels, the MFBO methods can integrate the cheaper information of the LF
approximations to improve the optimization results. The number of calls to each query depends on
the specific acquisition function and task. However, in all cases the proportion of calls to the HF
level is lower than 0.4, suggesting that this proportion can provide a threshold for a successful MFBO
optimization. In these real scenarios, the MFBO methods can exploit the low accuracy but cheap LF
levels by querying them more often than the HF level.

We also include a negative example where the conditions of one of these benchmarks are changed to
an unfavorable scenario and the associated MFBO performance is overridden. We change the LF
conditions of the molecule polarizability benchmark (ρ = 0.5 and R2 = 0.49) to illustrate how ∆ is
reduced with respect to the previous case. Figure 6c shows the result for the optimization, where
∆ is reduced from a maximum value of 0.67 to 0.03, providing almost no advantage over SFBO
if compared with the previous favorable scenario (similar to the results described for the synthetic
functions, see Results). The previous benchmarks show how the application of MFBO in suitable
scenarios provides an advantage over standard SFBO cases and effectively decreases the optimization
cost. By locating experiments where the cost and informativeness of the LF source are adequate, we
can successfully translate the advantages of MFBO into a realistic experimental task.
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Figure 6: Molecules and materials benchmark results. a) Optimization performance for the MFBO and
the SFBO methods in each benchmark (see Methods for a description of each task). The maximum ∆
in each case is 1, 1 and 0.67 for the COFs, solvation energy and polarizabiliry tasks, respectively.
In all the cases, MFBO is able to achieve lower regrets than SFBO by spending less budget. b)
Proportion of queries to each fidelity source in the MFBO setting. The MFBO method balances
information gain and budget spent by querying more often the LF values (between 0.6 and 0.8 in the
ratio of queries) while also using information from HF values. c) Experimental negative example.
Molecule polarizability benchmark conditions were changed so the LF source was expensive and less
informative. The resulting ∆ is 0 and 0.03 for the MES and EI families respectively, showing how
unfavorable conditions can override the MFBO advantage over SFBO in a real experimental setting.

Discussion

Multi-fidelity Bayesian optimization (MFBO) offers a promising approach to reducing costs in
optimization by leveraging inexpensive, approximate sources of information. In the chemical
sciences, MFBO can accelerate optimization while maintaining cost efficiency. However, its utility
is not universal; in some cases, it may prove less effective or even counterproductive18. To address
these concerns, we conducted a comprehensive study to determine under which conditions MFBO
outperforms standard single-fidelity Bayesian optimization (SFBO).

We introduce two key metrics for comparison: a standardized regret, r, and a discount metric, ∆
(see Metrics). Our analysis of synthetic benchmarks demonstrates that MFBO performance is highly
dependent on the characteristics of the low-fidelity (LF) source. Specifically, not all LF conditions
are conducive to the effective use of MFBO. To systematically identify favorable conditions, we
performed a grid-based exploration of LF cost and informativeness against the discount metric, ∆.
The results indicate that both ρ and R2 significantly influence the discount, with the most favorable
outcomes achieved when the LF source is both highly informative and low-cost. Based on these
findings, we developed a flowchart to guide the application of MFBO (see Figure 5). These guidelines
were validated using three real-world experimental benchmarks in molecular and materials discovery,
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demonstrating that MFBO consistently outperforms SFBO in reducing optimization costs, provided
the LF source is sufficiently inexpensive and informative.

Our work provides a structured decision-making framework for determining the applicability of
MFBO. While our analysis focused on a specific surrogate model and two acquisition functions,
the approach is extensible to other surrogate models and acquisition function families. Future
research will expand this framework to include models such as Bayesian neural networks (BNNs)26,
and explore additional experimental applications, evaluating the impact of varied feature spaces or
additional fidelity levels. This study offers valuable insights for practitioners seeking to integrate
MFBO into their experimental workflows, paving the way for more routine application of MFBO in
chemical and materials optimization.
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Appendix A Supplementary information

A.1 Synthetic functions expressions

Branin-2D

f(x, α) = (x2 − (
5.1

4π2
− 0.1(1− α))x2

1 +
5

π
x1 − 6)2 + 10(1− 1

8π
)cos(x1) + 10 (2)

defined over [−5, 10]× [0, 15], and α ∈ [0, 1] is the bias term.
Park-4D

f(x, α) =
x1

2
(

√
1 +

(x2 + x2
3)x4

x2
1

− 1)

+ (x1 + (3− 1.5(1− α))x4) exp(1 + sin(x3))

(3)

defined over [0, 1]4, and α ∈ [0, 1] is the bias term.

A.2 Simple regret algorithm

Algorithm for the standardized simple regret computation. Single-fidelity and multi-fidelity cumu-
lative cost values (csf and cmf ) represent the accumulated cost at each step of the optimization run.

Algorithm 1: Algorithm for computing multi-fidelity simple regret
Input: t ∈ N+ // Number of single-fidelity optimization steps

1 n ∈ N+ // Total number of multi-fidelity steps
2 ymf ∈ Rn // Multi-fidelity output values
3 l ∈ {0, 1}n // Fidelity values (1 : high-fidelity, 0 : low-fidelity)
4 csf ∈ Rt // Single-fidelity cumulative cost values
5 cmf ∈ Rn // Multi-fidelity cumulative cost values
6 f∗ ∈ R // High-fidelity global optimum

Output: r ∈ Rt // Multi-fidelity regret over t single-fidelity steps

7 Function ComputeSimpleRegret(ymf , l, csf , cmf , f∗, t):
// Select high-fidelity outputs

8 yhf ← [ymf
i ]∀i|li=1

// Compute high-fidelity simple regret
9 rhf ← f∗ − yhf

// Initialize simple regret list
10 r ← [ ]
11 for i← 1 to t do

// Find minimum regret among indices where cmf
k ≤ csfi

12 rmin ← min
(
[rhfk ]∀k|cmf

k ≤csfi

)
// Append to simple regret list

13 Append rmin to r
14 end
15 return r

A.3 Informativeness measurement

The informativeness of the different problems is computed using the R2 as explained in .
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Figure 7: Informativeness of Branin-2D LF approximation varying with the α parameter
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Figure 8: Informativeness of Park-2D LF approximation varying with the α parameter
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Figure 9: Informativeness of COFs LF approximation

Figure 10: Informativeness of polarizability LF approximation
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Figure 11: Informativeness of solvation energy LF approximation
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