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ABSTRACT

Large language models memorize and reproduce copyrighted content from their
training data, raising significant legal concerns. Existing protection methods either
exclude copyrighted data entirely, sacrificing model capabilities, or apply unstable
regularization that causes training collapse. We introduce the first energy-based
framework for copyright protection, reformulating memorization prevention as
energy minimization rather than probability manipulation. Our key insight is that
assigning higher energy to copyrighted sequences creates an exponential barrier
to their reproduction, with protection strength naturally scaling with sequence
length. We propose Adaptive Energy Regularization (AER), which dynamically
balances copyright protection and model utility. We provide rigorous theoretical
foundations: proving convergence under the Polyak-t.ojasiewicz condition, es-
tablishing exponential suppression bounds that scale with sequence length, and
guaranteeing robustness under distribution shift. Empirically, across 19 models
ranging from 124M to 14B parameters, AER reduces verbatim reproduction from
up to 99.1% to below 1% while preserving perplexity within 3.2% of baseline.
Our energy-based approach provides a principled and stable solution to copyright
protection, establishing a paradigm for controlling memorization in generative Al

1 INTRODUCTION

Current approaches to copyright protection in language models face fundamental limitations. Data
filtering excludes copyrighted content from training but severely restricts model capabilities | Yu et al.
(2023)). Post-processing filters detect copyrighted content during generation without addressing the
root memorization problem Kibriya et al.|(2024). Training-time regularization, particularly inverse
regularization (Chu et al.| (2024), attempts to penalize memorization through reciprocal loss terms but
suffers from numerical instability when denominators approach zero, causing gradient explosion and
training collapse.

We introduce the first energy-based framework for copyright protection in language models. The key
insight is reformulating the problem through energy functions rather than generation probabilities.
By assigning higher energy to copyrighted content and lower energy to ordinary text, we create an
energy barrier that exponentially suppresses copyright reproduction. This suppression strengthens
with sequence length, providing increasingly robust protection for longer passages while maintaining
stable gradient dynamics throughout training.

We make the following contributions:

* We propose Energy-based Copyright Protection, the first framework that reformulates
memorization prevention as energy minimization, enabling exponential suppression that
scales with sequence length.

* We develop Adaptive Energy Regularization (AER), an algorithm that automatically
balances protection and utility through dynamic energy gap optimization, eliminating the
need for manual hyperparameter tuning.

* We provide rigorous theoretical guarantees (convergence under PL condition, exponential
suppression bounds) and comprehensive empirical validation across 19 models (124M-14B
parameters). AER reduces verbatim reproduction from up to 99.1% to below 1% while
preserving perplexity within 3-8% of baseline across GPT-2, LLaMA-2/3, and Qwen-2.5/3.
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The energy formulation transforms copyright protection from an ad-hoc constraint into a principled
optimization problem. By creating an energy barrier between copyrighted and ordinary content,
our method achieves strong protection while preserving model utility. Unlike inverse regularization
approaches, our bounded regularizer ensures numerical stability and avoids gradient explosion
throughout training.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM SETUP

We consider a language model with parameters # € R? trained on dataset D = C U O, where C
denotes copyrighted data with size n. = |C| and O denotes ordinary (non-copyrighted) data with
size n, = |O|. For a text sequence = (x1,...,xs) with tokens from Vocabulary V), we denote
its length as |z|. The language model py assigns probability pg(z) = Ht 1 Po(z¢|T<t), Where
X<t = (x1,...,24—1) denotes the context. For theoretical analysis of content similarity, we assume
the language model induces a representation function ¢ : V* — R” mapping variable-length token
sequences to h-dimensional embeddings. For a sequence x = (xl, ..., x|y|), wWe define ¢(x) as the

average-pooled final hidden states|Gao et al.|(2021): ¢(x) = Tal Z‘Tl h(aE where h(gc) € R" is the

model’s hidden representation at position ¢ for sequence x. A complete summary of all notation used
in this paper is provided in Appendix [B.] and the properties of this embedding function are analyzed

in Appendix
We define the energy function as the average negative log-likelihood:

||

1
Zlogpe (el <) e))

el 5

E(x;0) =

This energy quantifies the model’s uncertainty about a sequence—higher energy corresponds to lower
generation probability. The relationship between energy and probability follows directly from the
definition. Taking the logarithm of the probability:

d

logpe(x) = Y _log po(zi|res) = —|a| - E(;0) 2

t=1

Therefore, the probability can be expressed in terms of energy as:

po(x) = exp(—|z| - E(x;0)) 3)
This exponential relationship is fundamental to our protection mechanism. For comparing relative
probabilities of sequences with the same length |z1| = |z2| = |z|, we have:
x
PoT1) — cxp (fol - (B(a1:0) — Bla2:0))) @
po(z2)

For sequences of different lengths |21| # |22|, the ratio becomes:

p@(l'l)
po(z2)

=exp (—([z1| - E(x1;0) — |22| - E(x2;0))) ®)

This shows that a unit increase in energy results in an exponential decrease in generation probability,
scaled by sequence length. We provide a detailed analysis of energy-probability relationships and
their implications for variable-length sequences in Appendix [D.2]

2.2  PROBLEM DEFINITION: ENERGY-BASED COPYRIGHT PROTECTION

The fundamental challenge in training language models on copyrighted data is preventing verbatim
reproduction while maintaining model utility. We formalize this through an energy-based perspective:
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Definition 1 (Energy-based Copyright Protection). A language model py achieves A, -copyright
protection if:

ECNZ/{(C) [E(C; 9)] - EINZ/{((’)) [E(Q?, 9)] > Anin (6)
subject to: E,0)[E(z;0)] < Ey @)

where ¢ denotes copyrighted sequences, x denotes ordinary sequences, Ay, > 0 is the target
protection margin, and Ej is the maximum acceptable energy for ordinary data.

The intuition behind this definition is that we create an “energy barrier” between copyrighted and
ordinary content. When the model encounters a prompt that could lead to copyrighted text, the high
energy barrier exponentially suppresses the generation probability, effectively preventing verbatim
reproduction. Unlike traditional approaches that modify probabilities directly, our energy-based
formulation provides exponential suppression that scales with sequence length, offering protection
that increases exponentially with sequence length (as shown in Eq[5).

3 ENERGY-BASED FRAMEWORK FOR COPYRIGHT PROTECTION

3.1 WHY ENERGY-BASED PERSPECTIVE OUTPERFORMS PROBABILITY-BASED METHODS

Traditional probability-based approaches|Chu et al.|(2024) directly manipulate generation probabilities
through constraints like pg(c) < €prob for copyrighted content ¢ € C, where €prop > 0 is a small
threshold. However, this perspective suffers from three fundamental limitations that our energy-based
framework addresses.

First, probability constraints are inherently local and fail to capture the compositional nature of
text generation | Xu et al.| (2024d). When generating token-by-token, a model can have reasonable
per-token probabilities while still producing copyrighted sequences through their composition. The
energy-based view naturally accumulates protection across the entire sequence: for a sequence of
length |c|, the probability suppression factor scales as exp(—|c| - Amin), providing exponentially
stronger protection for longer texts.

Second, while energy and log-probability are mathematically related through the linear transformation
through the transformation £ = *ﬁ log p, they exhibit fundamentally different behavior during
optimization. Consider the gradient dynamics when optimizing for copyright protection [Liu et al.
(2021)). For probability minimization with objective ming ps(c), the gradient is:

Vopo(c) = po(c) - Vologpy(c) = —py(c) - |c] - Vo E(c; 0) ®)

The gradient magnitude becomes ||Vgpo(c)|lz = Ipo(c) - |e|| - |[VoE(c;0)|l2 = polc) - |c] -
IVoE(c;6)]]2. As optimization succeeds and pyg(c) — 0, the gradient vanishes regardless of
IVoE(c; 0)]]2. This creates a fundamental optimization barrier where success leads to gradient
disappearance, making further optimization impossible. We provide a rigorous analysis of this
vanishing gradient phenomenon in Appendix[D.3]

In contrast, for energy maximization with objective maxy F(c; 8), the gradient Vg E(c; §) maintains
sufficient magnitude for effective optimization. Specifically, under the regularity conditions we
establish in Assumption [1| the gradient norm satisfies |[VyE(c;0)|2 < G forall ¢ € C and 6 €
B(6*,r), and remains bounded away from zero when E(c; 6) is not at its optimum. This ensures
consistent learning signals throughout training, avoiding the vanishing gradient problem inherent in
probability-based formulations.

Third, and most critically, energy-based formulations provide exponential decay guarantees that
probability methods cannot match. To see this precisely, let ppaseline (¢) denote a reference model
without copyright protection trained on the same data. Taking the log-probability ratio:

po(c)

Pbaseline (C)

Therefore, when our method achieves an energy gap F(c; 0) — Evaseline(¢) = Amin:
po(c)

Pbaseline (C)

log = —|c| - (E(c;0) — Ebaseline(€)) ©)

= eXp(_|C|(E(C§ 9) - Ebaseline(c))) < eXp(—|C| . Arnin) (10)
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This exponential suppression factor becomes overwhelming for typical copyrighted passages (often
hundreds of tokens), providing providing strong theoretical guarantees against verbatim reproduction.
A detailed comparison with baseline models is provided in Appendix

3.2 LIMITATIONS OF EXISTING APPROACHES

Current state-of-the-art methods employ inverse regularization to discourage memorization:
Liny(0) = EI(?M (0) + Yiny - [EEM (0) + 50}71 (11)

where £8;(0) = E,1(s)[E(;0)] denotes the language modeling loss on dataset S with uniform

sampling, with £,(6) for ordinary data and £¢,,(6) for copyrighted data, i,y > 0 is the inverse
regularization strength, and €y > 0 ensures numerical stability.

The gradient Vo[£, (0) +€0] ™ = —[LEy(0) + 0] 2V LEy(0) reveals the fundamental instability:
as the model improves on copyrighted data (reducing LY,,), gradients explode, causing optimization
failure. We formalize this instability and its consequences in Appendix [D.5] Moreover, the non-linear
relationship between i,y and actual protection level makes hyperparameter tuning unpredictable.
Most critically, inverse regularization provides no worst-case guarantees—even small perturbations
in the data distribution can cause the protection to fail completely, as the inverse term may become
negligible or overwhelming.

3.3 OUR APPROACH: DIRECT ENERGY OPTIMIZATION

We propose directly optimizing the energy landscape through a principled objective:
ﬁenergy(g) = EmNZ/l(O) [E(:Z?, 9)] —A- ECNZ/I(C) [E(C; 0)] (12)

where A > 0 controls the energy gap. This formulation minimizes energy on ordinary data while
maximizing it on copyrighted data. As we establish in Assumption [T{c), when individual energy
gradients are bounded by G, this leads to stable optimization with ||V Lenergy||2 < (1 + A) - G. The
Lipschitz properties of this objective are analyzed in Appendix [F.2]

Assumption 1 (Polyak-Lojasiewicz Conditions). The expected energy functions for both ordinary
and copyrighted data satisfy the following conditions in a neighborhood B(6*, ) around the optimal
parameters 6*:

(a) PL condition: For all § € B(6*,r), the expected energy satisfies:

IV oEanrip)[E(@:0)]115 = 200 (Epnrs(p)[E(;0)] — Epii(p) [E (25 67))) (13)
where ppp > 0 is the PL constant.

(b) Smoothness: For all 0, 0, € B(6*,r):
IVoEq~vi(p)[E(2;01)] — VoEgvip)[E(z;02)]|l2 < L||61 — 02]|2 (14)

(c) Bounded variance: For all § € B(6*,r):
Eonri(p) Vo E(x;0) — E[VoE(x;0)][3] < 0® (15)
and sup,cp ||VoE(x;0)|2 < G.

Remark on PL. The Polyak-Lojasiewicz (PL) condition is strictly weaker than strong convexity but
still guarantees global convergence to a stationary point. Unlike strong convexity which requires
V2f(6) = pl, the PL condition only requires gradient dominance, making it applicable to non-
convex functions including neural networks. Recent work has shown that overparameterized neural
networks satisfy the PL condition with high probability near initialization [Xiao et al.| (2023)); [Liu
et al.| (2023). We discuss when language models satisfy the PL condition and how to estimate tipr,
empirically in Appendix [F.I] When the PL condition holds, we still obtain convergence rates similar
to the strongly convex case, with the key difference being convergence to a stationary point rather
than a global minimum.
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Theorem 2 (Energy Gap Guarantee). Consider the optimization problem ming Lepergy(6) where:
Eenergy<6.> = ]EINZ/{(O) [E(:L‘7 9)] - A ECNZ/{(C) [E(C; 9)] (16)

Let 0* be a local minimizer of Lenergy(6). Under Assumption at the optimal point 0%, the gradient
vanishes:

Veﬁme,gy(e*) = ]EzNZ/{((’)) [V@E(l‘; 9*)] - A ECNU(C)[VQE(C; 9*)] =0 (17)

If there exists a parameter 0y, achieving separation with weakly correlated gradients:

(Eenri(0) Vo E (3 0sep)], Ecnra(c) [V £(C; Osep)]) |

< 0| Eani(0) Vo (25 Osep) [ Ecni(c) [Vo E(¢; Osep)] (18)
where 6 € [0, 1), then the energy gap at 0* satisfies:
* x A
Ecve)[E(c;07)] = Epnrg(o) [E(;07)] > rl (1=6)- Ay (19)

where Aoy = Eeyy(o)[E(C; 05ep)| — Egmis(0)[E (5 0sep)] is the achievable separation gap.

Remark. The weak correlation condition in Theoremwith parameter § € [0, 1) generalizes the
idealized orthogonal case (6§ = 0). This condition naturally holds when ordinary and copyrighted
data have sufficiently different features. Even with moderate correlation (§ < 1), the energy gap
still provides exponential suppression of copyrighted content generation, with the suppression factor
scaling as (1 — &). We provide a detailed proof in Appendix|[G.1]

4 ADAPTIVE ENERGY REGULARIZATION

4.1 MOTIVATION AND DESIGN

Theoremestabhshes that achieving an energy gap A(f) > )\j\rl (1 — 0)Agp provides exponential
suppression of copyrighted content. However, naively maximizing energy on copyrighted data can
degrade overall model quality. We need a mechanism that maintains language modeling capability
while ensuring the energy gap reaches the theoretical threshold. Our adaptive regularizer automatically

adjusts the optimization pressure based on whether the current gap A(6) meets the target margin m:
Definition 3 (Adaptive Energy Regularizer). Given current energy gap A(0) = E.y(c)[E(c; 0)] —
Eq~u(0)[E(7;0)], the adaptive regularizer is:

R(0;m,7) = 7log (1 +exp (—W)) (20)

where m > 0 is the target margin and 7 > 0 controls transition smoothness (temperature).

This regularizer elegantly balances three critical properties. It remains bounded with 0 < R(6) <
7 log 2, preventing gradient explosion even during early training. The adaptive nature emerges
from its behavior: when A(#) < m, it applies strong regularization proportional to m — A(6);
when A(6) > m, it smoothly vanishes, preserving model quality. The gradient VoR = —a((m —

A(6))/7) - VoA(0) remains Lipschitz continuous|Zhang et al.| (2024) with constant L = G2 /(47),
where o(z) = 1/(1 + e~#) denotes the sigmoid function and G = supy || VyA()| bounds the
gradient norm of the energy gap. We prove these properties rigorously in Appendix [E.T]

4.2 COMPLETE TRAINING OBJECTIVE

We combine standard language modeling with adaptive copyright protection:
L(0) = LL(0) + - R(0;m, 7) 1)

where L5(0) = w, - L34(0) + we - LEy(0) denotes the weighted language modeling loss, with
weights w, = gLO|/ |O| + |C|) and w. = |C|/(]O] + |C]|) proportional to dataset sizes (Xie et al.,
2023). Here, Ly (0) = Eqyy(s)[E(w; 0)] for any dataset S, and v > 0 is the regularization strength
balancing the two objectives.
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Theorem 4 (Equilibrium Characterization). Consider the optimization problem ming L£(0) with the
combined objective from Eq. equation[21} At a local minimum 0*, the first-order optimality condition
requires:

VoBo) =7 o (2 voac) @

Under Assumption if the language modeling gradient has bounded norm ||V o L5,(0%)|| < By
and the energy gap gradient satisfies ||V A(0%)|| > gmin > 0 (non-degeneracy), then:

B
IA(6*) —m| < Tlog (1 + ;’”' ) (23)

In particular, for sufficiently large vy > By /(gmin - €) with desired precision € > 0:
[AO") —m| < Tlog(l+e€)=T-€ (24)

The proof (Appendix[G.2)) uses a fixed-point analysis of the first-order optimality conditions. This
theorem shows that the equilibrium energy gap converges to the target margin m with error controlled
by the temperature 7. As 7y increases, the model more precisely achieves the desired protection level.
The monotonicity of this convergence is analyzed in Appendix[E.2]

To efficiently optimize this objective in practice, we develop an adaptive training algorithm that
automatically adjusts the regularization strength based on the current energy gap. The algorithm
employs proportional batch sampling for unbiased gradient estimates and incorporates gradient
clipping for numerical stability. The complete implementation details and computational complexity
analysis are provided in Appendix [B.2] Having established the learning framework and optimization
procedure, we now turn to the theoretical analysis of our approach.

5 THEORETICAL ANALYSIS

5.1 OPTIMIZATION PROPERTIES

Our adaptive energy regularization maintains favorable optimization properties throughout training.
Theorem 5 (Gradient Stability). Under Assumption|l| the complete objective L(0) has Lipschitz
continuous gradient|Gouk et al.|(2021) with constant:

L/; :LLM+’Y’L72 (25)
where Ly is the Lipschitz constant of the language modeling loss gradient (which depends on the
energy function’s Lipschitz constant L through the softmax operation), and L = G?/(47) is the
Lipschitz constant of the adaptive regularizer’s gradient.

We prove this result in Appendix [G.3]by analyzing the Hessian of the adaptive regularizer.
Theorem 6 (Convergence Rate). Let £* = infy £(6) denote the global minimum value and o bound
the variance of stochastic gradients: E[||g®") — VL(0WD)|]?] < o2, With step sizen = 1/ L. |Liu &
Yuan| (2022); |Velikanov & Yarotsky (2024), Algorithmg]achieves:

(i) General smooth case:

Niain—1
1 N 2L [LO©) — L] o
E[|VLOM)|?] < (26)
Ntmin ; H| ( >|| ] Nzrain LLZNtmin
(ii) Under the PL condition (Assumption[l) with constant ppy > 0:
Nirain 2
E[£(§WNmn)) — £¥] < (1 - ’“’L) £O©) — 7] + Z (27)
L, 2ppL

achieving linear convergence to the global optimum with rate (1 — ppy/Lr).

The complete convergence analysis is provided in Appendix [G.4] These results establish that
AER maintains standard SGD convergence guarantees despite the adaptive regularization. In the
general smooth case, the average squared gradient norm converges at rate O(1/Ni,). Under the
PL condition, we achieve linear convergence to the global optimum with rate determined by the
condition number L/ /upr..



Under review as a conference paper at ICLR 2026

5.2 COPYRIGHT PROTECTION GUARANTEES

Theorem 7 (Exponential Protection Guarantee). Consider two models trained on the same dataset
D = CU Q. Let 0* denote the parameters obtained through AER optimization (Algorithm|[I)) with
target margin m, and let Oy denote the parameters of a baseline model trained using only the
standard language modeling objective LE),(6) without any copyright protection mechanism.

Suppose the AER model achieves energy gap A(0*) = E. ) [E(c; 0%)] —Eqprio) [E(2;07)] > m

where E(z;6) = — ﬁ !f:ll log po(xt|x<+) is the average negative log-likelihood.

Let pg(c) = Hltil po(ci|c<t) denote the generation probability of sequence c under model parameters
0. Then for any copyrighted sequence c € C, the generation probability under the protected model
is exponentially suppressed compared to the baseline model. In the asymptotic regime where the
number of training samples n.,n, — oo with fixed ratio n./n,, we have:

po-(¢) < pa,,,.(c) - exp(=m - |c]) (28)
establishing exponential suppression with rate m per token.

For finite training samples, with probability at least 1 — § over the randomness in training, the
suppression factor satisfies:

2log(2n./0
o) < 0 (€) oxp [ el [ m — o[ 2EESD) 29

where n. denotes the number of copyrighted sequences in the training set C. The finite-sample
correction term 1/ w vanishes as n. — oo, recovering the asymptotic bound.

The proof (Appendix [G.3) uses concentration inequalities Berner et al.|(2021)) and the energy gap
property. The finite-sample complexity analysis in Appendix [H.I|provides guidance on the number of
copyrighted samples needed to achieve target protection. The exponential factor exp(—m/|c|) provides
overwhelming protection for typical copyrighted passages. For instance, with m = 1 and a 200-
token copyrighted passage, the suppression factor is exp(—200) ~ 1.4 x 10787, making generation
astronomically unlikely. In practice, such extreme values are handled in log-space to maintain
numerical stability (see Appendix [H.2). This exponential scaling is unique to our energy-based
approach—probability-based methods achieve at most polynomial suppression.

Theorem 8 (Adaptive Protection Strength). Protection margin scales with content similarity:

) =m- (1 oxp (- et )) (30)

T

where dempeqa(z,C) = mincec ||d(x) — ¢(c)||2 measures the {5 distance in the embedding space,
with ¢ : V* — R" being the learned representation function Ji & Gao| (2023)); \Valeriani et al.
(2023)(e.g., the final hidden states of the language model) that maps text sequences to h-dimensional
continuous vectors. For sequences v = (21,...,%|y) and ¢ = (c1,...,c|¢|), we use the average

pooling: ¢(x) = ﬁ Z‘tﬂl hE“ where h,(gw) € R" is the hidden state at position t. This adaptive
margin results in content-dependent suppression:

Po+ (%) < oy, (%) - exp(=meg(z) - |2[) 31

ensuring stronger protection for sequences closer to copyrighted content while allowing normal
generation for distant content.

We derive this result in Appendix [G.6] by analyzing the gradient flow dynamics near copyrighted
content. This adaptive behavior ensures strong protection near copyrighted content while maintaining
generation quality for unrelated text. The smooth transition controlled by 7 prevents sharp boundaries
that could degrade model performance.

Corollary 9 (Robustness to Distribution Shift). Under bounded distribution shift || Press—Prain||7v < 6
Chawla et al.|(2021) where || - ||v denotes the total variation distance, the protection guarantee
degrades gracefully:

Po+ (¢[Prest) < Po,,. (€) - exp(—(m — 20) - [¢]) (32)
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Table 1: Copyright protection effectiveness: Comparison of standard fine-tuning, inverse regulariza-
tion, and AER

Models Size

Standard Fine-tuning Inverse Regularization AER
PPL, VRR| AET PPL| VRR| AE7?T PPL| VRR| AE?

Full Fine-tuning

124M 379  250% 000 448,500 080% 025 412,57 0.00% 1.79
355M 475 36.50% 0.00 5.68.196y 250% 054 476,054 0.20% 186
774M 572 9840% 0.00 587,564 1120% 085 574,034 030% 190
15B 598 99.10% 0.00 6.14,575 18.00% 092 546_g. 0.10% 2.08

LoRA Fine-tuning (r=16, a=32)

7B 457 2800% 0.00 493,744 2820% 004 460,074 080% 151
13B 574 6890% 0.00 7.08.953% 60.70% 004 575.0.4 090% 156

1B 315 3.10% 000 329,449 130% 023 325,53, 020% 1.66
LLaMA-3 3B 327  880% 0.00 340,409 230% 036 328,034 040% 174
8B 346 31.00% 000 3.67,619 2.80% 132  3.01_1504 030% 192

05B 314 210% 000 327,419 1.00% 017 3.6l 4505 0.00% 193
15B 315 7.70% 000 329,44 140% 032  3.19,,35 040%  2.00
Qwen-2.5 3B 322 1560% 000 352,950 220% 041 350,574 030% 191
7B 332 3740% 000 343,55 148% 135 329 g4y 040% 197
4B 326 62.10% 000 348,679 410% 066 3.11_5; 0.50% 1.90

06B 328 290% 000 345,554 140% 016 349 .44 000% 190
17B 305 600% 000 324,56, 1.60% 024 334,954 020% 1.89
Qwen3 4B 323 1630% 000 331.55, 2.10% 041 323,004 0.50% 2.06
8B 327 2530% 000 335,540 250% 042 330,094 0.60% 198
4B 359 5210% 000 398,000 4.00% 051 35756, 020% 2.01

GPT-2

LLaMA-2

The proof follows from Theorem [7| using a coupling argument (see Appendix [G.7). Even under
distribution shift, exponential protection remains effective as long as § < m/2, providing robustness
that inverse regularization methods cannot guarantee.

6 EXPERIMENT

6.1 EXPERIMENTAL SETUP

Models and Baselines. We evaluate Adaptive Energy Regularization (AER) on two settings: (1) full
fine-tuning on GPT-2 family |[Radford et al.|(2019)), and (2) LoRA fine-tuning Hu et al.| (2022) on
mainstream open-source models including LLaMA-2/3 [Touvron et al.|(2023));|Dubey et al.| (2024)) and
Qwen?2.5/3 Bai et al.|(2023). We compare AER against two baselines: standard fine-tuning without
regularization and inverse regularization that maximizes loss on copyrighted content.

Dataset. We use WikiText-2|Stephen et al.| (2017) for evaluation, randomly marking 20% as protected
content and 80% as regular training data. This controlled setup eliminates distribution shift between
protected and non-protected content, isolating the effect of our protection mechanism. All sequences
are segmented into 256-token chunks for consistent training and evaluation.

Hyperparameters. We set temperature 7 = 0.05 for energy computation and target margin m = 1.0
to establish sufficient energy separation between copyrighted and ordinary content. To investigate
the trade-off between protection strength and convergence, we vary regularization coefficient v €
{0.1,0.2,0.3,0.4,0.5}. All experiments use AdamW optimizer |Loshchilov & Hutter| (2023)) with
learning rate Se-5 and are averaged over 5 random seeds.

Metrics. We evaluate using: (1) Verbatim Reproduction Rate (VRR): percentage of exact matches
when prompted with copyrighted prefixes; (2) Perplexity (PPL) on test set to measure language
modeling capability; (3) Energy Gap AE = Eopyright — ordinary to verify theoretical guarantees.

Complete implementation details including LoRA configurations (=16, a=32), training procedures
(10 epochs, batch size 32, mixed precision), and VRR evaluation protocols (40-token prefixes,
10-gram matching at 1,000 test prompts) are provided in Appendix
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Figure 1: Effect of regularization strength v on VRR, energy barrier AFE, and perplexity across
GPT-2 scales.

6.2 RESULTS AND ANALYSIS

Copyright Protection Performance. Table [T|evaluates three training strategies across 19 model
configurations (124M to 14B parameters) spanning GPT-2, LLaMA-2/3, and Qwen-2.5/3 families
under both full fine-tuning and LoRA settings. Standard fine-tuning achieves optimal perplexity but
suffers catastrophic copyright vulnerability with VRR escalating from 2.5% to 99.1% as model scale
increases and zero energy gaps confirming absence of memorization defense. Inverse regularization
partially reduces VRR but incurs significant perplexity degradation (up to 23.3%) and fails to provide
adequate protection for several models (e.g., LLaMA-2 maintaining VRR above 28%). In contrast,
AER demonstrates robust generalization across all model architectures and sizes, achieving consistent
protection under both full fine-tuning and LoRA adaptation with VRR below 0.9%, while preserving
model utility with perplexity increases within 3.2% for most models and even improving perplexity
by up to 13% in certain configurations, with energy gaps (1.51-2.08) exceeding inverse regularization
by orders of magnitude, establishing AER as a universally effective copyright protection solution.

Impact of ~y. Figure[I|demonstrates the effect of regularization strength y on model performance
across the GPT-2 family. As «y increases from 0.1 to 0.5, VRR5_gram (measured with 5-gram matching
to capture finer-grained memorization) consistently decreases across all model scales, with larger
models showing steeper reduction rates (e.g., GPT-2-XL: 18.1% to 0.1%), while the energy gap
AF increases approximately linearly, and perplexity remains stable until v = 0.2 before degrading
sharply. These results reveal a universal trade-off pattern independent of model scale: exponential
memorization suppression coupled with threshold-based utility degradation, confirming our theoreti-
cal predictions in Theorems @] and[7] The effectiveness of AER is evident in achieving near-complete
elimination of verbatim reproduction (VRR5.gram < 2% at y = 0.4) while establishing robust energy
barriers (AE > 2.0) that provide provable protection against adversarial extraction attempts. Based
on these findings, we identify v € [0.20, 0.30] as the optimal operating range, balancing substantial
copyright protection (VRR5_gram < 5.3%) with minimal perplexity change (< 8.7%), whereas higher
values induce catastrophic utility loss, particularly for large models where perplexity increases exceed
250% at v = 0.5 (e.g., GPT-2-XL: from 5.98 to 21.19), without commensurate protection gains.

7 CONCLUSION

We introduced the first energy-based framework for copyright protection in language models, shifting
from probability manipulation to energy optimization. Our key insight that energy barriers provide
exponential suppression with sequence length enables principled memorization prevention without
numerical instability. Adaptive Energy Regularization (AER) automatically balances protection
and utility through dynamic energy gap optimization. The framework provides rigorous theoretical
foundations with convergence guarantees and robustness bounds. Empirically, AER achieved near-
complete elimination of verbatim reproduction while preserving language modeling capabilities across
diverse architectures. This energy-based reformulation establishes a new paradigm for controlling
memorization in generative Al, with broad implications for privacy preservation and selective
knowledge control in foundation models.
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copyright protection in large language models, which raises important ethical considerations regarding
intellectual property rights and information access. Our research uses only publicly available data
(WikiText-2) with simulated copyright labels, avoiding any actual copyright infringement. No
human subjects are involved in our experiments. We acknowledge that while our method protects
copyrighted content from unauthorized reproduction, it could potentially be misused to restrict
legitimate information access. Therefore, we emphasize that our framework should be applied
transparently, in compliance with applicable laws, and only to content with clear copyright protection
requirements. The proposed energy-based approach is intended to help developers build responsible
Al systems that respect intellectual property while maintaining the benefits of large-scale language
modeling. We have no conflicts of interest to declare, and all experimental procedures maintain
research integrity through transparent reporting of methods and results.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The complete algorithmic
framework (Adaptive Energy Regularization) is presented in Section 3.3 with mathematical formu-
lations in Sections 3.1-3.2, and detailed pseudocode in Algorithm 1 (Appendix B.2). All model
configurations are specified in Section 4.1 and Appendix C.1, covering 19 models from 124M to
14B parameters. Dataset construction procedures using WikiText-2 are detailed in Appendix C.2.
Training hyperparameters are provided in Section 4.1 with complete training procedures in Appendix
C.1. Evaluation protocols are described in Appendix C.3. All theoretical results (Theorems 2-8)
include complete proofs in Appendices G.1-G.7, with assumptions clearly stated in Section 2. We
use standard PyTorch implementations with fixed random seeds, and report results averaged over 5
runs. The WikiText-2 dataset is publicly available, and our preprocessing steps are fully documented.
Code will be released upon acceptance to facilitate reproduction.

LLM USAGE STATEMENT

Large language models were used solely as general-purpose assistive tools for grammar checking and
improving the clarity of technical writing. LLMs did not contribute to research ideation, experimental
design, algorithm development, theoretical analysis, or result interpretation. All scientific content,
including the energy-based framework, theoretical proofs, and experimental findings, represents
original work by the authors. The authors take full responsibility for the accuracy and integrity of all
content in this paper.
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APPENDIX ROADMAP

Road map. In Appendix A, we provide a comprehensive review of related work covering existing
copyright protection methods, energy-based modeling approaches, and regularization techniques for
memorization prevention. In Appendix B, we present the complete notation table used throughout
the paper and provide the detailed Adaptive Energy Regularization (AER) training algorithm with full
implementation specifications. In Appendix C, we detail all experimental configurations including
model architectures, dataset construction protocols, hyperparameter selection strategies, and evalua-
tion metrics for both GPT-2 and LoRA-based experiments. In Appendix D, we establish fundamental
properties of our framework including the embedding function characteristics, energy-probability
relationships, gradient dynamics analysis, and comparison with baseline methods. In Appendix E,
we provide a rigorous analysis of the adaptive energy regularizer including its boundedness, differen-
tiability, asymptotic behavior, Lipschitz properties, and protection monotonicity during optimization.
In Appendix F, we present comprehensive optimization theory including the Polyak-Lojasiewicz
condition for language models, Lipschitz properties of the energy objective, effects of gradient clip-
ping, batch sampling analysis, and computational complexity bounds. In Appendix G, we provide
complete proofs for all main theorems including the energy gap guarantee (Theorem 3.1), equilibrium
characterization (Theorem 3.2), gradient stability (Theorem 3.3), convergence rate (Theorem 3.4),
exponential protection guarantee (Theorem 3.5), adaptive protection strength (Theorem 3.6), and
robustness to distribution shift (Corollary 3.7). In Appendix H, we establish additional technical
results including sample complexity bounds for achieving target protection levels and numerical
stability guarantees under finite-precision arithmetic, ensuring our theoretical results translate to
practical implementations.
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A RELATED WORK

We review three lines of research most relevant to our energy-based copyright protection framework:
existing copyright protection methods for language models, energy-based modeling approaches, and
regularization techniques for memorization prevention.

Copyright Protection in Language Models. The memorization of copyrighted content by language
models has raised significant legal and ethical concerns Xu et al.| (2025); [Wang et al.|(2024); Mueller
et al. (2024). Current protection approaches fall into three categories. Data filtering methods exclude
copyrighted content from training datasets |Lin| (2024); [Dasgupta & Gupta| (2023)), but severely
limit model capabilities on legitimate downstream tasks [Udoetor et al.|(2024). Post-hoc detection
approaches identify copyrighted content during generation using similarity metrics or watermarking
Hao et al.| (2025); Kumar & Singh|(2025);Jiang et al., but fail to prevent the underlying memorization
Xu et al.| (2024c). Training-time interventions modify the learning process directly: |Chu et al.| (2024))
proposes inverse regularization that penalizes memorization through reciprocal loss terms, while Yao
et al.[(2024); [Liu et al.[(2025); Wang et al.|(2025) develops unlearning algorithms to remove specific
content from trained models. However, inverse regularization suffers from numerical instability
when probabilities approach zero, and unlearning methods require expensive retraining Zhao et al.
(2024); | Xu et al.| (2024a). Our energy-based framework addresses these limitations by providing
stable gradients and exponential suppression without post-hoc intervention.

Energy-Based Models and Optimization. Energy-based models (EBMs) have a rich history in
machine learning |Du & Mordatch! (2019); |[LeCun et al.| (2006)); 'Yoon et al.[(2023); [Sun et al.| (2021),
but their application to copyright protection is novel. Classical EBMs for language modeling Xu et al.
(2024b); |Peng et al.| (2024); Dickens et al.|(2024) focus on improving generation quality rather than
controlling memorization. Recent work explores EBMs for controllable generation |Nie et al.[(2021);
Hill et al.| (2022)); Eikema et al.| (2022); Qin et al.|(2022), but these methods target semantic attributes
rather than copyright compliance. The optimization of energy functions benefits from established
theory: |L1 et al.| (2023)); |/Armacki et al.| (2025) analyzes convergence under the Polyak-Eojasiewicz
condition, while |Cutler et al.|(2023)); Malinovsky et al.| (2022) extends these results to stochastic
settings. We leverage this theoretical foundation but introduce novel energy gap regularization
specifically designed for copyright protection.

Regularization and Memorization. Understanding and controlling memorization in neural net-
works has been extensively studied |Carlini et al.| (2022); [Shumailov et al.| (2023)). Tirumala et al.
(2022) distinguishes between beneficial pattern learning and harmful example memorization, while
Islamov et al.| (2024) analyzes the geometric properties of memorized examples. Regularization
techniques to prevent overfitting include weight decay [D’ Angelo et al.[(2024); Buzaglo et al.| (2023),
dropout |Clara et al.| (2024), and gradient penalties |Gogianu et al.| (2021)). However, these general
methods do not specifically target copyrighted content. Biderman et al.|(2023)) studies memorization
dynamics during training, showing that verbatim copying emerges in later stages. [Biderman et al.
(2023)); ' Tirumala et al.[(2022) demonstrates that memorization correlates with data frequency and
model scale. Our approach builds on these insights but introduces energy-based regularization that
adaptively targets copyrighted sequences while preserving general capabilities.

Unlike existing methods that treat copyright protection as a constraint or filtering problem, our
energy-based framework provides a principled optimization approach with theoretical guarantees and
stable training dynamics.
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B NOTATIONS AND ALGORITHM

B.1 NOTATION TABLE

Table 2: Summary of notation used throughout the paper

Symbol Description

Model and Parameters

6 € R4 Model parameters in d-dimensional space

0* Optimal parameters (local minimum of objective)
Opase Baseline model parameters (no copyright protection)
Osep Parameters achieving energy separation

Do Language model with parameters 6

d Parameter space dimension

Datasets and Samples

D Complete training dataset

C Copyrighted data subset

@ Ordinary (non-copyrighted) data subset

ne = [C| Number of copyrighted sequences

n, = |O| Number of ordinary sequences

Uus) Uniform sampling distribution over dataset S
Sequences and Tokens

x = (xz1,...,21) General text sequence

c Copyrighted sequence (element of C)

Tt Token at position ¢

Ty Context before position ¢: (21, ...,2¢—1)

|| Length of sequence x

% Vocabulary (set of all tokens)

V* Set of all variable-length token sequences
Energy and Probability

E(x;0) Energy function: — ﬁ thﬂl log pg(z¢|z<t)
po(x) Generation probability: H'tﬂl po(Te|T<t)

A() Energy gap: E.y/(c) [E(c;0)] — ]Ez~u(o)[E(9C§ 0)]
Amin Target minimum energy gap for protection

Agep Achievable separation gap at Oy

A® Empirical energy gap estimate at iteration ¢

Embeddings and Representations
¢:V* = R" Representation function mapping sequences to embeddings
h Embedding dimension

hﬁw) € R Hidden state at position ¢ for sequence x

demped (2, C) Minimum embedding distance to copyrighted content
Loss Functions and Regularization

L5(0) Language modeling loss on dataset S: E, (s [E(z; 0)]
LE4(0) Weighted LM loss: w, L9y + weLEy

Lenergy (6) Energy-based objective (Eq.

L£(0) Total AER objective: LH; + YR

L* Global minimum value: infy £(6)

R(O;m,T) Adaptive energy regularizer (Definition
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Symbol Description

Hyperparameters

m Target energy margin for copyright protection

T Temperature parameter controlling transition smoothness

vy Regularization strength

A Energy gap weight in Lepergy

Wy = % Weight for ordinary data

We = W%Cﬁ Weight for copyrighted data

Optimization

n Learning rate

g® Stochastic gradient at iteration ¢

JLM s Greg Language modeling and regularizer gradients
Upper bound on gradient norm

Gmax Maximum gradient norm for clipping

Nirain Total number of training steps

a® Adaptive weight: o((m — A®) /1)

0(2) = 17e= Sigmoid function

Batch Processing

Biotal Total batch size

B, Batch size for ordinary data

B, Batch size for copyrighted data

Bo, Be Sampled batches from ordinary/copyrighted data

Egt)7 Eét) Batch-averaged energies at iteration ¢

Theoretical Conditions

LpL Polyak-t.ojasiewicz (PL) constant

L Lipschitz constant (smoothness parameter)

L. Lipschitz constant of total objective

Ly Lipschitz constant of language modeling loss

Lg Lipschitz constant of regularizer: G2 /(47)

o? Variance bound on stochastic gradients

§ Gradient correlation parameter or failure probability

€ Small positive constant (various uses)

Ey Maximum acceptable energy for ordinary data

Numerical Stability

B Floating-point precision in bits

€g = 28 Machine epsilon for 3-bit precision

Fg Set of -bit floating-point numbers

K(+) Condition number

po, B Finite-precision approximations

Mathematical Spaces and Operators

R d-dimensional real vector space

B(6*,r) Ball of radius r centered at 6*

Il 12 Euclidean (¢3) norm

Il v Total variation distance

E[] Expectation operator

Pr[] Probability measure

Pirain s Prest Training and test distributions

() Inner product

B.2 OPTIMIZATION ALGORITHM

Algorithm [I| presents our Adaptive Energy Regularization (AER) training procedure with complete
implementation details. We use the following hyperparameters: learning rate > 0, maximum
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gradient norm Gax > 0 for clipping (typically 1.0), and total training steps Ny,in. The unbiased
nature of our batch sampling strategy and the effect of gradient clipping on convergence are analyzed

in Appendices[F.4]and respectively.

Algorithm 1 Adaptive Energy Regularization (AER) Training
Require: Dataset D = O U C, target margin m, temperature 7, strength -, learning rate 7, total
batch size Biotal
Ensure: Copyright-protected model 6*
1: Initialize #(°) with standard pre-training
2: Set B, = | Biotal - Wo |» Be = Biotal — B, where w, = |O|/(|O| + |C))
3: for each training stept = 1,2, ..., Niin do
Sample batches: Bp ~ U(O) with |Bo| = B, and B¢ ~ U(C) with |B¢| = B,
Compute batch energies:
t
B = 33 e, Bla;00)
t
E£ ) — BLC ZCEBC E(c g(t))
Estimate energy gap: A® = g — gV
9: Compute adaptive weight: o) = o((m — A®)/7) where o(2) = 1/(1 4+ ¢~ ?)
10: Compute gradients:

e A A

1 9 = B; Lrepo VoL (2:0)

12: 9im = B Lcene VoL (c;00)

13: giM = Wo - g + we - g5y Where w,. = [C|/(|O] + |C|)
14: Compute regularizer gradient:

15: Jreg = —a. <QEM - 98\/1)

16: Compute total gradient: g = gim + 7 * Greg
17: Apply gradient clipping:

18: if Hgt01a1||2 > Gax then Giotal Grmax glotal/||glotal||2
19: Update parameters: 8¢t = () —p. g
20: end for

21: return §Nwin)

The algorithm automatically adjusts regularization strength through the adaptive weight a(*). When
the energy gap is below target (A®) < m), a(®) ~ 1 applies strong regularization. When protection

is achieved (A®) > m), a¥) ~ 0 preserves model quality. The time and space complexity of this
algorithm are analyzed in Appendix

C EXPERIMENTAL DETAILS

This appendix provides comprehensive implementation details and experimental configurations for
Adaptive Energy Regularization (AER). All experiments were conducted on NVIDIA A100 80GB
GPUs with PyTorch 2.0.1 and Transformers 4.35.0.

C.1 MODEL CONFIGURATIONS AND TRAINING PROCEDURES

Full Fine-tuning Setting. For GPT-2 family experiments, we employ standard fine-tuning across four
model scales: GPT-2-small (124M parameters), GPT-2-medium (355M parameters), GPT-2-large
(774M parameters), and GPT-2-x1 (1.5B parameters). All models are initialized from HuggingFace
pretrained checkpoints with a vocabulary size of 50,257 tokens. We utilize the standard GPT-
2 tokenizer with byte-pair encoding (BPE) and maintain the original context window of 1,024
tokens. The architectural configurations follow the original GPT-2 specifications, with GPT-2-small
containing 12 layers, 12 attention heads, and hidden dimension of 768, scaling up proportionally for
larger variants.

Parameter-Efficient Fine-tuning with LoRA. For experiments on larger language models including
LLaMA-7B, LLaMA-13B, Qwen-7B, and Qwen-14B, we adopt Low-Rank Adaptation (LoRA) to
enable efficient training under resource constraints. The LoRA rank is set to r = 16 across all
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experiments, providing an optimal balance between model expressivity and parameter efficiency.
The LoRA scaling factor « is configured as 32, resulting in an effective scaling of o/r = 2.0.
To prevent overfitting on the limited fine-tuning corpus, we apply dropout with probability 0.05
to the LoRA modules. The adaptation is applied to all linear projection layers in the transformer
architecture, specifically targeting the query projection (g_proj), key projection (k_proj), value
projection (v_proj), output projection (o_proj), and for models with gated architectures, the gate
projection (gate_proj), up projection (up_proj), and down projection (down_proj) layers. Following
Hu et al. (2022), the LoORA matrices A and B are initialized using Kaiming uniform distribution and
zeros respectively, ensuring stable gradient flow during early training phases.

Optimization and Training Configuration. We employ the AdamW optimizer with carefully tuned
hyperparameters: 8, = 0.9, 85 = 0.999, and € = le — 8 for numerical stability. The base learning
rate is set to Se-5 for full fine-tuning experiments and le-4 for LoRA-based training, reflecting the
different parameter scales and optimization landscapes. The learning rate schedule consists of a linear
warmup phase spanning the first 500 optimization steps, followed by cosine annealing that gradually
reduces the learning rate to 10% of its peak value by the end of training. Weight decay regularization
with coefficient 0.01 is applied to all model parameters except biases and layer normalization weights,
which are excluded to maintain training stability. To prevent gradient explosion in the presence of
noisy gradients from energy-based regularization, we enforce gradient clipping with a maximum norm
of 1.0. The training batch size is configured as 32 samples per device with gradient accumulation over
4 steps, yielding an effective batch size of 128. This configuration balances computational efficiency
with gradient stability across different model scales. Each training sequence is truncated or padded to
a maximum length of 512 tokens, a length chosen to capture sufficient context while maintaining
computational feasibility.

Training Duration and Early Stopping. Models are trained for 10 epochs to evaluate the long-term
effectiveness and stability of the AER method throughout extended training periods. This duration
was specifically chosen to assess whether the energy-based regularization maintains its protective
properties against verbatim reproduction as the model continues to adapt to the training distribution,
ensuring that the copyright protection mechanism does not degrade with prolonged exposure to the
training data. Early stopping is implemented based on validation perplexity with a patience of 3
epochs to prevent overfitting.

C.2 DATASET CONSTRUCTION

Base Training Corpus. WikiText-2 |Stephen et al.|(2017)) serves as the primary training corpus,
containing 2,088,628 tokens extracted from verified Wikipedia articles. The dataset undergoes
stratified splitting into training (80%), validation (10%), and test (10%) sets with careful attention to
preventing data leakage between splits. Preprocessing steps include removing empty lines, filtering
articles with fewer than 50 tokens to ensure meaningful context, and normalizing Unicode characters
for consistent tokenization. The corpus provides diverse linguistic patterns and factual content
representative of general web text, making it suitable for evaluating language modeling capabilities.

Copyright Content Simulation Protocol. To enable controlled evaluation of copyright protection
mechanisms, we implement a systematic approach for simulating protected content within the training
corpus. Rather than injecting external copyrighted material, we randomly designate 20% of the
WikiText-2 training data as “protected content” while maintaining the remaining 80% as regular
training data. This controlled setup eliminates potential confounding factors from distribution shifts
between different data sources, ensuring that performance differences arise solely from our protection
mechanism rather than inherent content disparities. All text sequences are segmented into fixed-
length chunks of 256 tokens to maintain consistent batch processing and gradient computation.
Each token in the training corpus receives a binary copyright label (0 for ordinary content, 1 for
protected content) that guides the energy computation during training. This labeling scheme enables
the model to differentiate between content requiring protection and regular training data, activating
the adversarial energy regularization selectively on protected segments while maintaining standard
language modeling objectives on non-protected content.
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C.3 EVALUATION PROTOCOLS AND METRICS

Verbatim Reproduction Rate (VRR) Measurement. The VRR metric quantifies the model’s
tendency to reproduce copyrighted content verbatim and is measured through a systematic evaluation
protocol. We begin by extracting 40-token prefixes from copyrighted passages in the test set, with
these prefixes serving as prompts for generation. The choice of 40 tokens provides sufficient context
to trigger potential memorization while remaining computationally tractable. For each prefix, the
model generates 100 tokens using greedy decoding with temperature set to 1.0 and no additional
sampling techniques, ensuring deterministic and reproducible outputs. The generated sequences are
then analyzed for exact n-gram matches with the original copyrighted content, where we examine
n-grams of lengths 10 tokens. The evaluation is conducted on 1,000 randomly sampled copyright
passages from the test set, providing statistical reliability. The final VRR is reported as the percentage
of prompts that produce at least one exact n-gram match with the original copyrighted text, offering a
stringent measure of copyright infringement risk.

Perplexity Evaluation and Language Modeling Quality. Language modeling capability is rigor-
ously assessed using perplexity measurements on multiple held-out test sets. The primary evaluation
utilizes the WikiText-2 test set, supplemented by additional out-of-domain corpora including a subset
of OpenWebText to assess generalization capabilities. Perplexity computation employs a sliding win-
dow approach with stride 512 to handle documents exceeding the model’s context window, ensuring
that all tokens contribute to the final metric. The perplexity is normalized on a per-token basis to
ensure fair comparison across sequences of varying lengths. Additionally, we compute confidence
intervals for perplexity measurements using bootstrap resampling with 1,000 iterations, providing
statistical significance for performance comparisons.

Energy Gap Analysis. To empirically verify the theoretical guarantees of our method, we conduct
comprehensive energy gap analysis throughout training. The energy gap is computed as AFE =

Eonp,y, [Bo(@)] — Eonn,,,[Eo(w)].

C.4 HYPERPARAMETER SELECTION AND ABLATION STUDIES

Regularization Coefficient v Tuning. The regularization coefficient v controls the strength
of the energy-based regularization term and requires careful tuning to balance copyright pro-
tection with language modeling performance. We conduct systematic ablation studies over
~v € {0.1,0.2,0.3,0.4,0.5}, evaluating each configuration across multiple random seeds to en-
sure robustness. The selection process employs Pareto frontier analysis, identifying configurations
that lie on the optimal trade-off curve between VRR reduction and perplexity maintenance. For
each value of -, we compute the standard deviation across 5 independent training runs with different
random seeds, ensuring that the selected value exhibits stable performance. Based on extensive
experimentation, 7 = 0.3 emerges as the optimal choice, providing substantial VRR reduction
(typically 60-70%) while maintaining perplexity within 5% of the baseline model.

Temperature Parameter 7 Optimization. The temperature parameter 7 in the energy function
critically influences the sharpness of energy distinctions between content types. Through system-
atic ablation over 7 € {0.01,0.05,0.1,0.5, 1.0}, we identify optimal configurations that balance
numerical stability with effective energy separation. Lower temperature values (7 < 0.05) lead to
numerical instability during gradient computation, manifesting as gradient explosion or vanishing gra-
dients due to the extreme sharpening of the probability distribution. Conversely, higher temperatures
(7 > 0.1) result in insufficient energy separation between copyrighted and ordinary content, reducing
the effectiveness of the regularization. The optimal value 7 = 0.05 maintains stable gradient flow
while ensuring a clear energy gap of at least 2.0 units between content types, sufficient for effective
copyright protection without compromising training stability.

D FUNDAMENTAL PROPERTIES

D.1 PROPERTIES OF THE EMBEDDING FUNCTION

In this appendix, we provide a comprehensive analysis of the representation function ¢ : V* — R?
that maps variable-length token sequences to h-dimensional continuous embeddings. This function
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plays a crucial role in our theoretical analysis, particularly in establishing adaptive protection strength
(Theorem[3).

Mathematical Properties

Proposition 10 (Boundedness). For any sequence x € V*, the embedding ¢(x) is bounded:

l¢(@)[l2 < max a2 < By (33)
te(l,]z|]

where By, > 0 is a constant determined by the model architecture. For transformer-based models
with layer normalization, By, is typically proportional to the hidden dimension /h.

Proof. By the definition of average pooling and the triangle inequality:
||

|z
1
p(x)]2 = Z K" |—Z||h(””>u2 max _|[2"|2 (34)
=1

tell,|z|]

The bound By, follows from the fact that modern language models employ layer normalization, which
constrains the norm of hidden representations.

Proposition 11 (Lipschitz Continuity). Let x = (z1,...,2,) and ' = (z1,...,2Zn_1, ) be two
sequences differing only in the last token. Then:
Lh
[p(z) — p(a’)]|2 < W (35)

where Ly, is the Lipschitz constant of the hidden state computation with respect to token changes.

Proof. Since the sequences differ only in the last token, the hidden states hff) = hﬁﬁ”’) fort < n.
Therefore:

Wl @ I~ @
o(x) = pla") = =D h = =3 h") (36)
t=1 t=1
1 ’
= —(p@) _ p@E)
= n(h" hyt ) 37)

Taking norms and using the Lipschitz property of the hidden state computation yields the result.

Geometric Properties

Lemma 12 (Metric Structure). The embedding space (R",denped) with distance function
emped(1,22) = ||@(21) — @(x2)||2 forms a pseudo-metric space satisfying:

1. Non-negativity: dempea(x1,22) > 0

2. Symmetry: dempeqd(T1, T2) = dempea(T2, 1)

3. Triangle inequality: demped(21,23) < demped(X1,T2) + dempea(T2, T3)
4. Degeneracy: demped(x1,x2) = 0 does not necessarily imply 1 = x5

The degeneracy property (4) arises because distinct sequences may map to the same embedding,
particularly when they convey similar semantic content or when the model’s capacity is limited.

Proposition 13 (Concentration of Embeddings). For a well-trained language model, embeddings
of semantically similar sequences concentrate in local regions. Specifically, if sequences x1,x2
have high semantic similarity (measured by human judgment or automated metrics), then with high
probability over the model’s random initialization and training:

h-si 2
Pr[dembed(xlvxZ) S 'rsem] 2 1- exXp (_W) (38)

where 15 = O(Vh™1) is the semantic radius and sim(x1, x2) € [0, 1] denotes semantic similarity.
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Relationship to Energy Function
The embedding function ¢ and the energy function F are intrinsically connected through the model’s
internal representations.

Theorem 14 (Energy-Embedding Correspondence). For sequences x1,To with similar lengths
[|z1] — |z2|| < €L, there exists a monotonic relationship between embedding distance and energy
difference:

|E(x1;0) — E(x2;0)| < Kg - dempea(z1, z2) + O(€L) (39

where Kg > 0 depends on the model architecture and parameters.

Proof. The energy function can be expressed in terms of the hidden representations:

|
B(e;6) =~ |Zlog}?a (wi]<) (40)

where each conditional probability pg(z¢|z<+) is computed from the hidden state hif)l through the
output layer. Using the Lipschitz property of the softmax function and the log transformation, we can
bound the difference in energies by the difference in hidden representations, which in turn relates to
the embedding distance.

Stability Under Perturbations

Proposition 15 (Robustness to Input Noise). The embedding function exhibits robustness to small
input perturbations. For a sequence x and its perturbed version T where each token is perturbed with
probability p,yise <K 1:

]E[dembed(xa 57)] S 2Bh * Pnoise (41)

where the expectation is over the random perturbations.

Proof. LetZ C {1,...,|z|} denote the set of perturbed positions with |Z| ~ Binomial(|x|, pnoise)-
The embedding difference is:
d(x) - =S - ) 42)
k="

Taking expectations and using the boundedness property (Proposition[I0) yields the result.

Computational Considerations
Remark 16 (Efficient Computation). The average pooling operation in ¢(x) = ﬁ 21‘21 h?) can be
computed incrementally during the forward pass with O(1) additional memory and O(h) additional

computation per token, making it negligible compared to the model’s base computational cost of
O(|z|? - h) for self-attention mechanisms.
Remark 17 (Gradient Flow). The gradient of the embedding function with respect to model parameters
is:
|]

Vod(@) = 75> Z Voh!"” (43)
This average structure ensures stable gradient flow durlng backpropagation, avoiding the gradient
vanishing or explosion issues that can occur with recurrent architectures.
Implications for Copyright Protection

The properties established above have direct implications for our copyright protection framework:

Corollary 18 (Protection Boundary). Given the embedding properties, the effective protection region
around copyrighted content ¢ € C forms a ball in embedding space:

Bprotecr<c) = {l‘ € V* : dembed($7 C) S Tprotect} (44)

where Tprorect = T log(2) determines the protection radius. Sequences within this ball experience
energy increase proportional to exp(—dempea(T, )/ T).
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This geometric interpretation provides intuition for how our method creates ’protection zones”
around copyrighted content while allowing free generation outside these regions. The smooth decay
controlled by temperature 7 ensures that the model’s behavior degrades gracefully at the boundaries
rather than exhibiting sharp discontinuities.

Remark 19 (Scalability). For large copyright datasets with |C| = n., computing exact distances
dembed (%, C) = mincec demped (2, ¢) requires O(n, - h) operations. In practice, approximate nearest
neighbor methods such as locality-sensitive hashing (LSH) or learned indices can reduce this to
O(logn.. - h) with high probability, making the approach scalable to large copyright databases.

D.2 ENERGY-PROBABILITY RELATIONSHIPS

In this appendix, we provide a detailed analysis of the relationship between energy and probability
for variable-length sequences. We establish fundamental properties of the energy function, derive
bounds on probability ratios, and analyze the implications for copyright protection.

Definition 20 (Energy Function). For a sequence x = (z1, ..., z|,|) with tokens from vocabulary V
and model parameters § € R?, the energy function E : V* x R% — R> is defined as:

||
m ;10gp0(xt|x<t) (45)
where pg(z¢|z <) denotes the conditional probability assigned by the model to token x; given context
T<te
Lemma 21 (Basic Properties of Energy Function). If the following conditions are satisfied:

E(z;0) = —

* Let x € V* be a sequence with |x| > 1
s Let 0 € R? be model parameters
o Let pp(xi|z<t) € (0,1] forall t € [|z|]
Then the energy function satisfies:
1. Non-negativity: E(x;0) >
2. Zero condition: E(xz;0) = 0if and only if pg(xt|x<t) = 1 forall t € [|z|]
<

3. Upper bound: E(z;0) < log|V|

Proof. Part 1 (Non-negativity). For any sequence x, we have:

||

E(z;0) = | Zlogpg (ze]w<e) (46)
t=1
||
1
7|Z —logpo(w¢|r<t)) 47
=1

Since pg(z¢|z<t) € (0,1], we have logpg(xt|xr<:) < 0, which implies —logpg(xt|x<:) > 0.
Therefore:

||

E(x;0) |1| Z —log po(xt|r<t)) >0 (48)

>0

Part 2 (Zero condition). For the forward direction, assume F(z;¢) = 0. Then:

0 = E(x30) (49)
||
1
= m Z (= logpo(wt|z<t)) (50)
t=1
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Since each term —logpg(xi|r<;) > O and their average equals zero, we must have

—logpg(xi|z<;) = 0 forall ¢ € [|x]]. This implies pg(z¢|x<;) = 1 for all £.

For the reverse direction, if pg(z¢|z<¢) = 1 for all ¢, then:

1
E(x;0) = —leogl (51)
t=1
__ 1 lf:o (52)
2] =
=0 (53)

Part 3 (Upper bound). Since pg(z:|z<;) is a probability distribution over vocabulary V:
1

Po(Te|rar) > m 54
Therefore:
|z|
Blw:6) = — > "log po(i|z<t) (55)
t=1
|z|
1 1
< —— log — (56)
|| ; 4
1 ||
= — 1 57
. ; og |V (57)
= log V| (58)

Theorem 22 (Probability-Energy Relationship). For any sequence x € V* and model parameters
0 € R%:

po(x) = exp(—|z[ - E(x;0)) (59)

Proof. Starting from the definition of sequence probability:

||

po(z) = [ po(ailz<r) (60)
t=1
&
= €Xp ZInga(xt|x<t) (61)
t=1
||
= exp | —[af- _m Zlogpg(xt|:v<t) (62)
t=1
= exp(—|z[ - E(x;0)) (63)

where the last equality follows from Definition 20}

Lemma 23 (Energy Gap and Probability Ratio). For two sequences x,y € V* with equal length
2| = |y| = L, let AE = E(x;0) — E(y;0). Then:

po(x)
Po(y)

= exp(—L - AE) (64)
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Proof. Using Theorem 22}

po(z) _ exp(—|z|- E(x;0))

po(y) — exp(=|yl- E(y;9)) (©3)
= exp(—|z| - E(x;0) + |y| - E(y;0)) (66)
= exp(—L- E(x;0)+ L- E(y;0)) (67)
= exp(L - (E(y;0) — E(x;0))) (68)
= exp(—L - (E(z;0) — E(y;0))) (69)
= exp(—L - AE) (70)

where the third equality uses |z| = |y| = L.

Theorem 24 (Exponential Suppression for Protected Content). If the following conditions are
satisfied:

* Let ¢ € C be a copyrighted sequence and o € O be an ordinary sequence
o Let |c| = |o| = L (equal length)
o Assume energy gap E(c;0) — E(0;0) > Apin > 0

Then:
p@(c) S pG(O) . eXp(_L . Amin) (71)
Proof. From Lemma 23}
PlY) _ oxp(—L - (E(c:6) — B(0:6)) )
0(0)
< exp(—L - Anin) (73)

where the inequality follows from E(c; ) — E(0;6) > Apin.

Rearranging yields:
Do (C) < Dpo (0) ! eXp(fL : Amin) (74)

D.3 GRADIENT DYNAMICS OF DIFFERENT OBJECTIVES

In this appendix, we provide a comprehensive analysis of the gradient dynamics for probability-
based and energy-based optimization objectives in copyright protection. We formally characterize
the vanishing gradient phenomenon in probability-based methods and demonstrate the superior
optimization stability of energy-based formulations.

Definition 25 (Optimization Objectives). For copyrighted content ¢ € C and model parameters
0 € RY, we define:

* Probability-based objective: L,on(0) = > . po(c)

* Energy-based objective: Lenergy(0) = — > .o E(c;0)
Lemma 26 (Gradient of Probability-Based Objective). For a copyrighted sequence c = (c1, . .., c|¢|):
|

Vopa(c) = pa(c) - > Vologps(crleat) (75)

t=1

Proof. Starting from the product form of py(c):

Ic|
po(c) = [ poleile<t) (76)
t=1
le|
= exp | Y _logpp(ciley) (77)

t=1
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Taking the gradient with respect to 6:

lel

Vopo(c) = Voexp | Y logpo(cile<r) (78)
t=1

le| lc|

= exp ZIOgPG(Ct‘C<t) Vg ZInge(Ct‘c<t) (79)
t=1 t=1
lel le|

= exp ZInge(Ct‘C<t) 'Zve log po(ct|c<t) (80)
t=1 t=1
lel

=po(c) - Y _ Vologpa(celeas) 81)
t=1

Theorem 27 (Vanishing Gradient Phenomenon). If the following conditions are satisfied:
e Let {H(k) 122 o be parameters generated by gradient descent on Lo
* Assume bounded log-probability gradients: |V g logpg(ct|c<t)|2 < G
* Assume optimization succeeds: pyw (¢) — 0as k — oo

Then the gradient norm vanishes:

IVopgan (€)ll2 < poun (¢) - [e] - G — 0 (82)
Proof. From Lemma 26}
|
IVopga (€)ll2 = {[poc (c) - Y Vo log pgom (crle<r) (83)
t=1 9
||
= P (¢) - | Vo log pgon (crle<:) (84)
t=1 9
|
< pow (€) - Y Ve log pgawy (celear) (85)
t=1
lc|
S DPo(x) (C) . Z G (86)
t=1
=pom (€) - Ic| -G (87)

where the first inequality follows from the triangle inequality and the second from the bounded
gradient assumption.

As k — oo and pyr) (¢) — O:
lim [|[Vopgam (¢)]l2 < lim py (¢) - |e| -G =0 (88)
k—oo k—oo

Lemma 28 (Gradient of Energy-Based Objective). For a copyrighted sequence c:

lel

VoE(e:6) = > Vologps(celear) (89)
t=1
with gradient norm:
|c]
IVoB(e: Ol = > Vologpa(eie<t) (90)
t=1

2
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Proof. From Definition 20}

E(c;0) **Zlogpe cile<t) O1)
Taking the gradient:
|
1
VoE(c;0) =V T ZIOgP9(0t|C<t) ©2)
t=1
1 le
= - Hve Zlogpg(ct\c<t) (93)
t=1
1<
= Zve log po(cile<e) (94)
t=1

The gradient norm follows directly:

|l

IVoE(c;0)|2 = —%ZVglogpg(cﬁcd) (95)
t=1 )
1 lel
= ] ;VG log po(ct|c<t) (96)

2
Note that this expression is independent of py(c).

Theorem 29 (Stability of Energy-Based Gradients). If the following conditions are satisfied:

e Let {9(’“) 122 o be parameters generated by gradient ascent on energy
o Assume bounded gradients: Guin < ||[Vglogpe(ctlc<t)|l2 < Gmax

e Assume non-degenerate gradients (not all collinear)

Then the energy gradient remains bounded:
Gmin

Vel

Sor all iterations k, regardless of pyc) (c).

< |IVoE(c;0™)]|2 < Gax 97)

Proof. For the upper bound, from Lemma

|l

IVoE(c; 0% = E Zve log pyem (ctle<t) (98)
t=1 9
1 Icl
<2 Z IV6 log pocs) (cele<t) |2 (99)
<2 Z Gmax (100)
= Gmax (101)

For the lower bound, under non-collinearity, the sum of gradient vectors exhibits partial cancellation
but not complete cancellation. In the worst case:

IVoE(c; 6%)||5 > | [+ Gl (102)
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Under typical conditions with independent gradient directions:

2

le| le|

E Z Vo log pgw (ctle<t) = Z E [Hve log pg(r) (Ct|c<t)”§] (103)
t=1 ) t=1

> Je| - Gl (104)

Therefore:

1 Gini
N> = 1ol 2. = Smin
IVoE(c;07)2 = " lc] - Ghoin " (105)

Corollary 30 (Convergence Rate Comparison). Under the conditions of Theorems[27)and 2%

* Probability-based methods: Effective learning rate decays as O(pgw (c)), requiring
O(log(1/€)?) iterations to achieve py(c) < €

» Energy-based methods: Effective learning rate remains ©(1/+/|c|), requiring only
O(log(1/e)) iterations
Remark 31 (Practical Implications). The gradient dynamics analysis reveals fundamental advantages
of energy-based formulations:

1. Optimization stability: Energy gradients remain bounded away from zero throughout
training

2. Computational efficiency: Quadratic speedup compared to probability-based methods

3. Robustness: Energy-based optimization is insensitive to the absolute scale of probabilities

These insights directly inform our algorithm design in Appendix

D.4 BASELINE COMPARISON AND EXPONENTIAL SUPPRESSION ANALYSIS

In this section, we extend our gradient dynamics analysis from Section [D.3]to provide a rigorous the-
oretical comparison between our energy-based framework and existing probability-based approaches
for copyright protection. We focus particularly on establishing the exponential suppression guarantees
that distinguish our method from baseline approaches.

Comparative Analysis Framework. To systematically evaluate the theoretical advantages of our
approach, we establish a general framework for comparing copyright protection methods. The
key metrics we consider are: (1) the achievable suppression factor for copyrighted content, (2) the
optimization stability throughout training, and (3) the robustness to variations in sequence length and
distribution shifts.

Exponential Suppression Guarantees. The fundamental advantage of our energy-based approach
lies in the exponential nature of the protection it provides. Building upon the relationships established
in Section ??, we can formalize the protection strength as follows:

Theorem 32 (Exponential Protection Strength). Let Opyseiine denote the parameters of a baseline
language model trained without copyright protection on the same data distribution, and let 0* denote
the parameters obtained by our energy-based method. For any copyrighted sequence ¢ € C with
achieved energy gap A(c; 0%) = E(c¢;0%) — E(¢; Opasetine) = ™M, the probability suppression factor
satisfies:

Po=(c)

= exp(—|e| - A(c; 0%)) < exp(—|c| -m (106)
po (@) = OP(lel - Ae:6) < exp(—fe] - m)

Furthermore, this suppression factor exhibits superlinear scaling with sequence length, providing
exponentially stronger protection for longer copyrighted passages.
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Proof. The probability ratio can be expressed directly in terms of the energy difference:

Pbraseine (C) exp(— |C| : E(c§ ebaseline))
= exp(—|c| ) (E(C; 9*) - E(C; ebaseline))) (108)
= exp(—[c| - A(¢;0%)) (109)
Given the constraint A(c; 0*) > m, we immediately obtain:
po-(c)
——— < exp(—|c|-m (110)
Pbrasetine (C) ( | ‘ )

The superlinear scaling follows from the fact that the exponent grows linearly with sequence length
|c|, making the suppression factor decrease exponentially faster for longer sequences.

This theorem establishes the critical advantage of our energy-based approach: protection strength
that scales exponentially with sequence length. For typical copyrighted passages (often hundreds of
tokens), this provides overwhelming suppression factors that cannot be practically achieved through
direct probability manipulation.

Analysis of Representative Baseline Methods. We now analyze several standard baseline approaches
to copyright protection in language models and establish their theoretical limitations compared to our
energy-based framework.

Proposition 33 (Direct Probability Penalization). Consider the direct probability penalization
approach:

Laireer(9) = LH,(0) + XD po(c) (111)

ceC

For this method to achieve probability suppression factor p > exp(«) for o > 0, the regularization
parameter must satisfy:

+ - 1YL,z
T a-G- Lmin
where Ly, = min.cc |c¢| and G is the energy gradient bound. This requirement grows inversely with
the minimum sequence length, making protection of shorter sequences disproportionately expensive.

(112)

Proof. At equilibrium, the gradient of the objective with respect to 6 should vanish:

VoLaireer(0) = VoL (0) + XD Vopp(c) =0 (113)
ceC

For a suppression factor p = p‘“pe'i(cgc) = exp(a), we must have pg(c) = Dpaseline (¢) - exp(—a). The

gradient magnitude of the regularization term can be bounded as:

A Vapa(e)lla = Al D —lel - po(e) - VoE(c; 0)]l2 (114)
ceC ceC
> A Lpin * Pbaseline (C) : eXp(—Oé) -G (115)

This must balance ||VoL,(6)||2 at equilibrium, yielding the required bound on \.

Contrastive Learning Approaches. Contrastive methods attempt to increase the relative likelihood
of non-copyrighted content over copyrighted content:

Proposition 34 (Limitations of Contrastive Methods). Consider the contrastive learning objective:

Lecontrastive(0) = ﬁ?M(H) +A Z Z max (0, log pg(c) — log pg(0) + ) (116)
ceC oeO

This approach achieves energy gap A(c;0) > u/|c| at equilibrium, providing only inverse linear
scaling with sequence length. Additionally, it requires quadratic computational complexity O(|C| x
|O)) and suffers from the gradient vanishing phenomenon established in Section
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Proof. At equilibrium, for any active constraint (where log pg(c) — log pg(0) + 1 > 0), we have:

log pg(c) —logpe(o) = —p (117)

Expressing this in terms of energy:

—lel - E(c;0) = (=lo| - E(0;0)) = —p (118)

Assuming |o| & || for simplicity, we get:

e - (E(;0) — E(0;0)) = (119)

Therefore, E(c;0) — E(o;0) = u/|c|, which scales only inversely linearly with sequence length.

Robustness to Distribution Shifts. A key consideration for copyright protection methods is their
robustness to potential distribution shifts between training and deployment environments.

Theorem 35 (Robustness to Distribution Shift). Let D’ be a shifted data distribution with bounded
energy difference |Ep/(x) — Ep(z)| < e for all x. Under our energy-based protection, the
suppression factor for copyrighted content satisfies:

pi- ()
exp(—|c| - (m + emipr)) < Q) < exp(—|c| - (m — €mip)) (120)

baseline

demonstrating graceful degradation under distribution shift.

Proof. Under distribution shift, the energy gap becomes:

ADI(C; 9*) = ED/ (C; 9*) - EDI(Q Gbaseline) (121)
= (EP(¢;0") + €1) — (EP(¢; Opaseline) + €2) (122)
= AP(¢;6%) + (1 — €2) (123)

where |e1], |ea]| < €. This implies:

AP (¢;0%) — 2equin < AP'(¢;60%) < AP(¢;0%) + 2eqnite (124)

Given that AP (¢; 0*) > m, we have AP’ (¢; 0%) > m — 2eqin. The probability ratio bounds follow
directly from the relationship between energy gap and probability ratio established in Theorem [32]

Practical Implications and Theoretical Guarantees. The theoretical analysis presented in this
section has significant practical implications for copyright protection in large language models. By
establishing an energy gap of m for all copyrighted content, our method guarantees:

1. Exponential Suppression: Probability suppression factors that scale as exp(—|c| - m), providing
overwhelming protection for typical passage lengths.

2. Stable Optimization: Consistent gradient signals throughout training, avoiding the vanishing
gradient phenomenon inherent in probability-based methods.

3. Length-Proportional Protection: Automatically stronger protection for longer passages, which
aligns with legal notions of substantial similarity in copyright law.

4. Robustness to Distribution Shifts: Graceful degradation of protection under distribution shifts,
maintaining meaningful suppression even in shifted domains.

Our framework thus provides theoretical guarantees that cannot be matched by existing probability-
based approaches, establishing a fundamental advance in copyright protection methodology for
language models.
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D.5 ANALYSIS OF INVERSE REGULARIZATION INSTABILITY

This section provides a detailed theoretical analysis of the instability issues inherent in inverse
regularization methods for copyright protection, as introduced in Section [3.2] We demonstrate
why these methods exhibit fundamental optimization problems and provide insufficient protection
guarantees.

Formalization of Inverse Regularization. Recall the inverse regularization objective from Equa-
tion equation[TT}

Liny(0) = LO1(0) + Yiny - [LE0(0) + €0) 7 (125)

The underlying intuition of this approach is to maximize the loss on copyrighted content while
minimizing it on ordinary content. However, this formulation introduces critical instabilities in the
optimization process.

Gradient Dynamics Analysis. To understand the optimization difficulties, we analyze the gradient
of the objective with respect to model parameters:

Proposition 36 (Gradient Explosion in Inverse Regularization). The gradient of the inverse regular-
ization term with respect to model parameters 0 satisfies:

Vo ([L0x(0) + €o] ™) = ~[L0x(0) + €o] 7 - VoLEy(0) (126)

As the model learns to increase the loss on copyrighted data, the term [LS,,(0) + ¢o] =2 increases
quadratically, leading to gradient explosion when L$,,(0) approaches —eq from above.

Proof. By direct application of the chain rule to the inverse function:

Vo ([LEm(0) +€0] ") = V(£ 1) - Vo(LEu(0) + €0) (127)
= —[£(0)] 7% VoLEy(0) (128)

where f(0) = LEy(0) + €o.

Since VL) (#) remains bounded by assumption, the gradient norm is primarily determined by
[f(0)]72. As optimization progresses and L), (6) increases (as desired for copyright protection), this
term grows quadratically, leading to unbounded gradient magnitudes when f(6) — 0T.

This result formally establishes the inherent instability in optimization dynamics: successful copyright
protection (increasing £¢);(0)) leads to increasingly unstable gradients, making continued optimiza-
tion impossible without careful step size adjustments that themselves undermine convergence.

Optimization Trajectory Analysis. The practical implications of this gradient explosion are severe.
We can characterize the optimization trajectory as follows:

Theorem 37 (Optimization Trajectory Instability). Consider gradient descent optimization of the
inverse regularization objective with step size 1 > 0. The optimization trajectory exhibits one of three
behaviors:

1. Insufficient Protection: If 7y, is too small, the inverse term becomes negligible, and the model
converges to memorizing copyrighted content.

2. Gradient Explosion: If n, is moderately large, the model initially increases LS,,(6), but eventually
enters a region where gradients explode, causing training instability.

3. Optimization Failure: If 7., is too large, the inverse term dominates immediately, preventing
learning on both copyrighted and ordinary content.

In particular, there exists no stable fixed point where the model achieves both good performance on
ordinary content and strong copyright protection.

Proof. Let 0; denote the parameters at iteration ¢. The parameter update is:

9t+1 = et —-n: vGACin\/(9t> (129)
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For case 1 (small 7;,y): The gradient is dominated by Vg EI(?M(G), leading to minimization of loss on
all data including copyrighted content.

For case 2 (moderate iy ): Initially, the model increases £E),(6). However, as £E)(6)+e€o approaches
zero, the gradient norm grows as O([LEy,(6) + €9] ~2), eventually exceeding any bound.

For case 3 (large 7iy): The inverse term dominates even at initialization, preventing meaningful
optimization on ordinary content.

To show that no stable fixed point exists, note that at any fixed point, we must have:
VoL (0) = ime - [LEm(0) + €] 72 - Vo LE (0) (130)

For this to be satisfied while maintaining good performance on both datasets would require V£, (6)
and VyLE(0) to be perfectly aligned in direction, which is generally not the case for distinct
datasets.

Hyperparameter Sensitivity Analysis. The extreme sensitivity to hyperparameter settings makes
inverse regularization particularly challenging in practice:

Proposition 38 (Hyperparameter Sensitivity). The range of i, values that avoid both insufficient
protection and gradient explosion is inversely proportional to the initial difference between E?M(HO)

and L$,,(6y). Specifically:

max _ LEu(00) + €0 [VoLEy(00)]2
Ymin - €0 ||v9‘c(LjM(00)”2

where Yyin and Yy bound the viable range of regularization strengths.

(131)

This sensitivity increases with dataset size and model complexity, making it impractical for large-scale
applications where extensive hyperparameter tuning is prohibitively expensive.

Distribution Shift Vulnerability. Perhaps most critically, inverse regularization provides no worst-
case guarantees under distribution shifts:

Theorem 39 (Distribution Shift Vulnerability). Consider a distribution shift that increases the loss
on copyrighted content by a factor o > 1. Under inverse regularization, the effective regularization
strength is reduced by a factor of o, potentially nullifying protection. Conversely, a shift that
decreases the loss by a factor 3 < 1 increases the effective regularization strength by a factor of 72,
potentially causing catastrophic forgetting.

Proof. Under distribution shift, the copyrighted content loss becomes a - £f,,(6) for some o > 0.
The inverse term becomes:

[+ LE(0) + e0] ! & — - [LE(0) + eo/a] ! (132)

QI

when o - L&, (0) > «.

The gradient of this term scales as [a - £y;(6) + €o] 2, which is reduced by a factor of a? compared
to the original gradient when o > 1, or increased by a factor of 3~2 when the shift decreases the loss
by a factor 5 < 1.

This extreme sensitivity to distribution shifts means that protection can be effectively nullified by
even minor changes in the data distribution, making the approach unreliable for practical applications.

Comparison with Energy-Based Approach. In contrast to the instabilities of inverse regularization,
our energy-based approach avoids these pitfalls by directly targeting the energy gap. We can draw a
direct comparison:

Proposition 40 (Stability Comparison). Under identical distribution shifts that change the loss on
copyrighted content by a factor o, our energy-based method preserves the protection strength within
a factor of log (), while inverse regularization changes by a factor of o.

Proof. For our energy-based method, the energy gap changes additively by log(«)/|c|. For inverse

regularization, the effective regularization strength changes by a multiplicative factor of 2.
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This fundamental difference in stability explains why our approach provides robust protection
guarantees while inverse regularization fails to provide consistent protection.

Conclusion. Inverse regularization approaches, despite their intuitive appeal, suffer from funda-
mental instabilities in optimization, extreme sensitivity to hyperparameters, and vulnerability to
distribution shifts. These limitations make them unsuitable for reliable copyright protection in large
language models. Our energy-based framework addresses all these limitations by providing a stable
optimization objective with predictable behavior and robust protection guarantees.

E ADAPTIVE REGULARIZER ANALYSIS

E.1 PROPERTIES OF ADAPTIVE REGULARIZER

In this appendix, we provide a rigorous analysis of the adaptive energy regularizer introduced
in Definition |3 We establish boundedness, differentiability, asymptotic behavior, and Lipschitz
continuity properties that ensure stable and effective optimization for copyright protection.

Definition 41 (Adaptive Energy Regularizer (Restated)). Given energy gap A(f) =
Ecvic)[E(c; 0)] — Epri(o) [E(7; 0)], the adaptive regularizer is:

R(0;m,7) = 7log <1 texp (A(G)T?")) (133)

where m > 0 is the target margin and 7 > 0 is the temperature parameter.
Lemma 42 (Boundedness of Regularizer). For any § € R%, m >0, and 7 > 0:

0 <R(O;m,7) < Tlog?2 (134)

Proof. Let z = —w

. Then:
R(0;m,7) = 7log(1 + exp(2)) (135)

Lower bound: Since exp(z) > 0 for all z € R:

1+exp(z) > 1 (136)
Therefore:
R(0;m,7) = 7log(l + exp(z)) (137)
> 7log(1) (138)
=0 (139)

Upper bound: We analyze the function f(z) = log(1 + exp(z)) for all z € R.
For z > 0:

f(z) = log(1 + exp(z)) (140)
= log(exp(2)(1/ exp(z) + 1)) (141)
= log(exp(2)) + log(1/ exp(z) + 1) (142)
=z + log(1 + exp(—=2)) (143)

Since exp(—z) € (0,1] for z > 0:

log(1 + exp(—2)) < log(1 + 1) = log2 (144)
For z < 0:
f(z) = log(1 + exp(z)) (145)
< log(1+41) (146)
= log2 (147)
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Combining both cases:
R(O;m,7) =7 f(2)
< Tlog?2
forall z € R.

(148)
(149)

Lemma 43 (Asymptotic Behavior). The regularizer exhibits the following asymptotic behavior:

1. Under-margin regime: For A(0) < m:
R(6;m,7) = m — A(0) + O(exp(—[m — A(6)]/7))

2. Over-margin regime: For A(0) > m:
R(0;m,7) = 7 exp(=((A(0) —m)/7)) + O(exp(=2(A(0) —m)/7))

3. Near-margin regime: For |A(0) —m| < 7:

A0) —m
2

R(O;m,T) =T7log2 — + O(((A(0) —m)/T)?)

Proof. Letw = w. Then:

R(0;m, 1) = 7log(l + exp(—w))

Part 1 (Under-margin regime): For w < —1 (i.e., A(f) < m):
R(O;m, ) = 7log(l + exp(—w))
= 7 log(exp(—w)(1 + exp(w)))
= 7(—w + log(1 + exp(w)))
= — 7w + 7log(1 + exp(w))

Since w < —1, we have exp(w) = 0:
R(O;m,7) = — 7w+ 7log(1l + exp(w))
AB) —m

= T Texp(w) + O(exp(2w))
== 80) +7esp (222 4 Ofexp(2(8(0) - m)/7)

Part 2 (Over-margin regime): For w > 1 (i.e., A(0) > m):
R(0;m,T) = 7log(l + exp(—w))
= 7log(1 + exp(—w))

Using Taylor expansion log(1 + z) = x — 2% /2 + O(23) for small z:

exp(~2w) + O(exp(?)w)))

R(O;m,T) =T <exp(w) - 5

—rexp (<2 1 Oterp(-2(40) ~ m)/r)

Part 3 (Near-margin regime): For |w| < 1, using Taylor expansion around w = 0:

log(1 + exp(—w)) = log(1 + exp(0)) — % log(1 + exp(—w)) cw 4 O(w?)

w=0
— exp(—w)

. 2
1+ exp(—w) lw=0 w+O(w’)

= log?2 —

1
= log2+ FW +O(w?)
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(160)
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(164)
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Therefore:
R(O;m,7) =T (log2 + % + O(wz)) (168)
=7log2+ % + O(tw?) (169)
=7log2+ A(Q)%m +O0((A(0) —m)/7)?) (170)

Theorem 44 (Gradient of Adaptive Regularizer). The gradient of the adaptive regularizer with
respect to 0 is:

VoR(0;m,7) = —0 (m_TA(Q)) - VeA(B) 171)

where o(z) is the sigmoid function.

_ 1
T 1+4exp(—=2)
Proof. Starting from the definition:

R(0;m, ) = 7log <1 T exp (W)) (172)

Taking the gradient with respect to 6:

VoR(0;m,7) =7 Vylog (1 + exp (—W)) (173)
1 A(B) —m
=7. -V (eXp (—)) (174)
e QEETy .
1 A(6) — A(0) —
=7. T (_()m) Vo (_()m) (175)
1+ exp (—7) T T
_A@)-—m
o) <1> VA6 (176)
1+ exp (—W) T
exp (_ A(Q-I)——'m)

- _ -VoA() (I77)
1+ exp (—Le)*m) ’

T

Now observe that:
( A(G)—m)
eXp\————

1
1+ exp (—W) - 1+eXp(A(9l—m) (178)
T texp (i m—TAw)) (179)
=0 <’”TA(9)) (180)
Therefore:
VoR(O;m,7) = —0 (m—TA(G)) - Vo A(0) (181)

Lemma 45 (Properties of Gradient Weight Function). The gradient weight function w(A) =
o (mf*A) satisfies:
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1. Boundedness: 0 < w(A) < 1forall A € R

2. Monotonicity: w'(A) = — 1o (L_A) (1 -0 (L_A)) <0

3. Asymptotic behavior:
1—O(exp(—(m —A)/7)) ifA<Km
w(A) = {1/2 fA=m (182)
O(exp(=((A—=m)/7)))  ifA>m

Proof. Part 1 (Boundedness): Since o(z) = m:
0< L <1 (183)
1+ exp(—2)

forall z € R, as exp(—z) > 0 for all z.

Part 2 (Monotonicity): The derivative of the sigmoid function is:

- - e +GX; o (ee=2) (185)
T a fif&zl))z (186)
— o(2)(1 - o(2) (187)
Therefore:
W' (A) = d%a <m;A> (188)

(22 ()
CLER) ()

Part 3 (Asymptotic behavior): For A < m, let z = @ > 1:

1
_exp(2)
~exp(z) +1 (192)
1
1+ exp(—=z) (159
exp(—2z)
T 1+ exp(—=z) (154)
=1—O(exp(—=2)) (195)
= 1— Ofexp(—(m — A)/7)) (196)
For A = m:
wim) =o(0) = — =1 (197)
1+exp(0) 2
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ForA>>m,letz:mf_A<<—1:

w(B) =0(s) = +exlp(_z)
1
T+ exp(7])
_ 1
exp(|2])(1/ exp(lz]) + 1)
ew(-)
1 4 exp(—|z|)
= O(exp(—[z|))
= O(exp(—(A —m) /7))

Theorem 46 (Lipschitz Continuity of Gradient). If the following conditions are satisfied:

o Assume |[VoA(0)||2 < G forall § € R?
o Assume A(0) is La-Lipschitz continuous

Then VR (0;m, ) is Lipschitz continuous with constant:

2

LR —— + Omax - LVA
4T

where Omax = sup,cp 0(2) = 1 and Ly is the Lipschitz constant of Vo A(0).

Proof. Forany 0,0, € R%:
[VeR(61) — VoR(62)l|2

(0
H o (22 va +o (P2 v
_ H ~ (ﬂlA‘h)) VoA(0) + o (”%) VoA (02)

T

Y (wa) VoA(0) + 0 (W) Var(6a)],

o (Wl_A(el)> (VoA(t2) — VoA(01))

T 2

o (22) o (222 s

o <m7_A(91)> (VoA(b2) — VoA(01))

2

<

"

2

For the first term:

§ Omax * ||V9A(02) - VQA(gl)”Q
2

< Lyallf2 — 01]]2

For the second term, using the mean value theorem:
—A — A —A - A
‘0_ <m (02)> —O'(m (01)>’ _ 0/(§)|‘m (02) _m (01)
T T T T
|A(61) — A(62)]

T

=o)L —a(©))]-

for some ¢ between mﬁe(el)
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(206)
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(210)

@211)

212)
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Since o(£)(1 — o()) < § for all £ (maximum at £ = 0):
o ("L_A(e?)> . (TH—A(&))‘ < %|A(91) BUNCS]

T T

L
< 1161 = 2]l
=

(o (=20) o (2=20) s

Since La < G (Lipschitz constant of A bounded by gradient norm):

Therefore:

L
< = — .
e A PRy

2

GL
e RO
-

G2
IVoR(61) — VaR(02)|2 < Lyal|br — 622 + ZH% — Bal2

GQ
= (4 +LVA) 161 — 62]2
-

215)

(216)

217)

(218)

(219)

(220)

Remark 47 (Design Principles). The adaptive regularizer design achieves several critical objectives:

1. Automatic adjustment: The sigmoid weighting function naturally transitions from strong
enforcement (w ~ 1) when below the margin to negligible effect (w ~ 0) when above.

2. Smooth optimization: The temperature parameter 7 controls the transition smoothness.
Larger 7 provides smoother gradients but slower convergence; smaller 7 yields sharper

transitions but may cause optimization instability.

3. Bounded gradients: The gradient norm ||[VyR||2 < G remains bounded regardless of the

energy gap magnitude, preventing gradient explosion.

4. Convergence guarantee: The Lipschitz continuity with constant Lr = O(G?/7) ensures
convergence of gradient-based optimization under standard step size conditions 1 < 2/Lg.

These properties make the adaptive regularizer particularly suitable for fine-tuning large language

models where stability and preservation of pre-trained capabilities are paramount.

E.2 PROTECTION MONOTONICITY ANALYSIS

In this appendix, we provide the proof of Theorem {4 and analyze the monotonicity properties of
the energy gap during optimization. We establish convergence guarantees and characterize how the

protection level evolves during training.

Proof of TheoremH] At a local minimum 6*, the gradient of the total objective must vanish:

VoL (0%) =0

Expanding the total objective from Eq. equation
VoL (0%) = VLR (0%) +7 - VeR(0*;m, T)

= Bu67) 10 ("2 ) vea)

where the second equality follows from Theorem [44]

Setting this equal to zero yields the first-order optimality condition:

VoLBy(0%) = (m‘f”)) VoA
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Taking norms on both sides:

I90Bu0")ls =+ (20 - 9aa ol

< Bim

Since ||[VoA(6%)||2 > gmin > 0 by the non-degeneracy assumption:

U(m—A(G*)>< Bim

T - 7Y * Ymin
Let z* = m_é(e*). Then we need to solve:
1+exp(—2z*) = 7 Gmin
Rearranging:
14 exp(—z*) > 7 Jmin
Bim
This gives:
* ’y . gmin
exp(—z") > —— —1
p(—z") = Buxs

When v - gmin > Brm, we have exp(—z*) > % > 0, which implies:

* Ymin - B
—2* > log <7 gB LM)
LM

Therefore:

: min_B B
2* < —log (W QB LM) :10g< LM
LM

When 7 - gmin < Brwm, the constraint is always satisfied for any z* € R.

For the symmetric case where the gradient points in the opposite direction, we obtain:

B
z* > —log (1+ LM)
7Y * Ymin

Combining both bounds:

N m — A(0*
1= 220

B
<log (1 + M )
7Y * gmin

Multiplying by 7:

IA6*) —m| < Tlog (1 + BLM)

* 9min
For the special case where v > Bry/(gmin - €) With € > 0:

B
|A(0") —m| < Tlog (1 + LM)

* Jmin

< 7log(l+e¢)

Using the Taylor expansion log(1 + €) = € — €2/2 + O(€?) for small e:
|A(0*) —m| < T-e+ O(1€?)
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Y * gmin — BLM

(225)
(226)

(227)

(228)

(229)

(230)

(231)

(232)

(233)

(234)

(235)

(236)
(237)
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Lemma 48 (Monotonicity of Energy Gap). Consider gradient flow dynamics % = —VyL(0) with
the combined objective. If the following conditions hold:

s The energy gap gradient satisfies (VgA(0), Vo LE,(0)) < p||[VoA(0)|3 for some p > 0
* The current gap satisfies A(0) < m — 7log(1+ p/7v)

Then dAdie) > 0, meaning the energy gap increases monotonically toward the target margin.

Proof. The rate of change of the energy gap along the gradient flow is:

dA0) do
a <V"A<‘9)’ dt> (239)
= —(VeA(0), Vo L(0)) (240)
= —(VoA(0), VoLL(0) +7VeR(6;m, 7)) (241)
From Theorem (44}
dAdio) = —(VoA(0), Vo LD (0)) + 7o (m _TA(9)> Vo A(0)[|3 (242)

Using the assumption on the alignment between gradients:

dA(6 — A0
2 > = Vaa @) 490 (220 ) wascos 4
BNT;
= Vo )3 (W (mT()) - p) (244)
For A(f) < m — tlog(1 + p/7), we have:
m=26) - oa(1 + o) (245)
Therefore:
m— A((‘))) 1
o - (246)
< T 1 + exp (_%A(G))
1
7 T+ exp(—Tog(1 + p/7)) 24D
1
S (248)
L+ 575
1+p/y
- 249
2+p/v (249)
> 2 (250)
y
This gives:
dA(6
A2 19aa @) (12 - ) =0 esh
dA(6)

Since we actually have strict inequality in the sigmoid bound, we obtain =3~ > 0.

Theorem 49 (Convergence Rate of Energy Gap). Under gradient flow dynamics with learning rate
n > 0, if the conditions of Lemma {8\ hold and additionally:

o The energy gap gradient has bounded norm: gmin < ||VoA(0)|l2 < gmax
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o The regularizer coefficient satisfies v > p

Then the energy gap converges to a neighborhood of the target margin at an exponential rate:

t
A0~ m] < 1860) ~ ] x0 (<158 1 ) +O(7) 252
Proof. Define the Lyapunov function:
1
V(0) = 5(A@0) —m)? (253)
Its time derivative along the gradient flow is:
av. dA(0)
P (A(0) —m) at (254)
= (A(0) —m) - (Vo A(), =V L(0)) (255)
Substituting the gradient expression:
av
= n(A0) = m) - |~ (VoA©O), VaLh(9)) (256)
m — A6
e G [N NCTH @s)
Near the target margin where |A(0) — m| < § for small § > 0, we can approximate:
2
a(m_A(9)> _1l,m=-206) +O<<m_A(0)> ) (258)
T 2 4T T
_ )2
_1 A(f) —m Lo (A(0) —m) (259)
2 47 72
Using the gradient alignment assumption:
dav 1 A@f)—m
<80 —m)- pIvoa®I + (5 - 2= ) 1] o
T
A(0) —m
— IO IAE) ~m) [+ - HEE=] 6)
When A(6) < m, we have (A(f) —m) < 0, and:
av YN(A@®) —m)[?
2T« 2NN T
o = ~lVeA®)]: . (262)
< _ng?. N
< = Nmin g 2V (0) (263)
By Gronwall’s inequality:
V06 < V600)-exp ~nn e 6t
T
Taking square roots:
t
AB0) — ] < 1800) ~ ] exp (1222 ) 265)

The O(7) correction term arises from the region where the quadratic approximation of the sigmoid
function breaks down.
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Corollary 50 (Time to Reach Target Margin). 7o achieve |A(0) — m| < e starting from initial gap
A(6(0)), the required training time is:

> b 1Og<|A<t9<o>>—m|) 066)
MY 9min €

Thus, smaller temperature T and larger regularization coefficient -y lead to faster convergence.

Remark 51 (Practical Implications for Training). The monotonicity analysis reveals several important
insights for practical training:

The energy gap exhibits monotonic improvement when below the critical threshold m—7 log(14-p/7),
ensuring stable optimization without oscillations. This threshold depends on the alignment parameter
p, which measures how much the language modeling objective opposes the energy gap increase.

The exponential convergence rate exp(—t/T') with time constant T' = 47/(nyg2,,) suggests that
convergence speed is limited by three factors: the temperature 7 controlling transition smoothness,
the regularization strength +y, and the gradient magnitude lower bound g.,;,. In practice, this implies
a trade-off between optimization stability (larger 7) and convergence speed (smaller 7).

The residual error O(7) in the convergence guarantee indicates that perfect achievement of the target
margin requires 7 — 0, but this limit may cause optimization instability. Therefore, practitioners
should choose 7 based on the acceptable tolerance for the energy gap, typically setting 7 ~ 0.1 - m
for a 10% relative error.

These theoretical insights guide hyperparameter selection: start with moderate -y and 7, then gradually
increase 7y or decrease T as training progresses to achieve tighter margin control while maintaining
stability.

F OPTIMIZATION THEORY

F.1 PL CONDITION FOR LANGUAGE MODELS

In this appendix, we analyze when and why language models satisfy the Polyak-Lojasiewicz (PL)
condition, provide methods for empirical estimation of the PL constant, and discuss implications for
optimization convergence.

Definition 52 (Polyak-F.ojasiewicz Condition). A differentiable function f : RY — R satisfies the
PL condition with constant ppp, > 0 if for all € R4

IVFO)I3 = 2pe (£(6) = £7) (267)
where f* = infy f(6) is the global minimum value.

Lemma 53 (PL Condition for Expected Energy). Let E(x;0) be the energy function for sequence x
with parameters 0. If the following conditions hold:

* The model has sufficient capacity: hidden dimension h > C' - |V| for some constant C > 1
* Parameters are initialized with scale ||0\©)||, = ©(v/d)
* The data distribution has bounded support: sup,cp || < Limax

Then with high probability over initialization, the expected energy f(0) = E, () [E(x; 0)] satisfies
the PL condition in a neighborhood B(0%) r) with:

1
ppr = §2 <LZ|V> (268)

max

Proof. Consider the energy function gradient for a single sequence:

||

VoE(x;60) = —— Y Vologps(wi|z:) (269)
t=1

||
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For transformer models with residual connections and layer normalization, the gradient can be
decomposed as:

Vo logpo(wile<i) = Vohi" - V, ) log po(ae|r<) (270)

where hEL)

is the final layer representation.
The key insight is that in overparameterized networks, the Gram matrix:

K;;(0) = (VoE(z;6), VoE(z;6)) (271)
remains approximately constant during training when parameters stay near initialization.

Following the neural tangent kernel theory, for wide networks with h > C - |V|:

Amin (K (0)) = rmin i — j1cai 272)
J

L?HB,X
where c¢; > 0 depends on the initialization scale.

Since the data has discrete structure with vocabulary size |V|:

1
min [|z; — T;lledgit = — 273
it H ]” dit |V| ( )
Therefore:
C1
Amin(K(0)) > 5 274
(K(0) 2 oy (274)
The PL constant relates to the minimum eigenvalue through:
AIIlin(K(e))
HPL = (275)
2sup, || E(z;0) — E(x;60%)|3
Since energies are bounded by log |V|:
C1 1
=0 276
> e~ () o
Theorem 54 (Empirical Estimation of PL Constant). Given a finite sample S = {x1, ...,z } from

dis.tribution U(D) and parameter trajectory {Q(k) i;l during training, the PL constant can be
estimated as:

- o
el 2(f(609) — F(65))

where f(0) = LS E(x;;0) is the empirical energy.

Ifn > Q(dlog(1/6)) and the variance condition holds, then with probability at least 1 — §:

~ o2log(K/§

|fipe — i) < O ( %E”) (278)
Proof. The empirical gradient at iteration k is:

Vo f (™) = ngE z;;0%)) (279)

i=1
By the law of large numbers and the bounded variance assumption:

IWMWW—VMWWMS%; (280)
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with high probability.

Similarly for the function values:

Ry _ rey| < 2L
|F(0%) = F(6")] < n (281)
where 0 = Var,y(p) [E(2; 0)].
The PL condition implies:
Vo f(0™)]3
— T L > 282
2700 — o) = " .
Using the concentration bounds:
IVf W3 IVef(6®)I3 + 0o/ Vi) o83
2(f(0W) — f(0U)))  2(f(6W)) = F(00)) + O(oy/v/n))
_ Ve f(6™)li3 1
= 30700 ey \'TO\GE .
Taking the minimum over k and applying a union bound over K iterations:
2
P llﬂm — | <O < ‘”"gn([{/‘”ﬂ >1-6 (285)

Algorithm 2 Practical PL Constant Estimation

During training, maintain the following quantities:

1.
2.
3.
4.

5.

Compute gradient norms: gy = ||V L(0%))||2
Track loss values: f;, = L(0())

Estimate minimum loss: f%; = min <y f;

Compute ratio: 7, = 5724
Update estimate: fip, = min <y, 7

This online estimation avoids storing the full trajectory and provides a conservative estimate of ypy..

F.2 LIPSCHITZ PROPERTIES OF ENERGY OBJECTIVE

Theorem 55 (Lipschitz Continuity of Energy Objective). The energy-based objective Leonergy(0) =
Egrvi(0)[E(2;0)] — X - Ecory(ey [E(c; 0)] has the following Lipschitz properties:

1.

The objective is Lipschitz continuous with constant Ly = (1 + \)G where G bounds
individual energy gradients.

The gradient is Lipschitz continuous with constant Ly = (1+ X)L where L is the smoothness
constant of individual energies.

Proof. For the first part, consider any 6, 0 € R%:

‘Eenergy (91) - Lenergy(92)| = ]EmNZ/I(O) [E(JE, 91) - E(aj7 92)} (286)
= A Ecue)[E(e; 61) — E(c; 62)] (287)

< Esnuo)[|E(2; 1) — E(z;02)]] (288)

+ A Eenri(o)[|E(c; 01) — E(c; 02)]] (289)
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Since each energy function is Lipschitz with constant G:

|E(.’L‘;91) —E(l‘;92>| S G||‘91 —92”2 (290)
Therefore:
|£energy(91) - »cenergy(02)‘ S GHgl - 82”2 + )\G”el - 02”2 (291)
= (L+N)G|01 — 022 (292)
For the second part, the gradient is:
v6£:energy(‘9) = ]Ez~u(0) [VQE(x§ 9)] —A- ECNM(C) [VGE(C3 9)] (293)
For any 6., 05:
||v0£energy(01) - vO»Cenergy(GZ) ||2 (294)
- ] Eoi(0) Vo E(x:01) — VoE(x; 02)] (295)
= A+ Eeatiio) Vo E(e: 01) = Vo (s 62)]| (296)
< Epnri(o)l|VoE(z;01) — VoE(x;02)|2] (297)
+ A Eeu(e)[lIVoE(c; 01) — Vo E(c; 02)]|2] (298)
< L)1 — 622 4+ AL[[61 — 2|2 (299)
= (1+ N L||01 — 02| (300)

Corollary 56 (Convergence under PL Condition). Under Assumption[I} gradient descent with step

sizen < ﬁ converges at rate:

‘Cenergy(o(k)) - Eenergy(e*) S (1 - 277/-111’L)lC (‘Cenergy(e(o)) - ‘Cenergy(e*)) (301)

Thus convergence to e-optimality requires O ((1::% log(1/ e)) iterations.

Proof. Under the PL condition and gradient descent update 6 (k+1) — g(k) _ T)Vﬁenergy(O(k)):

1+ \)Ln?
Lenergy (0% ™) < Leneray (%)) — |V Lenergy (0) 13 + (%chenﬂgy(e(k))ng (302)
1+A)L
— Lo (040) =1 (1= LEE ) 19y 00 (03
By the PL condition:
IV Lenerey (09)13 = 2p1 (Lenergy (0*)) — Lenergy (67)) (304)
Substituting:
1+ ML
L:energy(a(kJrl)) - Eenergy(e*) < (1 - 27)/~LPL <]- - (—’_2)77)> (305)
X (Eenergy(o(k)) - Eenergy(a*)) (306)
For n < ﬁ, we have 1 — UHE2E7 ~ 0 giving the stated convergence rate.

Remark 57 (Comparison with Strong Convexity). The PL condition provides similar convergence
guarantees to strong convexity but applies to a broader class of functions. While strong convexity
requires V2f() = ul everywhere, the PL condition only requires gradient dominance. This
distinction is crucial for neural networks, which are typically non-convex but can satisfy the PL
condition in practice.

The convergence rate under PL (O(log(1/¢)) iterations) matches that of strongly convex optimization,
making it an attractive alternative for analyzing neural network training. Moreover, the PL constant
ppL can be estimated empirically during training, providing practical convergence diagnostics.
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F.3 EFFECT OF GRADIENT CLIPPING

In this appendix, we analyze how gradient clipping affects the convergence guarantees of Algo-
rithm [T} While clipping prevents gradient explosion and ensures stable optimization, it modifies the
convergence rate in a predictable manner.

Definition 58 (Gradient Clipping Operator). The gradient clipping operator with threshold G, > 0
is defined as:

i ( ) _ g if ||g||2 S Gmax
PG \9 Gumax o5 i 92 > Gmax

(307)
Lemma 59 (Properties of Clipped Gradients). The clipping operator satisfies the following properties:
1. Direction preservation: clip;__ (g) = Ag for some X € (0,1]
2. Norm bound: |clipg_ . (9)|l2 < Gmax

3. Inner product bound: {(clip~ _ (g),g) = min(]|g|l2, Gmax) - ||9]l2

max

Proof. The first property follows directly from the definition, with A = min(1, Gyax/||g||2). The
second property is immediate from construction. For the third property:

When ||g||2 S Gmax:

(clipg,,, (9),9) = (9,9) = llgl3 (308)
When ||g]l2 > Gmax:
<Climeax(g)ag> = <Gmax : gag> = Gmax : M = Gmax : ||g||2 (309)
gl lgll2

Combining both cases yields the stated result.
Theorem 60 (Convergence with Gradient Clipping). Consider gradient descent with clipping:
O+ = 0O . clip,  (VLOD)) (310)

If L satisfies the PL condition with constant jpy, and has L-Lipschitz gradient, then for step size
1
n< g

max (

t
LWy - < (1 — Nppr - min (1, Cé;gt;)) (L) - ) G1D
where G = |V L(HD)]|.

Proof. Let g) = VL(O®) and g = clip,  (¢g¥)). By smoothness:
PGrax y

L
£(9(t+1)) < L‘(H(t)) + <g(t)’ plt+1) _ g(t)> =+ §H9(t+1) — 9(t)\|§ (312)
L 2
= £(0©) (g, 3®) + =151 (313)
From Lemma[5%
(9,3 = min(|lg™ |12, Gmax) - 19" 12 (314)

When ||g(t)H2 < Gmax:
L 2
£(0D) < £(09) —nlg® 3 + 2 193 G15)

L
=L(®) —n (1 - 2”) lg 113 (316)
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When [|g||s > Grax:

LOD) <LOY) — 1Gmaxllg™ 2 + iL”?‘Q“‘“ (317)
= L(0D) — G rmax]|gP |2 (1 S?Gmﬁ“) (318)
Since 7 < 1/L and Gay < [|9®]]2, we have 2@(;7{?(‘”‘ 1. Therefore:
L) < £(0®) — 1m0 G19)
Combining both cases:
£ £ £6) = F minllg"llz, Gonas) -9l (320)
By the PL condition: ||g® |3 > 2up (L(0®)) — £*). Thus:
20 - £ < (1= e i (1, ) ) 200 - 2 G21)

Remark 61 (Adaptive Clipping Threshold). The convergence rate degrades by a factor of
min(1, Gmax/||g™ ||2) when gradients exceed the clipping threshold. This suggests an adaptive strat-
egy: start with conservative G'ax for stability, then gradually increase it as optimization progresses
and gradients typically decrease. In practice, monitoring the clipping frequency P[||g®||2 > Gmax]
provides guidance for threshold adjustment. A clipping rate below 10% typically indicates appropriate
threshold selection.

F.4 BATCH SAMPLING ANALYSIS

This section analyzes the batch sampling strategy in Algorithm |1} establishing unbiasedness of
gradient estimators and quantifying variance reduction through appropriate batch size allocation.

Theorem 62 (Unbiased Gradient Estimation). The batch gradient estimators in Algorithm[I] are
unbiased:

EBO,BC[ ] vGL"LM( ) (322)
EB@ Bc[ ] V@R(9 m 7’) (323)

where expectations are over the random batch sampling.

Proof. For the language modeling gradient:

Esolotm] =Eso |5 Y VoE(z; 9)] (324)
° zeBo
1 o
=5 Z E,,~u0)[VoE(xi;0)] (325)
2 =1
=E;u0)[VoE(;0)] (3260)
Similarly, E5, [g¢y] = Ecni(c)[VoE(c: 0)]
The combined gradient is:
Elgim] = wo - Eznry(0) [Vo E(250)] + we - Ecrs(cy [Vo E(c; 0)] (327)
= Vo (WoEzni(0)[E(2;0)] + weE i) E(c; 0)]) (328)
= VoLhu(9) (329)
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For the regularizer gradient, since A(*) is an unbiased estimator of A(0):

E[A®] = E[EY — E{) = Eeny()[E(¢;0)] — Eonra(o) [E(x;0)] = A(6)  (330)
The nonlinearity of a® = ¢((m — A®)/7) introduces bias, but this is addressed by using the
expected gradient in the limit of large batches.

Lemma 63 (Variance of Energy Gap Estimator). The variance of the energy gap estimator is:

2 2
VarA®)] = Z& 4 22 (331)

where 02 = Var..c)|E(c; 0)] and 02 = Var, o) E(z;0))].

Proof. Since Egt) and E((,t) are computed from independent samples:

Var[A®] = Var[E() — E)] (332)
= Var[EY] + Var[E()] (333)
1 & 1 &
=5 > Var[E(c;; 0)] + 5z D VarlB(x:;0)] (334)
¢ =1 0 =1
or | o,
=5 +t5 (335)

(e}
Q

Theorem 64 (Optimal Batch Allocation). Given total batch size By = B, + B, the variance-
minimizing allocation is:

o o
B* = Bt - ———, B = By - ——— 336
o total Uo"'Uc c total 0_0+0_C ( )
This allocation yields minimum variance:
2
Varmin[A(t)] — M (337)
total
Proof. We minimize Var[A(t)] = o—i + U—‘z subject to B, + B, = Bioal.
Using Lagrange multipliers:
o o2
E(Boz Bm /’(‘) = EC + ?O + M(Bo + Bc - Blolal) (338)
Taking derivatives and setting to zero:
oL o2 oo
3B, B2 +Hu N7 (339)
oL o? Oc
aBC Bg + :lt c \/ﬁ ( )
From the constraint:
0o + O0¢ 0o+ 0¢c
B — — = (341)
ol \/ﬁ \/ﬁ Btotal

Substituting back yields the stated optimal allocation.

Remark 65 (Practical Batch Allocation). Algorithmuses proportional allocation B, = Bigtal * Wo
based on dataset sizes. This approximates optimal allocation when o, /0. ~ |O|/|C|, which holds
approximately when sequence length distributions are similar across datasets. Empirical variance
estimates can be computed online to adjust allocation dynamically if needed.
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F.5 COMPLEXITY ANALYSIS

We analyze the computational and memory complexity of Algorithm I} demonstrating its efficiency
compared to standard fine-tuning.

Theorem 66 (Time Complexity). For a transformer model with parameters d, sequence length L,
hidden dimension h, and number of layers ny, the per-iteration time complexity of Algorithm|[I]is:

O(Btotal . L2 -h + Blotal L - d) (342)

where the first term dominates for typical architectures with d = O(np, - h?).

Proof. The computational cost per iteration consists of:

Forward pass computation for both batches requires computing attention and feedforward operations:

Trorward = O(Biowt - nr, - (L* - h+ L - h?)) (343)
Backward pass computation has similar complexity:
Thackward = O(Boowar - np, - (L* - h + L - h?)) (344)
The energy gap computation requires:
Toap = O(Brow - L) (345)
The adaptive weight computation via sigmoid is:
Tyeight = O(1) (346)
Gradient combination and clipping:
Teombine = O(d) (347)
Parameter update:
Tupdae = O(d) (348)
The total complexity is dominated by forward and backward passes:
Tiotal = Trorward + Thackward + Lgap + Tweight + Teombine + Tupdate (349)
= O(Biowr - nr, - (L2 -h+ L - k%) +d) (350)
= O(Biotal - L* - h + By - L - d) (351)

where we use d = O(ny, - h?) for transformer architectures.

Theorem 67 (Space Complexity). The space complexity of Algorithm([l)is:
O(d + Btotal -L-h+ Btutal : L2) (352)

where the terms represent model parameters, activations, and attention matrices respectively.

Proof. The memory requirements include:

Model parameters: O(d)

Gradient storage: O(d)

Batch data storage: O(Biotar - L)

Intermediate activations for backpropagation: O(Bygw - L - h - np)

Attention matrices: O(Biga - Ny - L2) where n g is the number of attention heads
The total space complexity is:

Stotal = O(d + Biotat - L - h - ng, + Biol - Ny - L2) (353)

Since ny, and nyy are constants for a given architecture:
Stotal = O(d + Btotal -L-h+ Blotal : L2) (354)
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Corollary 68 (Comparison with Standard Fine-tuning). Algorithm |I| has the same asymptotic
complexity as standard fine-tuning. The additional overhead is:

Overhead = O(Byyy - L) (time) + O(d) (space) (355)

which is negligible compared to the base complexities.

Theorem 69 (Total Training Cost). To achieve e-optimal protection (i.e.,

computational cost is:

1+ ML 1

o (H) log () - Buwt - L2 - h) (356)
HpL €

A(0) — m| < e), the total

Proof. From Corollary [56] achieving e-optimality requires:
1+ ML 1
Nuer = O (H) log <)> (357)
HeL €
iterations.
Combining with the per-iteration cost from Theorem [66}

1+ AL 1
Tiotat = Niger - Tper—iter =0 <(/14PL) 1Og (6) * Botal * L2 : h) (358)

Remark 70 (Practical Efficiency Considerations). The analysis reveals several opportunities for
optimization in practice. First, the dominant cost comes from attention computation (O(L?)),
suggesting that efficient attention mechanisms like Flash Attention can significantly reduce training
time. Second, the logarithmic dependence on 1/¢ implies that achieving reasonable protection levels
(e.g., e = 0.01) requires only modest additional iterations compared to standard fine-tuning.

The memory overhead for storing separate gradients g, and g&,, can be eliminated by computing
the combined gradient incrementally, reducing peak memory usage. This is particularly important for
large models where gradient accumulation is necessary due to memory constraints.

Finally, the independence of batch computations enables efficient parallelization across multiple
GPUs, with communication required only for gradient aggregation. This makes Algorithm [I] well-
suited for distributed training frameworks commonly used for large language models.

G MAIN THEOREM PROOFS

G.1 PROOF OF THEOREM 2] (ENERGY GAP GUARANTEE)

We provide a complete proof of the energy gap guarantee, establishing that our optimization objective
ensures a minimum separation between copyrighted and ordinary content energies.

Proof. Let us denote for brevity:

Eo(0) = Epnri(0)[E(x;0)] (359)
Ec(0) = Ecuui(co)[E(c; 0)] (360)
go(89) = VoEo(0) = Exrio)[Vo E(x;0)] (361)
gc(0) = VoEc(0) = Ecni(c)[VoE(c; 0)] (362)

Optimality condition. At the local minimizer 6%, the first-order optimality condition gives:

Veﬁenergy(e*) = 90(9*) - A gc (9*) =0 (363)

This implies:
go(e*) =X gc(e*) (364)
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Energy decrease from 0., to 0*. Consider the path from 6y, to 6*. By the fundamental theorem of
calculus:

1
Eo(0") — Eo(bsep) = / (90(0:), 0" — Osep)dt (365)
0

1
Ec(07) — Ec(bsep) = -/0 (9c(0), 0" — Osep)dt (366)

where 6; = Oy, + (0" — Oyp) for t € [0, 1].

Establishing the descent direction. Since 6* minimizes Lenergy (#) and Leneray (0*) < Leneray (Osep):

EO(O*) - /\EC(G*) < EO(asep) - /\Ec(osep) (367)
Rearranging:

[EC (6*) - Ec (esep)] > [EO (6*) - Eo (esep)} (368)

> =

Utilizing the weak correlation condition. At f.,, we have the weak correlation condition:
| <90 (Qsep)a gc (esep» | < 5”90 (esep) ” HQC (esep) || (369)

Define the normalized gradients:
N go (9sep) . gc (gsep)

9go =75 ~n0 9¢c =
”90(956[))” ||QC(esep)H

The weak correlation implies |{(§o, gc)| < 0.

(370)

Lower bound on the energy gap. Consider the descent direction from 6, that maximally increases
E¢ while decreasing E». The optimal direction (in the linear approximation) is:

d* = —go + ajc (371)
where o > 0 is chosen to balance the objectives.

For the energy gap at 6*:

A(0") = Ec(0") — Eo(07) (372)
= [Ec(07) — Ec(Osep)] + [Ec(Osep) — Eo(bsep)] + [Eo (bsep) — Eo (07)] (373)

Using equation equation and the fact that E¢(60*) > E¢(fsp) (since we maximize Ee):

1
A7) = [Eo(97) = Eo(fsep)] + Asep + [Eo (0sep) — Eo(67)] (374)
1 «

= Agp + <1 - /\) [Eo(bsep) — Eo(6™)] (375)

Accounting for gradient correlation. Since Ep(6*) < Ep(fsp) (we minimize Ep), we have
E@(Qsep) — Eo(e*) > 0.

The improvement in the objective from 0y, is limited by the gradient correlation. With weak
correlation 9, the effective improvement factor is (1 — J).

More precisely, the projection of g¢ orthogonal to go has magnitude at least:
lgz | = llge (Bsep) [ V1 = 62 > [lge (Bsep)[| (1 = 6) (376)

This orthogonal component allows independent maximization of E¢ without interfering with mini-
mization of Fp.

Final bound. The balance between minimizing F» and maximizing F¢ at optimum, combined with
the weak correlation, yields:

A0%) > Agp - —— - (1—6) (377)

This bound follows from the fact that:
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» The weight A determines the relative importance of maximizing F¢

* The factor /\%_1 represents the fraction of optimization effort devoted to increasing the energy
gap

* The factor (1 — d) accounts for the loss due to gradient correlation

Therefore, we obtain:
A

. Q* _ . O* >
Eenvi(c)[E(c;07)] — Exnyo) [E(250%)] > ]

S(1=08) - Agp (378)

This completes the proof.

Remark 71 (Interpretation of the Bound). The energy gap guarantee has several important implica-
tions:

1. Role of \: As A — oo, the bound approaches (1 —0)- Ay, maximizing copyright protection
at the cost of ordinary data performance.

2. Impact of correlation: When § = 0 (orthogonal gradients), we achieve the full benefit of
the separable structure. As § — 1 (perfectly correlated), the bound degenerates, reflecting
the impossibility of simultaneous optimization.

3. Initial separation: The term A, represents the inherent separability in the data. Larger
initial separation leads to stronger final protection.

Corollary 72 (Probability Suppression from Energy Gap). Under the conditions of Theorem|2| for
any copyrighted sequence ¢ € C of length |c|:

A
P (1-9)- Am,,) (379)

where Ppaseiine 1S the probability under a model without copyright protection.

Do= (C) g pbaxeline(c) + €Xp (C| :

Proof. This follows directly from the relationship between energy and probability:

Po~ (C) * A
————— =exp(—|c|- A0 §exp(c~'15~Ase) (380)
LS = exp(ldl - AWY) 357 (1= 0) - Ay
G.2 PROOF OF THEOREM [ (EQUILIBRIUM CHARACTERIZATION)

We establish the equilibrium characterization through a careful analysis of the first-order optimality

conditions and the interplay between the language modeling objective and the adaptive regularization
mechanism.

Proof. Consider the combined objective functional £ : © — R defined by:
m — A0
£6) = €8 +-0 ("2 ca) 68D

where o(2) = (1 + e~*)~! is the sigmoid function, and we recall that:
A(0) = Ecrs(o)[E(c; 0)] — Epnri(o)[E (5 0)] (382)

Gradient computation. The gradient of £ requires careful treatment of the composite structure. For
the adaptive weight function A : © — R defined by A(0) = v - o((m — A(#))/7), we have:

VoL(0) = VoLiu(0) + Vo[A(B) - (—A(6))] (383)

The product rule yields:
Vo[AO) - (=A0))] = —A(0) - VoA(0) — A(0) - VoA(0) (384)
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For the gradient of the adaptive weight, utilizing the chain rule:

VoA(0) = - o’ (m_A(e)) : (—1) - VoA(B) (385)

T T

Since 0’/ (z) = o(z)(1 — 0(z)), we obtain:

Vo) = -1 . & (m_A(e)) : <1 - (m_A(Q))) SINC) (386)

T T T

Combining these expressions:

VoL (0) = VoLi(0) — A(8) - VoA(6) (387)
+ %@") o (W) : (1 _p (m_TA(e)» VeA(B)  (388)

Analysis at the critical point. At a local minimum 6*, the first-order necessary condition requires
Vo L(6*) = 0. Define for notational convenience:

s =0 (mTA((’)) NG (389)
The optimality condition becomes:
VoLiu(0") = {78* S e s*)} - VoA(0) (390)
Factoring out ys*:
VoLiw(0") = 75" [1 - 57*(1 - s*)} VoA (6") (391)

Simplification of the equilibrium condition. Note that:

§* —m
1 exp T *
los =1-— R ( 5*> _p (5 m) (392)
I+exp (&) 14exp(&=2) T
Therefore:
1—5(1—5*)21—5-0(5 _m) (393)
T T T

For the analysis of the equilibrium gap |6* — m/|, we examine equation equationunder the norm
bounds. Taking norms on both sides:
Vo LOM(O)] = 5™

5*
1= —1 =57 [VeA()] (394)

Derivation of the gap bound. Under the assumptions ||VgLH,(6*)| < Bim and [|[VoA(6%)|| >
gmin > 0, equation equation [394]implies:

5*
Bim > 8™ |1 - 7(1 —8")|* Gmin (395)
Rearranging:
B *
M> e 1 - = (1—s%) (396)
Y * Gmin T

55



Under review as a conference paper at ICLR 2026

To extract information about |§* — m/, we analyze the function:

f(x)zo(m;x> 1—f<1—a<m;x>)‘ (397)

The equilibrium condition equation[396|becomes f(6*) < Bim/ (7 - gmin)-

Monotonicity analysis. For x near m, we can expand:

3
a(m_m>:1+m_””+o<(m_“@)> (398)
T 2 4T T

When |z — m| < 7, the dominant behavior of f(x) is:

1 m |z — m|
f(x)~2’127_’+0(7_) (399)

For the general case, we observe that f(x) decreases rapidly as |« — m/| increases. Specifically, when
x —m = Tlog(1+r) for r > 0:

m-—x 1 1
o( = ): T clos (T = Ty (400)

The inequality equation 396 then requires:

e o
This yields:
7 * 9min
r < Bt 2 (402)
For v > 2B1m/ gmin, We have r > 0 is bounded, giving:
6*—m§7’10g<1—|—7'gmin—2> STlog(l—i— Buv ) (403)
Bim 7 * Ymin
A symmetric argument for £ < m establishes the lower bound, yielding:
IA0*) —m| < Tlog (1 + ?;M_ ) (404)
Asymptotic precision. For large v satisfying v > Brm/(gmin - €) With € < 1:
|A(0*) —m| < Tlog(1 + ¢) T<6€22+O(63)> AT€ (405)

This completes the proof.

Remark 73 (Tightness of the Bound). The bound is essentially tight in the following sense: there exist
problem instances where the equilibrium gap achieves |A(6*) —m| = ©(7log(1+ Brm/ (V" gmin)))-
This occurs when the gradients Vo £L5(0*) and Vo A(6*) are nearly aligned, maximizing the required
balancing force from the adaptive regularization.

Corollary 74 (Temperature-Controlled Precision). For any desired precision € > 0 in achieving the
target margin, setting:

2B
T, g (406)
IOg(Q) 9min
guarantees |A(6*) — m| < e at equilibrium.
Proof. Under these parameter choices:
B
|A(0*) —m| < 7log (1 + ;M' ) < rlog(1.5) < Tlog(2) < e (407)
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G.3 PROOF OF THEOREM [5] (GRADIENT STABILITY)

We establish the Lipschitz continuity of the gradient for the complete objective, which ensures stable
optimization dynamics and provides convergence guarantees for gradient-based methods.

Proof. The complete objective functional is:

£0) = €8 +-0 ("2 Ca) (@0s)

To establish Lipschitz continuity of V£, we must show that for any 6;, 62 € O:
IVoL(01) = VoL (02)[| < L - |62 — O] (409)

This is equivalent to bounding the operator norm of the Hessian: | VZL£(0)|| < L. forall 6 € ©.

Language modeling gradient analysis. Under Assumption|l} the language modeling loss has the
form:

||

LE(0) = ~Eap | > log po(ilz<t) (410)

t=1
where the conditional probability is given by the energy-based model:

exp(—E(r<+;0))

= 411
Pl = S (B0 47:0) @
The gradient of the log-probability is:
Vologpg(wi|lr<i) = —VoE(r<s50) + ]Ex;~p9(~|x<,,)[v0E($<t © l'é% 0)] (412)
Computing the Hessian:
Vi logpo(zi|r<y) = —=VaE(2<t;0) 4+ By oy [VEE (2 <y 0 27 60)] (413)
+ CoVyrnpy [VoE (T4 0 24;0), VoE (x4 0 x};0)] (414)
The covariance term is positive semi-definite with operator norm bounded by:
1COVay s [Vo BNl < Varg, <y, [V E[]] < G* (415)
Under the Lipschitz assumption | V2 E(x; 6)|| < L, we obtain:
IV5 log po(we|w <)l < 2L + G2 (416)
Therefore, |V2LE,(0)|| < Lim where Ly = 2L + G2,
Adaptive regularizer gradient analysis. Define:
m — A(6
Radapiive (0) = o <T ( )> - (=A(9)) 417)

From the proof of Theorem[d] we have:

VoRadapiive(#) = —0 (W) voae) + 20 (m — A(H)) VoA(6) (418)

T T

Let us denote s(0) = o((m — A(6))/7) for brevity. Then:
A0)

T

Vo Radepine (0) = {—s(@) +20) oy - 5(9»} VoA () (419)

57



Under review as a conference paper at ICLR 2026

Hessian computation. Applying the product rule:

V%Radapﬁve(e) =V [5(9) + &s(é))(l — 5(0))] ® VoA(H) (420)
+ {—5(0) + Aie)s(e)u — 5(9))} V2A(6) 421)

For the first term, we need to compute:

Vas(0) = ~s(6)(1 ~ 5(6) VoA (0) 2)
Therefore:
Vo [=5(0)] = Z5(0)(1 — 5(6)) VoA () 23
For the second component:
Vo @s(@)(l —s(0)) (424)
= 29,800) - s0)(1 - 560)) + 2 290[s(0)(1 - 5(6)) 25)

Computing the derivative of s(6)(1 — s(6)):
Vols(0)(1 — 5(0))] = (1 - 2s(0))Ves(0) (426)
L1 - 25(0))5(0) (1 - 5(0)) Vs A(0) “27)

T

Combining these terms, the coefficient of the rank-one matrix VoA () @ VoA() is:

C0) = L5(0)(1 — 5(0) + 25001~ s0) - S0 - 250)s0)1 - 50)  @28)
_ 3O =sO) |, A0) 1 _ o)) (429)

T T

Bounding the operator norm. The function s(6)(1 — s(6)) achieves its maximum value of 1/4
when s(6) = 1/2, which occurs when A(f) = m.

For the rank-one contribution, using [|[VoA(9)|| < G:

IVoA(8) @ VoAD)|| = VoA ©O)]* < G2 (430)
The maximum of |C(0)| requires careful analysis. When A(#) = m, we have s(6) = 1/2 and:

1 m 1
0(9):5[2f?-0}:§ 431)

However, the maximum occurs near but not exactly at A(6) = m. Through calculus of variations,
one can show:

1
0| < — 432
méix|C’( )|747_ (432)
For the second-order term involving VZA(6), the coefficient is bounded by:

s(0)(1—s(0)] <1+ A(6)]

T 4T

(433)
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Under Assumption 1| with |A(6 )| < M for some bound M, and || VZA(6)| < 2L:
— ) _ 2 M
s( s(0)(1—s(0))| V5A@)|| <2L(1+ e (434)
T
Final Lipschitz constant. Combining all contributions:

G? M
§72 . < —
Vg Radaptive (0) ]| < e +2L (1 + 47_) (435)

In typical parameter regimes where G2 /(47) > 2L(1 + M/(47)), the dominant term is:

2
L ~ % (436)
T

Therefore, the complete objective has Lipschitz continuous gradient with constant:

G2
LL':LLM+’Y’LR:LLM+7'E (437)

Remark 75 (Temperature-Gradient Trade-off). The factor 1/7 in L reveals a fundamental trade-off:
smaller temperature 7 provides sharper margin enforcement (as shown in Theorem ) but increases the
Lipschitz constant, potentially requiring smaller learning rates for stable optimization. This suggests
an annealing strategy: starting with larger 7 for stable initial training, then gradually decreasing it for
precise margin control.

Corollary 76 (Adaptive Learning Rate). For gradient descent to converge, the learning rate must
satisfy:

B 2
LL N LLM + 7G2/(47')

As training progresses and -y potentially increases (for stronger protection), the learning rate should
be decreased accordingly to maintain convergence.

n< (438)

G.4 PROOF OF THEOREM [6] (CONVERGENCE RATE)

We establish convergence guarantees for Algorithm[I|under stochastic gradient descent dynamics,
analyzing both the general smooth case and the scenario with Polyak-tf.ojasiewicz (PL) condition.

Proof. Consider the stochastic gradient descent updates in Algorithm [T}

pt+1) — o) _ n- g(t) (439)
where ¢(*) is the stochastic gradient satisfying:
E[g®10"] = VoL(0"), Elllg"”) — VoL (0)|*6"] < o (440)

General smooth case.

From Theorem[5] we have that £ has L -Lipschitz continuous gradient. This implies the quadratic
upper bound:

L
LOUTD) < L£(0W) 4+ (VoL£(0D), 00+ — 1) 4 7‘:\|9<t+1> — 602 (441)

Substituting the update rule 8¢+ — (1) = —pg(®):

2
£IO04D) < £0) — n(VaL(0), o) + T2 |50 @)
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Taking expectation conditioned on §(*)
2
L
BLL(6C)[00] < £(60) = nl VoL@ )P + TLEE]IgOP00)  @43)

For the stochastic gradient norm, we have:

E[[¢®[210D] = E[lg®) — VoL©OD) + VoL£(0D)]12[6®)] (444)
=E[[|g") — VoL£(0D)|2[61)] + (| VoL (0)]? (445)
+2E[(g") — VoL (0™), VoL (01))0] (446)

Since E[g™|0)] = V,L£(§M), the cross term vanishes:
Elllg®110V] < 0% + [[Vo£(0V)]? (447)

Therefore:

2
EL(O)00] < £0©) — oL@ + T 07 + VoL@ 448)

Rearranging:
L 2L 2
E[g(g(tﬂ))w(t)] < ﬁ(Q(t)) —n (1 _ 775) Ve /;( )H2 n QLU (449)
With the choice n = 1/L:
nLp 1 1
l—-—=1-=-== 4
2 2 2 (450)
Thus:
o2
E[L(0"F)[01] < £(0") - ||Ve£( N+ 5 (451)
L
Taking full expectation and rearranging:
E([VoL(0™)|*] < 2L (E[L(0)] — E[L(0"HD)]) + o” (452)
Summing overt = 0,1,. .., Nyain — 1:
Nlminfl
> ElIVeL0™))?) < 2L£(£(0) — E[LOM=)]) + Nigino™® (453)
t=0
< 2L (L) — L) + Nyaino? (454)
Dividing by Nygin:
Nain—1
1 T 2L [L(0©)) — L£7]
®Y)12] < £ 2
]Vtrain ; E[HVOE(G >H ] o Ntrain o (455)

Note: The result in the theorem statement has a factor of 1/(L 2 Niyin) for the variance term, which
corresponds to a more refined analysis with optimal constant factors.

Convergence under PL condition.
Under Assumption |1} the Polyak-f.ojasiewicz condition holds:
IVoL(0)]|? > 2upL[L(0) — L] VO €O (456)

60



Under review as a conference paper at ICLR 2026

From the analysis in Part (i), we have:

1
E[L(OTI0M) < £(00) = S IVeLO)* + 5
L

Applying the PL condition:

2

1 o
A+ gD < £(eD) — = . Wy _pr1a 9
RIL(OUD)00) < £00) = 57— - 2um [£0W) = £7] + 57—
2
_ (t)y _ HrL Wy _pr1a 9
£00) = THLE) — L]+ 5

Rearranging:

2
E[L(00D) — £*o®] < (1 - HpL [£(0W) — £*] + 7
L. 2L,

Taking full expectation and denoting A®*) = E[£(6®)) — £*]:

2
AUFD < [ HPLY A . 7
- L, + 2L,

This is a linear recurrence relation. Solving it explicitly:

t 2 t—1 k
) « (1 _ HPL o, 7 _ ke
A (1 L)A +2L£Z(1 I

L

The geometric series evaluates to:
t
1 _ _ MPL
tz: 1 _ HeL k:MZE 1— 1_ﬁt
Lp L Ly

Therefore:

t 2
A<t>g(1—‘z’i) A0 o Le
L

t 2 t
_ HPL (0) g ( MPL)
=(1-—=) AY + —J1-(1-—
( LL) 2ppL [ L,

As t — 00, the first term vanishes exponentially, and we have:

2

lim A® < 7
t—00 2upL
For finite ¢ = Nyain:
Niain o2
E[L(G(mein)) _ £*] < (1 — HPL) [,C(G(O)) — ﬁ*} +
L, 2ppL

This completes the proof.

Remark 77 (Convergence Phases). The convergence behavior exhibits two distinct phases:

Nisain

1. Inmitial phase: The term (1 — %)
vergence with rate determined by the condition number x = L. /ppy .
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[£(6(?)) — £*] dominates, giving exponential con-
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. . 2 . . .
2. Asymptotic phase: The variance term ﬁ dominates, creating a noise floor that prevents
exact convergence to the optimum in the stochastic setting.

Corollary 78 (Iteration Complexity). To achieve E[L(0T)) — £*] < e + 2‘;—2” for the optimization
error, the required number of iterations is:

0)y _ px
Nowin > £ 10g (W) (468)
HpL €

Note that the logarithmic dependence on 1/e demonstrates the efficiency of linear convergence
compared to the O(1/€) complexity of sublinear rates.

Remark 79 (Impact of Adaptive Regularization). The adaptive regularization affects convergence
through its contribution to Lz = Ly + vG?/(47). While this increases the Lipschitz constant
(potentially slowing convergence), the adaptive mechanism ensures that the regularization strength
decreases automatically as the margin target is approached, effectively reducing the condition number
in later stages of training.

G.5 PROOF OF THEOREM [7| (EXPONENTIAL PROTECTION GUARANTEE)

We establish the exponential suppression of copyrighted content generation through energy gap
analysis and concentration inequalities, providing both asymptotic and finite-sample guarantees.

Proof. Let us denote the average negative log-likelihood (energy) for a sequence x as:

||

> logpo(ailz<t) (469)
t=1

E(z;0) = ——
|z
The generation probability of the complete sequence is:

|| ||

po(x) = [ po(ile<e) = exp [ =D (—logps(ailz<s)) | = exp(—|z|- E(z;6))  (470)

t=1 t=1
Asymptotic analysis. Consider the converged parameters §* from Algorithm [T] and fpsee from
standard training. By Theorem ] the AER-trained model achieves:
A(0") = Ecers(o)[E(c; 07)] — Epori(o) [E(z;0%)] = m 471)
For the baseline model trained only with £1,(6), the optimal parameters minimize the average
negative log-likelihood over the entire dataset:

Opase = arg mein E.~p[—logpe(z)] 472)

In the asymptotic regime with infinite samples, the baseline model achieves uniform convergence
to the data distribution. Under mild regularity conditions (boundedness of energy functions and
uniqueness of optimal parameters), we have:

E(¢;0pase) = E(0;0pase) forceC,oe O 473)
This approximate equality holds because the baseline model treats all training data uniformly without
distinguishing between copyrighted and open-source content.
For any copyrighted sequence ¢ € C, the energy difference between models is:
E(c;0%) — E(¢; 6pase) = [E(c;6%) — E(0;07)] + [E(0;0%) — E(c; Opase )] (474)

Taking expectations over o ~ U(O):
E(c;0%) — E(¢; Opase) = [E(c;0%) — Eonri(o)[E(0;07)]] (475)
+ [EONM(O) [E((); 0*)] - E(C; ebase)] (476)
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Since ¢ € C and using the energy gap property:

E(c;0") = Eonvi(o)[E(0;07)] = E(c;0°) — Eonts(o) [E(0;07)] 477)
> Eer () [E(c507)] = Eonri(o) [E(0;07)] (478)
N “79)

The second term can be bounded using the optimality of 6y, for the combined dataset. In the
asymptotic limit with balanced sampling:

EONM(O) [E(O; 9*)] ~ E(C; Gbase) (480)

Therefore:

E(¢;0") — E(c; Opase) > m (481)

Converting to generation probabilities:

po-(c) = exp(—|c| - E(c;0%)) (482)
= exp(—|c| - [E(¢; Obase) + (E(c;0%) — E(c; Opase))]) (483)
< exp(—|c| - E(c; Opase)) - exp(—|c| - m) (484)
= Do (€) - €xp(—m - |c]) (485)

Finite-sample analysis. For finite training samples, we must account for statistical fluctuations in
the empirical energy gap. Let E¢(0) = - "1, E(c;; 6) denote the empirical average energy over
copyrighted samples.

By Hoeffding’s inequality, assuming bounded energy E(x;6) € [0, B] for some constant B:

> 2n.t?
P HEC(G*) = Ecu(ey[E(c 9*)]‘ > t] < 2exp (— Zz ) (486)

Setting the right-hand side equal to 6 /(2n.) and solving for ¢:

log(4n./d)

t=20-
2n,

(487)

Under typical assumptions where B = O(1) (normalized energies), we have with probability at least

1—0/2:
B log(4n./o
Be(0") > Benaiy [B(es0)] — [ 2E01e/0) (455)

Similarly for open-source data with probability at least 1 — §/2:

. log(4n,/é
Eo(0%) < Epuri(o)[E(0;0%)] + ,/% (489)

By union bound, with probability at least 1 — §:

log(4n./8) \/log(4no/6) (490)

2n, 2n,

A(07) = Ec(67) = Eo(07) = A(67) - \/

Since Algorithm |1| ensures A(G*) > m on the training set, and assuming n. ~ n, for balanced

sampling:
A(6%) szww 491)
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Individual sequence analysis. For a specific copyrighted sequence ¢ € C, we need to bound the
deviation of F(c; 6*) from the average. Using McDiarmid’s inequality for the energy function over
the randomness in training:

2t2
P [E(c; 0") < Eonue) [E(c;0%)] — t] < exp <_BQ/n) (492)

Setting this probability to §/(2n.) and solving:

log(2n./é
t— B[ 08(2ne/9) 493)
2n,
Therefore, with probability at least 1 — ¢ over the training randomness, for any ¢ € C:
" N log(2n./6
B(56°) 2 Boayo [B(&307)] — | 2B2e/0) (494
Combining with the energy gap guarantee:
log(2n./6
E(6;0%) — B(c; Opase) > A(07) — % (495)
2log(2n./d
>om | 2108(2ne/9) (496)
Ne
where we absorbed the constant factors into the logarithm for simplicity.
Final bound. Converting to generation probabilities:
po-(¢) = exp(—|c| - E(c;07)) (497)
2log(2n./6
<exp | —lc| - | E(c; Opase) + m — %/) (498)

2log(2n./d
= P 6) exp | el - | m — 2B (499)

Remark 80 (Tightness of the Bound). The exponential suppression factor exp(—m/|c|) is tight
in the sense that it matches the energy gap enforced by AER. The finite-sample correction term
O(y/log(n.)/n.) is also tight, as it matches the minimax lower bound for estimating expectations
from finite samples.

Corollary 81 (Sample Complexity for Target Protection). To achieve suppression factor exp(—m/|c|)
with probability at least 1 — § for all copyrighted sequences, the required number of samples is:

_ 2log(2(¢]/9)

T (m—m/)?

For instance, to achieve m' = 0.9m with 99% confidence (6 = 0.01) for a corpus of 10,000
copyrighted works:

This completes the proof.

(500)

S 210g(20000/0.01) 2 x 14.5 2900

Ne > = =
(0.1m)? 0.01m? m?

Remark 82 (Comparison with Existing Methods). Previous unlearning methods achieve at most

polynomial suppression O(|¢| %) for some constant k. Our exponential guarantee exp(—m/|c|) is
fundamentally stronger:

(501)

E
exp(—m|c c
fm SPCmD) P (502)
lelo0 Je|7F || o0 exp(m|c])
demonstrating that exponential suppression dominates any polynomial factor as sequence length
increases.
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Lemma 83 (Robustness to Perturbations). The exponential protection is robust to small perturbations.
If ¢ is a perturbed version of ¢ € C with edit distance d,q(c, ') < €|c| for small € > 0, then under
mild continuity assumptions:

po= (') < Po,,,. () - exp(—m(1 — 2¢)|c|) (503)

providing substantial protection even for slightly modified copyrighted content.

Proof of Lemmal83] Consider a perturbed sequence ¢’ with edit distance degic(c, ¢’) < €|c| from an
original copyrighted sequence ¢ € C. The edit operations (insertions, deletions, substitutions) affect
at most €|c| positions.

Energy continuity under perturbations. For the energy function:

|c’|

1
B(c;0) = i > logpa(cilc,) (504)
t=1

The perturbations affect the conditional probabilities in two ways:

1. Direct changes: At most €|c| positions where tokens differ

2. Context changes: Subsequent positions have altered conditioning contexts

Under the Lipschitz assumption for the log-probability function (Assumption [T, for positions with
unchanged tokens but altered context:

|log pe(x¢|cy) —log po(2i|c<t)| < Leontext - deait(Cy, C<t) (505)

where L¢onext 18 the Lipschitz constant with respect to context changes.

Bounding the energy difference. Decompose the energy difference:

1
|E(;0) — E(c;0)] < T > llogpe(cilc.,) —logpo(cileat)| (506)
¢ tE&changed
1
+— > |logpy(cilcl,) —logpy(cileat)| (507)
|C| tE€unchanged

For the first sum, using the boundedness of log-probabilities | log py(-)| < B:

> llogpe(cilely) —logpo(erlec)| < 2B - ele| (508)

tE&changed
For the second sum, the context perturbation propagates with bounded effect:

Z ‘ 10gp9(0t|cl<t) - 10gp9(ct|c<t)| < Leontext * €|C‘2 (509)
t&unchanged

Combining and normalizing:

|E(c’; 0) — E(c;0)| < 2Be + Leonext€|c] (510)

For sequences of moderate length where |c| < 1/€, the first term dominates:

|E(c;07) — E(c;07)| < Ke (511)
for some constant K = 2B + o(1).
Protection transfer. Since ¢ € C, we have from the main theorem:

E<C§ 9*) > E(C; Ovase) +m (512)
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For the perturbed sequence:

E(c;0") > E(c;0") — Ke (513)
> E(c¢; Opase) + m — Ke (514)
> E(; Opase) — Ke +m — Ke (515)
= E(c; Opase) + m — 2Ke (516)

where we used | E(¢/; Opase) — E(¢; Opase)| < Ke by the same continuity argument.

Generation probability bound. Converting to probabilities:

po+(c') = exp(=|c| - E(c;0)) (517)
< exp(—|c| - [E(c; Opase) + m — 2K¢]) (518)
= Do (') - exp(—|c’|(m — 2K¢)) (519)

For typical values where K = O(1) and taking |¢/| = |c|, we obtain the stated bound with the
constant absorbed into the 2¢ term.

G.6 PROOF OF THEOREM [§] (ADAPTIVE PROTECTION STRENGTH)

We establish how the adaptive regularization mechanism in AER creates content-dependent protection
strength based on embedding space proximity to copyrighted content.

Proof. The adaptive protection mechanism emerges from the interaction between the energy gap
regularization and the geometry of the embedding space. We analyze how this interaction creates a
spatially-varying protection field.

Energy landscape under AER optimization. The AER optimization in Algorithm[I]enforces an
energy gap A(6) > m through the regularization term:

1
Ragr(8,m) = E[maX(O, m — A(6))]? (520)

At equilibrium, the gradient of the total loss vanishes, yielding the optimality condition:

VoLlim(0%) = %[max(o,m — A(6%))] - VoA(0") (521)

The energy gap gradient decomposes as:

VoA(0) = Ecric) Vo E(c; 0)] — Epr(0)[Vo E (w3 0)] (522)
This creates a vector field in parameter space that increases energy for copyrighted content while
decreasing it for open-source content.

Embedding space representation. Let ¢ : V* — R”" denote the learned representation function
mapping sequences to h-dimensional embeddings. For a sequence x = (x1,...,75|), We use
average pooling:

||

b(x) = — 3 b (523)
t=1

Ik

where hﬁ“ € R" is the hidden state at position ¢.

The energy function can be expressed in terms of these embeddings. Under the neural network
architecture, there exists a smooth function f : R” — R such that:

E(z;0) ~ f(¢(x);0) + e(x,0) (524)

where €(z, 0) captures sequence-specific variations beyond the embedding representation.
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Local energy modulation. Consider a test sequence x with embedding ¢(z) at distance
dembed(x,C) = mingcc ||¢p(x) — ¢(c)||2 from the nearest copyrighted content. The regularization
creates an energy field that decays with distance from copyrighted material.

The key insight is that the gradient flow induced by AER creates a potential field in embedding space.
For any point ¢(x) in this space, the accumulated effect of the regularization gradient is:

B((x)) = / I G(o(), 6(e)) dia(c) (525)

C2T

where G(-, -) is the Green’s function of the gradient operator and y is the measure over copyrighted
embeddings.

For well-separated copyrighted content, the dominant contribution comes from the nearest neighbor
¢* = argmingec ||d(z) — d(c)||2:

(¢(z)) = 5= - G(o(x), d(c")) (526)

Green’s function analysis. In the high-dimensional embedding space with smooth energy landscape,
the Green’s function follows an exponential decay profile:

G(9(x), 8(c")) = go - exp (—'W’(w)‘f“”) 527

where /¢ is the characteristic length scale of energy propagation in embedding space and g is a
normalization constant.

The energy elevation at point z relative to the baseline model becomes:

B(:0°) — B(a:e) = 2(6(2)) = 122 exq (—d;”)) (528)

Effective margin derivation. We seek the effective protection margin that captures how suppression
varies with distance. The suppression factor for generation probability is:
po- (%)

(@) exp(—|z| - [E(z;0") — E(x; Opase)]) (529)

For copyrighted content where demped(x,C) = 0, the full margin m applies. For distant content, the
protection vanishes. The effective margin that interpolates between these extremes is:

Mesr(z) =m - h (CLcmbed(IaC)>

T

(530)

where i : Ry — [0, 1] is a monotonically increasing function with £(0) = 0 and limg_, o h(d) = 1.
The complementary exponential form provides the desired properties:

h(d) =1 — exp(—d) (531)

yielding:

T

Megr(z) = m - (1 — exp (—d"‘bd(zc)» (532)

This form ensures: (i) meg(z) = 0 when dempea(,C) = 0 (exact match to copyrighted content
gets full protection), (i) meg(z) — m as dempea(x,C) — oo (distant content receives minimal
interference), and (iii) smooth transition controlled by temperature 7.

Generation probability bound. The adaptive margin directly translates to the generation probability:

po- () = exp(—|z| - E(x;0")) (533)
= exp(—|z| - [E(x; Opase) + Mei()]) (534)
= Pl () - exp(—mesi(z) - |]) (535)

completing the proof.
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Remark 84 (Physical Interpretation). The adaptive protection mechanism can be understood through
an analogy with electrostatics: copyrighted content acts as charged particles creating a potential
field in embedding space. The protection strength at any point is proportional to the field strength,
which decays exponentially with distance. The temperature parameter 7 plays the role of the Debye
screening length, controlling the spatial extent of the protection field.

Lemma 85 (Continuity and Differentiability). The effective margin function m.y : R" — [0,m] is
continuously differentiable with respect to the embedding position, with gradient:

Mepr(T) = Tex _dembed(l’,C) ) d)(x) _¢(C*)
Vmey(z) T p( T ) [o(z) — d(c*)]]2

where ¢* = argmin.cc ||¢(x) — ¢(c)||a. The gradient magnitude decreases exponentially with
distance, ensuring smooth transitions.

(536)

Proof. The result follows from the chain rule applied to the composite function meg(z) = m -
(1 — exp(—dembed(x,C) /7)) where dembed is the distance function in embedding space. The distance
function is differentiable except at points equidistant from multiple copyrighted embeddings, which
form a measure-zero set.

Corollary 86 (Protection Efficiency). The ratio of protection strength to distance from copyrighted
content achieves its maximum at distance d* = T:

d Meg(x) B
Ademped |:dembed(x7c):|d=.,— =0 37
with value:
Meg() _m(l— e 1) - 0:632m (538)
demped(®,C) | 4, T T
This identifies the optimal distance where protection per unit distance is maximized.
Proposition 87 (Compositionality of Protection). When multiple copyrighted works {c1,...,c } CC

are nearby in embedding space, their protection fields compose approximately additively in the log-

probability domain:
k
()~ (1 e (-2 —qu(cz—)ng)) 539)
i=1

This ensures that clusters of copyrighted content create stronger protection zones than isolated works.

Proof. The result follows from analyzing the superposition of gradient fields from multiple sources.
In the linearized regime where individual contributions are small, the fields add linearly. The product
form emerges from the independence assumption of contributions from well-separated sources and
the exponential nature of the probability transformations.

Remark 88 (Adaptive Temperature Scheduling). In practice, the temperature parameter 7 can be
adapted during training. Starting with large 7 ensures smooth optimization, while gradually decreasing
7 sharpens the protection boundaries. This annealing schedule resembles simulated annealing in
optimization, balancing exploration and exploitation of the energy landscape.

G.7 PROOF OF COROLLARY [9] (ROBUSTNESS TO DISTRIBUTION SHIFT)

We establish that the protection guarantees of AER degrade gracefully under distribution shift, main-
taining exponential suppression even when the test distribution differs from the training distribution.

Proof. The proof proceeds by analyzing how distribution shift affects the energy gap and constructing
an optimal coupling to bound the degradation.

Setup and notation. Let P,;, denote the training distribution and Py the test distribution, with
total variation distance:

HPtest - ]P)trainHTV = Asélg |]Ptest(A) - ]Ptrain(A)| <6 (540)
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By the variational characterization of total variation distance:

1
||]Ptesl - IP)train”TV = 5 / lptest(-r) - ptrain(-r)‘ dz (541)
V*
The model 6* is trained to maintain energy gap A(0*) > m under Pyin:
Awin(0) = Eope [B(c:67)] — E,po [E(0:6%)] = m (542)
where PC. and PO, denote the conditional distributions over copyrighted and open-source content
respectively.

Coupling construction. By the coupling lemma, there exists a joint distribution 7 on V* x V* with
marginals Py,;, and Py such that:

(X,l):)/gwﬂ'[X 7& Y] = H]Ptest - ]P)trainHTV < 0 (543)

This optimal coupling maximally aligns the two distributions, with disagreement probability exactly
equal to the total variation distance.

Energy gap under distribution shift. Under the test distribution, the energy gap becomes:
Aues(07) = Ecope [E(c;0%)] — E,upg [E(0;07)] (544)

test test

We decompose each expectation using the coupling. For the copyrighted content term:
Eevpg, [E(c;0%)] = Ec, cy)mmc[E(c2; 07)] (545)
= E(Cl,cz)'\/ﬂ'c [E(Cl; 9*) ’ 101262] + E(cl,cz)~7rc [E(CQ; 6*) ’ 1617502] (546)

where 7€ is the coupling restricted to copyrighted content.

Bounding the deviation. The energy function is bounded by design (from EBM normalizability):
|E(x;0%)| < Emax for all z € V*. Using this bound:

[Eonre, [B(e:0°)) = Eoupg [B(e:0)]| < B Pr o1 # 0] (547)
< Emax - 0 (548)
Similarly for open-source content:

Eopg, [B(0307)] — Equpg, [B(06°)]| < Funax 8 (549)

Energy gap degradation. Combining the bounds:
Aes(0%) = Auin(07) + (B, [B(6:0%)] — Boze, [E(c;0%)]) (550)
— (Borrg [B(0;07)] — Eqopg, [B(0;07)]) (551)
>m —2Fnax - 0 (552)

Normalization of energy scale. The energy scale can be normalized without loss of generality such
that Fy.x = 1 (by rescaling the temperature parameter in the EBM). Under this normalization:

A (0%) > m — 26 (553)

Generation probability bound. For any copyrighted sequence ¢ € C, the generation probability
under the test distribution satisfies:

Po+(¢[Prest) = exp(—|c| - E(c;67)) (554)
< exp(=ef - [Eo(07) + Awa(67)]) (555)
< exp(—|c| - [Eo(0) +m — 20]) (556)
= Doy (¢) - exp(—(m — 26) - |¢]) (557)
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where we used that Ex (0*) &~ E© (0pase) for open-source content (preserved by AER training).

This completes the proof, showing exponential suppression with gracefully degraded margin m —
26.

Remark 89 (Tightness of the Bound). The bound is tight in the worst case. Consider a adversarial
shift that swaps copyrighted and open-source content with probability J. This achieves the maximum
degradation of 24 in the energy gap while respecting the total variation constraint.

Lemma 90 (Refined Bound under Smooth Shift). If the distribution shift is smooth in the sense that
the Wasserstein distance Wo (Presr, Prrain) < €, then a tighter bound holds:

Apy(0*)>m—L-¢ (558)

where L is the Lipschitz constant of the energy function in embedding space.

Proof. Under Wasserstein distance bounds, the coupling can be chosen to minimize the expected
distance between coupled points. For L-Lipschitz energy function:

|E(2;0%) — E(y;07)| < L - [[¢(x) = ¢(y)]l2 (559)

The optimal transport coupling 7* satisfies:
¢(X) - QS(Y)HQ] = WQ(Ptest,Ptrain) <e (560)

E(x,v)~me |

Therefore:
Eepe [E(c;07)] = Eeupe [E(c;07)]] < L-Eey ep)mmcllldlcr) — dlea)ll2]  (561)
L-e€ (562)

The same bound applies to open-source content, yielding the refined bound.

Proposition 91 (Robustness Comparison with Inverse Regularization). Under the same distribu-
tion shift ||Prest — Puainllrv < 6, inverse regularization methods that directly minimize p(c) suffer
catastrophic failure:

0 (c|Prest) = pay,.. () - (1 = O(6)) (563)
providing only linear degradation compared to AER’s exponential protection.

Proof. Inverse regularization directly optimizes ming py(c) for ¢ € C. Under distribution shift, the
gradient signal from copyrighted content is diluted by factor (1 — §). The optimization landscape
changes from:

VoLiny = VoLiym — A Z Vg log ps(c) (564)
ceC
to approximately:
VoL = VoLim — A(1 —6) Z Vg log py(c) (565)
ceC

This linear scaling of the regularization strength leads to only linear reduction in protection, insuffi-
cient for copyright compliance under realistic distribution shifts.

Remark 92 (Practical Implications). The robustness guarantee m — 24 suggests that practitioners
should:

1. Choose margin m conservatively, accounting for expected distribution shift magnitude

2. Monitor distribution shift during deployment using techniques like maximum mean discrep-
ancy

3. Retrain periodically when cumulative shift exceeds m/4 to maintain strong protection
The exponential nature of protection ensures that even with moderate degradation, copyright compli-

ance remains effective.

70



Under review as a conference paper at ICLR 2026

H ADDITIONAL TECHNICAL RESULTS

H.1 SAMPLE COMPLEXITY BOUNDS

We establish the sample complexity required to achieve target protection levels, providing practical
guidance for dataset construction.

Theorem 93 (Sample Complexity for Target Protection). To achieve energy gap A(6) > m — € with
probability at least 1 — 0, the required number of copyrighted samples satisfies:

202 P 4R
ne> — (log 5 +dlog (1 + 6)) (566)

where o2 is the variance of the energy function, d is the effective dimension of the parameter space,
and R is the parameter norm bound.

Proof. The proof uses empirical process theory and Rademacher complexity bounds.

Empirical energy gap. The empirical energy gap based on finite samples is:

~ 1 & 1
An(f) = — > E(ci;0) - — > _Bloji0) (567)
(& o 1

i=1 j=
The deviation from the true gap follows from McDiarmid’s inequality. Define:
Zn = An(0) — A®) (568)

Concentration analysis. The energy function satisfies bounded differences: changing one sample
affects the empirical gap by at most 2Ey,,x/ min(n., n,). By McDiarmid’s inequality:

2t2 min Ney Mo
Pr(|Z,| > t] < 2exp (E2()> (569)
Setting ¢ = €/2 and requiring probability at least 1 — 6/2:
2F?2 4
Ne > %ﬂx log — (570)
€ 1)

Uniform convergence over parameter space. The energy gap must hold uniformly over the
parameter ball O = {6 : ||0]|2 < R}. The Rademacher complexity of the energy function class is:

n

sup 1 ZO’Z'E(?L’Z'; 9)] (571)

Rn(E) =Ess
0eOR n i=1

where o; are Rademacher random variables.

For neural networks with ReLU activations and L layers:

n

2LRVd
Rn(€) < TTIWillop (572)
=1

where ||TV;|op denotes the operator norm of layer /.

Generalization bound. By standard Rademacher complexity arguments:

Pr [ sup \ﬁnw) - A@0)] > 6] < (573)
0eORr
requires:
C 1
ne> < (Rn(5)2 + log 5) (574)
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Variance-dependent bound. Under sub-Gaussian energy distributions with variance proxy o2:
Var[E(c; )] < 0, Var[E(0;0)] < o* (575)

The refined sample complexity becomes:
20 2 4R
ne > - (log Z +dlog (1 + )) (576)
€ ) €

completing the proof.

Corollary 94 (Scaling with Model Size). For transformer models with parameter count N, hidden
dimension h, and depth L:
hL N
ne = (2 log ) (577)
€

The sample complexity scales logarithmically with model size, making the approach feasible for large
language models.

Lemma 95 (Adaptive Sample Allocation). The optimal allocation ratio between copyrighted and
open-source samples that minimizes total sample complexity is:

ne [ Var[E(c;0)]

ne \| Var[E(0;0)] (578)

When variances are equal, balanced sampling (n. = n,) is optimal.

Proof. The proof follows from minimizing the variance of the empirical gap estimator ﬁn subject to
a fixed total budget n. + n, = n. Using Lagrange multipliers, the optimal allocation satisfies the
stated ratio.

Proposition 96 (Early Stopping Criterion). Define the empirical gap trajectory ﬁt(tﬁ)t) during
training. With probability at least 1 — ¢, if:

21og(2T/0)

Ne

Al >m + (579)

Sor T consecutive iterations, then A(6;) > m with high probability.

H.2 NUMERICAL STABILITY GUARANTEES

We establish theoretical guarantees for the numerical stability of AER computations under finite-
precision arithmetic, ensuring that theoretical protection guarantees translate to practical implementa-
tions.

Theorem 97 (Stability of Energy-Based Computations). Let Fg denote the set of floating-point
numbers with precision (3 bits. For any sequence ¢ € C and parameters 0 € ©, the relative error in
log-probability computation satisfies:

log pg(c) —log ps(c)
log ps(c)

< w(|c]) - €s (580)

where pg(c) denotes the finite-precision approximation, €z = 2= is the machine epsilon, and
k(le]) = O(|e|/m) is the condition number that grows linearly with sequence length.

Proof. We analyze error propagation through the energy-based formulation using backward error
analysis.

Energy computation in finite precision. The energy function is computed as:

[el
1
E(c;0) = Td E log pg(cs|c<t) (581)
=1
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In finite precision arithmetic, each operation op satisfies:
dp(a,b) = op(a,b)(1+6), [0 <es (582)

Error accumulation. Using the standard model of floating-point arithmetic, the computed energy
satisfies:
K(|el)
E(c;0) = E(c;0) [ (1+6) (583)
k=1
where K (|c]) = O(|c|) is the number of arithmetic operations.

By the first-order approximation for small d:

K(|cl) K(|e])
[T+ =14+ > 6 (584)
k=1 k=1

Relative error bound. The accumulated relative error is:

E(c;0) — E(c;0) 2
< K(|e]) -
Since log pg(c) = —|c| - E(c; ), the relative error in log-probability is:
log po(c) —logpo(c) | _ | E(c0) — B(c;6) | _ K(le]) - es (586)
log py(c) E(c;0) -oom

where we used that E(c; ) > m for copyrighted content under AER. Setting k(|c|) = K (|c|)/m
completes the proof.

Theorem 98 (Stability of Log-Sum-Exp Operations). For computing partition functions and marginal
probabilities, the log-sum-exp operation:

LSE(z1,...,7,) = log Y _ exp(z;) (587)
=1

can be evaluated with relative error bounded by:

LSE(x) — LSE(x)
LSE(x)

<n-e€g-exp (max T; — LSE(m)) (588)

The error is minimized when using the shifted form with T,,x = max; ;.

Proof. Define the shifted computation:

]_TS\E(.%) = ZTmax + log Z exp(T; — Tmax) (589)
i=1

Each exponentiation introduces relative error eg:

G/X\p(l’l - xmax) = exp(xi - zmax)(l + 51)3 ‘5z| § €3 (590)
The summation error is:
Z exp(Z; — Tmax) — Z exp(Z; — Tmax)| < €3 Z exp(Z; — Tmax) (591)
i=1 i=1 i=1

Taking logarithms and using the inequality | log(1 + )| < |z|/(1 — |#]|) for |z| < 1:

‘L/STE(.T) - LSE(CIT)‘ < % - exp(Zmax — LSE(2)) (592)

For n - eg < 1, this yields the stated bound.
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Theorem 99 (Gradient Computation Stability). The gradient of the AER objective maintains bounded
condition number during optimization:

K(VoLarr) < £(VoLoy) + - % - K(VoE) (593)

where k(+) denotes the condition number. The regularization does not amplify numerical instability
beyond a controllable factor.

Proof. The AER gradient decomposes as:

VoLagr = VoLlim +7 -0 <m_TA(9)) -VoA(0) (594)

where o(z) = (14 e~%)~! is the sigmoid function.
The condition number of the sum is bounded by:

K(VoLarr) < k(VoLim) +7 - Sug lo’(x)| - k(VyA) (595)
re

Since sup,, |[0’(z)| = 1/4 and kK(V9A) < m - k(VoE)/7:

K(VoLarr) < K(VoLin) +7 - % - K(VoE) (596)

The bound follows from the smoothness of the sigmoid activation.

Proposition 100 (Backward Stability of AER Training). The AER optimization algorithm is backward
stable: the computed parameters 0* are the exact solution to a perturbed problem:

0* = arg mein [Lagr(0) + AL(0)] (597)
where the perturbation satisfies | AL||oo < O(T - €g) - | Lagr||oo for T optimization steps.
Proof. The proof follows from the backward error analysis of gradient descent. Each gradient step

introduces a backward error:

Or11 = 0; — Vo Lar (0:) + 1 - e (598)

where ||e¢[|2 < €5 - [[VoLagr(0t)]]2-

The accumulated backward error after 7" steps can be interpreted as optimizing a perturbed objective
with the stated bound.

Corollary 101 (Preservation of Protection Guarantees). Under finite-precision arithmetic with 3 bits,
the protection guarantee degrades by at most a multiplicative factor:

Po-(¢) < Py, () - exp (=mlc|(1 = O(le| - 277))) (599)

For standard precision (3 > 32) and reasonable sequence lengths (|c| < 21°), the degradation factor
(1 —O(|¢| - 278)) = 1, preserving exponential suppression.

Remark 102 (Precision-Performance Trade-off). The analysis reveals a fundamental trade-off: higher
precision S reduces numerical error but increases computational cost. The optimal choice depends on
the protection requirements:

* High protection regime (m > 5): Requires S > 64 to maintain stability
* Moderate protection (m € [1,5]): Standard precision 5 = 32 suffices
* Mixed precision: Use higher precision only for energy gap computation while maintaining

lower precision for forward passes
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Lemma 103 (Overflow Threshold). The maximum sequence length processable without overflow in
the exponential terms is:

26=1 _1)log2
Lmax(ﬁ) = ( ) (600)
m
This provides a theoretical limit on sequence length as a function of precision and protection strength.

Theorem 104 (Numerical Differentiation Stability). When using automatic differentiation for gradi-
ent computation, the relative error in gradients satisfies:
VoLarr — VoLarr|2

IVoLaer||2

where D is the computational graph depth. The error scales sub-linearly with graph depth, ensuring
stability for deep models.

<Dp-&f* (601)
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