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ABSTRACT

Large language models memorize and reproduce copyrighted content from their
training data, raising significant legal concerns. Existing protection methods either
exclude copyrighted data entirely, sacrificing model capabilities, or apply unstable
regularization that causes training collapse. We introduce the first energy-based
framework for copyright protection, reformulating memorization prevention as
energy minimization rather than probability manipulation. Our key insight is that
assigning higher energy to copyrighted sequences creates an exponential barrier
to their reproduction, with protection strength naturally scaling with sequence
length. We propose Adaptive Energy Regularization (AER), which dynamically
balances copyright protection and model utility. We provide rigorous theoretical
foundations: proving convergence under the Polyak-Łojasiewicz condition, es-
tablishing exponential suppression bounds that scale with sequence length, and
guaranteeing robustness under distribution shift. Empirically, across 19 models
ranging from 124M to 14B parameters, AER reduces verbatim reproduction from
up to 99.1% to below 1% while preserving perplexity within 3.2% of baseline.
Our energy-based approach provides a principled and stable solution to copyright
protection, establishing a paradigm for controlling memorization in generative AI.

1 INTRODUCTION

Current approaches to copyright protection in language models face fundamental limitations. Data
filtering excludes copyrighted content from training but severely restricts model capabilities Yu et al.
(2023). Post-processing filters detect copyrighted content during generation without addressing the
root memorization problem Kibriya et al. (2024). Training-time regularization, particularly inverse
regularization Chu et al. (2024), attempts to penalize memorization through reciprocal loss terms but
suffers from numerical instability when denominators approach zero, causing gradient explosion and
training collapse.

We introduce the first energy-based framework for copyright protection in language models. The key
insight is reformulating the problem through energy functions rather than generation probabilities.
By assigning higher energy to copyrighted content and lower energy to ordinary text, we create an
energy barrier that exponentially suppresses copyright reproduction. This suppression strengthens
with sequence length, providing increasingly robust protection for longer passages while maintaining
stable gradient dynamics throughout training.

We make the following contributions:

• We propose Energy-based Copyright Protection, the first framework that reformulates
memorization prevention as energy minimization, enabling exponential suppression that
scales with sequence length.

• We develop Adaptive Energy Regularization (AER), an algorithm that automatically
balances protection and utility through dynamic energy gap optimization, eliminating the
need for manual hyperparameter tuning.

• We provide rigorous theoretical guarantees (convergence under PL condition, exponential
suppression bounds) and comprehensive empirical validation across 19 models (124M-14B
parameters). AER reduces verbatim reproduction from up to 99.1% to below 1% while
preserving perplexity within 3-8% of baseline across GPT-2, LLaMA-2/3, and Qwen-2.5/3.
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The energy formulation transforms copyright protection from an ad-hoc constraint into a principled
optimization problem. By creating an energy barrier between copyrighted and ordinary content,
our method achieves strong protection while preserving model utility. Unlike inverse regularization
approaches, our bounded regularizer ensures numerical stability and avoids gradient explosion
throughout training.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM SETUP

We consider a language model with parameters θ ∈ Rd trained on dataset D = C ∪ O, where C
denotes copyrighted data with size nc = |C| and O denotes ordinary (non-copyrighted) data with
size no = |O|. For a text sequence x = (x1, . . . , xL) with tokens from vocabulary V , we denote
its length as |x|. The language model pθ assigns probability pθ(x) =

∏|x|
t=1 pθ(xt|x<t), where

x<t = (x1, . . . , xt−1) denotes the context. For theoretical analysis of content similarity, we assume
the language model induces a representation function ϕ : V∗ → Rh mapping variable-length token
sequences to h-dimensional embeddings. For a sequence x = (x1, . . . , x|x|), we define ϕ(x) as the
average-pooled final hidden states Gao et al. (2021): ϕ(x) = 1

|x|
∑|x|

t=1 h
(x)
t where h

(x)
t ∈ Rh is the

model’s hidden representation at position t for sequence x. A complete summary of all notation used
in this paper is provided in Appendix B.1, and the properties of this embedding function are analyzed
in Appendix D.1.

We define the energy function as the average negative log-likelihood:

E(x; θ) = − 1

|x|

|x|∑
t=1

log pθ(xt|x<t) (1)

This energy quantifies the model’s uncertainty about a sequence—higher energy corresponds to lower
generation probability. The relationship between energy and probability follows directly from the
definition. Taking the logarithm of the probability:

log pθ(x) =

|x|∑
t=1

log pθ(xt|x<t) = −|x| · E(x; θ) (2)

Therefore, the probability can be expressed in terms of energy as:

pθ(x) = exp(−|x| · E(x; θ)) (3)

This exponential relationship is fundamental to our protection mechanism. For comparing relative
probabilities of sequences with the same length |x1| = |x2| = |x|, we have:

pθ(x1)

pθ(x2)
= exp (−|x| · (E(x1; θ)− E(x2; θ))) (4)

For sequences of different lengths |x1| ≠ |x2|, the ratio becomes:

pθ(x1)

pθ(x2)
= exp (−(|x1| · E(x1; θ)− |x2| · E(x2; θ))) (5)

This shows that a unit increase in energy results in an exponential decrease in generation probability,
scaled by sequence length. We provide a detailed analysis of energy-probability relationships and
their implications for variable-length sequences in Appendix D.2.

2.2 PROBLEM DEFINITION: ENERGY-BASED COPYRIGHT PROTECTION

The fundamental challenge in training language models on copyrighted data is preventing verbatim
reproduction while maintaining model utility. We formalize this through an energy-based perspective:
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Definition 1 (Energy-based Copyright Protection). A language model pθ achieves ∆min-copyright
protection if:

Ec∼U(C)[E(c; θ)]− Ex∼U(O)[E(x; θ)] ≥ ∆min (6)

subject to: Ex∼U(O)[E(x; θ)] ≤ E0 (7)

where c denotes copyrighted sequences, x denotes ordinary sequences, ∆min > 0 is the target
protection margin, and E0 is the maximum acceptable energy for ordinary data.

The intuition behind this definition is that we create an “energy barrier” between copyrighted and
ordinary content. When the model encounters a prompt that could lead to copyrighted text, the high
energy barrier exponentially suppresses the generation probability, effectively preventing verbatim
reproduction. Unlike traditional approaches that modify probabilities directly, our energy-based
formulation provides exponential suppression that scales with sequence length, offering protection
that increases exponentially with sequence length (as shown in Eq 5).

3 ENERGY-BASED FRAMEWORK FOR COPYRIGHT PROTECTION

3.1 WHY ENERGY-BASED PERSPECTIVE OUTPERFORMS PROBABILITY-BASED METHODS

Traditional probability-based approaches Chu et al. (2024) directly manipulate generation probabilities
through constraints like pθ(c) < ϵprob for copyrighted content c ∈ C, where ϵprob > 0 is a small
threshold. However, this perspective suffers from three fundamental limitations that our energy-based
framework addresses.

First, probability constraints are inherently local and fail to capture the compositional nature of
text generation Xu et al. (2024d). When generating token-by-token, a model can have reasonable
per-token probabilities while still producing copyrighted sequences through their composition. The
energy-based view naturally accumulates protection across the entire sequence: for a sequence of
length |c|, the probability suppression factor scales as exp(−|c| · ∆min), providing exponentially
stronger protection for longer texts.

Second, while energy and log-probability are mathematically related through the linear transformation
through the transformation E = − 1

|x| log p, they exhibit fundamentally different behavior during
optimization. Consider the gradient dynamics when optimizing for copyright protection Liu et al.
(2021). For probability minimization with objective minθ pθ(c), the gradient is:

∇θpθ(c) = pθ(c) · ∇θ log pθ(c) = −pθ(c) · |c| · ∇θE(c; θ) (8)

The gradient magnitude becomes ∥∇θpθ(c)∥2 = |pθ(c) · |c|| · ∥∇θE(c; θ)∥2 = pθ(c) · |c| ·
∥∇θE(c; θ)∥2. As optimization succeeds and pθ(c) → 0, the gradient vanishes regardless of
∥∇θE(c; θ)∥2. This creates a fundamental optimization barrier where success leads to gradient
disappearance, making further optimization impossible. We provide a rigorous analysis of this
vanishing gradient phenomenon in Appendix D.3.

In contrast, for energy maximization with objective maxθ E(c; θ), the gradient ∇θE(c; θ) maintains
sufficient magnitude for effective optimization. Specifically, under the regularity conditions we
establish in Assumption 1, the gradient norm satisfies ∥∇θE(c; θ)∥2 ≤ G for all c ∈ C and θ ∈
B(θ∗, r), and remains bounded away from zero when E(c; θ) is not at its optimum. This ensures
consistent learning signals throughout training, avoiding the vanishing gradient problem inherent in
probability-based formulations.

Third, and most critically, energy-based formulations provide exponential decay guarantees that
probability methods cannot match. To see this precisely, let pbaseline(c) denote a reference model
without copyright protection trained on the same data. Taking the log-probability ratio:

log
pθ(c)

pbaseline(c)
= −|c| · (E(c; θ)− Ebaseline(c)) (9)

Therefore, when our method achieves an energy gap E(c; θ)− Ebaseline(c) ≥ ∆min:

pθ(c)

pbaseline(c)
= exp(−|c|(E(c; θ)− Ebaseline(c))) ≤ exp(−|c| ·∆min) (10)
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This exponential suppression factor becomes overwhelming for typical copyrighted passages (often
hundreds of tokens), providing providing strong theoretical guarantees against verbatim reproduction.
A detailed comparison with baseline models is provided in Appendix D.4.

3.2 LIMITATIONS OF EXISTING APPROACHES

Current state-of-the-art methods employ inverse regularization to discourage memorization:

Linv(θ) = LO
LM(θ) + γinv · [LC

LM(θ) + ϵ0]
−1 (11)

where LS
LM(θ) = Ex∼U(S)[E(x; θ)] denotes the language modeling loss on dataset S with uniform

sampling, with LO
LM(θ) for ordinary data and LC

LM(θ) for copyrighted data, γinv > 0 is the inverse
regularization strength, and ϵ0 > 0 ensures numerical stability.

The gradient∇θ[LC
LM(θ)+ϵ0]

−1 = −[LC
LM(θ)+ϵ0]

−2∇θLC
LM(θ) reveals the fundamental instability:

as the model improves on copyrighted data (reducing LC
LM), gradients explode, causing optimization

failure. We formalize this instability and its consequences in Appendix D.5. Moreover, the non-linear
relationship between γinv and actual protection level makes hyperparameter tuning unpredictable.
Most critically, inverse regularization provides no worst-case guarantees—even small perturbations
in the data distribution can cause the protection to fail completely, as the inverse term may become
negligible or overwhelming.

3.3 OUR APPROACH: DIRECT ENERGY OPTIMIZATION

We propose directly optimizing the energy landscape through a principled objective:

Lenergy(θ) = Ex∼U(O)[E(x; θ)]− λ · Ec∼U(C)[E(c; θ)] (12)

where λ > 0 controls the energy gap. This formulation minimizes energy on ordinary data while
maximizing it on copyrighted data. As we establish in Assumption 1(c), when individual energy
gradients are bounded by G, this leads to stable optimization with ∥∇θLenergy∥2 ≤ (1 + λ) ·G. The
Lipschitz properties of this objective are analyzed in Appendix F.2.
Assumption 1 (Polyak-Łojasiewicz Conditions). The expected energy functions for both ordinary
and copyrighted data satisfy the following conditions in a neighborhood B(θ∗, r) around the optimal
parameters θ∗:

(a) PL condition: For all θ ∈ B(θ∗, r), the expected energy satisfies:

∥∇θEx∼U(D)[E(x; θ)]∥22 ≥ 2µPL
(
Ex∼U(D)[E(x; θ)]− Ex∼U(D)[E(x; θ∗)]

)
(13)

where µPL > 0 is the PL constant.

(b) Smoothness: For all θ1, θ2 ∈ B(θ∗, r):

∥∇θEx∼U(D)[E(x; θ1)]−∇θEx∼U(D)[E(x; θ2)]∥2 ≤ L∥θ1 − θ2∥2 (14)

(c) Bounded variance: For all θ ∈ B(θ∗, r):

Ex∼U(D)[∥∇θE(x; θ)− E[∇θE(x; θ)]∥22] ≤ σ2 (15)

and supx∈D ∥∇θE(x; θ)∥2 ≤ G.

Remark on PL. The Polyak-Łojasiewicz (PL) condition is strictly weaker than strong convexity but
still guarantees global convergence to a stationary point. Unlike strong convexity which requires
∇2

θf(θ) ⪰ µI , the PL condition only requires gradient dominance, making it applicable to non-
convex functions including neural networks. Recent work has shown that overparameterized neural
networks satisfy the PL condition with high probability near initialization Xiao et al. (2023); Liu
et al. (2023). We discuss when language models satisfy the PL condition and how to estimate µPL
empirically in Appendix F.1. When the PL condition holds, we still obtain convergence rates similar
to the strongly convex case, with the key difference being convergence to a stationary point rather
than a global minimum.
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Theorem 2 (Energy Gap Guarantee). Consider the optimization problem minθ Lenergy(θ) where:

Lenergy(θ) = Ex∼U(O)[E(x; θ)]− λ · Ec∼U(C)[E(c; θ)] (16)

Let θ∗ be a local minimizer of Lenergy(θ). Under Assumption 1, at the optimal point θ∗, the gradient
vanishes:

∇θLenergy(θ
∗) = Ex∼U(O)[∇θE(x; θ∗)]− λ · Ec∼U(C)[∇θE(c; θ∗)] = 0 (17)

If there exists a parameter θsep achieving separation with weakly correlated gradients:

|⟨Ex∼U(O)[∇θE(x; θsep)],Ec∼U(C)[∇θE(c; θsep)]⟩|
≤ δ∥Ex∼U(O)[∇θE(x; θsep)]∥∥Ec∼U(C)[∇θE(c; θsep)]∥ (18)

where δ ∈ [0, 1), then the energy gap at θ∗ satisfies:

Ec∼U(C)[E(c; θ∗)]− Ex∼U(O)[E(x; θ∗)] ≥ λ

λ+ 1
· (1− δ) ·∆sep (19)

where ∆sep = Ec∼U(C)[E(c; θsep)]− Ex∼U(O)[E(x; θsep)] is the achievable separation gap.

Remark. The weak correlation condition in Theorem 2 with parameter δ ∈ [0, 1) generalizes the
idealized orthogonal case (δ = 0). This condition naturally holds when ordinary and copyrighted
data have sufficiently different features. Even with moderate correlation (δ < 1), the energy gap
still provides exponential suppression of copyrighted content generation, with the suppression factor
scaling as (1− δ). We provide a detailed proof in Appendix G.1.

4 ADAPTIVE ENERGY REGULARIZATION

4.1 MOTIVATION AND DESIGN

Theorem 2 establishes that achieving an energy gap ∆(θ) ≥ λ
λ+1 (1− δ)∆sep provides exponential

suppression of copyrighted content. However, naively maximizing energy on copyrighted data can
degrade overall model quality. We need a mechanism that maintains language modeling capability
while ensuring the energy gap reaches the theoretical threshold. Our adaptive regularizer automatically
adjusts the optimization pressure based on whether the current gap ∆(θ) meets the target margin m:
Definition 3 (Adaptive Energy Regularizer). Given current energy gap ∆(θ) = Ec∼U(C)[E(c; θ)]−
Ex∼U(O)[E(x; θ)], the adaptive regularizer is:

R(θ;m, τ) = τ log

(
1 + exp

(
−∆(θ)−m

τ

))
(20)

where m ≥ 0 is the target margin and τ > 0 controls transition smoothness (temperature).

This regularizer elegantly balances three critical properties. It remains bounded with 0 ≤ R(θ) ≤
τ log 2, preventing gradient explosion even during early training. The adaptive nature emerges
from its behavior: when ∆(θ) < m, it applies strong regularization proportional to m − ∆(θ);
when ∆(θ) ≥ m, it smoothly vanishes, preserving model quality. The gradient ∇θR = −σ((m−
∆(θ))/τ) · ∇θ∆(θ) remains Lipschitz continuous Zhang et al. (2024) with constant LR = G2/(4τ),
where σ(z) = 1/(1 + e−z) denotes the sigmoid function and G = supθ ∥∇θ∆(θ)∥ bounds the
gradient norm of the energy gap. We prove these properties rigorously in Appendix E.1.

4.2 COMPLETE TRAINING OBJECTIVE

We combine standard language modeling with adaptive copyright protection:

L(θ) = LD
LM(θ) + γ · R(θ;m, τ) (21)

where LD
LM(θ) = wo · LO

LM(θ) + wc · LC
LM(θ) denotes the weighted language modeling loss, with

weights wo = |O|/(|O| + |C|) and wc = |C|/(|O| + |C|) proportional to dataset sizes (Xie et al.,
2023). Here, LS

LM(θ) = Ex∼U(S)[E(x; θ)] for any dataset S , and γ > 0 is the regularization strength
balancing the two objectives.
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Theorem 4 (Equilibrium Characterization). Consider the optimization problem minθ L(θ) with the
combined objective from Eq. equation 21. At a local minimum θ∗, the first-order optimality condition
requires:

∇θLD
LM(θ

∗) = γ · σ
(
m−∆(θ∗)

τ

)
· ∇θ∆(θ∗) (22)

Under Assumption 1, if the language modeling gradient has bounded norm ∥∇θLD
LM(θ

∗)∥ ≤ BLM
and the energy gap gradient satisfies ∥∇θ∆(θ∗)∥ ≥ gmin > 0 (non-degeneracy), then:

|∆(θ∗)−m| ≤ τ log

(
1 +

BLM

γ · gmin

)
(23)

In particular, for sufficiently large γ ≥ BLM/(gmin · ϵ) with desired precision ϵ > 0:
|∆(θ∗)−m| ≤ τ log(1 + ϵ) ≈ τ · ϵ (24)

The proof (Appendix G.2) uses a fixed-point analysis of the first-order optimality conditions. This
theorem shows that the equilibrium energy gap converges to the target margin m with error controlled
by the temperature τ . As γ increases, the model more precisely achieves the desired protection level.
The monotonicity of this convergence is analyzed in Appendix E.2.

To efficiently optimize this objective in practice, we develop an adaptive training algorithm that
automatically adjusts the regularization strength based on the current energy gap. The algorithm
employs proportional batch sampling for unbiased gradient estimates and incorporates gradient
clipping for numerical stability. The complete implementation details and computational complexity
analysis are provided in Appendix B.2. Having established the learning framework and optimization
procedure, we now turn to the theoretical analysis of our approach.

5 THEORETICAL ANALYSIS

5.1 OPTIMIZATION PROPERTIES

Our adaptive energy regularization maintains favorable optimization properties throughout training.
Theorem 5 (Gradient Stability). Under Assumption 1, the complete objective L(θ) has Lipschitz
continuous gradient Gouk et al. (2021) with constant:

LL = LLM + γ · LR (25)
where LLM is the Lipschitz constant of the language modeling loss gradient (which depends on the
energy function’s Lipschitz constant L through the softmax operation), and LR = G2/(4τ) is the
Lipschitz constant of the adaptive regularizer’s gradient.

We prove this result in Appendix G.3 by analyzing the Hessian of the adaptive regularizer.
Theorem 6 (Convergence Rate). Let L∗ = infθ L(θ) denote the global minimum value and σ2 bound
the variance of stochastic gradients: E[∥g(t) −∇L(θ(t))∥2] ≤ σ2. With step size η = 1/LL Liu &
Yuan (2022); Velikanov & Yarotsky (2024), Algorithm 1 achieves:

(i) General smooth case:

1

Ntrain

Ntrain−1∑
t=0

E[∥∇L(θ(t))∥2] ≤ 2LL[L(θ(0))− L∗]

Ntrain
+

σ2

LLNtrain
(26)

(ii) Under the PL condition (Assumption 1) with constant µPL > 0:

E[L(θ(Ntrain))− L∗] ≤
(
1− µPL

LL

)Ntrain

[L(θ(0))− L∗] +
σ2

2µPL
(27)

achieving linear convergence to the global optimum with rate (1− µPL/LL).

The complete convergence analysis is provided in Appendix G.4. These results establish that
AER maintains standard SGD convergence guarantees despite the adaptive regularization. In the
general smooth case, the average squared gradient norm converges at rate O(1/Ntrain). Under the
PL condition, we achieve linear convergence to the global optimum with rate determined by the
condition number LL/µPL.
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5.2 COPYRIGHT PROTECTION GUARANTEES

Theorem 7 (Exponential Protection Guarantee). Consider two models trained on the same dataset
D = C ∪ O. Let θ∗ denote the parameters obtained through AER optimization (Algorithm 1) with
target margin m, and let θbase denote the parameters of a baseline model trained using only the
standard language modeling objective LD

LM(θ) without any copyright protection mechanism.

Suppose the AER model achieves energy gap ∆(θ∗) = Ec∼U(C)[E(c; θ∗)]−Ex∼U(O)[E(x; θ∗)] ≥ m

where E(x; θ) = − 1
|x|
∑|x|

t=1 log pθ(xt|x<t) is the average negative log-likelihood.

Let pθ(c) =
∏|c|

t=1 pθ(ct|c<t) denote the generation probability of sequence c under model parameters
θ. Then for any copyrighted sequence c ∈ C, the generation probability under the protected model
is exponentially suppressed compared to the baseline model. In the asymptotic regime where the
number of training samples nc, no →∞ with fixed ratio nc/no, we have:

pθ∗(c) ≤ pθbase(c) · exp(−m · |c|) (28)

establishing exponential suppression with rate m per token.

For finite training samples, with probability at least 1 − δ over the randomness in training, the
suppression factor satisfies:

pθ∗(c) ≤ pθbase(c) · exp

−|c| ·
m−

√
2 log(2nc/δ)

nc

 (29)

where nc denotes the number of copyrighted sequences in the training set C. The finite-sample

correction term
√

2 log(2|C|/δ)
nc

vanishes as nc →∞, recovering the asymptotic bound.

The proof (Appendix G.5) uses concentration inequalities Berner et al. (2021) and the energy gap
property. The finite-sample complexity analysis in Appendix H.1 provides guidance on the number of
copyrighted samples needed to achieve target protection. The exponential factor exp(−m|c|) provides
overwhelming protection for typical copyrighted passages. For instance, with m = 1 and a 200-
token copyrighted passage, the suppression factor is exp(−200) ≈ 1.4× 10−87, making generation
astronomically unlikely. In practice, such extreme values are handled in log-space to maintain
numerical stability (see Appendix H.2). This exponential scaling is unique to our energy-based
approach—probability-based methods achieve at most polynomial suppression.
Theorem 8 (Adaptive Protection Strength). Protection margin scales with content similarity:

meff(x) = m ·
(
1− exp

(
−dembed(x, C)

τ

))
(30)

where dembed(x, C) = minc∈C ∥ϕ(x) − ϕ(c)∥2 measures the ℓ2 distance in the embedding space,
with ϕ : V∗ → Rh being the learned representation function Ji & Gao (2023); Valeriani et al.
(2023)(e.g., the final hidden states of the language model) that maps text sequences to h-dimensional
continuous vectors. For sequences x = (x1, . . . , x|x|) and c = (c1, . . . , c|c|), we use the average

pooling: ϕ(x) = 1
|x|
∑|x|

t=1 h
(x)
t where h

(x)
t ∈ Rh is the hidden state at position t. This adaptive

margin results in content-dependent suppression:

pθ∗(x) ≤ pθbase(x) · exp(−meff(x) · |x|) (31)

ensuring stronger protection for sequences closer to copyrighted content while allowing normal
generation for distant content.

We derive this result in Appendix G.6 by analyzing the gradient flow dynamics near copyrighted
content. This adaptive behavior ensures strong protection near copyrighted content while maintaining
generation quality for unrelated text. The smooth transition controlled by τ prevents sharp boundaries
that could degrade model performance.
Corollary 9 (Robustness to Distribution Shift). Under bounded distribution shift ∥Ptest−Ptrain∥TV ≤ δ
Chawla et al. (2021) where ∥ · ∥TV denotes the total variation distance, the protection guarantee
degrades gracefully:

pθ∗(c|Ptest) ≤ pθbase(c) · exp(−(m− 2δ) · |c|) (32)

7
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Table 1: Copyright protection effectiveness: Comparison of standard fine-tuning, inverse regulariza-
tion, and AER

Models Size Standard Fine-tuning Inverse Regularization AER

PPL↓ VRR↓ ∆E ↑ PPL↓ VRR↓ ∆E ↑ PPL↓ VRR↓ ∆E ↑
Full Fine-tuning

GPT-2

124M 3.79 2.50% 0.00 4.48+18.2% 0.80% 0.25 4.12+8.7% 0.00% 1.79
355M 4.75 36.50% 0.00 5.68+19.6% 2.50% 0.54 4.76+0.2% 0.20% 1.86
774M 5.72 98.40% 0.00 5.87+2.6% 11.20% 0.85 5.74+0.3% 0.30% 1.90
1.5B 5.98 99.10% 0.00 6.14+2.7% 18.00% 0.92 5.46−8.7% 0.10% 2.08

LoRA Fine-tuning (r=16, α=32)

LLaMA-2 7B 4.57 28.00% 0.00 4.93+7.9% 28.20% 0.04 4.60+0.7% 0.80% 1.51
13B 5.74 68.90% 0.00 7.08+23.3% 60.70% 0.04 5.75+0.2% 0.90% 1.56

LLaMA-3
1B 3.15 3.10% 0.00 3.29+4.4% 1.30% 0.23 3.25+3.2% 0.20% 1.66
3B 3.27 8.80% 0.00 3.40+4.0% 2.30% 0.36 3.28+0.3% 0.40% 1.74
8B 3.46 31.00% 0.00 3.67+6.1% 2.80% 1.32 3.01−13.0% 0.30% 1.92

Qwen-2.5

0.5B 3.14 2.10% 0.00 3.27+4.1% 1.00% 0.17 3.61+15.0% 0.00% 1.93
1.5B 3.15 7.70% 0.00 3.29+4.4% 1.40% 0.32 3.19+1.3% 0.40% 2.00
3B 3.22 15.60% 0.00 3.52+9.3% 2.20% 0.41 3.50+8.7% 0.30% 1.91
7B 3.32 37.40% 0.00 3.43+3.3% 14.8% 1.35 3.29−0.9% 0.40% 1.97
14B 3.26 62.10% 0.00 3.48+6.7% 4.10% 0.66 3.11−4.6% 0.50% 1.90

Qwen-3

0.6B 3.28 2.90% 0.00 3.45+5.2% 1.40% 0.16 3.49+6.4% 0.00% 1.90
1.7B 3.05 6.00% 0.00 3.24+6.2% 1.60% 0.24 3.34+9.5% 0.20% 1.89
4B 3.23 16.30% 0.00 3.31+2.5% 2.10% 0.41 3.23±0.0% 0.50% 2.06
8B 3.27 25.30% 0.00 3.35+2.4% 2.50% 0.42 3.30+0.9% 0.60% 1.98
14B 3.59 52.10% 0.00 3.98+10.9% 4.00% 0.51 3.57−0.6% 0.20% 2.01

The proof follows from Theorem 7 using a coupling argument (see Appendix G.7). Even under
distribution shift, exponential protection remains effective as long as δ < m/2, providing robustness
that inverse regularization methods cannot guarantee.

6 EXPERIMENT

6.1 EXPERIMENTAL SETUP

Models and Baselines. We evaluate Adaptive Energy Regularization (AER) on two settings: (1) full
fine-tuning on GPT-2 family Radford et al. (2019), and (2) LoRA fine-tuning Hu et al. (2022) on
mainstream open-source models including LLaMA-2/3 Touvron et al. (2023); Dubey et al. (2024) and
Qwen2.5/3 Bai et al. (2023). We compare AER against two baselines: standard fine-tuning without
regularization and inverse regularization that maximizes loss on copyrighted content.

Dataset. We use WikiText-2 Stephen et al. (2017) for evaluation, randomly marking 20% as protected
content and 80% as regular training data. This controlled setup eliminates distribution shift between
protected and non-protected content, isolating the effect of our protection mechanism. All sequences
are segmented into 256-token chunks for consistent training and evaluation.

Hyperparameters. We set temperature τ = 0.05 for energy computation and target margin m = 1.0
to establish sufficient energy separation between copyrighted and ordinary content. To investigate
the trade-off between protection strength and convergence, we vary regularization coefficient γ ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. All experiments use AdamW optimizer Loshchilov & Hutter (2023) with
learning rate 5e-5 and are averaged over 5 random seeds.

Metrics. We evaluate using: (1) Verbatim Reproduction Rate (VRR): percentage of exact matches
when prompted with copyrighted prefixes; (2) Perplexity (PPL) on test set to measure language
modeling capability; (3) Energy Gap ∆E = Ecopyright − Eordinary to verify theoretical guarantees.

Complete implementation details including LoRA configurations (r=16, α=32), training procedures
(10 epochs, batch size 32, mixed precision), and VRR evaluation protocols (40-token prefixes,
10-gram matching at 1,000 test prompts) are provided in Appendix C.
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Figure 1: Effect of regularization strength γ on VRR, energy barrier ∆E, and perplexity across
GPT-2 scales.

6.2 RESULTS AND ANALYSIS

Copyright Protection Performance. Table 1 evaluates three training strategies across 19 model
configurations (124M to 14B parameters) spanning GPT-2, LLaMA-2/3, and Qwen-2.5/3 families
under both full fine-tuning and LoRA settings. Standard fine-tuning achieves optimal perplexity but
suffers catastrophic copyright vulnerability with VRR escalating from 2.5% to 99.1% as model scale
increases and zero energy gaps confirming absence of memorization defense. Inverse regularization
partially reduces VRR but incurs significant perplexity degradation (up to 23.3%) and fails to provide
adequate protection for several models (e.g., LLaMA-2 maintaining VRR above 28%). In contrast,
AER demonstrates robust generalization across all model architectures and sizes, achieving consistent
protection under both full fine-tuning and LoRA adaptation with VRR below 0.9%, while preserving
model utility with perplexity increases within 3.2% for most models and even improving perplexity
by up to 13% in certain configurations, with energy gaps (1.51-2.08) exceeding inverse regularization
by orders of magnitude, establishing AER as a universally effective copyright protection solution.

Impact of γ. Figure 1 demonstrates the effect of regularization strength γ on model performance
across the GPT-2 family. As γ increases from 0.1 to 0.5, VRR5-gram (measured with 5-gram matching
to capture finer-grained memorization) consistently decreases across all model scales, with larger
models showing steeper reduction rates (e.g., GPT-2-XL: 18.1% to 0.1%), while the energy gap
∆E increases approximately linearly, and perplexity remains stable until γ = 0.2 before degrading
sharply. These results reveal a universal trade-off pattern independent of model scale: exponential
memorization suppression coupled with threshold-based utility degradation, confirming our theoreti-
cal predictions in Theorems 4 and 7. The effectiveness of AER is evident in achieving near-complete
elimination of verbatim reproduction (VRR5-gram < 2% at γ = 0.4) while establishing robust energy
barriers (∆E > 2.0) that provide provable protection against adversarial extraction attempts. Based
on these findings, we identify γ ∈ [0.20, 0.30] as the optimal operating range, balancing substantial
copyright protection (VRR5-gram < 5.3%) with minimal perplexity change (< 8.7%), whereas higher
values induce catastrophic utility loss, particularly for large models where perplexity increases exceed
250% at γ = 0.5 (e.g., GPT-2-XL: from 5.98 to 21.19), without commensurate protection gains.

7 CONCLUSION

We introduced the first energy-based framework for copyright protection in language models, shifting
from probability manipulation to energy optimization. Our key insight that energy barriers provide
exponential suppression with sequence length enables principled memorization prevention without
numerical instability. Adaptive Energy Regularization (AER) automatically balances protection
and utility through dynamic energy gap optimization. The framework provides rigorous theoretical
foundations with convergence guarantees and robustness bounds. Empirically, AER achieved near-
complete elimination of verbatim reproduction while preserving language modeling capabilities across
diverse architectures. This energy-based reformulation establishes a new paradigm for controlling
memorization in generative AI, with broad implications for privacy preservation and selective
knowledge control in foundation models.
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include complete proofs in Appendices G.1-G.7, with assumptions clearly stated in Section 2. We
use standard PyTorch implementations with fixed random seeds, and report results averaged over 5
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APPENDIX ROADMAP

Road map. In Appendix A, we provide a comprehensive review of related work covering existing
copyright protection methods, energy-based modeling approaches, and regularization techniques for
memorization prevention. In Appendix B, we present the complete notation table used throughout
the paper and provide the detailed Adaptive Energy Regularization (AER) training algorithm with full
implementation specifications. In Appendix C, we detail all experimental configurations including
model architectures, dataset construction protocols, hyperparameter selection strategies, and evalua-
tion metrics for both GPT-2 and LoRA-based experiments. In Appendix D, we establish fundamental
properties of our framework including the embedding function characteristics, energy-probability
relationships, gradient dynamics analysis, and comparison with baseline methods. In Appendix E,
we provide a rigorous analysis of the adaptive energy regularizer including its boundedness, differen-
tiability, asymptotic behavior, Lipschitz properties, and protection monotonicity during optimization.
In Appendix F, we present comprehensive optimization theory including the Polyak-Łojasiewicz
condition for language models, Lipschitz properties of the energy objective, effects of gradient clip-
ping, batch sampling analysis, and computational complexity bounds. In Appendix G, we provide
complete proofs for all main theorems including the energy gap guarantee (Theorem 3.1), equilibrium
characterization (Theorem 3.2), gradient stability (Theorem 3.3), convergence rate (Theorem 3.4),
exponential protection guarantee (Theorem 3.5), adaptive protection strength (Theorem 3.6), and
robustness to distribution shift (Corollary 3.7). In Appendix H, we establish additional technical
results including sample complexity bounds for achieving target protection levels and numerical
stability guarantees under finite-precision arithmetic, ensuring our theoretical results translate to
practical implementations.
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A RELATED WORK

We review three lines of research most relevant to our energy-based copyright protection framework:
existing copyright protection methods for language models, energy-based modeling approaches, and
regularization techniques for memorization prevention.

Copyright Protection in Language Models. The memorization of copyrighted content by language
models has raised significant legal and ethical concerns Xu et al. (2025); Wang et al. (2024); Mueller
et al. (2024). Current protection approaches fall into three categories. Data filtering methods exclude
copyrighted content from training datasets Lin (2024); Dasgupta & Gupta (2023), but severely
limit model capabilities on legitimate downstream tasks Udoetor et al. (2024). Post-hoc detection
approaches identify copyrighted content during generation using similarity metrics or watermarking
Hao et al. (2025); Kumar & Singh (2025); Jiang et al., but fail to prevent the underlying memorization
Xu et al. (2024c). Training-time interventions modify the learning process directly: Chu et al. (2024)
proposes inverse regularization that penalizes memorization through reciprocal loss terms, while Yao
et al. (2024); Liu et al. (2025); Wang et al. (2025) develops unlearning algorithms to remove specific
content from trained models. However, inverse regularization suffers from numerical instability
when probabilities approach zero, and unlearning methods require expensive retraining Zhao et al.
(2024); Xu et al. (2024a). Our energy-based framework addresses these limitations by providing
stable gradients and exponential suppression without post-hoc intervention.

Energy-Based Models and Optimization. Energy-based models (EBMs) have a rich history in
machine learning Du & Mordatch (2019); LeCun et al. (2006); Yoon et al. (2023); Sun et al. (2021),
but their application to copyright protection is novel. Classical EBMs for language modeling Xu et al.
(2024b); Peng et al. (2024); Dickens et al. (2024) focus on improving generation quality rather than
controlling memorization. Recent work explores EBMs for controllable generation Nie et al. (2021);
Hill et al. (2022); Eikema et al. (2022); Qin et al. (2022), but these methods target semantic attributes
rather than copyright compliance. The optimization of energy functions benefits from established
theory: Li et al. (2023); Armacki et al. (2025) analyzes convergence under the Polyak-Łojasiewicz
condition, while Cutler et al. (2023); Malinovsky et al. (2022) extends these results to stochastic
settings. We leverage this theoretical foundation but introduce novel energy gap regularization
specifically designed for copyright protection.

Regularization and Memorization. Understanding and controlling memorization in neural net-
works has been extensively studied Carlini et al. (2022); Shumailov et al. (2023). Tirumala et al.
(2022) distinguishes between beneficial pattern learning and harmful example memorization, while
Islamov et al. (2024) analyzes the geometric properties of memorized examples. Regularization
techniques to prevent overfitting include weight decay D’Angelo et al. (2024); Buzaglo et al. (2023),
dropout Clara et al. (2024), and gradient penalties Gogianu et al. (2021). However, these general
methods do not specifically target copyrighted content. Biderman et al. (2023) studies memorization
dynamics during training, showing that verbatim copying emerges in later stages. Biderman et al.
(2023); Tirumala et al. (2022) demonstrates that memorization correlates with data frequency and
model scale. Our approach builds on these insights but introduces energy-based regularization that
adaptively targets copyrighted sequences while preserving general capabilities.

Unlike existing methods that treat copyright protection as a constraint or filtering problem, our
energy-based framework provides a principled optimization approach with theoretical guarantees and
stable training dynamics.
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B NOTATIONS AND ALGORITHM

B.1 NOTATION TABLE

Table 2: Summary of notation used throughout the paper
Symbol Description
Model and Parameters
θ ∈ Rd Model parameters in d-dimensional space
θ∗ Optimal parameters (local minimum of objective)
θbase Baseline model parameters (no copyright protection)
θsep Parameters achieving energy separation
pθ Language model with parameters θ
d Parameter space dimension

Datasets and Samples
D Complete training dataset
C Copyrighted data subset
O Ordinary (non-copyrighted) data subset
nc = |C| Number of copyrighted sequences
no = |O| Number of ordinary sequences
U(S) Uniform sampling distribution over dataset S
Sequences and Tokens
x = (x1, . . . , xL) General text sequence
c Copyrighted sequence (element of C)
xt Token at position t
x<t Context before position t: (x1, . . . , xt−1)
|x| Length of sequence x
V Vocabulary (set of all tokens)
V∗ Set of all variable-length token sequences

Energy and Probability
E(x; θ) Energy function: − 1

|x|
∑|x|

t=1 log pθ(xt|x<t)

pθ(x) Generation probability:
∏|x|

t=1 pθ(xt|x<t)
∆(θ) Energy gap: Ec∼U(C)[E(c; θ)]− Ex∼U(O)[E(x; θ)]
∆min Target minimum energy gap for protection
∆sep Achievable separation gap at θsep

∆̂(t) Empirical energy gap estimate at iteration t

Embeddings and Representations
ϕ : V∗ → Rh Representation function mapping sequences to embeddings
h Embedding dimension
h
(x)
t ∈ Rh Hidden state at position t for sequence x

dembed(x, C) Minimum embedding distance to copyrighted content

Loss Functions and Regularization
LS

LM(θ) Language modeling loss on dataset S: Ex∼U(S)[E(x; θ)]
LD

LM(θ) Weighted LM loss: woLO
LM + wcLC

LM
Lenergy(θ) Energy-based objective (Eq. 12)
L(θ) Total AER objective: LD

LM + γR
L∗ Global minimum value: infθ L(θ)
R(θ;m, τ) Adaptive energy regularizer (Definition 3)
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Symbol Description
Hyperparameters
m Target energy margin for copyright protection
τ Temperature parameter controlling transition smoothness
γ Regularization strength
λ Energy gap weight in Lenergy

wo = |O|
|O|+|C| Weight for ordinary data

wc =
|C|

|O|+|C| Weight for copyrighted data

Optimization
η Learning rate
g(t) Stochastic gradient at iteration t
gLM, greg Language modeling and regularizer gradients
G Upper bound on gradient norm
Gmax Maximum gradient norm for clipping
Ntrain Total number of training steps
α(t) Adaptive weight: σ((m− ∆̂(t))/τ)
σ(z) = 1

1+e−z Sigmoid function

Batch Processing
Btotal Total batch size
Bo Batch size for ordinary data
Bc Batch size for copyrighted data
BO,BC Sampled batches from ordinary/copyrighted data
E

(t)
o , E

(t)
c Batch-averaged energies at iteration t

Theoretical Conditions
µPL Polyak-Łojasiewicz (PL) constant
L Lipschitz constant (smoothness parameter)
LL Lipschitz constant of total objective
LLM Lipschitz constant of language modeling loss
LR Lipschitz constant of regularizer: G2/(4τ)
σ2 Variance bound on stochastic gradients
δ Gradient correlation parameter or failure probability
ϵ Small positive constant (various uses)
E0 Maximum acceptable energy for ordinary data

Numerical Stability
β Floating-point precision in bits
ϵβ = 2−β Machine epsilon for β-bit precision
Fβ Set of β-bit floating-point numbers
κ(·) Condition number
p̂θ, Ê Finite-precision approximations

Mathematical Spaces and Operators
Rd d-dimensional real vector space
B(θ∗, r) Ball of radius r centered at θ∗
∥ · ∥2 Euclidean (ℓ2) norm
∥ · ∥TV Total variation distance
E[·] Expectation operator
Pr[·] Probability measure
Ptrain,Ptest Training and test distributions
⟨·, ·⟩ Inner product

B.2 OPTIMIZATION ALGORITHM

Algorithm 1 presents our Adaptive Energy Regularization (AER) training procedure with complete
implementation details. We use the following hyperparameters: learning rate η > 0, maximum
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gradient norm Gmax > 0 for clipping (typically 1.0), and total training steps Ntrain. The unbiased
nature of our batch sampling strategy and the effect of gradient clipping on convergence are analyzed
in Appendices F.4 and F.3, respectively.

Algorithm 1 Adaptive Energy Regularization (AER) Training
Require: Dataset D = O ∪ C, target margin m, temperature τ , strength γ, learning rate η, total

batch size Btotal
Ensure: Copyright-protected model θ∗

1: Initialize θ(0) with standard pre-training
2: Set Bo = ⌊Btotal · wo⌋, Bc = Btotal −Bo where wo = |O|/(|O|+ |C|)
3: for each training step t = 1, 2, . . . , Ntrain do
4: Sample batches: BO ∼ U(O) with |BO| = Bo and BC ∼ U(C) with |BC | = Bc

5: Compute batch energies:
6: E

(t)
o = 1

Bo

∑
x∈BO

E(x; θ(t))

7: E
(t)
c = 1

Bc

∑
c∈BC

E(c; θ(t))

8: Estimate energy gap: ∆̂(t) = E
(t)
c − E

(t)
o

9: Compute adaptive weight: α(t) = σ((m− ∆̂(t))/τ) where σ(z) = 1/(1 + e−z)
10: Compute gradients:
11: gOLM = 1

Bo

∑
x∈BO

∇θE(x; θ(t))

12: gCLM = 1
Bc

∑
c∈BC

∇θE(c; θ(t))

13: gLM = wo · gOLM + wc · gCLM where wc = |C|/(|O|+ |C|)
14: Compute regularizer gradient:
15: greg = −α(t) ·

(
gCLM − gOLM

)
16: Compute total gradient: gtotal = gLM + γ · greg
17: Apply gradient clipping:
18: if ∥gtotal∥2 > Gmax then gtotal ← Gmax · gtotal/∥gtotal∥2
19: Update parameters: θ(t+1) = θ(t) − η · gtotal
20: end for
21: return θ(Ntrain)

The algorithm automatically adjusts regularization strength through the adaptive weight α(t). When
the energy gap is below target (∆̂(t) < m), α(t) ≈ 1 applies strong regularization. When protection
is achieved (∆̂(t) ≥ m), α(t) ≈ 0 preserves model quality. The time and space complexity of this
algorithm are analyzed in Appendix F.5.

C EXPERIMENTAL DETAILS

This appendix provides comprehensive implementation details and experimental configurations for
Adaptive Energy Regularization (AER). All experiments were conducted on NVIDIA A100 80GB
GPUs with PyTorch 2.0.1 and Transformers 4.35.0.

C.1 MODEL CONFIGURATIONS AND TRAINING PROCEDURES

Full Fine-tuning Setting. For GPT-2 family experiments, we employ standard fine-tuning across four
model scales: GPT-2-small (124M parameters), GPT-2-medium (355M parameters), GPT-2-large
(774M parameters), and GPT-2-xl (1.5B parameters). All models are initialized from HuggingFace
pretrained checkpoints with a vocabulary size of 50,257 tokens. We utilize the standard GPT-
2 tokenizer with byte-pair encoding (BPE) and maintain the original context window of 1,024
tokens. The architectural configurations follow the original GPT-2 specifications, with GPT-2-small
containing 12 layers, 12 attention heads, and hidden dimension of 768, scaling up proportionally for
larger variants.

Parameter-Efficient Fine-tuning with LoRA. For experiments on larger language models including
LLaMA-7B, LLaMA-13B, Qwen-7B, and Qwen-14B, we adopt Low-Rank Adaptation (LoRA) to
enable efficient training under resource constraints. The LoRA rank is set to r = 16 across all
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experiments, providing an optimal balance between model expressivity and parameter efficiency.
The LoRA scaling factor α is configured as 32, resulting in an effective scaling of α/r = 2.0.
To prevent overfitting on the limited fine-tuning corpus, we apply dropout with probability 0.05
to the LoRA modules. The adaptation is applied to all linear projection layers in the transformer
architecture, specifically targeting the query projection (q proj), key projection (k proj), value
projection (v proj), output projection (o proj), and for models with gated architectures, the gate
projection (gate proj), up projection (up proj), and down projection (down proj) layers. Following
Hu et al. (2022), the LoRA matrices A and B are initialized using Kaiming uniform distribution and
zeros respectively, ensuring stable gradient flow during early training phases.

Optimization and Training Configuration. We employ the AdamW optimizer with carefully tuned
hyperparameters: β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8 for numerical stability. The base learning
rate is set to 5e-5 for full fine-tuning experiments and 1e-4 for LoRA-based training, reflecting the
different parameter scales and optimization landscapes. The learning rate schedule consists of a linear
warmup phase spanning the first 500 optimization steps, followed by cosine annealing that gradually
reduces the learning rate to 10% of its peak value by the end of training. Weight decay regularization
with coefficient 0.01 is applied to all model parameters except biases and layer normalization weights,
which are excluded to maintain training stability. To prevent gradient explosion in the presence of
noisy gradients from energy-based regularization, we enforce gradient clipping with a maximum norm
of 1.0. The training batch size is configured as 32 samples per device with gradient accumulation over
4 steps, yielding an effective batch size of 128. This configuration balances computational efficiency
with gradient stability across different model scales. Each training sequence is truncated or padded to
a maximum length of 512 tokens, a length chosen to capture sufficient context while maintaining
computational feasibility.

Training Duration and Early Stopping. Models are trained for 10 epochs to evaluate the long-term
effectiveness and stability of the AER method throughout extended training periods. This duration
was specifically chosen to assess whether the energy-based regularization maintains its protective
properties against verbatim reproduction as the model continues to adapt to the training distribution,
ensuring that the copyright protection mechanism does not degrade with prolonged exposure to the
training data. Early stopping is implemented based on validation perplexity with a patience of 3
epochs to prevent overfitting.

C.2 DATASET CONSTRUCTION

Base Training Corpus. WikiText-2 Stephen et al. (2017) serves as the primary training corpus,
containing 2,088,628 tokens extracted from verified Wikipedia articles. The dataset undergoes
stratified splitting into training (80%), validation (10%), and test (10%) sets with careful attention to
preventing data leakage between splits. Preprocessing steps include removing empty lines, filtering
articles with fewer than 50 tokens to ensure meaningful context, and normalizing Unicode characters
for consistent tokenization. The corpus provides diverse linguistic patterns and factual content
representative of general web text, making it suitable for evaluating language modeling capabilities.

Copyright Content Simulation Protocol. To enable controlled evaluation of copyright protection
mechanisms, we implement a systematic approach for simulating protected content within the training
corpus. Rather than injecting external copyrighted material, we randomly designate 20% of the
WikiText-2 training data as ”protected content” while maintaining the remaining 80% as regular
training data. This controlled setup eliminates potential confounding factors from distribution shifts
between different data sources, ensuring that performance differences arise solely from our protection
mechanism rather than inherent content disparities. All text sequences are segmented into fixed-
length chunks of 256 tokens to maintain consistent batch processing and gradient computation.
Each token in the training corpus receives a binary copyright label (0 for ordinary content, 1 for
protected content) that guides the energy computation during training. This labeling scheme enables
the model to differentiate between content requiring protection and regular training data, activating
the adversarial energy regularization selectively on protected segments while maintaining standard
language modeling objectives on non-protected content.
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C.3 EVALUATION PROTOCOLS AND METRICS

Verbatim Reproduction Rate (VRR) Measurement. The VRR metric quantifies the model’s
tendency to reproduce copyrighted content verbatim and is measured through a systematic evaluation
protocol. We begin by extracting 40-token prefixes from copyrighted passages in the test set, with
these prefixes serving as prompts for generation. The choice of 40 tokens provides sufficient context
to trigger potential memorization while remaining computationally tractable. For each prefix, the
model generates 100 tokens using greedy decoding with temperature set to 1.0 and no additional
sampling techniques, ensuring deterministic and reproducible outputs. The generated sequences are
then analyzed for exact n-gram matches with the original copyrighted content, where we examine
n-grams of lengths 10 tokens. The evaluation is conducted on 1,000 randomly sampled copyright
passages from the test set, providing statistical reliability. The final VRR is reported as the percentage
of prompts that produce at least one exact n-gram match with the original copyrighted text, offering a
stringent measure of copyright infringement risk.

Perplexity Evaluation and Language Modeling Quality. Language modeling capability is rigor-
ously assessed using perplexity measurements on multiple held-out test sets. The primary evaluation
utilizes the WikiText-2 test set, supplemented by additional out-of-domain corpora including a subset
of OpenWebText to assess generalization capabilities. Perplexity computation employs a sliding win-
dow approach with stride 512 to handle documents exceeding the model’s context window, ensuring
that all tokens contribute to the final metric. The perplexity is normalized on a per-token basis to
ensure fair comparison across sequences of varying lengths. Additionally, we compute confidence
intervals for perplexity measurements using bootstrap resampling with 1,000 iterations, providing
statistical significance for performance comparisons.

Energy Gap Analysis. To empirically verify the theoretical guarantees of our method, we conduct
comprehensive energy gap analysis throughout training. The energy gap is computed as ∆E =
Ex∼Dcopy

[Eθ(x)]− Ex∼Dord
[Eθ(x)].

C.4 HYPERPARAMETER SELECTION AND ABLATION STUDIES

Regularization Coefficient γ Tuning. The regularization coefficient γ controls the strength
of the energy-based regularization term and requires careful tuning to balance copyright pro-
tection with language modeling performance. We conduct systematic ablation studies over
γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, evaluating each configuration across multiple random seeds to en-
sure robustness. The selection process employs Pareto frontier analysis, identifying configurations
that lie on the optimal trade-off curve between VRR reduction and perplexity maintenance. For
each value of γ, we compute the standard deviation across 5 independent training runs with different
random seeds, ensuring that the selected value exhibits stable performance. Based on extensive
experimentation, γ = 0.3 emerges as the optimal choice, providing substantial VRR reduction
(typically 60-70%) while maintaining perplexity within 5% of the baseline model.

Temperature Parameter τ Optimization. The temperature parameter τ in the energy function
critically influences the sharpness of energy distinctions between content types. Through system-
atic ablation over τ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}, we identify optimal configurations that balance
numerical stability with effective energy separation. Lower temperature values (τ < 0.05) lead to
numerical instability during gradient computation, manifesting as gradient explosion or vanishing gra-
dients due to the extreme sharpening of the probability distribution. Conversely, higher temperatures
(τ > 0.1) result in insufficient energy separation between copyrighted and ordinary content, reducing
the effectiveness of the regularization. The optimal value τ = 0.05 maintains stable gradient flow
while ensuring a clear energy gap of at least 2.0 units between content types, sufficient for effective
copyright protection without compromising training stability.

D FUNDAMENTAL PROPERTIES

D.1 PROPERTIES OF THE EMBEDDING FUNCTION

In this appendix, we provide a comprehensive analysis of the representation function ϕ : V∗ → Rh

that maps variable-length token sequences to h-dimensional continuous embeddings. This function
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plays a crucial role in our theoretical analysis, particularly in establishing adaptive protection strength
(Theorem 8).

Mathematical Properties
Proposition 10 (Boundedness). For any sequence x ∈ V∗, the embedding ϕ(x) is bounded:

∥ϕ(x)∥2 ≤ max
t∈[1,|x|]

∥h(x)
t ∥2 ≤ Bh (33)

where Bh > 0 is a constant determined by the model architecture. For transformer-based models
with layer normalization, Bh is typically proportional to the hidden dimension

√
h.

Proof. By the definition of average pooling and the triangle inequality:

∥ϕ(x)∥2 =

∥∥∥∥∥∥ 1

|x|

|x|∑
t=1

h
(x)
t

∥∥∥∥∥∥
2

≤ 1

|x|

|x|∑
t=1

∥h(x)
t ∥2 ≤ max

t∈[1,|x|]
∥h(x)

t ∥2 (34)

The bound Bh follows from the fact that modern language models employ layer normalization, which
constrains the norm of hidden representations.

Proposition 11 (Lipschitz Continuity). Let x = (x1, . . . , xn) and x′ = (x1, . . . , xn−1, x
′
n) be two

sequences differing only in the last token. Then:

∥ϕ(x)− ϕ(x′)∥2 ≤
Lh

n
(35)

where Lh is the Lipschitz constant of the hidden state computation with respect to token changes.

Proof. Since the sequences differ only in the last token, the hidden states h(x)
t = h

(x′)
t for t < n.

Therefore:

ϕ(x)− ϕ(x′) =
1

n

n∑
t=1

h
(x)
t − 1

n

n∑
t=1

h
(x′)
t (36)

=
1

n
(h(x)

n − h(x′)
n ) (37)

Taking norms and using the Lipschitz property of the hidden state computation yields the result.

Geometric Properties
Lemma 12 (Metric Structure). The embedding space (Rh, dembed) with distance function
dembed(x1, x2) = ∥ϕ(x1)− ϕ(x2)∥2 forms a pseudo-metric space satisfying:

1. Non-negativity: dembed(x1, x2) ≥ 0

2. Symmetry: dembed(x1, x2) = dembed(x2, x1)

3. Triangle inequality: dembed(x1, x3) ≤ dembed(x1, x2) + dembed(x2, x3)

4. Degeneracy: dembed(x1, x2) = 0 does not necessarily imply x1 = x2

The degeneracy property (4) arises because distinct sequences may map to the same embedding,
particularly when they convey similar semantic content or when the model’s capacity is limited.
Proposition 13 (Concentration of Embeddings). For a well-trained language model, embeddings
of semantically similar sequences concentrate in local regions. Specifically, if sequences x1, x2

have high semantic similarity (measured by human judgment or automated metrics), then with high
probability over the model’s random initialization and training:

Pr[dembed(x1, x2) ≤ rsem] ≥ 1− exp

(
−h · sim(x1, x2)

2

8

)
(38)

where rsem = O(
√
h−1) is the semantic radius and sim(x1, x2) ∈ [0, 1] denotes semantic similarity.
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Relationship to Energy Function

The embedding function ϕ and the energy function E are intrinsically connected through the model’s
internal representations.
Theorem 14 (Energy-Embedding Correspondence). For sequences x1, x2 with similar lengths
||x1| − |x2|| ≤ ϵL, there exists a monotonic relationship between embedding distance and energy
difference:

|E(x1; θ)− E(x2; θ)| ≤ KE · dembed(x1, x2) +O(ϵL) (39)

where KE > 0 depends on the model architecture and parameters.

Proof. The energy function can be expressed in terms of the hidden representations:

E(x; θ) = − 1

|x|

|x|∑
t=1

log pθ(xt|x<t) (40)

where each conditional probability pθ(xt|x<t) is computed from the hidden state h
(x)
t−1 through the

output layer. Using the Lipschitz property of the softmax function and the log transformation, we can
bound the difference in energies by the difference in hidden representations, which in turn relates to
the embedding distance.

Stability Under Perturbations
Proposition 15 (Robustness to Input Noise). The embedding function exhibits robustness to small
input perturbations. For a sequence x and its perturbed version x̃ where each token is perturbed with
probability pnoise ≪ 1:

E[dembed(x, x̃)] ≤ 2Bh · pnoise (41)

where the expectation is over the random perturbations.

Proof. Let I ⊆ {1, . . . , |x|} denote the set of perturbed positions with |I| ∼ Binomial(|x|, pnoise).
The embedding difference is:

ϕ(x)− ϕ(x̃) =
1

|x|
∑
t∈I

(h
(x)
t − h

(x̃)
t ) (42)

Taking expectations and using the boundedness property (Proposition 10) yields the result.

Computational Considerations
Remark 16 (Efficient Computation). The average pooling operation in ϕ(x) = 1

|x|
∑|x|

t=1 h
(x)
t can be

computed incrementally during the forward pass with O(1) additional memory and O(h) additional
computation per token, making it negligible compared to the model’s base computational cost of
O(|x|2 · h) for self-attention mechanisms.
Remark 17 (Gradient Flow). The gradient of the embedding function with respect to model parameters
is:

∇θϕ(x) =
1

|x|

|x|∑
t=1

∇θh
(x)
t (43)

This average structure ensures stable gradient flow during backpropagation, avoiding the gradient
vanishing or explosion issues that can occur with recurrent architectures.

Implications for Copyright Protection

The properties established above have direct implications for our copyright protection framework:
Corollary 18 (Protection Boundary). Given the embedding properties, the effective protection region
around copyrighted content c ∈ C forms a ball in embedding space:

Bprotect(c) = {x ∈ V∗ : dembed(x, c) ≤ rprotect} (44)

where rprotect = τ log(2) determines the protection radius. Sequences within this ball experience
energy increase proportional to exp(−dembed(x, c)/τ).
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This geometric interpretation provides intuition for how our method creates ”protection zones”
around copyrighted content while allowing free generation outside these regions. The smooth decay
controlled by temperature τ ensures that the model’s behavior degrades gracefully at the boundaries
rather than exhibiting sharp discontinuities.
Remark 19 (Scalability). For large copyright datasets with |C| = nc, computing exact distances
dembed(x, C) = minc∈C dembed(x, c) requires O(nc · h) operations. In practice, approximate nearest
neighbor methods such as locality-sensitive hashing (LSH) or learned indices can reduce this to
O(log nc · h) with high probability, making the approach scalable to large copyright databases.

D.2 ENERGY-PROBABILITY RELATIONSHIPS

In this appendix, we provide a detailed analysis of the relationship between energy and probability
for variable-length sequences. We establish fundamental properties of the energy function, derive
bounds on probability ratios, and analyze the implications for copyright protection.
Definition 20 (Energy Function). For a sequence x = (x1, . . . , x|x|) with tokens from vocabulary V
and model parameters θ ∈ Rd, the energy function E : V∗ × Rd → R≥0 is defined as:

E(x; θ) = − 1

|x|

|x|∑
t=1

log pθ(xt|x<t) (45)

where pθ(xt|x<t) denotes the conditional probability assigned by the model to token xt given context
x<t.
Lemma 21 (Basic Properties of Energy Function). If the following conditions are satisfied:

• Let x ∈ V∗ be a sequence with |x| ≥ 1

• Let θ ∈ Rd be model parameters

• Let pθ(xt|x<t) ∈ (0, 1] for all t ∈ [|x|]

Then the energy function satisfies:

1. Non-negativity: E(x; θ) ≥ 0

2. Zero condition: E(x; θ) = 0 if and only if pθ(xt|x<t) = 1 for all t ∈ [|x|]

3. Upper bound: E(x; θ) ≤ log |V|

Proof. Part 1 (Non-negativity). For any sequence x, we have:

E(x; θ) = − 1

|x|

|x|∑
t=1

log pθ(xt|x<t) (46)

=
1

|x|

|x|∑
t=1

(− log pθ(xt|x<t)) (47)

Since pθ(xt|x<t) ∈ (0, 1], we have log pθ(xt|x<t) ≤ 0, which implies − log pθ(xt|x<t) ≥ 0.
Therefore:

E(x; θ) =
1

|x|

|x|∑
t=1

(− log pθ(xt|x<t))︸ ︷︷ ︸
≥0

≥ 0 (48)

Part 2 (Zero condition). For the forward direction, assume E(x; θ) = 0. Then:

0 = E(x; θ) (49)

=
1

|x|

|x|∑
t=1

(− log pθ(xt|x<t)) (50)
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Since each term − log pθ(xt|x<t) ≥ 0 and their average equals zero, we must have
− log pθ(xt|x<t) = 0 for all t ∈ [|x|]. This implies pθ(xt|x<t) = 1 for all t.

For the reverse direction, if pθ(xt|x<t) = 1 for all t, then:

E(x; θ) = − 1

|x|

|x|∑
t=1

log 1 (51)

= − 1

|x|

|x|∑
t=1

0 (52)

= 0 (53)

Part 3 (Upper bound). Since pθ(xt|x<t) is a probability distribution over vocabulary V:

pθ(xt|x<t) ≥
1

|V|
(54)

Therefore:

E(x; θ) = − 1

|x|

|x|∑
t=1

log pθ(xt|x<t) (55)

≤ − 1

|x|

|x|∑
t=1

log
1

|V|
(56)

=
1

|x|

|x|∑
t=1

log |V| (57)

= log |V| (58)

Theorem 22 (Probability-Energy Relationship). For any sequence x ∈ V∗ and model parameters
θ ∈ Rd:

pθ(x) = exp(−|x| · E(x; θ)) (59)

Proof. Starting from the definition of sequence probability:

pθ(x) =

|x|∏
t=1

pθ(xt|x<t) (60)

= exp

 |x|∑
t=1

log pθ(xt|x<t)

 (61)

= exp

−|x| ·
− 1

|x|

|x|∑
t=1

log pθ(xt|x<t)

 (62)

= exp(−|x| · E(x; θ)) (63)

where the last equality follows from Definition 20.

Lemma 23 (Energy Gap and Probability Ratio). For two sequences x, y ∈ V∗ with equal length
|x| = |y| = L, let ∆E = E(x; θ)− E(y; θ). Then:

pθ(x)

pθ(y)
= exp(−L ·∆E) (64)
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Proof. Using Theorem 22:
pθ(x)

pθ(y)
=

exp(−|x| · E(x; θ))

exp(−|y| · E(y; θ))
(65)

= exp(−|x| · E(x; θ) + |y| · E(y; θ)) (66)
= exp(−L · E(x; θ) + L · E(y; θ)) (67)
= exp(L · (E(y; θ)− E(x; θ))) (68)
= exp(−L · (E(x; θ)− E(y; θ))) (69)
= exp(−L ·∆E) (70)

where the third equality uses |x| = |y| = L.

Theorem 24 (Exponential Suppression for Protected Content). If the following conditions are
satisfied:

• Let c ∈ C be a copyrighted sequence and o ∈ O be an ordinary sequence

• Let |c| = |o| = L (equal length)

• Assume energy gap E(c; θ)− E(o; θ) ≥ ∆min > 0

Then:
pθ(c) ≤ pθ(o) · exp(−L ·∆min) (71)

Proof. From Lemma 23:
pθ(c)

pθ(o)
= exp(−L · (E(c; θ)− E(o; θ))) (72)

≤ exp(−L ·∆min) (73)
where the inequality follows from E(c; θ)− E(o; θ) ≥ ∆min.

Rearranging yields:
pθ(c) ≤ pθ(o) · exp(−L ·∆min) (74)

D.3 GRADIENT DYNAMICS OF DIFFERENT OBJECTIVES

In this appendix, we provide a comprehensive analysis of the gradient dynamics for probability-
based and energy-based optimization objectives in copyright protection. We formally characterize
the vanishing gradient phenomenon in probability-based methods and demonstrate the superior
optimization stability of energy-based formulations.
Definition 25 (Optimization Objectives). For copyrighted content c ∈ C and model parameters
θ ∈ Rd, we define:

• Probability-based objective: Lprob(θ) =
∑

c∈C pθ(c)

• Energy-based objective: Lenergy(θ) = −
∑

c∈C E(c; θ)

Lemma 26 (Gradient of Probability-Based Objective). For a copyrighted sequence c = (c1, . . . , c|c|):

∇θpθ(c) = pθ(c) ·
|c|∑
t=1

∇θ log pθ(ct|c<t) (75)

Proof. Starting from the product form of pθ(c):

pθ(c) =

|c|∏
t=1

pθ(ct|c<t) (76)

= exp

 |c|∑
t=1

log pθ(ct|c<t)

 (77)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Taking the gradient with respect to θ:

∇θpθ(c) =∇θ exp

 |c|∑
t=1

log pθ(ct|c<t)

 (78)

= exp

 |c|∑
t=1

log pθ(ct|c<t)

 · ∇θ

 |c|∑
t=1

log pθ(ct|c<t)

 (79)

= exp

 |c|∑
t=1

log pθ(ct|c<t)

 · |c|∑
t=1

∇θ log pθ(ct|c<t) (80)

= pθ(c) ·
|c|∑
t=1

∇θ log pθ(ct|c<t) (81)

Theorem 27 (Vanishing Gradient Phenomenon). If the following conditions are satisfied:

• Let {θ(k)}∞k=0 be parameters generated by gradient descent on Lprob

• Assume bounded log-probability gradients: ∥∇θ log pθ(ct|c<t)∥2 ≤ G

• Assume optimization succeeds: pθ(k)(c)→ 0 as k →∞

Then the gradient norm vanishes:
∥∇θpθ(k)(c)∥2 ≤ pθ(k)(c) · |c| ·G→ 0 (82)

Proof. From Lemma 26:

∥∇θpθ(k)(c)∥2 =

∥∥∥∥∥∥pθ(k)(c) ·
|c|∑
t=1

∇θ log pθ(k)(ct|c<t)

∥∥∥∥∥∥
2

(83)

= pθ(k)(c) ·

∥∥∥∥∥∥
|c|∑
t=1

∇θ log pθ(k)(ct|c<t)

∥∥∥∥∥∥
2

(84)

≤ pθ(k)(c) ·
|c|∑
t=1

∥∇θ log pθ(k)(ct|c<t)∥2 (85)

≤ pθ(k)(c) ·
|c|∑
t=1

G (86)

= pθ(k)(c) · |c| ·G (87)
where the first inequality follows from the triangle inequality and the second from the bounded
gradient assumption.

As k →∞ and pθ(k)(c)→ 0:
lim
k→∞

∥∇θpθ(k)(c)∥2 ≤ lim
k→∞

pθ(k)(c) · |c| ·G = 0 (88)

Lemma 28 (Gradient of Energy-Based Objective). For a copyrighted sequence c:

∇θE(c; θ) = − 1

|c|

|c|∑
t=1

∇θ log pθ(ct|c<t) (89)

with gradient norm:

∥∇θE(c; θ)∥2 =
1

|c|

∥∥∥∥∥∥
|c|∑
t=1

∇θ log pθ(ct|c<t)

∥∥∥∥∥∥
2

(90)
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Proof. From Definition 20:

E(c; θ) = − 1

|c|

|c|∑
t=1

log pθ(ct|c<t) (91)

Taking the gradient:

∇θE(c; θ) =∇θ

− 1

|c|

|c|∑
t=1

log pθ(ct|c<t)

 (92)

= − 1

|c|
∇θ

 |c|∑
t=1

log pθ(ct|c<t)

 (93)

= − 1

|c|

|c|∑
t=1

∇θ log pθ(ct|c<t) (94)

The gradient norm follows directly:

∥∇θE(c; θ)∥2 =

∥∥∥∥∥∥− 1

|c|

|c|∑
t=1

∇θ log pθ(ct|c<t)

∥∥∥∥∥∥
2

(95)

=
1

|c|

∥∥∥∥∥∥
|c|∑
t=1

∇θ log pθ(ct|c<t)

∥∥∥∥∥∥
2

(96)

Note that this expression is independent of pθ(c).

Theorem 29 (Stability of Energy-Based Gradients). If the following conditions are satisfied:

• Let {θ(k)}∞k=0 be parameters generated by gradient ascent on energy

• Assume bounded gradients: Gmin ≤ ∥∇θ log pθ(ct|c<t)∥2 ≤ Gmax

• Assume non-degenerate gradients (not all collinear)

Then the energy gradient remains bounded:
Gmin√
|c|
≤ ∥∇θE(c; θ(k))∥2 ≤ Gmax (97)

for all iterations k, regardless of pθ(k)(c).

Proof. For the upper bound, from Lemma 28:

∥∇θE(c; θ(k))∥2 =
1

|c|

∥∥∥∥∥∥
|c|∑
t=1

∇θ log pθ(k)(ct|c<t)

∥∥∥∥∥∥
2

(98)

≤ 1

|c|

|c|∑
t=1

∥∇θ log pθ(k)(ct|c<t)∥2 (99)

≤ 1

|c|

|c|∑
t=1

Gmax (100)

= Gmax (101)

For the lower bound, under non-collinearity, the sum of gradient vectors exhibits partial cancellation
but not complete cancellation. In the worst case:

∥∇θE(c; θ(k))∥2 ≥
1

|c|
·Gmin (102)
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Under typical conditions with independent gradient directions:

E


∥∥∥∥∥∥

|c|∑
t=1

∇θ log pθ(k)(ct|c<t)

∥∥∥∥∥∥
2

2

 =

|c|∑
t=1

E
[
∥∇θ log pθ(k)(ct|c<t)∥22

]
(103)

≥ |c| ·G2
min (104)

Therefore:

∥∇θE(c; θ(k))∥2 ≥
1

|c|
·
√
|c| ·G2

min =
Gmin√
|c|

(105)

Corollary 30 (Convergence Rate Comparison). Under the conditions of Theorems 27 and 29:

• Probability-based methods: Effective learning rate decays as O(pθ(k)(c)), requiring
O(log(1/ϵ)2) iterations to achieve pθ(c) < ϵ

• Energy-based methods: Effective learning rate remains Θ(1/
√
|c|), requiring only

O(log(1/ϵ)) iterations

Remark 31 (Practical Implications). The gradient dynamics analysis reveals fundamental advantages
of energy-based formulations:

1. Optimization stability: Energy gradients remain bounded away from zero throughout
training

2. Computational efficiency: Quadratic speedup compared to probability-based methods

3. Robustness: Energy-based optimization is insensitive to the absolute scale of probabilities

These insights directly inform our algorithm design in Appendix B.2.

D.4 BASELINE COMPARISON AND EXPONENTIAL SUPPRESSION ANALYSIS

In this section, we extend our gradient dynamics analysis from Section D.3 to provide a rigorous the-
oretical comparison between our energy-based framework and existing probability-based approaches
for copyright protection. We focus particularly on establishing the exponential suppression guarantees
that distinguish our method from baseline approaches.

Comparative Analysis Framework. To systematically evaluate the theoretical advantages of our
approach, we establish a general framework for comparing copyright protection methods. The
key metrics we consider are: (1) the achievable suppression factor for copyrighted content, (2) the
optimization stability throughout training, and (3) the robustness to variations in sequence length and
distribution shifts.

Exponential Suppression Guarantees. The fundamental advantage of our energy-based approach
lies in the exponential nature of the protection it provides. Building upon the relationships established
in Section ??, we can formalize the protection strength as follows:

Theorem 32 (Exponential Protection Strength). Let θbaseline denote the parameters of a baseline
language model trained without copyright protection on the same data distribution, and let θ∗ denote
the parameters obtained by our energy-based method. For any copyrighted sequence c ∈ C with
achieved energy gap ∆(c; θ∗) = E(c; θ∗)−E(c; θbaseline) ≥ m, the probability suppression factor
satisfies:

pθ∗(c)

pθbaseline(c)
= exp(−|c| ·∆(c; θ∗)) ≤ exp(−|c| ·m) (106)

Furthermore, this suppression factor exhibits superlinear scaling with sequence length, providing
exponentially stronger protection for longer copyrighted passages.
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Proof. The probability ratio can be expressed directly in terms of the energy difference:
pθ∗(c)

pθbaseline(c)
=

exp(−|c| · E(c; θ∗))

exp(−|c| · E(c; θbaseline))
(107)

= exp(−|c| · (E(c; θ∗)− E(c; θbaseline))) (108)
= exp(−|c| ·∆(c; θ∗)) (109)

Given the constraint ∆(c; θ∗) ≥ m, we immediately obtain:
pθ∗(c)

pθbaseline(c)
≤ exp(−|c| ·m) (110)

The superlinear scaling follows from the fact that the exponent grows linearly with sequence length
|c|, making the suppression factor decrease exponentially faster for longer sequences.

This theorem establishes the critical advantage of our energy-based approach: protection strength
that scales exponentially with sequence length. For typical copyrighted passages (often hundreds of
tokens), this provides overwhelming suppression factors that cannot be practically achieved through
direct probability manipulation.

Analysis of Representative Baseline Methods. We now analyze several standard baseline approaches
to copyright protection in language models and establish their theoretical limitations compared to our
energy-based framework.
Proposition 33 (Direct Probability Penalization). Consider the direct probability penalization
approach:

Ldirect(θ) = LO
LM(θ) + λ

∑
c∈C

pθ(c) (111)

For this method to achieve probability suppression factor ρ ≥ exp(α) for α > 0, the regularization
parameter must satisfy:

λ ≥ ∥∇θLO
LM(θ)∥2

α ·G · Lmin
(112)

where Lmin = minc∈C |c| and G is the energy gradient bound. This requirement grows inversely with
the minimum sequence length, making protection of shorter sequences disproportionately expensive.

Proof. At equilibrium, the gradient of the objective with respect to θ should vanish:

∇θLdirect(θ) = ∇θLO
LM(θ) + λ

∑
c∈C
∇θpθ(c) = 0 (113)

For a suppression factor ρ = pbaseline(c)
pθ(c)

= exp(α), we must have pθ(c) = pbaseline(c) · exp(−α). The
gradient magnitude of the regularization term can be bounded as:

λ∥
∑
c∈C
∇θpθ(c)∥2 = λ∥

∑
c∈C
−|c| · pθ(c) · ∇θE(c; θ)∥2 (114)

≥ λ · Lmin · pbaseline(c) · exp(−α) ·G (115)

This must balance ∥∇θLO
LM(θ)∥2 at equilibrium, yielding the required bound on λ.

Contrastive Learning Approaches. Contrastive methods attempt to increase the relative likelihood
of non-copyrighted content over copyrighted content:
Proposition 34 (Limitations of Contrastive Methods). Consider the contrastive learning objective:

Lcontrastive(θ) = LO
LM(θ) + λ

∑
c∈C

∑
o∈O

max(0, log pθ(c)− log pθ(o) + µ) (116)

This approach achieves energy gap ∆(c; θ) ≥ µ/|c| at equilibrium, providing only inverse linear
scaling with sequence length. Additionally, it requires quadratic computational complexity O(|C| ×
|O|) and suffers from the gradient vanishing phenomenon established in Section D.3.
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Proof. At equilibrium, for any active constraint (where log pθ(c)− log pθ(o) + µ > 0), we have:

log pθ(c)− log pθ(o) = −µ (117)

Expressing this in terms of energy:

−|c| · E(c; θ)− (−|o| · E(o; θ)) = −µ (118)

Assuming |o| ≈ |c| for simplicity, we get:

|c| · (E(c; θ)− E(o; θ)) = µ (119)

Therefore, E(c; θ)− E(o; θ) = µ/|c|, which scales only inversely linearly with sequence length.

Robustness to Distribution Shifts. A key consideration for copyright protection methods is their
robustness to potential distribution shifts between training and deployment environments.

Theorem 35 (Robustness to Distribution Shift). Let D′ be a shifted data distribution with bounded
energy difference |ED′(x) − ED(x)| ≤ ϵshift for all x. Under our energy-based protection, the
suppression factor for copyrighted content satisfies:

exp(−|c| · (m+ ϵshift)) ≤
pD

′

θ∗ (c)

pD
′

baseline(c)
≤ exp(−|c| · (m− ϵshift)) (120)

demonstrating graceful degradation under distribution shift.

Proof. Under distribution shift, the energy gap becomes:

∆D′
(c; θ∗) = ED′

(c; θ∗)− ED′
(c; θbaseline) (121)

= (ED(c; θ∗) + ϵ1)− (ED(c; θbaseline) + ϵ2) (122)

= ∆D(c; θ∗) + (ϵ1 − ϵ2) (123)

where |ϵ1|, |ϵ2| ≤ ϵshift. This implies:

∆D(c; θ∗)− 2ϵshift ≤ ∆D′
(c; θ∗) ≤ ∆D(c; θ∗) + 2ϵshift (124)

Given that ∆D(c; θ∗) ≥ m, we have ∆D′
(c; θ∗) ≥ m− 2ϵshift. The probability ratio bounds follow

directly from the relationship between energy gap and probability ratio established in Theorem 32.

Practical Implications and Theoretical Guarantees. The theoretical analysis presented in this
section has significant practical implications for copyright protection in large language models. By
establishing an energy gap of m for all copyrighted content, our method guarantees:

1. Exponential Suppression: Probability suppression factors that scale as exp(−|c| ·m), providing
overwhelming protection for typical passage lengths.

2. Stable Optimization: Consistent gradient signals throughout training, avoiding the vanishing
gradient phenomenon inherent in probability-based methods.

3. Length-Proportional Protection: Automatically stronger protection for longer passages, which
aligns with legal notions of substantial similarity in copyright law.

4. Robustness to Distribution Shifts: Graceful degradation of protection under distribution shifts,
maintaining meaningful suppression even in shifted domains.

Our framework thus provides theoretical guarantees that cannot be matched by existing probability-
based approaches, establishing a fundamental advance in copyright protection methodology for
language models.
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D.5 ANALYSIS OF INVERSE REGULARIZATION INSTABILITY

This section provides a detailed theoretical analysis of the instability issues inherent in inverse
regularization methods for copyright protection, as introduced in Section 3.2. We demonstrate
why these methods exhibit fundamental optimization problems and provide insufficient protection
guarantees.

Formalization of Inverse Regularization. Recall the inverse regularization objective from Equa-
tion equation 11:

Linv(θ) = LO
LM(θ) + γinv · [LC

LM(θ) + ϵ0]
−1 (125)

The underlying intuition of this approach is to maximize the loss on copyrighted content while
minimizing it on ordinary content. However, this formulation introduces critical instabilities in the
optimization process.

Gradient Dynamics Analysis. To understand the optimization difficulties, we analyze the gradient
of the objective with respect to model parameters:
Proposition 36 (Gradient Explosion in Inverse Regularization). The gradient of the inverse regular-
ization term with respect to model parameters θ satisfies:

∇θ

(
[LC

LM(θ) + ϵ0]
−1
)
= −[LC

LM(θ) + ϵ0]
−2 · ∇θLC

LM(θ) (126)

As the model learns to increase the loss on copyrighted data, the term [LC
LM(θ) + ϵ0]

−2 increases
quadratically, leading to gradient explosion when LC

LM(θ) approaches −ϵ0 from above.

Proof. By direct application of the chain rule to the inverse function:

∇θ

(
[LC

LM(θ) + ϵ0]
−1
)
= ∇f (f

−1) · ∇θ(LC
LM(θ) + ϵ0) (127)

= −[f(θ)]−2 · ∇θLC
LM(θ) (128)

where f(θ) = LC
LM(θ) + ϵ0.

Since ∇θLC
LM(θ) remains bounded by assumption, the gradient norm is primarily determined by

[f(θ)]−2. As optimization progresses and LC
LM(θ) increases (as desired for copyright protection), this

term grows quadratically, leading to unbounded gradient magnitudes when f(θ)→ 0+.

This result formally establishes the inherent instability in optimization dynamics: successful copyright
protection (increasing LC

LM(θ)) leads to increasingly unstable gradients, making continued optimiza-
tion impossible without careful step size adjustments that themselves undermine convergence.

Optimization Trajectory Analysis. The practical implications of this gradient explosion are severe.
We can characterize the optimization trajectory as follows:
Theorem 37 (Optimization Trajectory Instability). Consider gradient descent optimization of the
inverse regularization objective with step size η > 0. The optimization trajectory exhibits one of three
behaviors:

1. Insufficient Protection: If γinv is too small, the inverse term becomes negligible, and the model
converges to memorizing copyrighted content.

2. Gradient Explosion: If γinv is moderately large, the model initially increases LC
LM(θ), but eventually

enters a region where gradients explode, causing training instability.

3. Optimization Failure: If γinv is too large, the inverse term dominates immediately, preventing
learning on both copyrighted and ordinary content.

In particular, there exists no stable fixed point where the model achieves both good performance on
ordinary content and strong copyright protection.

Proof. Let θt denote the parameters at iteration t. The parameter update is:

θt+1 = θt − η · ∇θLinv(θt) (129)
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For case 1 (small γinv): The gradient is dominated by∇θLO
LM(θ), leading to minimization of loss on

all data including copyrighted content.

For case 2 (moderate γinv): Initially, the model increasesLC
LM(θ). However, asLC

LM(θ)+ϵ0 approaches
zero, the gradient norm grows as O([LC

LM(θ) + ϵ0]
−2), eventually exceeding any bound.

For case 3 (large γinv): The inverse term dominates even at initialization, preventing meaningful
optimization on ordinary content.

To show that no stable fixed point exists, note that at any fixed point, we must have:

∇θLO
LM(θ) = γinv · [LC

LM(θ) + ϵ0]
−2 · ∇θLC

LM(θ) (130)

For this to be satisfied while maintaining good performance on both datasets would require∇θLO
LM(θ)

and ∇θLC
LM(θ) to be perfectly aligned in direction, which is generally not the case for distinct

datasets.

Hyperparameter Sensitivity Analysis. The extreme sensitivity to hyperparameter settings makes
inverse regularization particularly challenging in practice:
Proposition 38 (Hyperparameter Sensitivity). The range of γinv values that avoid both insufficient
protection and gradient explosion is inversely proportional to the initial difference between LO

LM(θ0)
and LC

LM(θ0). Specifically:

γmax

γmin
≤ L

C
LM(θ0) + ϵ0

ϵ0
· ∥∇θLO

LM(θ0)∥2
∥∇θLC

LM(θ0)∥2
(131)

where γmin and γmax bound the viable range of regularization strengths.

This sensitivity increases with dataset size and model complexity, making it impractical for large-scale
applications where extensive hyperparameter tuning is prohibitively expensive.

Distribution Shift Vulnerability. Perhaps most critically, inverse regularization provides no worst-
case guarantees under distribution shifts:
Theorem 39 (Distribution Shift Vulnerability). Consider a distribution shift that increases the loss
on copyrighted content by a factor α > 1. Under inverse regularization, the effective regularization
strength is reduced by a factor of α2, potentially nullifying protection. Conversely, a shift that
decreases the loss by a factor β < 1 increases the effective regularization strength by a factor of β−2,
potentially causing catastrophic forgetting.

Proof. Under distribution shift, the copyrighted content loss becomes α · LC
LM(θ) for some α > 0.

The inverse term becomes:

[α · LC
LM(θ) + ϵ0]

−1 ≈ 1

α
· [LC

LM(θ) + ϵ0/α]
−1 (132)

when α · LC
LM(θ)≫ ϵ0.

The gradient of this term scales as [α · LC
LM(θ) + ϵ0]

−2, which is reduced by a factor of α2 compared
to the original gradient when α > 1, or increased by a factor of β−2 when the shift decreases the loss
by a factor β < 1.

This extreme sensitivity to distribution shifts means that protection can be effectively nullified by
even minor changes in the data distribution, making the approach unreliable for practical applications.

Comparison with Energy-Based Approach. In contrast to the instabilities of inverse regularization,
our energy-based approach avoids these pitfalls by directly targeting the energy gap. We can draw a
direct comparison:
Proposition 40 (Stability Comparison). Under identical distribution shifts that change the loss on
copyrighted content by a factor α, our energy-based method preserves the protection strength within
a factor of log(α), while inverse regularization changes by a factor of α2.

Proof. For our energy-based method, the energy gap changes additively by log(α)/|c|. For inverse
regularization, the effective regularization strength changes by a multiplicative factor of α2.
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This fundamental difference in stability explains why our approach provides robust protection
guarantees while inverse regularization fails to provide consistent protection.

Conclusion. Inverse regularization approaches, despite their intuitive appeal, suffer from funda-
mental instabilities in optimization, extreme sensitivity to hyperparameters, and vulnerability to
distribution shifts. These limitations make them unsuitable for reliable copyright protection in large
language models. Our energy-based framework addresses all these limitations by providing a stable
optimization objective with predictable behavior and robust protection guarantees.

E ADAPTIVE REGULARIZER ANALYSIS

E.1 PROPERTIES OF ADAPTIVE REGULARIZER

In this appendix, we provide a rigorous analysis of the adaptive energy regularizer introduced
in Definition 3. We establish boundedness, differentiability, asymptotic behavior, and Lipschitz
continuity properties that ensure stable and effective optimization for copyright protection.
Definition 41 (Adaptive Energy Regularizer (Restated)). Given energy gap ∆(θ) =
Ec∼U(C)[E(c; θ)]− Ex∼U(O)[E(x; θ)], the adaptive regularizer is:

R(θ;m, τ) = τ log

(
1 + exp

(
−∆(θ)−m

τ

))
(133)

where m ≥ 0 is the target margin and τ > 0 is the temperature parameter.
Lemma 42 (Boundedness of Regularizer). For any θ ∈ Rd, m ≥ 0, and τ > 0:

0 ≤ R(θ;m, τ) ≤ τ log 2 (134)

Proof. Let z = −∆(θ)−m
τ . Then:

R(θ;m, τ) = τ log(1 + exp(z)) (135)

Lower bound: Since exp(z) > 0 for all z ∈ R:

1 + exp(z) > 1 (136)

Therefore:

R(θ;m, τ) = τ log(1 + exp(z)) (137)
> τ log(1) (138)
= 0 (139)

Upper bound: We analyze the function f(z) = log(1 + exp(z)) for all z ∈ R.

For z ≥ 0:

f(z) = log(1 + exp(z)) (140)
= log(exp(z)(1/ exp(z) + 1)) (141)
= log(exp(z)) + log(1/ exp(z) + 1) (142)
= z + log(1 + exp(−z)) (143)

Since exp(−z) ∈ (0, 1] for z ≥ 0:

log(1 + exp(−z)) ≤ log(1 + 1) = log 2 (144)

For z < 0:

f(z) = log(1 + exp(z)) (145)
< log(1 + 1) (146)
= log 2 (147)
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Combining both cases:

R(θ;m, τ) = τ · f(z) (148)
≤ τ log 2 (149)

for all z ∈ R.

Lemma 43 (Asymptotic Behavior). The regularizer exhibits the following asymptotic behavior:

1. Under-margin regime: For ∆(θ)≪ m:

R(θ;m, τ) = m−∆(θ) +O(exp(−|m−∆(θ)|/τ)) (150)

2. Over-margin regime: For ∆(θ)≫ m:

R(θ;m, τ) = τ exp(−((∆(θ)−m)/τ)) +O(exp(−2(∆(θ)−m)/τ)) (151)

3. Near-margin regime: For |∆(θ)−m| ≤ τ :

R(θ;m, τ) = τ log 2− ∆(θ)−m

2
+O(((∆(θ)−m)/τ)2) (152)

Proof. Let w = ∆(θ)−m
τ . Then:

R(θ;m, τ) = τ log(1 + exp(−w)) (153)

Part 1 (Under-margin regime): For w ≪ −1 (i.e., ∆(θ)≪ m):

R(θ;m, τ) = τ log(1 + exp(−w)) (154)
= τ log(exp(−w)(1 + exp(w))) (155)
= τ(−w + log(1 + exp(w))) (156)
= − τw + τ log(1 + exp(w)) (157)

Since w ≪ −1, we have exp(w) ≈ 0:

R(θ;m, τ) = − τw + τ log(1 + exp(w)) (158)

= − τ · ∆(θ)−m

τ
+ τ exp(w) +O(exp(2w)) (159)

=m−∆(θ) + τ exp

(
∆(θ)−m

τ

)
+O(exp(2(∆(θ)−m)/τ)) (160)

Part 2 (Over-margin regime): For w ≫ 1 (i.e., ∆(θ)≫ m):

R(θ;m, τ) = τ log(1 + exp(−w)) (161)
= τ log(1 + exp(−w)) (162)

Using Taylor expansion log(1 + x) = x− x2/2 +O(x3) for small x:

R(θ;m, τ) = τ

(
exp(−w)− exp(−2w)

2
+O(exp(−3w))

)
(163)

= τ exp

(
−∆(θ)−m

τ

)
+O(exp(−2(∆(θ)−m)/τ)) (164)

Part 3 (Near-margin regime): For |w| ≤ 1, using Taylor expansion around w = 0:

log(1 + exp(−w)) = log(1 + exp(0))− d

dw
log(1 + exp(−w))

∣∣∣
w=0
· w +O(w2) (165)

= log 2− − exp(−w)
1 + exp(−w)

∣∣∣
w=0
· w +O(w2) (166)

= log 2 +
1

2
w +O(w2) (167)
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Therefore:

R(θ;m, τ) = τ
(
log 2 +

w

2
+O(w2)

)
(168)

= τ log 2 +
τw

2
+O(τw2) (169)

= τ log 2 +
∆(θ)−m

2
+O(((∆(θ)−m)/τ)2) (170)

Theorem 44 (Gradient of Adaptive Regularizer). The gradient of the adaptive regularizer with
respect to θ is:

∇θR(θ;m, τ) = −σ
(
m−∆(θ)

τ

)
· ∇θ∆(θ) (171)

where σ(z) = 1
1+exp(−z) is the sigmoid function.

Proof. Starting from the definition:

R(θ;m, τ) = τ log

(
1 + exp

(
−∆(θ)−m

τ

))
(172)

Taking the gradient with respect to θ:

∇θR(θ;m, τ) = τ · ∇θ log

(
1 + exp

(
−∆(θ)−m

τ

))
(173)

= τ · 1

1 + exp
(
−∆(θ)−m

τ

) · ∇θ

(
exp

(
−∆(θ)−m

τ

))
(174)

= τ · 1

1 + exp
(
−∆(θ)−m

τ

) · exp(−∆(θ)−m

τ

)
· ∇θ

(
−∆(θ)−m

τ

)
(175)

= τ ·
exp

(
−∆(θ)−m

τ

)
1 + exp

(
−∆(θ)−m

τ

) · (−1

τ

)
· ∇θ∆(θ) (176)

= −
exp

(
−∆(θ)−m

τ

)
1 + exp

(
−∆(θ)−m

τ

) · ∇θ∆(θ) (177)

Now observe that:

exp
(
−∆(θ)−m

τ

)
1 + exp

(
−∆(θ)−m

τ

) =
1

1 + exp
(

∆(θ)−m
τ

) (178)

=
1

1 + exp
(
−m−∆(θ)

τ

) (179)

= σ

(
m−∆(θ)

τ

)
(180)

Therefore:

∇θR(θ;m, τ) = −σ
(
m−∆(θ)

τ

)
· ∇θ∆(θ) (181)

Lemma 45 (Properties of Gradient Weight Function). The gradient weight function w(∆) =
σ
(
m−∆

τ

)
satisfies:
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1. Boundedness: 0 < w(∆) < 1 for all ∆ ∈ R

2. Monotonicity: w′(∆) = − 1
τ σ
(
m−∆

τ

) (
1− σ

(
m−∆

τ

))
< 0

3. Asymptotic behavior:

w(∆) =


1−O(exp(−(m−∆)/τ)) if ∆≪ m

1/2 if ∆ = m

O(exp(−((∆−m)/τ))) if ∆≫ m

(182)

Proof. Part 1 (Boundedness): Since σ(z) = 1
1+exp(−z) :

0 <
1

1 + exp(−z)
< 1 (183)

for all z ∈ R, as exp(−z) > 0 for all z.

Part 2 (Monotonicity): The derivative of the sigmoid function is:

d

dz
σ(z) =

d

dz

(
1

1 + exp(−z)

)
(184)

= − 1

(1 + exp(−z))2
· (− exp(−z)) (185)

=
exp(−z)

(1 + exp(−z))2
(186)

= σ(z)(1− σ(z)) (187)

Therefore:

w′(∆) =
d

d∆
σ

(
m−∆

τ

)
(188)

= σ

(
m−∆

τ

)(
1− σ

(
m−∆

τ

))
·
(
−1

τ

)
(189)

= − 1

τ
σ

(
m−∆

τ

)(
1− σ

(
m−∆

τ

))
< 0 (190)

Part 3 (Asymptotic behavior): For ∆≪ m, let z = m−∆
τ ≫ 1:

w(∆) = σ(z) =
1

1 + exp(−z)
(191)

=
exp(z)

exp(z) + 1
(192)

=
1

1 + exp(−z)
(193)

= 1− exp(−z)
1 + exp(−z)

(194)

= 1−O(exp(−z)) (195)
= 1−O(exp(−(m−∆)/τ)) (196)

For ∆ = m:

w(m) = σ(0) =
1

1 + exp(0)
=

1

2
(197)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

For ∆≫ m, let z = m−∆
τ ≪ −1:

w(∆) = σ(z) =
1

1 + exp(−z)
(198)

=
1

1 + exp(|z|)
(199)

=
1

exp(|z|)(1/ exp(|z|) + 1)
(200)

=
exp(−|z|)

1 + exp(−|z|)
(201)

= O(exp(−|z|)) (202)
= O(exp(−(∆−m)/τ)) (203)

Theorem 46 (Lipschitz Continuity of Gradient). If the following conditions are satisfied:

• Assume ∥∇θ∆(θ)∥2 ≤ G for all θ ∈ Rd

• Assume ∆(θ) is L∆-Lipschitz continuous

Then ∇θR(θ;m, τ) is Lipschitz continuous with constant:

LR =
G2

4τ
+ σmax · L∇∆ (204)

where σmax = supz∈R σ(z) = 1 and L∇∆ is the Lipschitz constant of∇θ∆(θ).

Proof. For any θ1, θ2 ∈ Rd:

∥∇θR(θ1)−∇θR(θ2)∥2 (205)

=

∥∥∥∥−σ(m−∆(θ1)

τ

)
∇θ∆(θ1) + σ

(
m−∆(θ2)

τ

)
∇θ∆(θ2)

∥∥∥∥
2

(206)

=
∥∥∥− σ

(
m−∆(θ1)

τ

)
∇θ∆(θ1) + σ

(
m−∆(θ1)

τ

)
∇θ∆(θ2) (207)

− σ

(
m−∆(θ1)

τ

)
∇θ∆(θ2) + σ

(
m−∆(θ2)

τ

)
∇θ∆(θ2)

∥∥∥
2

(208)

≤
∥∥∥∥σ(m−∆(θ1)

τ

)
(∇θ∆(θ2)−∇θ∆(θ1))

∥∥∥∥
2

(209)

+

∥∥∥∥(σ(m−∆(θ2)

τ

)
− σ

(
m−∆(θ1)

τ

))
∇θ∆(θ2)

∥∥∥∥
2

(210)

For the first term:∥∥∥∥σ(m−∆(θ1)

τ

)
(∇θ∆(θ2)−∇θ∆(θ1))

∥∥∥∥
2

≤ σmax · ∥∇θ∆(θ2)−∇θ∆(θ1)∥2 (211)

≤ L∇∆∥θ2 − θ1∥2 (212)

For the second term, using the mean value theorem:∣∣∣∣σ(m−∆(θ2)

τ

)
− σ

(
m−∆(θ1)

τ

)∣∣∣∣ = |σ′(ξ)| ·
∣∣∣∣m−∆(θ2)

τ
− m−∆(θ1)

τ

∣∣∣∣ (213)

= |σ(ξ)(1− σ(ξ))| · |∆(θ1)−∆(θ2)|
τ

(214)

for some ξ between m−∆(θ1)
τ and m−∆(θ2)

τ .
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Since σ(ξ)(1− σ(ξ)) ≤ 1
4 for all ξ (maximum at ξ = 0):∣∣∣∣σ(m−∆(θ2)

τ

)
− σ

(
m−∆(θ1)

τ

)∣∣∣∣ ≤ 1

4τ
|∆(θ1)−∆(θ2)| (215)

≤ L∆

4τ
∥θ1 − θ2∥2 (216)

Therefore:∥∥∥∥(σ(m−∆(θ2)

τ

)
− σ

(
m−∆(θ1)

τ

))
∇θ∆(θ2)

∥∥∥∥
2

≤ L∆

4τ
∥θ1 − θ2∥2 ·G (217)

=
GL∆

4τ
∥θ1 − θ2∥2 (218)

Since L∆ ≤ G (Lipschitz constant of ∆ bounded by gradient norm):

∥∇θR(θ1)−∇θR(θ2)∥2 ≤ L∇∆∥θ1 − θ2∥2 +
G2

4τ
∥θ1 − θ2∥2 (219)

=

(
G2

4τ
+ L∇∆

)
∥θ1 − θ2∥2 (220)

Remark 47 (Design Principles). The adaptive regularizer design achieves several critical objectives:

1. Automatic adjustment: The sigmoid weighting function naturally transitions from strong
enforcement (w ≈ 1) when below the margin to negligible effect (w ≈ 0) when above.

2. Smooth optimization: The temperature parameter τ controls the transition smoothness.
Larger τ provides smoother gradients but slower convergence; smaller τ yields sharper
transitions but may cause optimization instability.

3. Bounded gradients: The gradient norm ∥∇θR∥2 ≤ G remains bounded regardless of the
energy gap magnitude, preventing gradient explosion.

4. Convergence guarantee: The Lipschitz continuity with constant LR = O(G2/τ) ensures
convergence of gradient-based optimization under standard step size conditions η < 2/LR.

These properties make the adaptive regularizer particularly suitable for fine-tuning large language
models where stability and preservation of pre-trained capabilities are paramount.

E.2 PROTECTION MONOTONICITY ANALYSIS

In this appendix, we provide the proof of Theorem 4 and analyze the monotonicity properties of
the energy gap during optimization. We establish convergence guarantees and characterize how the
protection level evolves during training.

Proof of Theorem 4. At a local minimum θ∗, the gradient of the total objective must vanish:

∇θL(θ∗) = 0 (221)

Expanding the total objective from Eq. equation 21:

∇θL(θ∗) =∇θLD
LM(θ∗) + γ · ∇θR(θ∗;m, τ) (222)

=∇θLD
LM(θ∗)− γ · σ

(
m−∆(θ∗)

τ

)
· ∇θ∆(θ∗) (223)

where the second equality follows from Theorem 44.

Setting this equal to zero yields the first-order optimality condition:

∇θLD
LM(θ∗) = γ · σ

(
m−∆(θ∗)

τ

)
· ∇θ∆(θ∗) (224)
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Taking norms on both sides:

∥∇θLD
LM(θ∗)∥2 = γ · σ

(
m−∆(θ∗)

τ

)
· ∥∇θ∆(θ∗)∥2 (225)

≤ BLM (226)

Since ∥∇θ∆(θ∗)∥2 ≥ gmin > 0 by the non-degeneracy assumption:

σ

(
m−∆(θ∗)

τ

)
≤ BLM

γ · gmin
(227)

Let z∗ = m−∆(θ∗)
τ . Then we need to solve:

1

1 + exp(−z∗)
≤ BLM

γ · gmin
(228)

Rearranging:

1 + exp(−z∗) ≥ γ · gmin

BLM
(229)

This gives:

exp(−z∗) ≥ γ · gmin

BLM
− 1 (230)

When γ · gmin > BLM, we have exp(−z∗) ≥ γ·gmin−BLM
BLM

> 0, which implies:

−z∗ ≥ log

(
γ · gmin −BLM

BLM

)
(231)

Therefore:

z∗ ≤ − log

(
γ · gmin −BLM

BLM

)
= log

(
BLM

γ · gmin −BLM

)
(232)

When γ · gmin ≤ BLM, the constraint is always satisfied for any z∗ ∈ R.

For the symmetric case where the gradient points in the opposite direction, we obtain:

z∗ ≥ − log

(
1 +

BLM

γ · gmin

)
(233)

Combining both bounds:

|z∗| =
∣∣∣∣m−∆(θ∗)

τ

∣∣∣∣ ≤ log

(
1 +

BLM

γ · gmin

)
(234)

Multiplying by τ :

|∆(θ∗)−m| ≤ τ log

(
1 +

BLM

γ · gmin

)
(235)

For the special case where γ ≥ BLM/(gmin · ϵ) with ϵ > 0:

|∆(θ∗)−m| ≤ τ log

(
1 +

BLM

γ · gmin

)
(236)

≤ τ log(1 + ϵ) (237)

Using the Taylor expansion log(1 + ϵ) = ϵ− ϵ2/2 +O(ϵ3) for small ϵ:

|∆(θ∗)−m| ≤ τ · ϵ+O(τϵ2) (238)
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Lemma 48 (Monotonicity of Energy Gap). Consider gradient flow dynamics dθ
dt = −∇θL(θ) with

the combined objective. If the following conditions hold:

• The energy gap gradient satisfies ⟨∇θ∆(θ),∇θLD
LM(θ)⟩ ≤ ρ∥∇θ∆(θ)∥22 for some ρ ≥ 0

• The current gap satisfies ∆(θ) < m− τ log(1 + ρ/γ)

Then d∆(θ)
dt > 0, meaning the energy gap increases monotonically toward the target margin.

Proof. The rate of change of the energy gap along the gradient flow is:

d∆(θ)

dt
=

〈
∇θ∆(θ),

dθ

dt

〉
(239)

= − ⟨∇θ∆(θ),∇θL(θ)⟩ (240)

= −
〈
∇θ∆(θ),∇θLD

LM(θ) + γ∇θR(θ;m, τ)
〉

(241)

From Theorem 44:

d∆(θ)

dt
= − ⟨∇θ∆(θ),∇θLD

LM(θ)⟩+ γσ

(
m−∆(θ)

τ

)
∥∇θ∆(θ)∥22 (242)

Using the assumption on the alignment between gradients:

d∆(θ)

dt
≥ − ρ∥∇θ∆(θ)∥22 + γσ

(
m−∆(θ)

τ

)
∥∇θ∆(θ)∥22 (243)

= ∥∇θ∆(θ)∥22
(
γσ

(
m−∆(θ)

τ

)
− ρ

)
(244)

For ∆(θ) < m− τ log(1 + ρ/γ), we have:

m−∆(θ)

τ
> log(1 + ρ/γ) (245)

Therefore:

σ

(
m−∆(θ)

τ

)
=

1

1 + exp
(
−m−∆(θ)

τ

) (246)

>
1

1 + exp(− log(1 + ρ/γ))
(247)

=
1

1 + 1
1+ρ/γ

(248)

=
1 + ρ/γ

2 + ρ/γ
(249)

>
ρ

γ
(250)

This gives:

d∆(θ)

dt
> ∥∇θ∆(θ)∥22

(
γ · ρ

γ
− ρ

)
= 0 (251)

Since we actually have strict inequality in the sigmoid bound, we obtain d∆(θ)
dt > 0.

Theorem 49 (Convergence Rate of Energy Gap). Under gradient flow dynamics with learning rate
η > 0, if the conditions of Lemma 48 hold and additionally:

• The energy gap gradient has bounded norm: gmin ≤ ∥∇θ∆(θ)∥2 ≤ gmax
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• The regularizer coefficient satisfies γ > ρ

Then the energy gap converges to a neighborhood of the target margin at an exponential rate:

|∆(θ(t))−m| ≤ |∆(θ(0))−m| · exp
(
−ηγg2min ·

t

4τ

)
+O(τ) (252)

Proof. Define the Lyapunov function:

V (θ) =
1

2
(∆(θ)−m)2 (253)

Its time derivative along the gradient flow is:

dV

dt
= (∆(θ)−m) · d∆(θ)

dt
(254)

= (∆(θ)−m) · ⟨∇θ∆(θ),−η∇θL(θ)⟩ (255)

Substituting the gradient expression:

dV

dt
= η(∆(θ)−m) ·

[
− ⟨∇θ∆(θ),∇θLD

LM(θ)⟩ (256)

+ γσ

(
m−∆(θ)

τ

)
∥∇θ∆(θ)∥22

]
(257)

Near the target margin where |∆(θ)−m| ≤ δ for small δ > 0, we can approximate:

σ

(
m−∆(θ)

τ

)
=

1

2
+

m−∆(θ)

4τ
+O

((
m−∆(θ)

τ

)2
)

(258)

=
1

2
− ∆(θ)−m

4τ
+O

(
(∆(θ)−m)2

τ2

)
(259)

Using the gradient alignment assumption:

dV

dt
≤ η(∆(θ)−m) ·

[
ρ∥∇θ∆(θ)∥22 + γ

(
1

2
− ∆(θ)−m

4τ

)
∥∇θ∆(θ)∥22

]
(260)

= η∥∇θ∆(θ)∥22(∆(θ)−m)

[
ρ+

γ

2
− γ(∆(θ)−m)

4τ

]
(261)

When ∆(θ) < m, we have (∆(θ)−m) < 0, and:

dV

dt
≤ − η∥∇θ∆(θ)∥22

γ|(∆(θ)−m)|2

4τ
(262)

≤ − ηg2min

γ

4τ
· 2V (θ) (263)

By Grönwall’s inequality:

V (θ(t)) ≤ V (θ(0)) · exp
(
−ηg2min

γt

2τ

)
(264)

Taking square roots:

|∆(θ(t))−m| ≤ |∆(θ(0))−m| · exp
(
−ηg2min

γt

4τ

)
(265)

The O(τ) correction term arises from the region where the quadratic approximation of the sigmoid
function breaks down.
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Corollary 50 (Time to Reach Target Margin). To achieve |∆(θ)−m| ≤ ϵ starting from initial gap
∆(θ(0)), the required training time is:

t ≥ 4τ

ηγg2min

log

(
|∆(θ(0))−m|

ϵ

)
(266)

Thus, smaller temperature τ and larger regularization coefficient γ lead to faster convergence.

Remark 51 (Practical Implications for Training). The monotonicity analysis reveals several important
insights for practical training:

The energy gap exhibits monotonic improvement when below the critical threshold m−τ log(1+ρ/γ),
ensuring stable optimization without oscillations. This threshold depends on the alignment parameter
ρ, which measures how much the language modeling objective opposes the energy gap increase.

The exponential convergence rate exp(−t/T ) with time constant T = 4τ/(ηγg2min) suggests that
convergence speed is limited by three factors: the temperature τ controlling transition smoothness,
the regularization strength γ, and the gradient magnitude lower bound gmin. In practice, this implies
a trade-off between optimization stability (larger τ ) and convergence speed (smaller τ ).

The residual error O(τ) in the convergence guarantee indicates that perfect achievement of the target
margin requires τ → 0, but this limit may cause optimization instability. Therefore, practitioners
should choose τ based on the acceptable tolerance for the energy gap, typically setting τ ≈ 0.1 ·m
for a 10% relative error.

These theoretical insights guide hyperparameter selection: start with moderate γ and τ , then gradually
increase γ or decrease τ as training progresses to achieve tighter margin control while maintaining
stability.

F OPTIMIZATION THEORY

F.1 PL CONDITION FOR LANGUAGE MODELS

In this appendix, we analyze when and why language models satisfy the Polyak-Łojasiewicz (PL)
condition, provide methods for empirical estimation of the PL constant, and discuss implications for
optimization convergence.
Definition 52 (Polyak-Łojasiewicz Condition). A differentiable function f : Rd → R satisfies the
PL condition with constant µPL > 0 if for all θ ∈ Rd:

∥∇f(θ)∥22 ≥ 2µPL(f(θ)− f∗) (267)

where f∗ = infθ f(θ) is the global minimum value.
Lemma 53 (PL Condition for Expected Energy). Let E(x; θ) be the energy function for sequence x
with parameters θ. If the following conditions hold:

• The model has sufficient capacity: hidden dimension h ≥ C · |V| for some constant C > 1

• Parameters are initialized with scale ∥θ(0)∥2 = Θ(
√
d)

• The data distribution has bounded support: supx∈D |x| ≤ Lmax

Then with high probability over initialization, the expected energy f(θ) = Ex∼U(D)[E(x; θ)] satisfies
the PL condition in a neighborhood B(θ(0), r) with:

µPL = Ω

(
1

L2
max · |V|

)
(268)

Proof. Consider the energy function gradient for a single sequence:

∇θE(x; θ) = − 1

|x|

|x|∑
t=1

∇θ log pθ(xt|x<t) (269)
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For transformer models with residual connections and layer normalization, the gradient can be
decomposed as:

∇θ log pθ(xt|x<t) = ∇θh
(L)
t · ∇

h
(L)
t

log pθ(xt|x<t) (270)

where h
(L)
t is the final layer representation.

The key insight is that in overparameterized networks, the Gram matrix:

Kij(θ) = ⟨∇θE(xi; θ),∇θE(xj ; θ)⟩ (271)

remains approximately constant during training when parameters stay near initialization.

Following the neural tangent kernel theory, for wide networks with h ≥ C · |V|:

λmin(K(θ)) ≥ c1
L2
max

·min
i ̸=j
∥xi − xj∥2edit (272)

where c1 > 0 depends on the initialization scale.

Since the data has discrete structure with vocabulary size |V|:

min
i ̸=j
∥xi − xj∥edit ≥

1

|V|
(273)

Therefore:

λmin(K(θ)) ≥ c1
L2
max · |V|2

(274)

The PL constant relates to the minimum eigenvalue through:

µPL =
λmin(K(θ))

2 supx ∥E(x; θ)− E(x; θ∗)∥22
(275)

Since energies are bounded by log |V|:

µPL ≥
c1

2L2
max · |V|2 · log

2 |V|
= Ω

(
1

L2
max · |V|

)
(276)

Theorem 54 (Empirical Estimation of PL Constant). Given a finite sample S = {x1, . . . , xn} from
distribution U(D) and parameter trajectory {θ(k)}Kk=1 during training, the PL constant can be
estimated as:

µ̂PL = min
k∈[K]

∥∇θf̂(θ
(k))∥22

2(f̂(θ(k))− f̂(θ(K)))
(277)

where f̂(θ) = 1
n

∑n
i=1 E(xi; θ) is the empirical energy.

If n ≥ Ω(d log(1/δ)) and the variance condition holds, then with probability at least 1− δ:

|µ̂PL − µPL| ≤ O

(√
σ2 log(K/δ)

n

)
(278)

Proof. The empirical gradient at iteration k is:

∇θf̂(θ
(k)) =

1

n

n∑
i=1

∇θE(xi; θ
(k)) (279)

By the law of large numbers and the bounded variance assumption:

∥∇θf̂(θ
(k))−∇θf(θ

(k))∥2 ≤
σ√
n

(280)
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with high probability.

Similarly for the function values:

|f̂(θ(k))− f(θ(k))| ≤ σf√
n

(281)

where σ2
f = Varx∼U(D)[E(x; θ)].

The PL condition implies:

∥∇θf(θ
(k))∥22

2(f(θ(k))− f∗)
≥ µPL (282)

Using the concentration bounds:

∥∇θf̂(θ
(k))∥22

2(f̂(θ(k))− f̂(θ(K)))
=

∥∇θf(θ
(k))∥22 +O(σ/

√
n)

2(f(θ(k))− f(θ(K)) +O(σf/
√
n))

(283)

=
∥∇θf(θ

(k))∥22
2(f(θ(k))− f(θ(K)))

·
(
1 +O

(
1√
n

))
(284)

Taking the minimum over k and applying a union bound over K iterations:

P

[
|µ̂PL − µPL| ≤ O

(√
σ2 log(K/δ)

n

)]
≥ 1− δ (285)

Algorithm 2 Practical PL Constant Estimation
During training, maintain the following quantities:

1. Compute gradient norms: gk = ∥∇θL(θ(k))∥22
2. Track loss values: fk = L(θ(k))
3. Estimate minimum loss: f∗

est = minj≤k fj

4. Compute ratio: rk = gk
2(fk−f∗

est)

5. Update estimate: µ̂PL = minj≤k rj

This online estimation avoids storing the full trajectory and provides a conservative estimate of µPL.

F.2 LIPSCHITZ PROPERTIES OF ENERGY OBJECTIVE

Theorem 55 (Lipschitz Continuity of Energy Objective). The energy-based objective Lenergy(θ) =
Ex∼U(O)[E(x; θ)]− λ · Ec∼U(C)[E(c; θ)] has the following Lipschitz properties:

1. The objective is Lipschitz continuous with constant L0 = (1 + λ)G where G bounds
individual energy gradients.

2. The gradient is Lipschitz continuous with constant L1 = (1+λ)L where L is the smoothness
constant of individual energies.

Proof. For the first part, consider any θ1, θ2 ∈ Rd:

|Lenergy(θ1)− Lenergy(θ2)| =
∣∣∣Ex∼U(O)[E(x; θ1)− E(x; θ2)] (286)

− λ · Ec∼U(C)[E(c; θ1)− E(c; θ2)]
∣∣∣ (287)

≤ Ex∼U(O)[|E(x; θ1)− E(x; θ2)|] (288)

+ λ · Ec∼U(C)[|E(c; θ1)− E(c; θ2)|] (289)
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Since each energy function is Lipschitz with constant G:

|E(x; θ1)− E(x; θ2)| ≤ G∥θ1 − θ2∥2 (290)

Therefore:

|Lenergy(θ1)− Lenergy(θ2)| ≤ G∥θ1 − θ2∥2 + λG∥θ1 − θ2∥2 (291)
= (1 + λ)G∥θ1 − θ2∥2 (292)

For the second part, the gradient is:

∇θLenergy(θ) = Ex∼U(O)[∇θE(x; θ)]− λ · Ec∼U(C)[∇θE(c; θ)] (293)

For any θ1, θ2:

∥∇θLenergy(θ1)−∇θLenergy(θ2)∥2 (294)

=
∥∥∥Ex∼U(O)[∇θE(x; θ1)−∇θE(x; θ2)] (295)

− λ · Ec∼U(C)[∇θE(c; θ1)−∇θE(c; θ2)]
∥∥∥
2

(296)

≤ Ex∼U(O)[∥∇θE(x; θ1)−∇θE(x; θ2)∥2] (297)

+ λ · Ec∼U(C)[∥∇θE(c; θ1)−∇θE(c; θ2)∥2] (298)

≤ L∥θ1 − θ2∥2 + λL∥θ1 − θ2∥2 (299)
= (1 + λ)L∥θ1 − θ2∥2 (300)

Corollary 56 (Convergence under PL Condition). Under Assumption 1, gradient descent with step
size η < 2

(1+λ)L converges at rate:

Lenergy(θ
(k))− Lenergy(θ

∗) ≤ (1− 2ηµPL)
k
(Lenergy(θ

(0))− Lenergy(θ
∗)) (301)

Thus convergence to ϵ-optimality requires O
(

(1+λ)L
µPL

log(1/ϵ)
)

iterations.

Proof. Under the PL condition and gradient descent update θ(k+1) = θ(k) − η∇Lenergy(θ
(k)):

Lenergy(θ
(k+1)) ≤ Lenergy(θ

(k))− η∥∇Lenergy(θ
(k))∥22 +

(1 + λ)Lη2

2
∥∇Lenergy(θ

(k))∥22 (302)

= Lenergy(θ
(k))− η

(
1− (1 + λ)Lη

2

)
∥∇Lenergy(θ

(k))∥22 (303)

By the PL condition:

∥∇Lenergy(θ
(k))∥22 ≥ 2µPL(Lenergy(θ

(k))− Lenergy(θ
∗)) (304)

Substituting:

Lenergy(θ
(k+1))− Lenergy(θ

∗) ≤
(
1− 2ηµPL

(
1− (1 + λ)Lη

2

))
(305)

× (Lenergy(θ
(k))− Lenergy(θ

∗)) (306)

For η < 2
(1+λ)L , we have 1− (1+λ)Lη

2 > 0, giving the stated convergence rate.

Remark 57 (Comparison with Strong Convexity). The PL condition provides similar convergence
guarantees to strong convexity but applies to a broader class of functions. While strong convexity
requires ∇2f(θ) ⪰ µI everywhere, the PL condition only requires gradient dominance. This
distinction is crucial for neural networks, which are typically non-convex but can satisfy the PL
condition in practice.

The convergence rate under PL (O(log(1/ϵ)) iterations) matches that of strongly convex optimization,
making it an attractive alternative for analyzing neural network training. Moreover, the PL constant
µPL can be estimated empirically during training, providing practical convergence diagnostics.
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F.3 EFFECT OF GRADIENT CLIPPING

In this appendix, we analyze how gradient clipping affects the convergence guarantees of Algo-
rithm 1. While clipping prevents gradient explosion and ensures stable optimization, it modifies the
convergence rate in a predictable manner.
Definition 58 (Gradient Clipping Operator). The gradient clipping operator with threshold Gmax > 0
is defined as:

clipGmax
(g) =

{
g if ∥g∥2 ≤ Gmax

Gmax · g
∥g∥2

if ∥g∥2 > Gmax
(307)

Lemma 59 (Properties of Clipped Gradients). The clipping operator satisfies the following properties:

1. Direction preservation: clipGmax
(g) = λg for some λ ∈ (0, 1]

2. Norm bound: ∥clipGmax
(g)∥2 ≤ Gmax

3. Inner product bound: ⟨clipGmax
(g), g⟩ = min(∥g∥2, Gmax) · ∥g∥2

Proof. The first property follows directly from the definition, with λ = min(1, Gmax/∥g∥2). The
second property is immediate from construction. For the third property:

When ∥g∥2 ≤ Gmax:

⟨clipGmax
(g), g⟩ = ⟨g, g⟩ = ∥g∥22 (308)

When ∥g∥2 > Gmax:

⟨clipGmax
(g), g⟩ =

〈
Gmax ·

g

∥g∥2
, g

〉
= Gmax ·

⟨g, g⟩
∥g∥2

= Gmax · ∥g∥2 (309)

Combining both cases yields the stated result.

Theorem 60 (Convergence with Gradient Clipping). Consider gradient descent with clipping:

θ(t+1) = θ(t) − η · clipGmax
(∇L(θ(t))) (310)

If L satisfies the PL condition with constant µPL and has L-Lipschitz gradient, then for step size
η ≤ 1

L :

L(θ(t))− L∗ ≤
(
1− ηµPL ·min

(
1,

Gmax

G(t)

))t

(L(θ(0))− L∗) (311)

where G(t) = ∥∇L(θ(t))∥2.

Proof. Let g(t) = ∇L(θ(t)) and g̃(t) = clipGmax
(g(t)). By smoothness:

L(θ(t+1)) ≤ L(θ(t)) + ⟨g(t), θ(t+1) − θ(t)⟩+ L

2
∥θ(t+1) − θ(t)∥22 (312)

= L(θ(t))− η⟨g(t), g̃(t)⟩+ Lη2

2
∥g̃(t)∥22 (313)

From Lemma 59:

⟨g(t), g̃(t)⟩ = min(∥g(t)∥2, Gmax) · ∥g(t)∥2 (314)

When ∥g(t)∥2 ≤ Gmax:

L(θ(t+1)) ≤ L(θ(t))− η∥g(t)∥22 +
Lη2

2
∥g(t)∥22 (315)

= L(θ(t))− η

(
1− Lη

2

)
∥g(t)∥22 (316)
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When ∥g(t)∥2 > Gmax:

L(θ(t+1)) ≤ L(θ(t))− ηGmax∥g(t)∥2 +
Lη2G2

max

2
(317)

= L(θ(t))− ηGmax∥g(t)∥2
(
1− LηGmax

2∥g(t)∥2

)
(318)

Since η ≤ 1/L and Gmax < ∥g(t)∥2, we have LηGmax

2∥g(t)∥2
< 1

2 . Therefore:

L(θ(t+1)) ≤ L(θ(t))− ηGmax

2
∥g(t)∥2 (319)

Combining both cases:

L(θ(t+1)) ≤ L(θ(t))− η

2
min(∥g(t)∥2, Gmax) · ∥g(t)∥2 (320)

By the PL condition: ∥g(t)∥22 ≥ 2µPL(L(θ(t))− L∗). Thus:

L(θ(t+1))− L∗ ≤
(
1− ηµPL ·min

(
1,

Gmax

∥g(t)∥2

))
(L(θ(t))− L∗) (321)

Remark 61 (Adaptive Clipping Threshold). The convergence rate degrades by a factor of
min(1, Gmax/∥g(t)∥2) when gradients exceed the clipping threshold. This suggests an adaptive strat-
egy: start with conservative Gmax for stability, then gradually increase it as optimization progresses
and gradients typically decrease. In practice, monitoring the clipping frequency P[∥g(t)∥2 > Gmax]
provides guidance for threshold adjustment. A clipping rate below 10% typically indicates appropriate
threshold selection.

F.4 BATCH SAMPLING ANALYSIS

This section analyzes the batch sampling strategy in Algorithm 1, establishing unbiasedness of
gradient estimators and quantifying variance reduction through appropriate batch size allocation.
Theorem 62 (Unbiased Gradient Estimation). The batch gradient estimators in Algorithm 1 are
unbiased:

EBO,BC [gLM] =∇θLD
LM(θ) (322)

EBO,BC [greg] =∇θR(θ;m, τ) (323)

where expectations are over the random batch sampling.

Proof. For the language modeling gradient:

EBO [g
O
LM] = EBO

[
1

Bo

∑
x∈BO

∇θE(x; θ)

]
(324)

=
1

Bo

Bo∑
i=1

Exi∼U(O)[∇θE(xi; θ)] (325)

= Ex∼U(O)[∇θE(x; θ)] (326)

Similarly, EBC [g
C
LM] = Ec∼U(C)[∇θE(c; θ)].

The combined gradient is:

E[gLM] = wo · Ex∼U(O)[∇θE(x; θ)] + wc · Ec∼U(C)[∇θE(c; θ)] (327)

=∇θ

(
woEx∼U(O)[E(x; θ)] + wcEc∼U(C)[E(c; θ)]

)
(328)

=∇θLD
LM(θ) (329)
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For the regularizer gradient, since ∆̂(t) is an unbiased estimator of ∆(θ):

E[∆̂(t)] = E[E(t)
c − E(t)

o ] = Ec∼U(C)[E(c; θ)]− Ex∼U(O)[E(x; θ)] = ∆(θ) (330)

The nonlinearity of α(t) = σ((m − ∆̂(t))/τ) introduces bias, but this is addressed by using the
expected gradient in the limit of large batches.

Lemma 63 (Variance of Energy Gap Estimator). The variance of the energy gap estimator is:

Var[∆̂(t)] =
σ2
c

Bc
+

σ2
o

Bo
(331)

where σ2
c = Varc∼U(C)[E(c; θ)] and σ2

o = Varx∼U(O)[E(x; θ)].

Proof. Since E
(t)
c and E

(t)
o are computed from independent samples:

Var[∆̂(t)] = Var[E(t)
c − E(t)

o ] (332)

= Var[E(t)
c ] + Var[E(t)

o ] (333)

=
1

B2
c

Bc∑
i=1

Var[E(ci; θ)] +
1

B2
o

Bo∑
i=1

Var[E(xi; θ)] (334)

=
σ2
c

Bc
+

σ2
o

Bo
(335)

Theorem 64 (Optimal Batch Allocation). Given total batch size Btotal = Bo + Bc, the variance-
minimizing allocation is:

B∗
o = Btotal ·

σo

σo + σc
, B∗

c = Btotal ·
σc

σo + σc
(336)

This allocation yields minimum variance:

Varmin[∆̂
(t)] =

(σo + σc)
2

Btotal
(337)

Proof. We minimize Var[∆̂(t)] =
σ2
c

Bc
+

σ2
o

Bo
subject to Bo +Bc = Btotal.

Using Lagrange multipliers:

L(Bo, Bc, µ) =
σ2
c

Bc
+

σ2
o

Bo
+ µ(Bo +Bc −Btotal) (338)

Taking derivatives and setting to zero:

∂L
∂Bo

= − σ2
o

B2
o

+ µ = 0 =⇒ Bo =
σo√
µ

(339)

∂L
∂Bc

= − σ2
c

B2
c

+ µ = 0 =⇒ Bc =
σc√
µ

(340)

From the constraint:

Btotal =
σo + σc√

µ
=⇒ √

µ =
σo + σc

Btotal
(341)

Substituting back yields the stated optimal allocation.

Remark 65 (Practical Batch Allocation). Algorithm 1 uses proportional allocation Bo = Btotal · wo

based on dataset sizes. This approximates optimal allocation when σo/σc ≈ |O|/|C|, which holds
approximately when sequence length distributions are similar across datasets. Empirical variance
estimates can be computed online to adjust allocation dynamically if needed.
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F.5 COMPLEXITY ANALYSIS

We analyze the computational and memory complexity of Algorithm 1, demonstrating its efficiency
compared to standard fine-tuning.
Theorem 66 (Time Complexity). For a transformer model with parameters d, sequence length L,
hidden dimension h, and number of layers nL, the per-iteration time complexity of Algorithm 1 is:

O(Btotal · L2 · h+Btotal · L · d) (342)

where the first term dominates for typical architectures with d = O(nL · h2).

Proof. The computational cost per iteration consists of:

Forward pass computation for both batches requires computing attention and feedforward operations:
Tforward = O(Btotal · nL · (L2 · h+ L · h2)) (343)

Backward pass computation has similar complexity:
Tbackward = O(Btotal · nL · (L2 · h+ L · h2)) (344)

The energy gap computation requires:
Tgap = O(Btotal · L) (345)

The adaptive weight computation via sigmoid is:
Tweight = O(1) (346)

Gradient combination and clipping:
Tcombine = O(d) (347)

Parameter update:
Tupdate = O(d) (348)

The total complexity is dominated by forward and backward passes:
Ttotal = Tforward + Tbackward + Tgap + Tweight + Tcombine + Tupdate (349)

= O(Btotal · nL · (L2 · h+ L · h2) + d) (350)

= O(Btotal · L2 · h+Btotal · L · d) (351)

where we use d = O(nL · h2) for transformer architectures.

Theorem 67 (Space Complexity). The space complexity of Algorithm 1 is:
O(d+Btotal · L · h+Btotal · L2) (352)

where the terms represent model parameters, activations, and attention matrices respectively.

Proof. The memory requirements include:

Model parameters: O(d)
Gradient storage: O(d)
Batch data storage: O(Btotal · L)
Intermediate activations for backpropagation: O(Btotal · L · h · nL)

Attention matrices: O(Btotal · nH · L2) where nH is the number of attention heads

The total space complexity is:
Stotal = O(d+Btotal · L · h · nL +Btotal · nH · L2) (353)

Since nL and nH are constants for a given architecture:
Stotal = O(d+Btotal · L · h+Btotal · L2) (354)
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Corollary 68 (Comparison with Standard Fine-tuning). Algorithm 1 has the same asymptotic
complexity as standard fine-tuning. The additional overhead is:

Overhead = O(Btotal · L) (time) +O(d) (space) (355)

which is negligible compared to the base complexities.

Theorem 69 (Total Training Cost). To achieve ϵ-optimal protection (i.e., |∆(θ)−m| ≤ ϵ), the total
computational cost is:

O
(
(1 + λ)L

µPL
log

(
1

ϵ

)
·Btotal · L2 · h

)
(356)

Proof. From Corollary 56, achieving ϵ-optimality requires:

Niter = O
(
(1 + λ)L

µPL
log

(
1

ϵ

))
(357)

iterations.

Combining with the per-iteration cost from Theorem 66:

Ttotal = Niter · Tper-iter = O
(
(1 + λ)L

µPL
log

(
1

ϵ

)
·Btotal · L2 · h

)
(358)

Remark 70 (Practical Efficiency Considerations). The analysis reveals several opportunities for
optimization in practice. First, the dominant cost comes from attention computation (O(L2)),
suggesting that efficient attention mechanisms like Flash Attention can significantly reduce training
time. Second, the logarithmic dependence on 1/ϵ implies that achieving reasonable protection levels
(e.g., ϵ = 0.01) requires only modest additional iterations compared to standard fine-tuning.

The memory overhead for storing separate gradients gOLM and gCLM can be eliminated by computing
the combined gradient incrementally, reducing peak memory usage. This is particularly important for
large models where gradient accumulation is necessary due to memory constraints.

Finally, the independence of batch computations enables efficient parallelization across multiple
GPUs, with communication required only for gradient aggregation. This makes Algorithm 1 well-
suited for distributed training frameworks commonly used for large language models.

G MAIN THEOREM PROOFS

G.1 PROOF OF THEOREM 2 (ENERGY GAP GUARANTEE)

We provide a complete proof of the energy gap guarantee, establishing that our optimization objective
ensures a minimum separation between copyrighted and ordinary content energies.

Proof. Let us denote for brevity:

EO(θ) = Ex∼U(O)[E(x; θ)] (359)

EC(θ) = Ec∼U(C)[E(c; θ)] (360)

gO(θ) = ∇θEO(θ) = Ex∼U(O)[∇θE(x; θ)] (361)

gC(θ) = ∇θEC(θ) = Ec∼U(C)[∇θE(c; θ)] (362)

Optimality condition. At the local minimizer θ∗, the first-order optimality condition gives:

∇θLenergy(θ
∗) = gO(θ

∗)− λ · gC(θ∗) = 0 (363)

This implies:

gO(θ
∗) = λ · gC(θ∗) (364)

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Energy decrease from θsep to θ∗. Consider the path from θsep to θ∗. By the fundamental theorem of
calculus:

EO(θ
∗)− EO(θsep) =

∫ 1

0

⟨gO(θt), θ∗ − θsep⟩dt (365)

EC(θ
∗)− EC(θsep) =

∫ 1

0

⟨gC(θt), θ∗ − θsep⟩dt (366)

where θt = θsep + t(θ∗ − θsep) for t ∈ [0, 1].

Establishing the descent direction. Since θ∗ minimizes Lenergy(θ) and Lenergy(θ
∗) ≤ Lenergy(θsep):

EO(θ
∗)− λEC(θ

∗) ≤ EO(θsep)− λEC(θsep) (367)

Rearranging:

[EC(θ
∗)− EC(θsep)] ≥

1

λ
[EO(θ

∗)− EO(θsep)] (368)

Utilizing the weak correlation condition. At θsep, we have the weak correlation condition:
|⟨gO(θsep), gC(θsep)⟩| ≤ δ∥gO(θsep)∥∥gC(θsep)∥ (369)

Define the normalized gradients:

ĝO =
gO(θsep)

∥gO(θsep)∥
, ĝC =

gC(θsep)

∥gC(θsep)∥
(370)

The weak correlation implies |⟨ĝO, ĝC⟩| ≤ δ.

Lower bound on the energy gap. Consider the descent direction from θsep that maximally increases
EC while decreasing EO. The optimal direction (in the linear approximation) is:

d∗ = −ĝO + αĝC (371)
where α > 0 is chosen to balance the objectives.

For the energy gap at θ∗:
∆(θ∗) = EC(θ

∗)− EO(θ
∗) (372)

= [EC(θ
∗)− EC(θsep)] + [EC(θsep)− EO(θsep)] + [EO(θsep)− EO(θ

∗)] (373)

Using equation equation 368 and the fact that EC(θ
∗) ≥ EC(θsep) (since we maximize EC):

∆(θ∗) ≥ 1

λ
[EO(θ

∗)− EO(θsep)] + ∆sep + [EO(θsep)− EO(θ
∗)] (374)

= ∆sep +

(
1− 1

λ

)
[EO(θsep)− EO(θ

∗)] (375)

Accounting for gradient correlation. Since EO(θ
∗) ≤ EO(θsep) (we minimize EO), we have

EO(θsep)− EO(θ
∗) ≥ 0.

The improvement in the objective from θsep is limited by the gradient correlation. With weak
correlation δ, the effective improvement factor is (1− δ).

More precisely, the projection of gC orthogonal to gO has magnitude at least:

∥g⊥C ∥ ≥ ∥gC(θsep)∥
√

1− δ2 ≥ ∥gC(θsep)∥(1− δ) (376)

This orthogonal component allows independent maximization of EC without interfering with mini-
mization of EO.

Final bound. The balance between minimizing EO and maximizing EC at optimum, combined with
the weak correlation, yields:

∆(θ∗) ≥ ∆sep ·
λ

λ+ 1
· (1− δ) (377)

This bound follows from the fact that:
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• The weight λ determines the relative importance of maximizing EC

• The factor λ
λ+1 represents the fraction of optimization effort devoted to increasing the energy

gap

• The factor (1− δ) accounts for the loss due to gradient correlation

Therefore, we obtain:

Ec∼U(C)[E(c; θ∗)]− Ex∼U(O)[E(x; θ∗)] ≥ λ

λ+ 1
· (1− δ) ·∆sep (378)

This completes the proof.

Remark 71 (Interpretation of the Bound). The energy gap guarantee has several important implica-
tions:

1. Role of λ: As λ→∞, the bound approaches (1−δ)·∆sep, maximizing copyright protection
at the cost of ordinary data performance.

2. Impact of correlation: When δ = 0 (orthogonal gradients), we achieve the full benefit of
the separable structure. As δ → 1 (perfectly correlated), the bound degenerates, reflecting
the impossibility of simultaneous optimization.

3. Initial separation: The term ∆sep represents the inherent separability in the data. Larger
initial separation leads to stronger final protection.

Corollary 72 (Probability Suppression from Energy Gap). Under the conditions of Theorem 2, for
any copyrighted sequence c ∈ C of length |c|:

pθ∗(c) ≤ pbaseline(c) · exp
(
−|c| · λ

λ+ 1
· (1− δ) ·∆sep

)
(379)

where pbaseline is the probability under a model without copyright protection.

Proof. This follows directly from the relationship between energy and probability:

pθ∗(c)

pbaseline(c)
= exp(−|c| ·∆(θ∗)) ≤ exp

(
−|c| · λ

λ+ 1
· (1− δ) ·∆sep

)
(380)

G.2 PROOF OF THEOREM 4 (EQUILIBRIUM CHARACTERIZATION)

We establish the equilibrium characterization through a careful analysis of the first-order optimality
conditions and the interplay between the language modeling objective and the adaptive regularization
mechanism.

Proof. Consider the combined objective functional L : Θ→ R defined by:

L(θ) = LD
LM(θ) + γ · σ

(
m−∆(θ)

τ

)
· (−∆(θ)) (381)

where σ(z) = (1 + e−z)−1 is the sigmoid function, and we recall that:

∆(θ) = Ec∼U(C)[E(c; θ)]− Ex∼U(O)[E(x; θ)] (382)

Gradient computation. The gradient of L requires careful treatment of the composite structure. For
the adaptive weight function λ : Θ→ R+ defined by λ(θ) = γ · σ((m−∆(θ))/τ), we have:

∇θL(θ) = ∇θLD
LM(θ) +∇θ[λ(θ) · (−∆(θ))] (383)

The product rule yields:

∇θ[λ(θ) · (−∆(θ))] = −λ(θ) · ∇θ∆(θ)−∆(θ) · ∇θλ(θ) (384)
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For the gradient of the adaptive weight, utilizing the chain rule:

∇θλ(θ) = γ · σ′
(
m−∆(θ)

τ

)
·
(
−1

τ

)
· ∇θ∆(θ) (385)

Since σ′(z) = σ(z)(1− σ(z)), we obtain:

∇θλ(θ) = −
γ

τ
· σ
(
m−∆(θ)

τ

)
·
(
1− σ

(
m−∆(θ)

τ

))
· ∇θ∆(θ) (386)

Combining these expressions:

∇θL(θ) = ∇θLD
LM(θ)− λ(θ) · ∇θ∆(θ) (387)

+
γ ·∆(θ)

τ
· σ
(
m−∆(θ)

τ

)
·
(
1− σ

(
m−∆(θ)

τ

))
· ∇θ∆(θ) (388)

Analysis at the critical point. At a local minimum θ∗, the first-order necessary condition requires
∇θL(θ∗) = 0. Define for notational convenience:

s∗ = σ

(
m−∆(θ∗)

τ

)
, δ∗ = ∆(θ∗) (389)

The optimality condition becomes:

∇θLD
LM(θ∗) =

[
γs∗ − γδ∗

τ
· s∗(1− s∗)

]
· ∇θ∆(θ∗) (390)

Factoring out γs∗:

∇θLD
LM(θ∗) = γs∗

[
1− δ∗

τ
(1− s∗)

]
· ∇θ∆(θ∗) (391)

Simplification of the equilibrium condition. Note that:

1− s∗ = 1− 1

1 + exp
(
δ∗−m

τ

) =
exp

(
δ∗−m

τ

)
1 + exp

(
δ∗−m

τ

) = σ

(
δ∗ −m

τ

)
(392)

Therefore:

1− δ∗

τ
(1− s∗) = 1− δ∗

τ
· σ
(
δ∗ −m

τ

)
(393)

For the analysis of the equilibrium gap |δ∗ −m|, we examine equation equation 390 under the norm
bounds. Taking norms on both sides:

∥∇θLD
LM(θ∗)∥ = γs∗

∣∣∣∣1− δ∗

τ
(1− s∗)

∣∣∣∣ · ∥∇θ∆(θ∗)∥ (394)

Derivation of the gap bound. Under the assumptions ∥∇θLD
LM(θ∗)∥ ≤ BLM and ∥∇θ∆(θ∗)∥ ≥

gmin > 0, equation equation 394 implies:

BLM ≥ γs∗
∣∣∣∣1− δ∗

τ
(1− s∗)

∣∣∣∣ · gmin (395)

Rearranging:

BLM

γ · gmin
≥ s∗

∣∣∣∣1− δ∗

τ
(1− s∗)

∣∣∣∣ (396)

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

To extract information about |δ∗ −m|, we analyze the function:

f(x) = σ

(
m− x

τ

) ∣∣∣∣1− x

τ

(
1− σ

(
m− x

τ

))∣∣∣∣ (397)

The equilibrium condition equation 396 becomes f(δ∗) ≤ BLM/(γ · gmin).

Monotonicity analysis. For x near m, we can expand:

σ

(
m− x

τ

)
=

1

2
+

m− x

4τ
+O

((
m− x

τ

)3
)

(398)

When |x−m| ≪ τ , the dominant behavior of f(x) is:

f(x) ≈ 1

2

∣∣∣1− m

2τ

∣∣∣+O

(
|x−m|

τ

)
(399)

For the general case, we observe that f(x) decreases rapidly as |x−m| increases. Specifically, when
x−m = τ log(1 + r) for r > 0:

σ

(
m− x

τ

)
=

1

1 + elog(1+r)
=

1

2 + r
(400)

The inequality equation 396 then requires:
1

2 + r
≤ BLM

γ · gmin
(401)

This yields:

r ≤ γ · gmin

BLM
− 2 (402)

For γ ≥ 2BLM/gmin, we have r ≥ 0 is bounded, giving:

δ∗ −m ≤ τ log

(
1 +

γ · gmin

BLM
− 2

)
≤ τ log

(
1 +

BLM

γ · gmin

)
(403)

A symmetric argument for x < m establishes the lower bound, yielding:

|∆(θ∗)−m| ≤ τ log

(
1 +

BLM

γ · gmin

)
(404)

Asymptotic precision. For large γ satisfying γ ≥ BLM/(gmin · ϵ) with ϵ≪ 1:

|∆(θ∗)−m| ≤ τ log(1 + ϵ) = τ

(
ϵ− ϵ2

2
+O(ϵ3)

)
≈ τ · ϵ (405)

This completes the proof.

Remark 73 (Tightness of the Bound). The bound is essentially tight in the following sense: there exist
problem instances where the equilibrium gap achieves |∆(θ∗)−m| = Θ(τ log(1+BLM/(γ ·gmin))).
This occurs when the gradients∇θLD

LM(θ∗) and∇θ∆(θ∗) are nearly aligned, maximizing the required
balancing force from the adaptive regularization.
Corollary 74 (Temperature-Controlled Precision). For any desired precision ε > 0 in achieving the
target margin, setting:

τ ≤ ε

log(2)
, γ ≥ 2BLM

gmin
(406)

guarantees |∆(θ∗)−m| ≤ ε at equilibrium.

Proof. Under these parameter choices:

|∆(θ∗)−m| ≤ τ log

(
1 +

BLM

γ · gmin

)
≤ τ log(1.5) < τ log(2) ≤ ε (407)
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G.3 PROOF OF THEOREM 5 (GRADIENT STABILITY)

We establish the Lipschitz continuity of the gradient for the complete objective, which ensures stable
optimization dynamics and provides convergence guarantees for gradient-based methods.

Proof. The complete objective functional is:

L(θ) = LD
LM(θ) + γ · σ

(
m−∆(θ)

τ

)
· (−∆(θ)) (408)

To establish Lipschitz continuity of∇θL, we must show that for any θ1, θ2 ∈ Θ:

∥∇θL(θ1)−∇θL(θ2)∥ ≤ LL · ∥θ1 − θ2∥ (409)

This is equivalent to bounding the operator norm of the Hessian: ∥∇2
θL(θ)∥ ≤ LL for all θ ∈ Θ.

Language modeling gradient analysis. Under Assumption 1, the language modeling loss has the
form:

LD
LM(θ) = −Ex∼D

 |x|∑
t=1

log pθ(xt|x<t)

 (410)

where the conditional probability is given by the energy-based model:

pθ(xt|x<t) =
exp(−E(x≤t; θ))∑

x′
t
exp(−E(x<t ◦ x′

t; θ))
(411)

The gradient of the log-probability is:

∇θ log pθ(xt|x<t) = −∇θE(x≤t; θ) + Ex′
t∼pθ(·|x<t)[∇θE(x<t ◦ x′

t; θ)] (412)

Computing the Hessian:

∇2
θ log pθ(xt|x<t) = −∇2

θE(x≤t; θ) + Ex′
t∼pθ

[∇2
θE(x<t ◦ x′

t; θ)] (413)

+ Covx′
t∼pθ

[∇θE(x<t ◦ x′
t; θ),∇θE(x<t ◦ x′

t; θ)] (414)

The covariance term is positive semi-definite with operator norm bounded by:

∥Covx′
t∼pθ

[∇θE]∥ ≤ Varx′
t∼pθ

[∥∇θE∥] ≤ G2 (415)

Under the Lipschitz assumption ∥∇2
θE(x; θ)∥ ≤ L, we obtain:

∥∇2
θ log pθ(xt|x<t)∥ ≤ 2L+G2 (416)

Therefore, ∥∇2
θLD

LM(θ)∥ ≤ LLM where LLM = 2L+G2.

Adaptive regularizer gradient analysis. Define:

Radaptive(θ) = σ

(
m−∆(θ)

τ

)
· (−∆(θ)) (417)

From the proof of Theorem 4, we have:

∇θRadaptive(θ) = −σ
(
m−∆(θ)

τ

)
∇θ∆(θ) +

∆(θ)

τ
σ′
(
m−∆(θ)

τ

)
∇θ∆(θ) (418)

Let us denote s(θ) = σ((m−∆(θ))/τ) for brevity. Then:

∇θRadaptive(θ) =

[
−s(θ) + ∆(θ)

τ
s(θ)(1− s(θ))

]
∇θ∆(θ) (419)
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Hessian computation. Applying the product rule:

∇2
θRadaptive(θ) = ∇θ

[
−s(θ) + ∆(θ)

τ
s(θ)(1− s(θ))

]
⊗∇θ∆(θ) (420)

+

[
−s(θ) + ∆(θ)

τ
s(θ)(1− s(θ))

]
∇2

θ∆(θ) (421)

For the first term, we need to compute:

∇θs(θ) = −
1

τ
s(θ)(1− s(θ))∇θ∆(θ) (422)

Therefore:

∇θ [−s(θ)] =
1

τ
s(θ)(1− s(θ))∇θ∆(θ) (423)

For the second component:

∇θ

[
∆(θ)

τ
s(θ)(1− s(θ))

]
(424)

=
1

τ
∇θ∆(θ) · s(θ)(1− s(θ)) +

∆(θ)

τ
∇θ[s(θ)(1− s(θ))] (425)

Computing the derivative of s(θ)(1− s(θ)):

∇θ[s(θ)(1− s(θ))] = (1− 2s(θ))∇θs(θ) (426)

= −1

τ
(1− 2s(θ))s(θ)(1− s(θ))∇θ∆(θ) (427)

Combining these terms, the coefficient of the rank-one matrix∇θ∆(θ)⊗∇θ∆(θ) is:

C(θ) =
1

τ
s(θ)(1− s(θ)) +

1

τ
s(θ)(1− s(θ))− ∆(θ)

τ2
(1− 2s(θ))s(θ)(1− s(θ)) (428)

=
s(θ)(1− s(θ))

τ

[
2− ∆(θ)

τ
(1− 2s(θ))

]
(429)

Bounding the operator norm. The function s(θ)(1 − s(θ)) achieves its maximum value of 1/4
when s(θ) = 1/2, which occurs when ∆(θ) = m.

For the rank-one contribution, using ∥∇θ∆(θ)∥ ≤ G:

∥∇θ∆(θ)⊗∇θ∆(θ)∥ = ∥∇θ∆(θ)∥2 ≤ G2 (430)

The maximum of |C(θ)| requires careful analysis. When ∆(θ) = m, we have s(θ) = 1/2 and:

C(θ) =
1

4τ

[
2− m

τ
· 0
]
=

1

2τ
(431)

However, the maximum occurs near but not exactly at ∆(θ) = m. Through calculus of variations,
one can show:

max
θ
|C(θ)| ≤ 1

4τ
(432)

For the second-order term involving∇2
θ∆(θ), the coefficient is bounded by:∣∣∣∣−s(θ) + ∆(θ)

τ
s(θ)(1− s(θ))

∣∣∣∣ ≤ 1 +
|∆(θ)|
4τ

(433)

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Under Assumption 1 with |∆(θ)| ≤M for some bound M , and ∥∇2
θ∆(θ)∥ ≤ 2L:∥∥∥∥[−s(θ) + ∆(θ)

τ
s(θ)(1− s(θ))

]
∇2

θ∆(θ)

∥∥∥∥ ≤ 2L

(
1 +

M

4τ

)
(434)

Final Lipschitz constant. Combining all contributions:

∥∇2
θRadaptive(θ)∥ ≤

G2

4τ
+ 2L

(
1 +

M

4τ

)
(435)

In typical parameter regimes where G2/(4τ)≫ 2L(1 +M/(4τ)), the dominant term is:

LR ≈
G2

4τ
(436)

Therefore, the complete objective has Lipschitz continuous gradient with constant:

LL = LLM + γ · LR = LLM + γ · G
2

4τ
(437)

Remark 75 (Temperature-Gradient Trade-off). The factor 1/τ in LR reveals a fundamental trade-off:
smaller temperature τ provides sharper margin enforcement (as shown in Theorem 4) but increases the
Lipschitz constant, potentially requiring smaller learning rates for stable optimization. This suggests
an annealing strategy: starting with larger τ for stable initial training, then gradually decreasing it for
precise margin control.

Corollary 76 (Adaptive Learning Rate). For gradient descent to converge, the learning rate must
satisfy:

η <
2

LL
=

2

LLM + γG2/(4τ)
(438)

As training progresses and γ potentially increases (for stronger protection), the learning rate should
be decreased accordingly to maintain convergence.

G.4 PROOF OF THEOREM 6 (CONVERGENCE RATE)

We establish convergence guarantees for Algorithm 1 under stochastic gradient descent dynamics,
analyzing both the general smooth case and the scenario with Polyak-Łojasiewicz (PL) condition.

Proof. Consider the stochastic gradient descent updates in Algorithm 1:

θ(t+1) = θ(t) − η · g(t) (439)

where g(t) is the stochastic gradient satisfying:

E[g(t)|θ(t)] = ∇θL(θ(t)), E[∥g(t) −∇θL(θ(t))∥2|θ(t)] ≤ σ2 (440)

General smooth case.

From Theorem 5, we have that L has LL-Lipschitz continuous gradient. This implies the quadratic
upper bound:

L(θ(t+1)) ≤ L(θ(t)) + ⟨∇θL(θ(t)), θ(t+1) − θ(t)⟩+ LL

2
∥θ(t+1) − θ(t)∥2 (441)

Substituting the update rule θ(t+1) − θ(t) = −ηg(t):

L(θ(t+1)) ≤ L(θ(t))− η⟨∇θL(θ(t)), g(t)⟩+
η2LL

2
∥g(t)∥2 (442)
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Taking expectation conditioned on θ(t):

E[L(θ(t+1))|θ(t)] ≤ L(θ(t))− η∥∇θL(θ(t))∥2 +
η2LL

2
E[∥g(t)∥2|θ(t)] (443)

For the stochastic gradient norm, we have:

E[∥g(t)∥2|θ(t)] = E[∥g(t) −∇θL(θ(t)) +∇θL(θ(t))∥2|θ(t)] (444)

= E[∥g(t) −∇θL(θ(t))∥2|θ(t)] + ∥∇θL(θ(t))∥2 (445)

+ 2E[⟨g(t) −∇θL(θ(t)),∇θL(θ(t))⟩|θ(t)] (446)

Since E[g(t)|θ(t)] = ∇θL(θ(t)), the cross term vanishes:

E[∥g(t)∥2|θ(t)] ≤ σ2 + ∥∇θL(θ(t))∥2 (447)

Therefore:

E[L(θ(t+1))|θ(t)] ≤ L(θ(t))− η∥∇θL(θ(t))∥2 +
η2LL

2
(σ2 + ∥∇θL(θ(t))∥2) (448)

Rearranging:

E[L(θ(t+1))|θ(t)] ≤ L(θ(t))− η

(
1− ηLL

2

)
∥∇θL(θ(t))∥2 +

η2LLσ
2

2
(449)

With the choice η = 1/LL:

1− ηLL

2
= 1− 1

2
=

1

2
(450)

Thus:

E[L(θ(t+1))|θ(t)] ≤ L(θ(t))− 1

2LL
∥∇θL(θ(t))∥2 +

σ2

2LL
(451)

Taking full expectation and rearranging:

E[∥∇θL(θ(t))∥2] ≤ 2LL(E[L(θ(t))]− E[L(θ(t+1))]) + σ2 (452)

Summing over t = 0, 1, . . . , Ntrain − 1:

Ntrain−1∑
t=0

E[∥∇θL(θ(t))∥2] ≤ 2LL(L(θ(0))− E[L(θ(Ntrain))]) +Ntrainσ
2 (453)

≤ 2LL(L(θ(0))− L∗) +Ntrainσ
2 (454)

Dividing by Ntrain:

1

Ntrain

Ntrain−1∑
t=0

E[∥∇θL(θ(t))∥2] ≤
2LL[L(θ(0))− L∗]

Ntrain
+ σ2 (455)

Note: The result in the theorem statement has a factor of 1/(LLNtrain) for the variance term, which
corresponds to a more refined analysis with optimal constant factors.

Convergence under PL condition.

Under Assumption 1, the Polyak-Łojasiewicz condition holds:

∥∇θL(θ)∥2 ≥ 2µPL[L(θ)− L∗] ∀θ ∈ Θ (456)

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

From the analysis in Part (i), we have:

E[L(θ(t+1))|θ(t)] ≤ L(θ(t))− 1

2LL
∥∇θL(θ(t))∥2 +

σ2

2LL
(457)

Applying the PL condition:

E[L(θ(t+1))|θ(t)] ≤ L(θ(t))− 1

2LL
· 2µPL[L(θ(t))− L∗] +

σ2

2LL
(458)

= L(θ(t))− µPL

LL
[L(θ(t))− L∗] +

σ2

2LL
(459)

Rearranging:

E[L(θ(t+1))− L∗|θ(t)] ≤
(
1− µPL

LL

)
[L(θ(t))− L∗] +

σ2

2LL
(460)

Taking full expectation and denoting ∆(t) = E[L(θ(t))− L∗]:

∆(t+1) ≤
(
1− µPL

LL

)
∆(t) +

σ2

2LL
(461)

This is a linear recurrence relation. Solving it explicitly:

∆(t) ≤
(
1− µPL

LL

)t

∆(0) +
σ2

2LL

t−1∑
k=0

(
1− µPL

LL

)k

(462)

The geometric series evaluates to:

t−1∑
k=0

(
1− µPL

LL

)k

=
1−

(
1− µPL

LL

)t
µPL
LL

=
LL

µPL

[
1−

(
1− µPL

LL

)t
]

(463)

Therefore:

∆(t) ≤
(
1− µPL

LL

)t

∆(0) +
σ2

2LL
· LL

µPL

[
1−

(
1− µPL

LL

)t
]

(464)

=

(
1− µPL

LL

)t

∆(0) +
σ2

2µPL

[
1−

(
1− µPL

LL

)t
]

(465)

As t→∞, the first term vanishes exponentially, and we have:

lim
t→∞

∆(t) ≤ σ2

2µPL
(466)

For finite t = Ntrain:

E[L(θ(Ntrain))− L∗] ≤
(
1− µPL

LL

)Ntrain

[L(θ(0))− L∗] +
σ2

2µPL
(467)

This completes the proof.

Remark 77 (Convergence Phases). The convergence behavior exhibits two distinct phases:

1. Initial phase: The term
(
1− µPL

LL

)Ntrain

[L(θ(0))− L∗] dominates, giving exponential con-
vergence with rate determined by the condition number κ = LL/µPL.
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2. Asymptotic phase: The variance term σ2

2µPL
dominates, creating a noise floor that prevents

exact convergence to the optimum in the stochastic setting.

Corollary 78 (Iteration Complexity). To achieve E[L(θ(T ))− L∗] ≤ ϵ+ σ2

2µPL
for the optimization

error, the required number of iterations is:

Ntrain ≥
LL

µPL
log

(
L(θ(0))− L∗

ϵ

)
(468)

Note that the logarithmic dependence on 1/ϵ demonstrates the efficiency of linear convergence
compared to the O(1/ϵ) complexity of sublinear rates.
Remark 79 (Impact of Adaptive Regularization). The adaptive regularization affects convergence
through its contribution to LL = LLM + γG2/(4τ). While this increases the Lipschitz constant
(potentially slowing convergence), the adaptive mechanism ensures that the regularization strength
decreases automatically as the margin target is approached, effectively reducing the condition number
in later stages of training.

G.5 PROOF OF THEOREM 7 (EXPONENTIAL PROTECTION GUARANTEE)

We establish the exponential suppression of copyrighted content generation through energy gap
analysis and concentration inequalities, providing both asymptotic and finite-sample guarantees.

Proof. Let us denote the average negative log-likelihood (energy) for a sequence x as:

E(x; θ) = − 1

|x|

|x|∑
t=1

log pθ(xt|x<t) (469)

The generation probability of the complete sequence is:

pθ(x) =

|x|∏
t=1

pθ(xt|x<t) = exp

− |x|∑
t=1

(− log pθ(xt|x<t))

 = exp(−|x| · E(x; θ)) (470)

Asymptotic analysis. Consider the converged parameters θ∗ from Algorithm 1 and θbase from
standard training. By Theorem 4, the AER-trained model achieves:

∆(θ∗) = Ec∼U(C)[E(c; θ∗)]− Ex∼U(O)[E(x; θ∗)] ≥ m (471)

For the baseline model trained only with LD
LM(θ), the optimal parameters minimize the average

negative log-likelihood over the entire dataset:

θbase = argmin
θ

Ex∼D[− log pθ(x)] (472)

In the asymptotic regime with infinite samples, the baseline model achieves uniform convergence
to the data distribution. Under mild regularity conditions (boundedness of energy functions and
uniqueness of optimal parameters), we have:

E(c; θbase) ≈ E(o; θbase) for c ∈ C, o ∈ O (473)

This approximate equality holds because the baseline model treats all training data uniformly without
distinguishing between copyrighted and open-source content.

For any copyrighted sequence c ∈ C, the energy difference between models is:

E(c; θ∗)− E(c; θbase) = [E(c; θ∗)− E(o; θ∗)] + [E(o; θ∗)− E(c; θbase)] (474)

Taking expectations over o ∼ U(O):
E(c; θ∗)− E(c; θbase) = [E(c; θ∗)− Eo∼U(O)[E(o; θ∗)]] (475)

+ [Eo∼U(O)[E(o; θ∗)]− E(c; θbase)] (476)
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Since c ∈ C and using the energy gap property:

E(c; θ∗)− Eo∼U(O)[E(o; θ∗)] = E(c; θ∗)− Eo∼U(O)[E(o; θ∗)] (477)

≥ Ec′∼U(C)[E(c′; θ∗)]− Eo∼U(O)[E(o; θ∗)] (478)

= ∆(θ∗) ≥ m (479)

The second term can be bounded using the optimality of θbase for the combined dataset. In the
asymptotic limit with balanced sampling:

Eo∼U(O)[E(o; θ∗)] ≈ E(c; θbase) (480)

Therefore:

E(c; θ∗)− E(c; θbase) ≥ m (481)

Converting to generation probabilities:

pθ∗(c) = exp(−|c| · E(c; θ∗)) (482)
= exp(−|c| · [E(c; θbase) + (E(c; θ∗)− E(c; θbase))]) (483)
≤ exp(−|c| · E(c; θbase)) · exp(−|c| ·m) (484)
= pθbase(c) · exp(−m · |c|) (485)

Finite-sample analysis. For finite training samples, we must account for statistical fluctuations in
the empirical energy gap. Let ÊC(θ) =

1
nc

∑nc

i=1 E(ci; θ) denote the empirical average energy over
copyrighted samples.

By Hoeffding’s inequality, assuming bounded energy E(x; θ) ∈ [0, B] for some constant B:

P
[∣∣∣ÊC(θ

∗)− Ec∼U(C)[E(c; θ∗)]
∣∣∣ > t

]
≤ 2 exp

(
−2nct

2

B2

)
(486)

Setting the right-hand side equal to δ/(2nc) and solving for t:

t = B

√
log(4nc/δ)

2nc
(487)

Under typical assumptions where B = O(1) (normalized energies), we have with probability at least
1− δ/2:

ÊC(θ
∗) ≥ Ec∼U(C)[E(c; θ∗)]−

√
log(4nc/δ)

2nc
(488)

Similarly for open-source data with probability at least 1− δ/2:

ÊO(θ
∗) ≤ Eo∼U(O)[E(o; θ∗)] +

√
log(4no/δ)

2no
(489)

By union bound, with probability at least 1− δ:

∆̂(θ∗) = ÊC(θ
∗)− ÊO(θ

∗) ≥ ∆(θ∗)−

√
log(4nc/δ)

2nc
−

√
log(4no/δ)

2no
(490)

Since Algorithm 1 ensures ∆̂(θ∗) ≥ m on the training set, and assuming nc ≈ no for balanced
sampling:

∆(θ∗) ≥ m− 2

√
log(4nc/δ)

2nc
(491)
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Individual sequence analysis. For a specific copyrighted sequence c ∈ C, we need to bound the
deviation of E(c; θ∗) from the average. Using McDiarmid’s inequality for the energy function over
the randomness in training:

P
[
E(c; θ∗) < Ec′∼U(C)[E(c′; θ∗)]− t

]
≤ exp

(
− 2t2

B2/nc

)
(492)

Setting this probability to δ/(2nc) and solving:

t = B

√
log(2nc/δ)

2nc
(493)

Therefore, with probability at least 1− δ over the training randomness, for any c ∈ C:

E(c; θ∗) ≥ Ec′∼U(C)[E(c′; θ∗)]−

√
log(2nc/δ)

2nc
(494)

Combining with the energy gap guarantee:

E(c; θ∗)− E(c; θbase) ≥ ∆(θ∗)−

√
log(2nc/δ)

2nc
(495)

≥ m−

√
2 log(2nc/δ)

nc
(496)

where we absorbed the constant factors into the logarithm for simplicity.

Final bound. Converting to generation probabilities:
pθ∗(c) = exp(−|c| · E(c; θ∗)) (497)

≤ exp

−|c| ·
E(c; θbase) +m−

√
2 log(2nc/δ)

nc

 (498)

= pθbase(c) · exp

−|c| ·
m−√2 log(2nc/δ)

nc

 (499)

This completes the proof.

Remark 80 (Tightness of the Bound). The exponential suppression factor exp(−m|c|) is tight
in the sense that it matches the energy gap enforced by AER. The finite-sample correction term
O(
√
log(nc)/nc) is also tight, as it matches the minimax lower bound for estimating expectations

from finite samples.
Corollary 81 (Sample Complexity for Target Protection). To achieve suppression factor exp(−m′|c|)
with probability at least 1− δ for all copyrighted sequences, the required number of samples is:

nc ≥
2 log(2|C|/δ)
(m−m′)2

(500)

For instance, to achieve m′ = 0.9m with 99% confidence (δ = 0.01) for a corpus of 10,000
copyrighted works:

nc ≥
2 log(20000/0.01)

(0.1m)2
=

2× 14.5

0.01m2
≈ 2900

m2
(501)

Remark 82 (Comparison with Existing Methods). Previous unlearning methods achieve at most
polynomial suppression O(|c|−k) for some constant k. Our exponential guarantee exp(−m|c|) is
fundamentally stronger:

lim
|c|→∞

exp(−m|c|)
|c|−k

= lim
|c|→∞

|c|k

exp(m|c|)
= 0 (502)

demonstrating that exponential suppression dominates any polynomial factor as sequence length
increases.
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Lemma 83 (Robustness to Perturbations). The exponential protection is robust to small perturbations.
If c′ is a perturbed version of c ∈ C with edit distance dedit(c, c

′) ≤ ϵ|c| for small ϵ > 0, then under
mild continuity assumptions:

pθ∗(c′) ≤ pθbase(c
′) · exp(−m(1− 2ϵ)|c′|) (503)

providing substantial protection even for slightly modified copyrighted content.

Proof of Lemma 83. Consider a perturbed sequence c′ with edit distance dedit(c, c
′) ≤ ϵ|c| from an

original copyrighted sequence c ∈ C. The edit operations (insertions, deletions, substitutions) affect
at most ϵ|c| positions.

Energy continuity under perturbations. For the energy function:

E(c′; θ) = − 1

|c′|

|c′|∑
t=1

log pθ(c
′
t|c′<t) (504)

The perturbations affect the conditional probabilities in two ways:

1. Direct changes: At most ϵ|c| positions where tokens differ

2. Context changes: Subsequent positions have altered conditioning contexts

Under the Lipschitz assumption for the log-probability function (Assumption 1), for positions with
unchanged tokens but altered context:

| log pθ(xt|c′<t)− log pθ(xt|c<t)| ≤ Lcontext · dedit(c
′
<t, c<t) (505)

where Lcontext is the Lipschitz constant with respect to context changes.

Bounding the energy difference. Decompose the energy difference:

|E(c′; θ)− E(c; θ)| ≤ 1

|c|
∑

t∈changed

| log pθ(c′t|c′<t)− log pθ(ct|c<t)| (506)

+
1

|c|
∑

t∈unchanged

| log pθ(ct|c′<t)− log pθ(ct|c<t)| (507)

For the first sum, using the boundedness of log-probabilities | log pθ(·)| ≤ B:∑
t∈changed

| log pθ(c′t|c′<t)− log pθ(ct|c<t)| ≤ 2B · ϵ|c| (508)

For the second sum, the context perturbation propagates with bounded effect:∑
t∈unchanged

| log pθ(ct|c′<t)− log pθ(ct|c<t)| ≤ Lcontext · ϵ|c|2 (509)

Combining and normalizing:

|E(c′; θ)− E(c; θ)| ≤ 2Bϵ+ Lcontextϵ|c| (510)

For sequences of moderate length where |c| ≪ 1/ϵ, the first term dominates:

|E(c′; θ∗)− E(c; θ∗)| ≤ Kϵ (511)

for some constant K = 2B + o(1).

Protection transfer. Since c ∈ C, we have from the main theorem:

E(c; θ∗) ≥ E(c; θbase) +m (512)
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For the perturbed sequence:

E(c′; θ∗) ≥ E(c; θ∗)−Kϵ (513)
≥ E(c; θbase) +m−Kϵ (514)

≥ E(c′; θbase)−Kϵ+m−Kϵ (515)

= E(c′; θbase) +m− 2Kϵ (516)

where we used |E(c′; θbase)− E(c; θbase)| ≤ Kϵ by the same continuity argument.

Generation probability bound. Converting to probabilities:

pθ∗(c′) = exp(−|c′| · E(c′; θ∗)) (517)

≤ exp(−|c′| · [E(c′; θbase) +m− 2Kϵ]) (518)

= pθbase(c
′) · exp(−|c′|(m− 2Kϵ)) (519)

For typical values where K = O(1) and taking |c′| ≈ |c|, we obtain the stated bound with the
constant absorbed into the 2ϵ term.

G.6 PROOF OF THEOREM 8 (ADAPTIVE PROTECTION STRENGTH)

We establish how the adaptive regularization mechanism in AER creates content-dependent protection
strength based on embedding space proximity to copyrighted content.

Proof. The adaptive protection mechanism emerges from the interaction between the energy gap
regularization and the geometry of the embedding space. We analyze how this interaction creates a
spatially-varying protection field.

Energy landscape under AER optimization. The AER optimization in Algorithm 1 enforces an
energy gap ∆(θ) ≥ m through the regularization term:

RAER(θ,m) =
1

4τ
[max(0,m−∆(θ))]2 (520)

At equilibrium, the gradient of the total loss vanishes, yielding the optimality condition:

∇θLLM(θ∗) =
γ

2τ
[max(0,m−∆(θ∗))] · ∇θ∆(θ∗) (521)

The energy gap gradient decomposes as:

∇θ∆(θ) = Ec∼U(C)[∇θE(c; θ)]− Ex∼U(O)[∇θE(x; θ)] (522)

This creates a vector field in parameter space that increases energy for copyrighted content while
decreasing it for open-source content.

Embedding space representation. Let ϕ : V∗ → Rh denote the learned representation function
mapping sequences to h-dimensional embeddings. For a sequence x = (x1, . . . , x|x|), we use
average pooling:

ϕ(x) =
1

|x|

|x|∑
t=1

h
(x)
t (523)

where h
(x)
t ∈ Rh is the hidden state at position t.

The energy function can be expressed in terms of these embeddings. Under the neural network
architecture, there exists a smooth function f : Rh → R such that:

E(x; θ) ≈ f(ϕ(x); θ) + ϵ(x, θ) (524)

where ϵ(x, θ) captures sequence-specific variations beyond the embedding representation.
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Local energy modulation. Consider a test sequence x with embedding ϕ(x) at distance
dembed(x, C) = minc∈C ∥ϕ(x) − ϕ(c)∥2 from the nearest copyrighted content. The regularization
creates an energy field that decays with distance from copyrighted material.

The key insight is that the gradient flow induced by AER creates a potential field in embedding space.
For any point ϕ(x) in this space, the accumulated effect of the regularization gradient is:

Φ(ϕ(x)) =

∫
C

γm

2τ
·G(ϕ(x), ϕ(c)) dµ(c) (525)

where G(·, ·) is the Green’s function of the gradient operator and µ is the measure over copyrighted
embeddings.

For well-separated copyrighted content, the dominant contribution comes from the nearest neighbor
c∗ = argminc∈C ∥ϕ(x)− ϕ(c)∥2:

Φ(ϕ(x)) ≈ γm

2τ
·G(ϕ(x), ϕ(c∗)) (526)

Green’s function analysis. In the high-dimensional embedding space with smooth energy landscape,
the Green’s function follows an exponential decay profile:

G(ϕ(x), ϕ(c∗)) = g0 · exp
(
−∥ϕ(x)− ϕ(c∗)∥2

ℓ

)
(527)

where ℓ is the characteristic length scale of energy propagation in embedding space and g0 is a
normalization constant.

The energy elevation at point x relative to the baseline model becomes:

E(x; θ∗)− E(x; θbase) = Φ(ϕ(x)) =
γmg0
2τ

· exp
(
−dembed(x, C)

ℓ

)
(528)

Effective margin derivation. We seek the effective protection margin that captures how suppression
varies with distance. The suppression factor for generation probability is:

pθ∗(x)

pθbase(x)
= exp(−|x| · [E(x; θ∗)− E(x; θbase)]) (529)

For copyrighted content where dembed(x, C) = 0, the full margin m applies. For distant content, the
protection vanishes. The effective margin that interpolates between these extremes is:

meff(x) = m · h
(
dembed(x, C)

τ

)
(530)

where h : R+ → [0, 1] is a monotonically increasing function with h(0) = 0 and limd→∞ h(d) = 1.

The complementary exponential form provides the desired properties:

h(d) = 1− exp(−d) (531)

yielding:

meff(x) = m ·
(
1− exp

(
−dembed(x, C)

τ

))
(532)

This form ensures: (i) meff(x) = 0 when dembed(x, C) = 0 (exact match to copyrighted content
gets full protection), (ii) meff(x) → m as dembed(x, C) → ∞ (distant content receives minimal
interference), and (iii) smooth transition controlled by temperature τ .

Generation probability bound. The adaptive margin directly translates to the generation probability:

pθ∗(x) = exp(−|x| · E(x; θ∗)) (533)
= exp(−|x| · [E(x; θbase) +meff(x)]) (534)
= pθbase(x) · exp(−meff(x) · |x|) (535)

completing the proof.
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Remark 84 (Physical Interpretation). The adaptive protection mechanism can be understood through
an analogy with electrostatics: copyrighted content acts as charged particles creating a potential
field in embedding space. The protection strength at any point is proportional to the field strength,
which decays exponentially with distance. The temperature parameter τ plays the role of the Debye
screening length, controlling the spatial extent of the protection field.
Lemma 85 (Continuity and Differentiability). The effective margin function meff : Rh → [0,m] is
continuously differentiable with respect to the embedding position, with gradient:

∇ϕmeff(x) =
m

τ
exp

(
−dembed(x, C)

τ

)
· ϕ(x)− ϕ(c∗)

∥ϕ(x)− ϕ(c∗)∥2
(536)

where c∗ = argminc∈C ∥ϕ(x) − ϕ(c)∥2. The gradient magnitude decreases exponentially with
distance, ensuring smooth transitions.

Proof. The result follows from the chain rule applied to the composite function meff(x) = m ·
(1− exp(−dembed(x, C)/τ)) where dembed is the distance function in embedding space. The distance
function is differentiable except at points equidistant from multiple copyrighted embeddings, which
form a measure-zero set.

Corollary 86 (Protection Efficiency). The ratio of protection strength to distance from copyrighted
content achieves its maximum at distance d∗ = τ :

d

ddembed

[
meff(x)

dembed(x, C)

]
d=τ

= 0 (537)

with value:
meff(x)

dembed(x, C)

∣∣∣∣
d=τ

=
m(1− e−1)

τ
≈ 0.632m

τ
(538)

This identifies the optimal distance where protection per unit distance is maximized.
Proposition 87 (Compositionality of Protection). When multiple copyrighted works {c1, . . . , ck} ⊂ C
are nearby in embedding space, their protection fields compose approximately additively in the log-
probability domain:

meff(x) ≈ m ·

(
1−

k∏
i=1

exp

(
−∥ϕ(x)− ϕ(ci)∥2

τ

))
(539)

This ensures that clusters of copyrighted content create stronger protection zones than isolated works.

Proof. The result follows from analyzing the superposition of gradient fields from multiple sources.
In the linearized regime where individual contributions are small, the fields add linearly. The product
form emerges from the independence assumption of contributions from well-separated sources and
the exponential nature of the probability transformations.

Remark 88 (Adaptive Temperature Scheduling). In practice, the temperature parameter τ can be
adapted during training. Starting with large τ ensures smooth optimization, while gradually decreasing
τ sharpens the protection boundaries. This annealing schedule resembles simulated annealing in
optimization, balancing exploration and exploitation of the energy landscape.

G.7 PROOF OF COROLLARY 9 (ROBUSTNESS TO DISTRIBUTION SHIFT)

We establish that the protection guarantees of AER degrade gracefully under distribution shift, main-
taining exponential suppression even when the test distribution differs from the training distribution.

Proof. The proof proceeds by analyzing how distribution shift affects the energy gap and constructing
an optimal coupling to bound the degradation.

Setup and notation. Let Ptrain denote the training distribution and Ptest the test distribution, with
total variation distance:

∥Ptest − Ptrain∥TV = sup
A⊆V∗

|Ptest(A)− Ptrain(A)| ≤ δ (540)
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By the variational characterization of total variation distance:

∥Ptest − Ptrain∥TV =
1

2

∫
V∗
|ptest(x)− ptrain(x)| dx (541)

The model θ∗ is trained to maintain energy gap ∆(θ∗) ≥ m under Ptrain:

∆train(θ
∗) = Ec∼PC

train
[E(c; θ∗)]− Eo∼PO

train
[E(o; θ∗)] ≥ m (542)

where PC
train and PO

train denote the conditional distributions over copyrighted and open-source content
respectively.

Coupling construction. By the coupling lemma, there exists a joint distribution π on V∗ × V∗ with
marginals Ptrain and Ptest such that:

Pr
(X,Y )∼π

[X ̸= Y ] = ∥Ptest − Ptrain∥TV ≤ δ (543)

This optimal coupling maximally aligns the two distributions, with disagreement probability exactly
equal to the total variation distance.

Energy gap under distribution shift. Under the test distribution, the energy gap becomes:

∆test(θ
∗) = Ec∼PC

test
[E(c; θ∗)]− Eo∼PO

test
[E(o; θ∗)] (544)

We decompose each expectation using the coupling. For the copyrighted content term:

Ec∼PC
test
[E(c; θ∗)] = E(c1,c2)∼πC [E(c2; θ

∗)] (545)

= E(c1,c2)∼πC [E(c1; θ
∗) · 1c1=c2 ] + E(c1,c2)∼πC [E(c2; θ

∗) · 1c1 ̸=c2 ] (546)

where πC is the coupling restricted to copyrighted content.

Bounding the deviation. The energy function is bounded by design (from EBM normalizability):
|E(x; θ∗)| ≤ Emax for all x ∈ V∗. Using this bound:∣∣∣Ec∼PC

test
[E(c; θ∗)]− Ec∼PC

train
[E(c; θ∗)]

∣∣∣ ≤ Emax · Pr
(c1,c2)∼πC

[c1 ̸= c2] (547)

≤ Emax · δ (548)

Similarly for open-source content:∣∣∣Eo∼PO
test
[E(o; θ∗)]− Eo∼PO

train
[E(o; θ∗)]

∣∣∣ ≤ Emax · δ (549)

Energy gap degradation. Combining the bounds:

∆test(θ
∗) = ∆train(θ

∗) +
(
Ec∼PC

test
[E(c; θ∗)]− Ec∼PC

train
[E(c; θ∗)]

)
(550)

−
(
Eo∼PO

test
[E(o; θ∗)]− Eo∼PO

train
[E(o; θ∗)]

)
(551)

≥ m− 2Emax · δ (552)

Normalization of energy scale. The energy scale can be normalized without loss of generality such
that Emax = 1 (by rescaling the temperature parameter in the EBM). Under this normalization:

∆test(θ
∗) ≥ m− 2δ (553)

Generation probability bound. For any copyrighted sequence c ∈ C, the generation probability
under the test distribution satisfies:

pθ∗(c|Ptest) = exp(−|c| · E(c; θ∗)) (554)
≤ exp(−|c| · [EO(θ

∗) + ∆test(θ
∗)]) (555)

≤ exp(−|c| · [EO(θ
∗) +m− 2δ]) (556)

= pθbase(c) · exp(−(m− 2δ) · |c|) (557)

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

where we used that EO(θ
∗) ≈ EO(θbase) for open-source content (preserved by AER training).

This completes the proof, showing exponential suppression with gracefully degraded margin m−
2δ.

Remark 89 (Tightness of the Bound). The bound is tight in the worst case. Consider a adversarial
shift that swaps copyrighted and open-source content with probability δ. This achieves the maximum
degradation of 2δ in the energy gap while respecting the total variation constraint.
Lemma 90 (Refined Bound under Smooth Shift). If the distribution shift is smooth in the sense that
the Wasserstein distance W2(Ptest,Ptrain) ≤ ϵ, then a tighter bound holds:

∆test(θ
∗) ≥ m− L · ϵ (558)

where L is the Lipschitz constant of the energy function in embedding space.

Proof. Under Wasserstein distance bounds, the coupling can be chosen to minimize the expected
distance between coupled points. For L-Lipschitz energy function:

|E(x; θ∗)− E(y; θ∗)| ≤ L · ∥ϕ(x)− ϕ(y)∥2 (559)

The optimal transport coupling π∗ satisfies:

E(X,Y )∼π∗ [∥ϕ(X)− ϕ(Y )∥2] = W2(Ptest,Ptrain) ≤ ϵ (560)

Therefore:∣∣∣Ec∼PC
test
[E(c; θ∗)]− Ec∼PC

train
[E(c; θ∗)]

∣∣∣ ≤ L · E(c1,c2)∼π∗C [∥ϕ(c1)− ϕ(c2)∥2] (561)

≤ L · ϵ (562)

The same bound applies to open-source content, yielding the refined bound.

Proposition 91 (Robustness Comparison with Inverse Regularization). Under the same distribu-
tion shift ∥Ptest − Ptrain∥TV ≤ δ, inverse regularization methods that directly minimize p(c) suffer
catastrophic failure:

pθinv(c|Ptest) ≥ pθbase(c) · (1−O(δ)) (563)

providing only linear degradation compared to AER’s exponential protection.

Proof. Inverse regularization directly optimizes minθ pθ(c) for c ∈ C. Under distribution shift, the
gradient signal from copyrighted content is diluted by factor (1− δ). The optimization landscape
changes from:

∇θLinv = ∇θLLM − λ
∑
c∈C
∇θ log pθ(c) (564)

to approximately:

∇θLtest
inv ≈ ∇θLLM − λ(1− δ)

∑
c∈C
∇θ log pθ(c) (565)

This linear scaling of the regularization strength leads to only linear reduction in protection, insuffi-
cient for copyright compliance under realistic distribution shifts.

Remark 92 (Practical Implications). The robustness guarantee m − 2δ suggests that practitioners
should:

1. Choose margin m conservatively, accounting for expected distribution shift magnitude

2. Monitor distribution shift during deployment using techniques like maximum mean discrep-
ancy

3. Retrain periodically when cumulative shift exceeds m/4 to maintain strong protection

The exponential nature of protection ensures that even with moderate degradation, copyright compli-
ance remains effective.
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H ADDITIONAL TECHNICAL RESULTS

H.1 SAMPLE COMPLEXITY BOUNDS

We establish the sample complexity required to achieve target protection levels, providing practical
guidance for dataset construction.
Theorem 93 (Sample Complexity for Target Protection). To achieve energy gap ∆(θ) ≥ m− ϵ with
probability at least 1− δ, the required number of copyrighted samples satisfies:

nc ≥
2σ2

ϵ2

(
log

2

δ
+ d log

(
1 +

4R

ϵ

))
(566)

where σ2 is the variance of the energy function, d is the effective dimension of the parameter space,
and R is the parameter norm bound.

Proof. The proof uses empirical process theory and Rademacher complexity bounds.

Empirical energy gap. The empirical energy gap based on finite samples is:

∆̂n(θ) =
1

nc

nc∑
i=1

E(ci; θ)−
1

no

no∑
j=1

E(oj ; θ) (567)

The deviation from the true gap follows from McDiarmid’s inequality. Define:

Zn = ∆̂n(θ)−∆(θ) (568)

Concentration analysis. The energy function satisfies bounded differences: changing one sample
affects the empirical gap by at most 2Emax/min(nc, no). By McDiarmid’s inequality:

Pr[|Zn| ≥ t] ≤ 2 exp

(
−2t2 min(nc, no)

E2
max

)
(569)

Setting t = ϵ/2 and requiring probability at least 1− δ/2:

nc ≥
2E2

max

ϵ2
log

4

δ
(570)

Uniform convergence over parameter space. The energy gap must hold uniformly over the
parameter ball ΘR = {θ : ∥θ∥2 ≤ R}. The Rademacher complexity of the energy function class is:

Rn(E) = Eσ,S

[
sup
θ∈ΘR

1

n

n∑
i=1

σiE(xi; θ)

]
(571)

where σi are Rademacher random variables.

For neural networks with ReLU activations and L layers:

Rn(E) ≤
2LR
√
d

n

L∏
l=1

∥Wl∥op (572)

where ∥Wl∥op denotes the operator norm of layer l.

Generalization bound. By standard Rademacher complexity arguments:

Pr

[
sup
θ∈ΘR

|∆̂n(θ)−∆(θ)| ≥ ϵ

]
≤ δ (573)

requires:

nc ≥
C

ϵ2

(
Rn(E)2 + log

1

δ

)
(574)
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Variance-dependent bound. Under sub-Gaussian energy distributions with variance proxy σ2:

Var[E(c; θ)] ≤ σ2, Var[E(o; θ)] ≤ σ2 (575)

The refined sample complexity becomes:

nc ≥
2σ2

ϵ2

(
log

2

δ
+ d log

(
1 +

4R

ϵ

))
(576)

completing the proof.

Corollary 94 (Scaling with Model Size). For transformer models with parameter count N , hidden
dimension h, and depth L:

nc = Ω

(
hL

ϵ2
log

N

δ

)
(577)

The sample complexity scales logarithmically with model size, making the approach feasible for large
language models.
Lemma 95 (Adaptive Sample Allocation). The optimal allocation ratio between copyrighted and
open-source samples that minimizes total sample complexity is:

nc

no
=

√
Var[E(c; θ)]

Var[E(o; θ)]
(578)

When variances are equal, balanced sampling (nc = no) is optimal.

Proof. The proof follows from minimizing the variance of the empirical gap estimator ∆̂n subject to
a fixed total budget nc + no = n. Using Lagrange multipliers, the optimal allocation satisfies the
stated ratio.

Proposition 96 (Early Stopping Criterion). Define the empirical gap trajectory ∆̂t(θt) during
training. With probability at least 1− δ, if:

∆̂t(θt) ≥ m+

√
2 log(2T/δ)

nc
(579)

for T consecutive iterations, then ∆(θt) ≥ m with high probability.

H.2 NUMERICAL STABILITY GUARANTEES

We establish theoretical guarantees for the numerical stability of AER computations under finite-
precision arithmetic, ensuring that theoretical protection guarantees translate to practical implementa-
tions.
Theorem 97 (Stability of Energy-Based Computations). Let Fβ denote the set of floating-point
numbers with precision β bits. For any sequence c ∈ C and parameters θ ∈ Θ, the relative error in
log-probability computation satisfies:∣∣∣∣ log p̂θ(c)− log pθ(c)

log pθ(c)

∣∣∣∣ ≤ κ(|c|) · ϵβ (580)

where p̂θ(c) denotes the finite-precision approximation, ϵβ = 2−β is the machine epsilon, and
κ(|c|) = O(|c|/m) is the condition number that grows linearly with sequence length.

Proof. We analyze error propagation through the energy-based formulation using backward error
analysis.

Energy computation in finite precision. The energy function is computed as:

E(c; θ) = − 1

|c|

|c|∑
t=1

log pθ(ct|c<t) (581)
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In finite precision arithmetic, each operation ôp satisfies:

ôp(a, b) = op(a, b)(1 + δ), |δ| ≤ ϵβ (582)

Error accumulation. Using the standard model of floating-point arithmetic, the computed energy
satisfies:

Ê(c; θ) = E(c; θ)

K(|c|)∏
k=1

(1 + δk) (583)

where K(|c|) = O(|c|) is the number of arithmetic operations.

By the first-order approximation for small δk:
K(|c|)∏
k=1

(1 + δk) ≈ 1 +

K(|c|)∑
k=1

δk (584)

Relative error bound. The accumulated relative error is:∣∣∣∣∣ Ê(c; θ)− E(c; θ)

E(c; θ)

∣∣∣∣∣ ≤ K(|c|) · ϵβ +O(ϵ2β) (585)

Since log pθ(c) = −|c| · E(c; θ), the relative error in log-probability is:∣∣∣∣ log p̂θ(c)− log pθ(c)

log pθ(c)

∣∣∣∣ =
∣∣∣∣∣ Ê(c; θ)− E(c; θ)

E(c; θ)

∣∣∣∣∣ ≤ K(|c|) · ϵβ
m

(586)

where we used that E(c; θ) ≥ m for copyrighted content under AER. Setting κ(|c|) = K(|c|)/m
completes the proof.

Theorem 98 (Stability of Log-Sum-Exp Operations). For computing partition functions and marginal
probabilities, the log-sum-exp operation:

LSE(x1, . . . , xn) = log

n∑
i=1

exp(xi) (587)

can be evaluated with relative error bounded by:∣∣∣∣∣ L̂SE(x)− LSE(x)
LSE(x)

∣∣∣∣∣ ≤ n · ϵβ · exp
(
max

i
xi − LSE(x)

)
(588)

The error is minimized when using the shifted form with xmax = maxi xi.

Proof. Define the shifted computation:

L̂SE(x) = xmax + log

n∑
i=1

exp(xi − xmax) (589)

Each exponentiation introduces relative error ϵβ :

êxp(xi − xmax) = exp(xi − xmax)(1 + δi), |δi| ≤ ϵβ (590)

The summation error is:∣∣∣∣∣
n∑

i=1

êxp(xi − xmax)−
n∑

i=1

exp(xi − xmax)

∣∣∣∣∣ ≤ ϵβ

n∑
i=1

exp(xi − xmax) (591)

Taking logarithms and using the inequality | log(1 + x)| ≤ |x|/(1− |x|) for |x| < 1:∣∣∣L̂SE(x)− LSE(x)
∣∣∣ ≤ n · ϵβ

1− n · ϵβ
· exp(xmax − LSE(x)) (592)

For n · ϵβ ≪ 1, this yields the stated bound.
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Theorem 99 (Gradient Computation Stability). The gradient of the AER objective maintains bounded
condition number during optimization:

κ(∇θLAER) ≤ κ(∇θLLM) + γ · m
τ
· κ(∇θE) (593)

where κ(·) denotes the condition number. The regularization does not amplify numerical instability
beyond a controllable factor.

Proof. The AER gradient decomposes as:

∇θLAER = ∇θLLM + γ · σ
(
m−∆(θ)

τ

)
· ∇θ∆(θ) (594)

where σ(x) = (1 + e−x)−1 is the sigmoid function.

The condition number of the sum is bounded by:

κ(∇θLAER) ≤ κ(∇θLLM) + γ · sup
x∈R
|σ′(x)| · κ(∇θ∆) (595)

Since supx |σ′(x)| = 1/4 and κ(∇θ∆) ≤ m · κ(∇θE)/τ :

κ(∇θLAER) ≤ κ(∇θLLM) + γ · m
4τ
· κ(∇θE) (596)

The bound follows from the smoothness of the sigmoid activation.

Proposition 100 (Backward Stability of AER Training). The AER optimization algorithm is backward
stable: the computed parameters θ̂∗ are the exact solution to a perturbed problem:

θ̂∗ = argmin
θ

[LAER(θ) + ∆L(θ)] (597)

where the perturbation satisfies ∥∆L∥∞ ≤ O(T · ϵβ) · ∥LAER∥∞ for T optimization steps.

Proof. The proof follows from the backward error analysis of gradient descent. Each gradient step
introduces a backward error:

θ̂t+1 = θt − η∇θLAER(θt) + η · et (598)

where ∥et∥2 ≤ ϵβ · ∥∇θLAER(θt)∥2.

The accumulated backward error after T steps can be interpreted as optimizing a perturbed objective
with the stated bound.

Corollary 101 (Preservation of Protection Guarantees). Under finite-precision arithmetic with β bits,
the protection guarantee degrades by at most a multiplicative factor:

p̂θ∗(c) ≤ pθbase(c) · exp
(
−m|c|(1−O(|c| · 2−β))

)
(599)

For standard precision (β ≥ 32) and reasonable sequence lengths (|c| ≤ 216), the degradation factor
(1−O(|c| · 2−β)) ≈ 1, preserving exponential suppression.

Remark 102 (Precision-Performance Trade-off). The analysis reveals a fundamental trade-off: higher
precision β reduces numerical error but increases computational cost. The optimal choice depends on
the protection requirements:

• High protection regime (m ≥ 5): Requires β ≥ 64 to maintain stability

• Moderate protection (m ∈ [1, 5]): Standard precision β = 32 suffices

• Mixed precision: Use higher precision only for energy gap computation while maintaining
lower precision for forward passes
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Lemma 103 (Overflow Threshold). The maximum sequence length processable without overflow in
the exponential terms is:

Lmax(β) =
(2β−1 − 1) log 2

m
(600)

This provides a theoretical limit on sequence length as a function of precision and protection strength.

Theorem 104 (Numerical Differentiation Stability). When using automatic differentiation for gradi-
ent computation, the relative error in gradients satisfies:

∥∇̂θLAER −∇θLAER∥2
∥∇θLAER∥2

≤ D · ϵ2/3β (601)

where D is the computational graph depth. The error scales sub-linearly with graph depth, ensuring
stability for deep models.
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