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ABSTRACT

Knowledge graphs (KGs) empower AI systems with essential inference capabil-
ities as they increasingly integrate into life and industries. The dynamic nature
of real-world KGs underscores the necessity for KG link prediction methods to
possess continual learning capabilities. However, the existing benchmark datasets
primarily rely on sampling based methods, falling short of adequately evaluating
models’ abilities for continual KG link prediction. In this paper, we explicitly
formulate the continual KG link prediction task and provide definitions for its two
specific settings: class-incremental and expansive. Two new benchmark datasets
are established to provide valid benchmarking for fair evaluation of continual KG
link prediction methods. Furthermore, we propose BER, a novel approach based
on experience replay and knowledge distillation to alleviate the catastrophic for-
getting problem. Extensive experimental results demonstrate the datasets’ effec-
tiveness in providing a fair evaluation of continual learning ability and validate the
efficacy of our proposed method. Codes can be found in supplementary material
and will be released along with both datasets upon acceptance.

1 INTRODUCTION

Knowledge graphs (KGs) store real-world events as factual triplets denoted as (h, r, t). Each triplet
delineates a relation r between a head entity h and a tail entity t. The intrinsic incompleteness
problem of KGs has expedited extensive research on KG link prediction (Lin et al., 2015), which
aims to predict missing relations based on the existing knowledge contained in a KG.

As real-world KGs are often semi-automatically constructed and subsequently updated with newly
emerging information, KGs inherently possess the dynamic nature of evolving over time. Typically,
KGs are initially constructed with factual triplets associated with a group of relations. As time pro-
gresses, new factual triplets associated with these relations are added, along with the incorporation
of new relations and their associated triplets. For instance, the relation “locatedIn” remains a con-
stant presence in KGs but more new associated triplets will emerge. And new relations related to
the Covid-19 pandemic, as well as their triplets, will appear from the year of 2019 onwards. Given
these characteristics of KGs, it is both crucial and imperative for KG link prediction methods to
incorporate the continual learning ability to constantly adapt to the newly emerging data.

Current KG link prediction methods typically assume that the same class space is shared during
model training and testing stages, preventing them from incorporating new relations effectively.
Training on newly emerging data will subsequently result in abrupt loss of previously acquired
knowledge, a phenomenon known as catastrophic forgetting (French, 1999). Some recent studies
resort to continual learning methods to accommodate the dynamic property of KGs and alleviate
the catastrophic forgetting problem. For example, Daruna et al. (2021) introduces five continual
learning inspired methods for continual KG embedding and propose a heuristic sampling strategy
to uniformly sample triplets from a given KG to generate each continual learning task. TIE (Wu
et al., 2021) proposes a framework centered on semantic KGs and generates yearly graph snapshots
by transforming facts (timestamped triplets) with time intervals into multiple facts.

However, there remains a noticeable absence of a clearly defined formulation for the continual
KG link prediction task, coupled with a shortage of standardized benchmark datasets specifically
designed for appropriately evaluating continual KG link prediction methods. There are several
limitations in previous works: (1) the heuristic sampling strategy proposed by (Daruna et al., 2021)
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does not account for the actual timestamps of facts when dividing tasks, resulting in a mixture of
facts from different time spans within a single task; (2) TIE has access to previous tasks numbered
from t−1 to t−5 at a given time t, which violates the standard continual learning practice (Mirtaheri
et al., 2023); (3) the dataset generation process in TIE (Wu et al., 2021) can result in an overlap of
95% between consecutive KG snapshots.

In this paper, we first give a formal definition for continual KG link prediction task and introduce a
class-incremental benchmark dataset, named ICEWS05-15-classIL. To align with both the dynam-
ics of KGs and the core tenets of continual learning, ICEWS05-15-classIL meets two key criteria:
(1) To preserve the inherent temporal property of KGs, the task division should adhere to the actual
timestamps associated with facts; (2) To effectively assess the models’ continual learning capabili-
ties in KG link prediction, the input data distribution should remain distinct across different tasks.

To emulate real-world scenarios where aside from the continuously emerging new relations, a certain
group of relations tend to persist throughout the course of KG evolution, we derive a new expansive
continual learning setting tailored to KGs. Accordingly, a new benchmark dataset, ICEWS05-
15-expansive, is constructed to more faithfully replicate the real-world dynamics of KGs. Both
datasets aim to provide a valid benchmarking for fairly evaluating the performance of continual
learning methods on continual KG link prediction.

The aforementioned benchmarks uncover significant pitfalls of current continual learning tech-
niques. To alleviate these problems, we propose a novel approach BER (beyond experience replay)
for continual KG link prediction based on experience replay and knowledge distillation. Specifi-
cally, we devise an attention-based method to select representative facts for each relation and revisit
those facts during the learning of a new task to alleviate catastrophic forgetting. In addition, we
design an embedding distillation loss to compensate for the scarcity of replayed facts and enhance
the memorization of previously learned knowledge. We also employ a contrastive learning based
method to learn expressive entity/relation embeddings by modeling correlations between each fact
and its context. BER exhibits superior performance compared to baseline methods, underscoring
the significance of tailored methods for continual knowledge graph link prediction, as substantiated
by our empirical analysis. Our contribution can be summarized as:

• To the best of our knowledge, we are the first to explicitly formulate the continual KG link predic-
tion task and provide clear definitions for its two settings: class-incremental and expansive. The
class-incremental setting fully aligns with the tenets of continual learning while the expansive
setting is especially tailored to the real-world dynamics of KGs.

• We construct two benchmark datasets, ICEWS05-15-classIL and ICEWS05-15-expansive, to pro-
vide a valid benchmark for fair evaluation of continual KG link prediction methods.

• We propose BER for continual KG link prediction built upon experience replay and knowledge
distillation, significantly mitigating the catastrophic forgetting problem. Extensive experiments on
the two benchmark datasets validate the superiority of BER compared to other baseline methods.

2 RELATED WORK

2.1 TEMPORAL KG LINK PREDICTION

The current literature on temporal KG link prediction comprises two lines of methods. The first
line focuses on enhancing KG link prediction through incorporating time-dependent representa-
tions (Dasgupta et al., 2018; Goel et al., 2020; Jiang et al., 2016; Xu et al., 2019). The second line
employs spatial-temporal graph neural networks to model structural and temporal dependencies (Jin
et al., 2019; Sankar et al., 2020). The objectives of temporal KG link prediction and continual KG
link prediction are distinct: (1) the former utilizes temporal information to enhance the represen-
tation of timestamped factual triplets. However, they assume a static class space shared between
training and testing phases. Consequently, they also face the issue of catastrophic forgetting when
confronted with new streaming data. (2) Continual KG link prediction focuses on designing models
to quickly incorporate newly emerging relations while not forgetting previously learned knowledge.
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2.2 CONTINUAL LEARNING ON GRAPHS

Continual learning, also known as lifelong learning or incremental learning, aims to learn a number
of tasks sequentially while not forgetting previously acquired knowledge (French, 1999). Necessi-
tated by the dynamic nature inherent in various forms of data, continual learning has been investi-
gated in many areas such as computer vision (Aljundi et al., 2019a; Shin et al., 2017) and natural
language processing (Biesialska et al., 2020; Sun et al., 2019). However, continual learning on
graphs have been largely under-explored. To date, the existing approaches to continual learning on
graphs can be classified into three categories: replay based methods, regularization based methods,
and parametric isolation based methods.

Replay based methods revisit a collection of samples or generate samples of pseudo-data of the
previously learned tasks during the learning of a new task to strike a balance between learning new
information and retaining knowledge from prior tasks (Aljundi et al., 2019b; Caccia et al., 2020;
Chrysakis & Moens, 2020; Knoblauch et al., 2020; Lopez-Paz & Ranzato, 2017; Shin et al., 2017).
ER-GNN (Zhou & Cao, 2021) proposes three experience node selection strategies to pick represen-
tative nodes for replay. Ahrabian et al. (2021)proposes a structure-aware reservoir-based continual
learning approach for recommender systems. Regularization based methods seek to maintain the
model’s performance on previous tasks using regularization terms to impose penalties on changes
to the model’s parameters (Farajtabar et al., 2020; Jung et al., 2016; Kirkpatrick et al., 2017; Li &
Hoiem, 2017; Saha et al., 2020; Nguyen et al., 2018). Elastic weight consolidation (EWC) (Kirk-
patrick et al., 2017) introduces a quadratic penalty to stabilize the model parameters and avoid
excessive fluctuations. In continual graph learning, Topology-aware Weight Preserving (TWP) (Liu
et al., 2021) explores the local graph structures and attempts to stabilize the key parameters in the
topological aggregation to overcome catastrophic forgetting. Parametric isolation based methods
introduce new parameters for new tasks so as to avoid severe modifications to parameters that cap-
ture key information from previous tasks (Rusu et al., 2016; Wortsman et al., 2020; Wu et al., 2019;
Yoon et al., 2019; 2018). HPNs (Zhang et al., 2022) extract different levels of abstract information
to represent the continuously expanded graphs.

Several recent works on continual KG link prediction include CKGE (Daruna et al., 2021) and
TIE (Wu et al., 2021). Daruna et al. (2021) highlight the limitation in existing KG embedding algo-
rithms, where they assume that all concepts are known a priori and require learning everything from
scratch when new information arises. CKGE introduces the concept of continual knowledge graph
embedding to address this limitation, and introduces a heuristic sampling strategy for generating
CKGE datasets. TIE (Wu et al., 2021) combines knowledge graph representation learning, expe-
rience replay, and temporal regularization to improve model performance on temporal knowledge
graph completion (TKGC) task. It introduces novel evaluation metrics to assess the ability of TKGC
models to handle deleted facts and demonstrates the efficiency and effectiveness of the TIE frame-
work through experiments on real-world datasets. However, we notice that the benchmark datasets
constructed by CKGE and TIE fail to meet the criteria of continual KG link prediction, i.e. real
timestamps of facts are neglected and/or the overlap of consecutive KG snapshots.

3 PROBLEM FORMULATION

In this section, we formally define continual KG link prediction and its two settings. The notations
used in this paper are summarized in Appendix A.

Definition 1 Continual KG Link Prediction. Given a temporal KG represented as G =
{E ,R, T S,F}, where E , R, T S and F denote the sets of entities, relations, timestamps and facts
respectively, continual KG link prediction considers a sequence of tasks, denoted as {T1, T2, ..., TT },
with Ti consists of a snapshot of G, denoted as Gi = {Ei,Ri, T Si,Fi}. The i-th task has its own
dataset Di, which is a subset of Fi. Di is further divided into non-overlapping training, valida-
tion and testing sets, denoted as Dtrain

i ,Dval
i and Dtest

i , respectively. In Ti, a continual KG link
prediction method seeks to learn from Dtrain

i to incorporate the newly emerging relations Ri and
exploit the existing facts in a KG to predict missing ones. This boils down to predicting the cor-
rect entity that completes (h, r, ?) or (?, r, t) for a given relation r. The evaluation is performed
on D̃val

i =
⋃i

j=1 Dval
j to assess the model’s ability of continuously learning new knowledge while

preserving the knowledge learned from previous tasks.
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In the following, we first provide a formal definition for the standard class-incremental (class-IL)
setting (Van de Ven & Tolias, 2019) for continual KG link prediction. In the real world, KGs often
involve specific relations that persist throughout the dynamic evolution, yet new facts associated
with these relations continue to emerge. To better emulate this condition, we derive a new expansive
setting tailored to KGs. This setting accommodates the presence of a set of persistent relations across
tasks, aligning more closely with the complexities of real-world KGs.

Definition 2 Class-IL Continual KG Link Prediction. Given a sequence of tasks {T1, T2, ..., TT },
where Ti consists of a snapshot KG, denoted as Gi = {Ei,Ri, T Si,Fi}. The collection of relations
in Ti is denoted as RTi

. Under class-IL setting, for any distinct tasks Tm and Tn, the input data
distributions are not equivalent, holding true for all cases where m is not equal to n. That is,
RTi

∩ RTj
= ∅, holding true for all cases where i is not equal to j. A class-IL continual KG

link prediction method aims to undertake continual KG link prediction as predefined in Definition
1 under the aforementioned constraints.

Definition 3 Expansive Continual KG Link Prediction. Given a sequence of tasks {T1, T2, ..., TT },
where Ti consists of a snapshot KG, denoted as Gi = {Ei,Ri, T Si,Fi}. Under expansive setting,
each Ti contains two types of relations: (1) persistent relations that remain constant presence across
tasks, denoted as Rp; (2) new relations that are introduced by new tasks, denoted as RTi

. The arrival
of new task Ti+1 results in the introduction of new facts associated with Rp, and new relations RTi+1

and their associated facts, making expansive setting better replicate the nature of KGs. An expansive
continual KG link prediction method aims to undertake continual KG link prediction as predefined
in Definition 1 under the aforementioned constraints.

4 DATASET CONSTRUCTION

In the current continual KG link prediction literature, existing benchmark datasets such as
WN18RR-5-LS and FB15K237-5-LS (Daruna et al., 2021) do not guarantee the distinct class space
across different tasks. These datasets consider a same group of relations in different tasks, which
violates the original intention of continual learning. The dataset generated by (Wu et al., 2021) also
suffers from an overlap of 95% between consecutive KG snapshots (Mirtaheri et al., 2023). Further-
more, current benchmark datasets do not incorporate the actual timestamps of facts as an intrinsic
and informative basis for task division. To facilitate the future research on continual KG link predic-
tion, we construct a benchmark dataset under class-IL setting based on ICEWS05-15 (Garcia-Duran
et al., 2018) (Sec 4.1) and further propose a new expansive setting (Sec 4.2), which is more in line
with the characteristics of KGs and more practical for real-world scenarios.

The Integrated Crisis Early Warning System dataset, often referred to as ICEWS05-15 (Garcia-
Duran et al., 2018) is a collection of event data, covering a time span from 2005 to 2015. Each event
in ICEWS05-15 is structured and comes with a specific timestamp, accurately recording the evolving
situation over time. In the following, we describe two new benchmark datasets for continual KG
link prediction, ICEWS05-15-classIL and ICEWS05-15-expansive, both derived from ICEWS05-
15. The detailed statistics of the two datasets are listed in Table. 1.

4.1 ICEWS05-15-CLASSIL

We partition the ICEWS05-15 dataset into six sequential tasks, {T1, T2, ..., T6}, based on their re-
spective time spans T Si. To meet the first criterion of preserving the temporal property, we construct
Di by selecting facts associated with RTi

and timestamped within T Si, i.e. Di = {(h, r, t, ts)|r ∈
RTi

, ts ∈ T Si}. To ensure distinct input distributions for different tasks, three distinct relations
RTi

= {RTi1
,RTi2

,RTi3
} are selected for each task Ti based on their frequency to serve as the

target relations, adhering to the second criterion of distinct input data distribution.

In doing so, each task Ti contains a distinct snapshot composed of facts originated from the
same time interval T Si while shares no overlap of relations, ensuring that RTi

∩ RTj
= ∅ and

T Si ∩ T Sj = ∅, holding true for all cases where i is not equal to j. Specifically, all facts in T1 are
timestamped from January 2005 to October 2006 and all facts in T2 are timestamped from Novem-
ber 2006 to August 2008, etc. And the selection criteria for target relations is that each selected
RTij

(1 ≤ j ≤ 3) is associated with less than 10,000 but more than 1,000 facts in Fi. To maintain
the semantic connections and knowledge inference ability of KGs, we also assume that the method
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Dataset Statistic Task1 Task2 Task3 Task4 Task5 Task6

ICEWS05-15-classIL
|Ei| 1,654 1,241 1,308 1,775 1,693 1,624

|Ri| / |Rp| 3 / 0 3 / 0 3 / 0 3 / 0 3 / 0 3 / 0
|Fi| 8,538 6,920 7,146 11,043 7,249 8,728

ICEWS05-15-expansive
|Ei| 3,622 3,575 3,306 3,267 3,323 3,559

|Ri| / |Rp| 8 / 5 8 / 5 8 / 5 8 / 5 8 / 5 8 / 5
|Fi| 25,096 24,483 23,647 24,706 20,963 25,116

Table 1: Number of facts contained in each task. |Ei| is the number of entities, |Ri| is the number of relations,
|Rp| is the number of overlapped relations in all tasks, and |Fi| is the number of facts.

Dataset |E| |R| |Dtrain| |Dval| |Dtest| |T | Division Basis Overlap

WN18RR-5-LS 20,471 11 86,835 5,819 5,893 5 Random 100%
FB15K237-5-LS 13,163 237 272,115 84,646 98,796 5 Random 100%
YAGO11k-TIE 10,623 10 215,894 23,197 22,567 61 Timestamp 95%
Wikidata12k-TIE 12,554 24 257,542 20,764 19,746 78 Timestamp 95%

ICEWS05-15-classIL 4,511 18 34,736 9,925 4,963 6 Timestamp 0%
ICEWS05-15-expansive 7,968 23 100,807 28,802 14,401 6 Timestamp 22%

Table 2: Comparison of related benchmark datasets. |E|, |R| and |T | indicate the number of the entities,
relations and tasks in corresponding dataset. |Dtrain|, |Dval| and |Dtest| indicate the number of facts in
training set, validation set and testing set, respectively.

has access to a background knowledge graph G′

i in Ti, which is a subset of Gi with all the facts
associated RTij (1 ≤ j ≤ 3) removed.

4.2 ICEWS05-15-EXPANSIVE

ICESW05-15-expansive is constructed by accommodating a group of persistent relations Rp =
{Rp1, ...,Rp5} to each task that persist over the evolve of KGs. Similarly, facts that are associated
with Rp and also timestamped within T Si are added to Di. The selection criteria for persistent
relations is that the number of facts associated with Rpj(1 ≤ j ≤ 5) is more than 500 in Fi(1 ≤
i ≤ 6), excluding RTi

. A back ground graph G′

i is also constructed. The inclusion of persistent
relations introduces a 22% overlap of relations across different tasks but brings the continual KG
link prediction task into closer alignment with the real-world dynamics of KGs.

4.3 COMPARISON WITH PREVIOUS DATASETS

Table. 2 illustrates the comparison between the proposed ICEWS05-15-classIL, ICEWS05-15-
expansive and other related benchmark datasets. Compared with WN18RR-5-LS and FB15K237-5-
LS (Daruna et al., 2021), ICEWS05-15-classIL and ICEWS05-15-expansive employ timestamps as
the basis for task division, ensuring that all facts within one task originate from the same time span.
The partitioning approach of ICEWS05-15-classIL additionally guarantees a 0% overlap of rela-
tions across distinct tasks, in contrast to 100% overlap observed in WN18RR-5-LS and FB15K237-
5-LS, and a 95% overlap in YAGO11k-TIE and Wikidata12k-TIE (Wu et al., 2021), establishing
ICEWS05-15-classIL a standard continual learning dataset for KG link prediction task. The inclu-
sion of Rp results in a 22% overlap in the relaxed version, ICEWS05-15-expansive, reducing the
challenge but better replicate the real-world dynamics of KGs that a certain group of relations remain
constant presence in KGs.

5 THE PROPOSED METHOD

We propose a new continual KG link prediction method BER based on experience replay and knowl-
edge distillation. There are two key components in BER enhancing the model’s continual learning
ability: attention-based experience replay and embedding distillation. As BER is agnostic to KG
link prediction methods, we give detailed description to a TransE-instantiated BER in this section.
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5.1 TRANSE-BASED KG LINK PREDICTION

In each task Ti, we leverage the scoring function inspired by TransE (Bordes et al., 2013) which
assumes the translational relationship holds between the embeddings of the head entity and the tail
entity, i.e. h+ r = t. The scoring function is then defined as:

s(hi,ti) = ||hi + r− ti||2, (1)
where ||x||2 denotes the ℓ2 norm of vector x. With the scoring function, we obtain the following
translational loss,

Lt = Σ(hi,ti)∈Dtrain
i

[γ + s(hi,ti) − s(hi,t
′
i)
]+, (2)

where [x]+ represents the positive part of x. s(hi,t
′
i)

calculates the score of a negative pair (hi, t
′
i),

synthesized by negative sampling of the positive pair (hi, ti) ∈ Dtrain
i , i.e.(hi, r, t

′
i) /∈ Dtrain

i . γ is
a hyper-parameter determining the margin to separate positive pairs from negative pairs.

5.2 ATTENTION-BASED EXPERIENCE REPLAY

5.2.1 REPLAY FACT SELECTION

Task 1 Task 2 Task TTask 3

model

buffer

data

train train train train

Facts Replay

Embedding 
Distillation

Task 1 Task 2 Task T

model

buffer

data

train train train

class space for Ti

Facts 
Replay

Facts 
Replay

Emb.
Distillation

selected facts from Ti-1

facts replay

embedding distillation

model parameters

previous ri-1 in Ti

Figure 1: General framework of BER.

Given a task Ti con-
taining facts associated
with relations from
RTi

, we aim to extract
a selected group of
representative facts for
each relation r ∈ RTi

.
These representative
facts are stored and
replayed when new
tasks come in, so as to
efficiently retain the knowledge learned from Ti. The main consideration in our model design is
that those representative facts should epitomize the relation r they are associated with. Therefore,
we design our fact selection process based on attention mechanism and select those facts that have
the strongest similarity with other triplets associated with r.

Mathematically, given a batch of facts {(hi, ri, ti, tsi)|(hi, ri, ti, tsi) ∈ Dtrain
i , ri ∈ RTi}, each

fact is first encoded as xi = hi ⊕ ti, where hi ∈ Rd and ti ∈ Rd are the embeddings of entity hi

and tail entity ti with dimension d, and x ⊕ y indicates the concatenation of two vectors x and y.
For all facts associated with the same relation ri, our attention-based fact selection module aims to
compare the similarity among facts and select those with the highest similarity with all other facts.
To achieve this goal, we leverage a self-attention module on all facts associated with ri:

X = [x0;x1; ..;xn], xi ∈ R2d, 0 ≤ i ≤ n, (3)
This input X is first transformed into two different matrices: the query matrix Q ∈ Rn×dv and the
key matrix K ∈ Rn×dk with dimension dq=dk=dc. The self-attention matrix is then computed using
Q and K.

Attention(Q,K) = softmax(Q ·K⊤/
√

dk), (4)
where Attentionij denotes the similarity score of xi and xj . Based on the self-attention matrix, the
attention rank score of xi can be computed by:

AttnRanki =

n∑
j=0

Attentionij , (5)

The attention rank score can describe how similar each fact is to all other facts associated with the
same relation. We select the top N facts based on its AttnRank from each batch and union all the
facts selected from different batches in one epoch j to generate the fact set FSj

ri for relation ri. The
final representative fact set for ri, denoted as FSri , is generated by:

FSri =

E⋂
j=0

FSj
ri , (6)

where E denotes the number of epochs in the current task.
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5.2.2 CONTRASTIVE LEARNING BASED REPRESENTATION REFINEMENT

The representativeness of selected facts for replay is closely related to the expressiveness of en-
tity embeddings. Therefore, we leverage a contrastive learning based representation refinement
inspired by HiRe (Wu et al., 2023) to reinforce the embedding learning for each fact. For a
given a fact (h, r, t, ts), we denote its wider context as C(h,r,t,ts) = Nh ∪ Nt, where Nh =
{(rj , tj)|(h, rj , tj , tsj) ∈ Fi} and Nt = {(rj , tj)|(t, rj , tj , tsj) ∈ Fi}. Each relation-entity tu-
ple (rj , tj) ∈ C(h,r,t,ts) is first encoded as rej = rj ⊕ tj , where rj ∈ Rd and tj ∈ Rd are the relation
and entity embedding, respectively. A multi-head self-attention (MSA) block is then employed to
uncover the underlying relationships within the context and generate context embedding c:

c0 = [re1; re2; ..., ; reK ], K = |C(h,r,t,ts)|, (7)

c =
∑K

j=0
α · rej , α = MSA(c0), (8)

where c0 is the concatenation of the embeddings of all relation-entity tuples and |x| is the size of
set x. The self-attention scores among all relation-entity tuples from C(h,r,t,ts) can be computed
by Eq. 8. A group of false contexts {C̃(h,r,t,ts)j} are also synthesized by randomly corrupting the
relation or entity of each relation-entity tuple (rj , tj) ∈ C(h,r,t,ts). The embedding of each false
context C̃(h,r,t,ts)j can be learned via the context encoder as c̃i. Then, we use a contrastive loss
to pull close the embedding of the target fact with its true context and to push away from its false
contexts. The contrastive loss function is defined as follows:

Lc = − log
exp(sim(h ⊕ t, c)/τ)∑N

j=0 exp(sim(h ⊕ t, c̃j)/τ)
, (9)

where h and t are the embeddings of entity h and t, N is the number of false contexts for (h, r, t, ts),
τ denotes the temperature parameter, sim(x, y) measures the cosine similarity between x and y.

5.3 EMBEDDING DISTILLATION

The challenge of continual KG link prediction lies in the catastrophic forgetting problem when
new tasks come in. In addition to the replay of selected representative fact set FSri in new tasks
to alleviate the problem, we also propose an embedding distillation loss, aim to consolidate the
memorization of previous knowledge by reviewing previously learned relation embeddings.

Considering a new task Ti+1, the replay of FSri results in the re-learning of ri and update ri as r′i.
However, the model is inclined toward Ti+1 and the newly computed r′i is subpar compared with
ri, due to the limited number of replayed facts contained in FSri . To address this problem, we
strengthen the model’s capacity to retain previously acquired knowledge by imposing constraints on
the update process for relation embeddings:

LED = ||ri − r′i||22, (10)

The overall loss function of BER in Ti, i ≥ 1 is:

L = Lt + β0Lc + 1(i > 1)β1LED, (11)

where 1(·) is an indicator function.

6 EXPERIMENTS

6.1 BASELINES AND EVALUATION METRICS

We conduct experiments on ICEWS05-15-classIL and ICEWS05-15-expansive. The detailed statis-
tics of two datasets are provided in Section 4. We evaluate the performance using both MRR (mean
reciprocal rank of correct entities) and Hits@10 (the proportion of correct entities ranked within the
top 10). For fair comparison, we follow CKGE (Daruna et al., 2021) and compare the proposed
BER against representative continual learning methods: PNN (Rusu et al., 2016), CWR (Lomonaco
& Maltoni, 2017), L2 (Kirkpatrick et al., 2017). We also fine-tune the model with examples only
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ICEWS05-15-classIL

Methods Task1 Task2 Task3 Task4 Task5 Task6 Average
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

PNN 29.06 50.18 10.82 26.23 5.69 17.34 5.10 17.12 6.97 20.62 6.47 20.93 10.69 25.40
CWR 13.91 33.16 27.16 46.24 12.08 30.14 11.38 28.80 13.21 35.38 22.96 46.85 16.78 36.76

FT 10.45 28.92 32.36 58.60 11.43 27.03 11.60 33.00 21.08 40.93 18.21 38.35 17.52 37.81
L2 8.77 21.87 28.61 47.40 10.50 26.71 15.98 41.67 21.65 49.17 22.24 50.92 17.96 39.62

Ours 11.25 32.90 42.28 65.63 16.93 38.06 12.18 34.24 25.81 53.04 23.66 52.04 22.02 45.99

ICEWS05-15-expansive

Methods Task1 Task2 Task3 Task4 Task5 Task6 Average
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

PNN 35.96 52.17 28.78 42.28 20.72 31.42 18.02 28.84 20.09 32.08 17.90 27.96 23.58 35.79
CWR 14.68 32.60 20.26 39.52 14.81 32.60 14.19 32.80 16.74 36.65 34.10 51.72 19.13 37.65

FT 17.88 37.94 26.51 50.28 21.51 43.70 19.35 39.91 26.39 50.58 24.68 49.50 22.72 45.32
L2 19.82 38.34 29.84 51.02 20.24 39.90 20.87 40.63 28.16 49.26 27.12 46.06 24.34 44.20

Ours 21.91 44.71 31.05 59.55 24.28 49.93 24.56 49.15 30.11 57.34 26.86 55.01 26.46 52.62

Table 3: Comparison against baseline methods on ICEWS05-15-classIL and ICEWS05-15-expansive.The
results listed here indicate the final performance after training on Task 6.
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Figure 2: Comparison between different methods of Hits@10 on ICEWS05-15-classIL (results of MRR are
in Appendix. C). We present the results spanning from Task 1 to Task 6. The lighter ones correspond to the
testing performance immediately after training on each respective task, while the darker results indicate the
final performance after training on Task 6 (with some amount of forgetting excluding Task 6).

from the current task, denoted as FT. Due to the fact that TIE (Wu et al., 2021) has access to the past
5 tasks which does not align with our settings, we leave TIE out in our comparison. All reported re-
sults are produced under the same experimental setting. All models are implemented in PyTorch and
trained on a single V100 GPU. The detailed experimental settings are provided in the Appendix B.

6.2 COMPARISON WITH BASELINE METHODS

Table. 3 compares the performance of BER on each task against baseline methods after training on
all six tasks on ICEWS05-15-classIL and ICEWS05-15-expansive, respectively. In general, BER
achieves the best overall performance in terms of MRR and Hits@10 on both datasets and strikes a
balance between learning new knowledge and maintaining knowledge learned from previous tasks,
which validates its efficacy for continual KG link prediction task. Specifically, PNN tackles with
catastrophic forgetting by freezing existing weights when new tasks come in and adding copies
of existing layers for new tasks. This explains the reason why PNN achieving satisfactory results
only on T1 but failing to effectively learn subsequent tasks. As for performance gains in terms of
average MRR and Hits@10, BER surpasses the second best performer by +4.05% and +6.33% on
ICEWS05-15-classIL, and by +2.12% and +7.3% on ICEWS05-15-expansive. BER achieves large
performance improvements in terms of both metrics, proving the necessity of tailored method for
continual KG link prediction task.

To further compare the ability of different methods to mitigate the catastrophic forgetting problem,
Figure. 2 illustrates the comparison between testing performance obtained immediately after train-
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Ablation on ↓
Components Avg Metric

Rep. Con. Dis. MRR Hits@10
BER (ours) ✓ ✓ ✓ 22.02 45.99
w/o replay ✗ ✓ ✓ 19.34 41.61

w/o contrastive ✓ ✗ ✓ 20.99 43.11
w/o distillation ✓ ✓ ✗ 19.93 42.08

(a) Impact of different components.

Number Rep. Ratio of facts MRR Hits@10
0 ✗

16.7%
12.0%

9.2%
4.5%

0.0% 19.34 41.61
4 ✓ 20.95 44.50
8 ✓ 21.68 45.31

10 ✓ 22.02 45.99
12 ✓ 22.26 46.34

(b) Impact of replay number.
Random based Attention based

Number MRR Hits@10 MRR Hits@10
4 20.21 42.67 20.95 44.50
10 21.04 43.75 22.02 45.99

(c) Impact of manners in selecting replay fact.
β0 0 5 10 20 30 40

MRR 20.99 21.37 21.40 22.02 21.88 21.56
Hits@10 43.11 44.97 44.68 45.99 45.63 45.02

(d) Coefficient of contrastive loss.

β1 0 5 10 20 30 40
MRR 19.93 21.04 21.75 21.77 22.02 21.68

Hits@10 42.08 43.56 45.03 45.70 45.99 45.89

(e) Coefficient of distillation loss.

Table 4: Ablation studies on several key components in ICEWS05-15-classIL. We study: a) different compo-
nents; b) different number of top N ; c) different manners in selecting replay facts; d) coefficient of contrastive
loss β0; e) coefficient of review loss β1; Default settings are marked in gray .

ing on each respective task, and the final performance obtained after training on the last Task 6.
The difference between light and dark colors indicate the degree of catastrophic forgetting. Our
proposed BER demonstrates significantly lower levels of forgetting previously learned knowledge
while effectively learning new tasks compared to other baseline methods.

6.3 ABLATION STUDY AND HYPER-PARAMETER SENSITIVITY

Our proposed continual KG link prediction method BER consists of three key components. To in-
vestigate the contributions of each component to the overall performance, we conduct a thorough
ablation study on ICEWS05-15-classIL, as shown in Table 4. Facts replay: The replay of repre-
sentative facts proves beneficial in retaining learned knowledge during continual learning. When
the replay mechanism is removed from BER, the Hits@10 performance experiences a significant
drop from 46.0% to 41.6%. Table 4(c) ablates different manners in selecting replay facts. The
corresponding results highlight the importance of our attention-based fact selection approach in mit-
igating catastrophic forgetting in the continual KG link prediction task. Furthermore, we investigate
the impact of the number of selected facts, as shown in Table 4(b). As expected, higher selection
proportions yield better results but also increase the storage burden on the buffer. We find that a fact
proportion of approximately 12% strikes a favorable trade-off between cost and performance. Con-
trastive loss: We experiment with different coefficients of contrastive loss in Eq. 11 to investigate
the impact of representation refinement. Setting β0 to 0 implies the absence of representation re-
finement in our BER model. We observe that representation refinement leads to a 1% improvement
in MRR and a nearly 3% enhancement in Hits@10. This indicates the importance of leveraging the
context of each fact in our approach. Embedding Distillation: We further investigate the effective-
ness of embedding distillation by experimenting with different coefficients of LED in Eq. 11. β1 =
0 means that embedding distillation is not incorporated in BER. Interestingly, we observe that BER
performs well across a range of β1 values from 10 to 40, highlighting the robustness and importance
of embedding distillation in consolidating the memorization of previous knowledge.

7 CONCLUSION

This paper formally defines the class-incremental and expansive setting of continual KG link predic-
tion task, and establishes benchmark datasets, ICEWS05-15-classIL and ICEWS05-15-expansive,
for each setting. The proposed datasets are designed to support research on the dynamic character-
istics of knowledge graphs (KGs) and enhance the continual learning capabilities of KG link predic-
tion methods. We provide comprehensive use cases for these datasets, including the benchmarking
of various continual learning methods for continual KG link prediction. We also propose BER,
a novel continual KG link prediction method based on experience replay and knowledge distilla-
tion tailored for continual KG link prediction. Experimental results on the two benchmark datasets
show that BER consistently alleviate the catastrophic forgetting problem. The ablation study and
hyper-parameter study also verify the efficacy of key components in BER.
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A NOTATIONS

The notations and symbols used in this paper are summarized in Table 5.

Table 5: Notations and Symbols.

Symbol Description
G Knowledge graph.

E ,R, T S,F Entity, relation, timestamp and fact set of a temporal KG.
h, t Head entity, tail entity.
r Relation.
ts Timestamp.

(h, r, t, ts) Timestamped fact.
Ne Neighborhood of entity e.

C(h,r,t,ts) Context of fact (h, r, t, ts).
h, r, t Embeddings of h, r and t.
Ti Continual learning task i.
Rp Persistent relations in instance-IL setting.

Ei,Ri, T Si,Fi Entity, relation, timestamp and fact sets of Gi.
Dtrain

i ,Dval
i ,Dtest

i Training, validation and test sets of Ti.

B EXPERIMENTAL SETTING

On both datasets, the embedding dimensions of entity and relation are set to 100. We set the number
of self-attention head to 1 and apply drop path to avoid overfitting with a drop rate of 0.2. The
maximum number of neighbors for a given entity is set to 50. The number of negative context for
each fact is set to 1. The margin γ in Eq. 2 is set to 5. For all experiments except for the ablation
study on the trade-off parameter, β0 and β1 in Eq. 11 are set to 20 and 30 respectively. The number
of replayed facts is set to 10 except for the ablation study. Trained model is applied on validation
tasks each 5 epochs, and the current model parameters and corresponding performance are recorded,
after stopping, the model that has the best performance on Hits@10 is treated as final model. For
number of training epoch, we use early stopping with 30 patient epochs, which means that we stop
the training when the performance on Hits@10 drops 30 times continuously. During training, we
apply mini-batch gradient descent to train the model with a batch size of 128 for both datasets. Adam
optimizer (Kingma & Ba, 2015) is used with a learning rate of 1e− 4. All models are implemented
by PyTorch and trained on single V100 GPU.

C EXPERIMENTAL RESULTS

Figure. 3 and Figure. 4 illustrate the performance of BER on task against baseline methods after
training on all six tasks on ICEWS05-15-classIL and ICEWS05-15-expansive, respectilvey. The
lighter ones correspond to the testing performance immediately after training on each respective
task, while the darker results indicate the final performance after training on Task 6. In general, BER
achieves the best overall performance in terms of MRR and Hits@10 on both datasets and strikes a
balance between learning new knowledge and maintaining knowledge learned from previous tasks.
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Figure 3: Comparison between different methods of MRR and Hits@10 on ICEWS05-15-classIL. We present
the results spanning from Task 1 to Task 6. The lighter ones correspond to the testing performance immediately
after training on each respective task, while the darker results indicate the final performance after training on
Task 6 (with some amount of forgetting excluding Task 6).
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Figure 4: Comparison between different methods of MRR and Hits@10 on ICEWS05-15-expansive.
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