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Abstract
We investigate the test risk of a continuous time
stochastic gradient flow dynamics in learning the-
ory. Using a path integral formulation we provide,
in the regime of small learning rate, a general for-
mula for computing the difference between test
risk curves of pure gradient and stochastic gradi-
ent flows. We apply the general theory to a sim-
ple model of weak features, which displays the
double descent phenomenon, and explicitly com-
pute the corrections brought about by the added
stochastic term in the dynamics, as a function
of time and model parameters. The analytical
results are compared to simulations of discrete
time stochastic gradient descent and show good
agreement.

1. Introduction
In supervised learning of neural networks and regression
models, understanding the dynamics of optimization algo-
rithms, and in particular stochastic gradient descent (SGD),
is of utmost importance. However, despite much progress
in a number of directions, this still remains a highly chal-
lenging theoretical problem. A fruitful approach that allows
making analytical progress consists of suitably approximat-
ing SGD by a continuous time approximation, henceforth
called stochastic gradient flow (SGF). In this contribution,
we build up on this approach, to develop a general formalism
characterizing the dynamics of the stochastic process, and
apply it to the investigation of the test risk (or generalization
error) as a function of time.

As is well known, the classical bias-variance trade-off has
been challenged in a number of models displaying the dou-
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ble descent phenomenon (Belkin et al., 2019; 2020; Belkin,
2021). Analytical derivations of double descent curves have
been achieved for relatively simple models, but are limited
to the use of least squares estimators (no dynamics) and pure
gradient flow (GF) approximations of gradient descent (GD).
The present work goes one step further by investigating the
effects of stochasticity on the double descent curve.

Main contributions – Our main contributions are sum-
marized as follows:

C1 We consider a general Itô stochastic differential equa-
tion (SDE) and represent the Markovian transition prob-
ability as a path integral, Eq. (11). A general ‘explicit’
formula for the transition probability, Eq. (17), is derived
in the limit of a small learning rate by using a Laplace ap-
proximation. This constitutes one of the main results of
this paper: suppose that wode(t) is the deterministic solu-
tion of pure GF (with no stochastic term), then by repre-
senting the large deviation of the Itô diffusion of SGF as
wode(t) +

√
γzzz(t) we provide a general formula for the co-

variance CCC (t) ≡ E[zzz(t)zzz(t)⊤]. The formula is confronted
against a simple rigorously solvable SDE and we find exact
agreement.

C2 We use the simplest relevant SGF approximation of
SGD in a learning theory setting, which is known to come
with a first-order guarantee with respect to small learning
rates (Li et al., 2019). We use our general theory to express
the covariance CCC (t) in terms of the data matrix, training
cost and its Hessian, and the deterministic GF trajectory.

C3 This general theoretical framework is applied to a par-
ticular random weak features model, displaying the dou-
ble descent phenomenon, first discussed by (Breiman &
Freedman, 1983) and revisited in (Belkin et al., 2020). We
explicitly compute the corrections brought about by the
added stochastic term in the whole learning dynamics. For
i.i.d. Gaussian data, and in a suitable large-size asymptotic
regime, the formula for the test risk of SGF is given ex-
plicitly by an expression involving only single and double
integrals over the Marchenko-Pastur distribution, Eqs. (29)
and (30). We check our analytical predictions against nu-
merical simulations of SGD and find good agreement.
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Relation to previous work – Approximating discrete
time stochastic processes by continuous time dynamics
has been studied for more than three decades (see Kush-
ner & Yin 2003 for a comprehensive monograph). In par-
ticular, many works have attempted to approximate SGD
by considering continuous time Ornstein-Uhlenbeck pro-
cesses (Mandt et al., 2016; 2017; Jastrzębski et al., 2018;
Fan et al., 2018; Wang & Wu, 2020) assuming constant
covariance in the continuous time limit; however this is
not necessarily a good approximation (Ali et al., 2020).
In (Mandt & Blei, 2015; Li et al., 2015) the authors heuristi-
cally proposed ‘better’ SDEs with a non-trivial covariance.
This framework is a stochastic version of the method of mod-
ified equations in the analysis of classical finite difference
methods (Warming & Hyett, 1974). Further developments
are found in (Li et al., 2017; 2019) where rigorous approx-
imation results, in the sense of convergence in probability,
are proved.

The case of regularized least squares in high-dimensions is
discussed in (Paquette et al., 2022b;a) where the dynamics
of the so-called homogenized SGD (Paquette & Paquette,
2021) is characterized with rigorous guarantees in terms
of Volterra integral equations. We expect the solution of
these equations to agree with ours when applied to the weak
features model in the limit of a small learning rate. Nev-
ertheless, the saddle point calculation of the path integral
employed here circumvents the need to solve Volterra inte-
gral equations, which is itself a non-trivial task.

Other interesting formulations of SGF were also analyzed
in (Mignacco et al., 2020; 2021) through Dynamical Mean-
Field Theory (DMFT) in the contexts of high-dimensional
Gaussian mixture classification and phase retrieval. Rig-
orous advances along this line of work were recently ob-
tained (Gerbelot et al., 2024). Furthermore, the role of
stochasticity in escaping flat directions near initialization
is discussed in (Arnaboldi et al., 2023) in the context of
two-layer neural networks.

The path integral formulation used here remains at a heuris-
tic level. We point out that for more restricted SDEs (with
constant covariance and small noise) there exist rigorous for-
mulations belonging to the Freidlin-Wentzell large deviation
theory (see Freidlin & Wentzell 2012 and Dembo & Zeitouni
2010, Chapter 5.6). Extending the Freidlin-Wentzell large
deviation theory with state-dependent covariances is, to the
best of our knowledge, an open mathematical problem.

The complete time dependence of training and generaliza-
tion errors of GF has been calculated for the random features
and Gaussian covariate models in (Bodin & Macris, 2021;
2022) using advanced random matrix machinery. However,
the corresponding curves for SGF have not been investi-
gated within these models. Here, as our main focus is on
SGF dynamics, we limit ourselves to the simplest possible

weak features model which requires minimal random matrix
theory, and postpone the harder calculation for other models
to later work.

An interesting study of SGF, and notably its implicit bias,
has been initiated for diagonal networks in a recent series
of papers (Pesme et al., 2021; Pesme & Flammarion, 2023),
where the benefit of the stochasticity for large training times
has been uncovered, provided that the weights are prop-
erly initialized. Additionally, we mention the decoupling
approximation near local minima proposed in (Mori et al.,
2022), making the noise contribution additive near these
minima and considerably simplifying the stochastic dynam-
ics. These perspectives could also constitute an interesting
test lab for the present approach, with which one could ana-
lyze the effects of stochasticity over the whole dynamics.

Outline – The simplest relevant SGF approximation of
SGD is briefly described in Section 2. The general path
integral is formulated in Section 3, where we also derive
the Laplace approximation, test the theory against a simple
solvable model, and apply it to a general learning theory
setting. In Section 3.1 we compute the whole time evolution
of the test risk under SGF for the weak features model, and
compare the theoretical predictions to numerical simulations
of SGD.

Reproducibility – Github repository.

2. Stochastic modeling of SGD
Consider a data set composed of n pairs (xk, yk)k∈[n] ∈
Rd+1 ∼ P(x, y) i.i.d. and a model parametrized by β̂ ∈
Rd. Starting with β̂0, the usual full-batch GD update is
β̂ν+1 = β̂ν − γ∇L

(
β̂ν ;X,y

)
, where L

(
β;X,y

)
=

1
n

∑n
k=1 l

(
β;xk, yk

)
is the total training loss, with X =

[x1| . . . |xn]⊤ ∈ Rn×d being the data matrix, y =
[y1, . . . , yn]

⊤ ∈ Rn the target vector and l
(
β;xk, yk

)
a

penalization function. The parameter γ > 0 is the learning
rate and ν = 0, 1, 2, . . . . The GD rule can be thought of
as a discretization of the continuous ordinary differential
equation (ODE):

dβ̂(t)

dt
= −∇L

(
β̂(t);X,y

)
, (1)

with β̂(0) = β̂0, known as gradient flow (GF).

Stochastic gradient descent (SGD), on the other hand, does
not make use of the whole training set at each optimiza-
tion step. In its single batch form, it can be written as
β̂ν+1 = β̂ν − γ∇l

(
β̂ν ;xkν , ykν

)
with kν sampled uni-

formly in {1, n}. In general, one could perform batch SGD
by sampling a set Bν of pairs, and replace the gradient
above by (1/|Bν |)

∑
k∈Bν l

(
β̂ν ;xk, yk). Conceptually, the
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general path-integral approach we introduce in Section 3
does not change with the batch size. Therefore, for the sake
of simplicity in the exposition, we adopt single batch SGD
in the mathematical formulation. The expressions can be
straightforwardly extended to the batch case by replacing
the single sample gradient by the average gradient over the
batch.

Summing and subtracting the total training loss gradient
γ∇L

(
β̂ν ;X,y

)
on the SGD update makes the effective

noise explicit:

β̂ν+1= β̂ν−γ∇L
(
β̂ν ;X,y

)︸ ︷︷ ︸
Full-bath GD

−γ ξkν
(
β̂(t);X,y

)︸ ︷︷ ︸
Stochastic perturbation

, (2)

where the stochastic perturbation is by definition:

∇l
(
β̂(t);xkν , ykν

)
−∇L

(
β̂(t);X,y

)
. (3)

Since kν is sampled uniformly in {1, n}, the
stochastic perturbation is a zero mean vector,
Ekν∼U{1,n}

[
ξkν
(
β̂(t);X,y

)]
= 0. In the spirit of

gradient flow, Eq. (2) can be thought of as a discretization
of a stochastic differential equation (SDE), which we will
call stochastic gradient flow (SGF), in the continuous-time
limit. Here we choose the simplest representation proposed
in (Mandt & Blei, 2015) and (Li et al., 2015):

dβ̂(t) = −∇L
(
β̂(t);X,y

)
dt

+

√
γ Σ

(
β̂(t);X,y

)
db(t) , (4)

where db(t) = b(t+dt)−b(t) ∈ Rn is the forward Itô incre-
ment associated to a standard n-dimensional Wiener process
with b(0) = 0, E[b(τ)] = 0, E[b(t)b(t′)⊤] = Inmin(t, t′),
with In as the n × n identity matrix. The matrix Σ is
matched to the covariance matrix of the stochastic perturba-
tion in (3):

Σ
(
β̂(t);X,y

)
≡

Ekν
[
ξkν
(
β̂(t);X,y

)
ξkν
(
β̂(t);X,y

)⊤]
. (5)

This is a d× d positive semi-definite matrix and its "square-
root" is defined as the d×nmatrix such that

√
Σ
√
Σ

⊤
= Σ.

Solving the SGF (4) can be far from trivial, since a priori
both the drift vector ∇L

(
β̂(t);X,y

)
and the diffusion ma-

trix Σ
(
β̂(t);X,y

)
depend on the stochastic process β̂(t)

and on the data (X,y). We provide in the next section
a general method to compute the fluctuations around the
deterministic trajectory when the learning rate is small.

3. General path integral formulation
Inspired by Eq. (4), we consider the following general SDE
for a process w(τ) ∈ Rd, sampled between t0 and t > t0:

dw(τ) = f (τ,w(τ)) dτ +
√
γ G (τ,w(τ)) dη(τ) , (6)

where dη(τ) = η(τ + dτ) − η(τ) ∈ Rn is the forward
Itô increment of a standard n-dimensional Wiener pro-
cess (as defined previously). We assume this SDE has a
unique solution. Standard conditions ensuring existence
and uniqueness are Lipshitzness and linear growth of f
and G w.r.t w uniformly in τ (see for example Evans
2012, Section 5.B.3). The explicit expressions of the
drift vector f (τ,w(τ)) ∈ Rd and the diffusion matrix
G (τ,w(τ)) ∈ Rd×n in the learning theory context will
depend on the model (data distribution, architecture and
loss function). However, the method discussed here is not
restricted to machine learning models: it can be viewed as
a general approximation scheme to solve SDEs for small
γ. To stress that fact, we generically named the stochastic
process as w(τ) in this section, which in the learning theory
context is the estimator β̂(τ) itself or some parametrization
of it. The general path integral formulation is outlined in
this section; the complete detailed derivation is contained in
Appendix A.

Let Pγ(w, t|w0, t0) be the transition probability of the pro-
cess associated to Eq. (6) to go from w0 at time t0 to w at
time t. If γ = 0 the SDE (6) becomes a first-order ODE:

dw(τ)

dτ
= f(τ,w(τ)) . (7)

The solution of this ODE with initial condition wode(t0) =
w0 (we assume a unique global solution here) is de-
noted by wode(τ). In such case: Pγ=0(w, t|w0, t) =
δ
(
w −wode(t)

)
. Our goal is to study the fluctuations

around the deterministic trajectories wode(τ) when γ is
small.

The continuous-time Itô SDE (6) must be understood accord-
ing to its discrete-time companion process wk = w(k∆τ):

wk+1 = wk + f(k,wk)∆τ +
√
γ G(k,wk)∆ηk , (8)

where the time interval [t0, t] has been discretized into
N slices of length ∆τ ≡ t−t0

N with τk = t0 + k∆τ for
k = 0, . . . , N and τN = t. The discrete quantities ∆ηk
are sampled independently at each step k from a Gaussian
with E[∆ηk] = 0, E[∆ηk(∆ηk)

⊤] = ∆τ In. In general
the covariance matrix G(k,wk)G(k,wk)

⊤ is only positive
semi-definite, and in particular when d > n it certainly has
zero eigenvalues. Thus the process might become singu-
lar in sub-manifolds of Rd. This is cured by introducing a
regularization parameter ϵ > 0 and replacing Eq. (8) by

∆wk≡wk+1−wk∼N
(
fk∆τ, γ∆τ

(
GkG

⊤
k + ϵId

))
,

(9)
with fk ≡ f(k,wk) and Gk ≡ G(k,wk).

In order to compute the continuous time limiting transi-
tion probability and associated expected values, the correct
prescription is to take the limit ϵ→ 0 after N → +∞.
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The one-step propagator P∆τ (wk+1, τk+1|wk, τk) associ-
ated with Eq. (8) is known from Eq. (9). Then from the
Chapman-Kolmogorov equation, Pγ(w, t|w0, t0) equals:

lim
ϵ→0

lim
N→∞

∫ N−1∏
k′=1

dwk′

N−1∏
k=0

P∆τ (wk+1, τk+1|wk, τk)

which yields

Pγ(w, t|w0, t0)= lim
ϵ→0

lim
N→∞

∫ N−1∏
k′=1

dwk′

(2πγ∆τ)
d/2

(detΩϵ
k)

1/2

exp

[
−∆τ

2γ

N−1∑
k=0

(
∆wk

∆τ
−fk

)⊤

(Ωϵ
k)

−1

(
∆wk

∆τ
−fk

)]
,

(10)

where Ωϵ
k ≡ GkG

⊤
k + ϵId is the regularized covariance.

In the continuous-time limit, the expression above becomes
a path integral over all possible trajectories w(τ) ∈ Rd
connecting w0 and w from time t0 to t:

Pγ(w, t|w0, t0) =

lim
ϵ→0

∫ w(t)=w

w(t0)=w0

D [w(·)] exp
(
− 1

γ
Sϵ [w(·)]

)
. (11)

The action functional is defined as

Sϵ [w(·)] ≡
∫ t

t0

dτ Lϵ (τ,w(τ), ẇ(τ)) , (12)

with the Lagrangian:

Lϵ (τ,w(τ), ẇ(τ)) =
1

2
(ẇ(τ)− f (τ,w(τ)))

⊤

Ωϵ(τ,w(τ))−1 (ẇ(τ)− f (τ,w(τ))) , (13)

with ẇ(τ) = dw(τ)
dτ , Ωϵ(τ,w(τ)) ≡

G (τ,w(τ))G (τ,w(τ))
⊤

+ ϵId and D [w(·)] as de-
fined in Eq. (42) of the Appendix A.

The path measure and action functional are to be understood
under the Itô discretization (10). If the SDE had been for-
mulated with Stratonovich or other intermediate Brownian
increments, the path integral would have to be understood
accordingly (de Pirey et al., 2023).

Laplace approximation – For small enough γ, the path
integral (11) is dominated by trajectories minimizing the
action Sϵ [w(·)]. This is the path given by Hamilton’s ac-
tion principle (e.g., like in classical analytical mechanics)
δSϵ [w(·)] = 0 for variations over paths satisfying the two
boundary conditions w(t0) = w0, w(t) = w. A path is a

stationary point of the action if and only if it satisfies the
Euler-Lagrange equations:(

d

dτ

∂

∂ẇj
− ∂

∂wj

)
Lϵ (τ,w(τ), ẇ(τ)) = 0 (14)

for j = 1, . . . , d, supplemented by the two boundary condi-
tions. Replacing (13) into the Euler-Lagrange equations (14)
renders a complicated set of second-order differential equa-
tions. However, it is not very difficult to prove that (see
Appendix A.2):

• If the terminal point w at time t is on the trajec-
tory wode(·) i.e., it is on the unique solution of the
first-order initial value problem ẇ(τ) = f(τ,w(τ)),
with w(0) = w0, then the solution of the Euler-
Lagrange equation (14) is precisely wode(τ) and
Lϵ (τ,w(τ), ẇ(τ)) = 0.

• If the terminal point w at time t is not on the trajec-
tory wode(·), then the solution of the Euler-Lagrange
equation cannot satisfy exactly the first order ODE i.e.,
ẇ(τ) ̸= f(τ,w(τ)) and Lϵ (τ,w(τ), ẇ(τ)) > 0.

In particular, we conclude that for small γ’s:

• When the terminal condition is away from the trajec-
tory wode(·) by an amount |w(t)−wode(t)| = Ωγ(1),
then Pγ(w, t|w0, t0) = O(e−C/γ) is an exponentially
small probability.

• When the terminal condition is close enough to the tra-
jectory w(·) in the sense |w(t)−wode(t)| = O(

√
γ),

then the Pγ(w, t|w0, t0) is given by the fluctuations
around the stationary point of the action functional.
This picture is schematically illustrated in Fig. 1.

Figure 1. The solution wode(τ) of the first order ODE ẇ(τ) =
f(τ,w(τ)), w(0) = w0 yields a minimum vanishing action.
The dominant contributions to the path integral for small γ are
fluctuations of order O(

√
γ) around this trajectory.

To find the probability distribution of these fluctuations,
we set w(τ) = wode(τ) +

√
γ zzz(τ) with zzz(0) = 01 and

1At time t we have w = wode(t) +
√
γzzz(t) and because w is

‘random’ we should not constrain the terminal condition zzz(t).
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expand the action functional (12) to second order in
√
γzzz(·).

The zero-th order term vanishes because wode(τ) satisfies
the first order ODE, and the first order term also vanishes
because it satisfies the Euler-Lagrange equation. Thus we
find:

Sϵ [w(·)] ≈ γ

2

∫ t

t0

dτ

(
dzzz(τ)

dτ
−JJJf (τ,w

ode(τ))zzz(τ)

)⊤

Ωϵ(τ,wode(τ))

(
dzzz(τ)

dτ
−JJJf (τ,w

ode(τ))zzz(τ)

)
, (15)

where JJJf is the Jacobian matrix of f along the trajectory
wode(·) (see Eq. (49) for an explicit definition). Eq. (15)
gives us the Gaussian probability distributions of fluctua-
tions zzz(·) around the trajectory wode(·) (see Fig. 1). This has
zero mean E[zzz(·)] = 0 and covariance CCC (·) ≡ E[zzz(·)zzz(·)⊤]
given by

CCC (t) =

∫ t

t0

dτ U ode(t, τ) Ω0(τ,wode(τ)) U ode(t, τ)⊤ ,

(16a)
where

U ode(t, τ) ≡ T
{
e−

∫ τ
t

dsJJJf (s,w
ode(s))

}
, (16b)

with T {· · · } denoting the time-ordered exponential (see
Appendix B). The complete derivation of the covariance is
found in the Appendix A.

Using Wick’s theorem, this covariance allows to com-
pute any expectation that reduces to multinomials of
zzz(t1), zzz(t2), . . . , zzz(tm). In particular, we will see below
that the generalization error involves the simplest such poly-
nomial zzz(t)⊤zzz(t) at the terminal time.

Finally, within our approximate theory, we have:

Pγ(w, t|w0, t0) ≈
e−

1
2 (w−wode(t))⊤CCC (t)−1(w−wode(t))

(2π)d/2(detCCC (t))1/2
.

(17)

We note that for d > n the d× d covariance matrix has zero
eigenvalues and this expression is somewhat formal. This
means that the probability distribution has its support in an
n-dimensional subspace of Rd. In the context of machine
learning, d > n represents the over-parameterized regime.

3.1. An exactly solvable example

In this short section, we verify the above result for a sim-
ple SDE which is exactly solvable. Consider the one-
dimensional stochastic process {w(τ), τ ≥ t0} defined by

dw(τ) = h(τ)(y − w(τ))dτ +
√
γσ(τ)dη(τ) (18)

with initial condition w(t0) = w0. The functions h and σ
are real valued continuous for τ ∈ [0, 1), y ∈ R, and η is

a standard one dimensional Brownian motion. One checks
explicitly that the solution is:

w(τ) = ϕ(τ)w0 + (1− ϕ(τ))y +
√
γϕ(τ)

∫ τ

t0

dη(s)
σ(s)

ϕ(s)

(19)

where ϕ(τ) = exp
(
−
∫ τ
t0
ds h(s)

)
. This equation im-

plies that the process is Gaussian with transition probability
Pγ(w, t|w0, t0) with mean and variance:

E[w(t)] = y + (w0 − y)e
−

∫ t
t0

ds h(s)
, (20a)

Var[w(t)] = γ

∫ t

t0

du σ(u)2e−2
∫ t
u
ds h(s) . (20b)

It is an exercise to check that (20a) coincides with wode(t),
the solution of the first order ODE dw(t)

dt = h(t)(y − w(t))
and (20b) coincides with (16). We conclude that our general
theory is exact for the simple linear SDE (18) .

In (Hildebrandt & Rœlly, 2020) the authors discuss in detail
a pinning phenomenon which is of relevance to us. Suppose
h and σ satisfy (i) h ≥ 0; (ii) limt→+∞

∫∞
t0

ds h(s) =

+∞; (iii)
∫∞
t0

dsσ(s)2 is finite. Then we have for
t → +∞, E[w(t)] → y and Var[w(t)] → 0 (the
later point can be shown by noticing that Var[w(t)] ≤
γ
∫ +∞
t0

du σ(u)2e−2
∫ t
u
ds h(s) and applying the dominated

convergence theorem to the right hand side; for more details
we refer to Hildebrandt & Rœlly 2020). These diffusion
processes become ‘pinned’ onto y as t→ +∞. For a simple
picture, one may keep in mind two continuous functions,
such that for r → +∞, on one hand h does not tend to
zero fast enough and on the other hand σ(r) tends to zero
fast enough. Roughly speaking for large times the process
fluctuates around the gradient flow path for a ‘loss func-
tion’ 1

2h(τ)(y −w)2 and for large times, as the fluctuations
become smaller, it tends to the minimum.

Note that if σ(s)2 is not integrable, pinning does not
necessarily occur. For example, suppose σ(s) = b and
h(s) = a > 0 two constants. Then an explicit computation
shows E[w(t)] → y and Var[w(t)] → γb2/2a.

3.2. Test risk of SGF

We now come back to the setting of learning theory.
Comparing equations (4) and (5), we have the correspon-
dence w(t) → β̂(t), f(t,w(t)) → −∇L

(
β̂(t);X,y

)
,

G(t,w(t)) →
√

Σ
(
β̂(t);X,y

)
and dη(t) → db(t).

Therefore, we approximate the solution of (4) by β̂(t) =

β̂GF+
√
γzzz(t) with β̂GF the solution of (1) and the Gaussian
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process zzz(t) has covariance (setting now t0 = 0):

CCC (t) =

∫ t

0

du UGF(t, u) Σ(u, β̂GF(u)) UGF(t, u)⊤ ,

(21a)
where now

UGF(t, u) = T
{
e−

∫ t
u
drHL (β̂GF(r))

}
, (21b)

with HL = ∇⊗∇L the d× d Hessian matrix of the loss
function (see also A.4 for a slightly more general setting).

From these formulas, we may expect a set of qualitative be-
haviors for the generalization error, which we now discuss.
We stress, however, that these are by no means necessar-
ily universal and their validity should be checked for each
model. For d < n, below the interpolation threshold, Σ is
generically full rank, so the covariance is also expected to be
full rank. In other words, we expect the stochastic process
to fluctuate in parts of Rd of ‘full measure’ even for large
times. The difference between the generalization errors
of GF and SGF should be non-trivial. On the other hand,
above the interpolation threshold, Σ(τ, β̂GF(τ)) certainly
has d− n zero eigenvalues (and possibly more). Therefore,
we expect the process to fluctuate in a ‘submanifold’ of Rd.
Such submanifold can be quite complicated as it will in
general depend on time and on the GF trajectory. For large
times we furthermore expect that Σ tends to zero altogether.
Indeed, for linear networks this matrix is proportional to
the loss (see next section), which tends to zero above the
interpolation threshold; and more generally if the number
of data points is much less than the number of parameters,
the data points are seen many times and there should not be
a major difference between a full batch and a mini batch.
Consequently, for large times we expect that the diffusion is
pinned on the minima of the loss, and that there should be
no essential difference between generalization error of GF
and SGF. These considerations are corroborated in the next
section by an explicit analysis of a simple model.

4. Application to a weak features model
4.1. Setting

We consider a special regression model with random projec-
tions, first studied by (Breiman & Freedman, 1983) in the
underparametrized regime, and later extended by (Belkin
et al., 2020) to the overparametrized regime. Despite its sim-
plicity, the test risk displays the double descent shape, calcu-
lated explicitly in (Belkin et al., 2020) for the least-squares
estimator.2 The model is a suitable laboratory to apply our
formalism and compute the whole time-dependence of the
test risk for SGF, and compare with the GF solution.

2Here the least-squares estimator equals the GF estimator for
infinite times.

Again, the data set is composed of n pairs (xk, yk) ∈ Rd+1,
k ∈ [n] ≡ {1, . . . , n} sampled i.i.d. from P(x, y). The dis-
tribution generating the data features is Gaussian, P(x) =
N (0, Id), while P(y|x) is modeled by a linear function of
β ∈ Rd, ∥β∥ = 1, yk = β⊤xk + µϵk with k ∈ [n]. The
constant µ > 0 controls the strength of the additive Gaus-
sian noise ϵk ∼ N (0, 1). The feature matrix is denoted
X = [x1| . . . |xn]⊤ ∈ Rn×d.

The weights β̂ ∈ Rd are learned using only a subset
A ⊆ [d] ≡ {1, . . . , d} of p ≡ |A| components. For a
vector v ∈ Rd, we denote vA ≡ (vj : j ∈ A) ∈ Rp its
subvector of entries from A; besides, we denote Ac ≡
[d]\A to be the complement of A. Then, the training loss
is defined as L

(
β̂;X,y;A

)
= 1

n

∑n
k=1 l

(
β̂;xk, yk;A

)
=

1
n

∑n
k=1

1
2

(
yk − β̂⊤

Ax
k
A

)2
. Only components β̂A ∈ Rp

are learned, while β̂Ac ∈ Rd−p are set to zero. Besides,
we denote XA =

[
x1
A| . . . |xnA

]⊤ ∈ Rn×p as the matrix of
features used for regression.

The SGD process associated with training of the regres-
sion leads to the SDE modeling of Eq. (4). From (5) we
approximate the diffusion matrix with (see Appendix C.2):

Σ
(
β̂(t);X,y;A

)
≈ 2

n
L
(
β̂(t);X,y;A

)
X⊤

AXA, (22)

which results in the SGF:

dβ̂A=
1

n
X⊤

A(y−XAβ̂A)dt+

√
γ

n
∥y−XAβ̂A∥X⊤

Adb.

(23)

For γ = 0 this becomes the respective pure GF equation.
Setting t0 = 0 and assuming the initial condition β̂A(0) =

β̂0
A, we obtain in Appendix C.3 the exact GF trajectory:

β̂GF
A (t) = e−

1
nX⊤

AXAtβ̂0
A +X†

A

(
In − e−

1
nXAX⊤

At
)
y ,

(24)
where † denotes Moore-Penrose inverse. Note that this
tends to the usual least-squares estimator for t → +∞.
Translating to the general setting of Section 3, the solution
of SGF will have the form β̂SGF

A (t) = β̂GF
A (t) +

√
γzzz(t),

with zzz(0) = 0 and zzz(t) being a zero mean Gaussian process
with the covariance matrix CCC (t).

4.2. Test risk of GF and SGF

We are particularly interested in the test risk provided by
GF and SGF and how they compare. Let A be a uniformly
random subset of [d] of cardinality p. If (x, y) is a new
sample from distribution P(x, y), the test risk on it is defined
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as:

ESGF
test (t) =

1

2
EA;X,y;b;x,y

[(
y − x⊤

Aβ̂
SGF
A (t)

)2]
=

1

2
EA;X,y;b

[∥∥∥βA − β̂SGF
A (t)

∥∥∥2 + ∥βAc∥2
]
+ µ2 .

(25)

As ESGF
test (t)

∣∣
γ=0

= EGF
test(t) and, for any fixed training data

and choice of features, Eb [zzz(t)] = 0, we get

ESGF
test (t) = EGF

test(t) +
γ

2
EA;X,y;b

[
zzz⊤(t)zzz(t)

]
= EGF

test(t) +
γ

2
EA;X,y [Tr{CCC (t)}] . (26)

Therefore, inclusion of the perturbation has an additive ef-
fect on the test risk proportional to the learning rate γ.

Let Λr ∈ Rr×r with r = min(n, p) be a diagonal matrix
consisting of the r highest singular values of XA; with
probability 1 they are all strictly positive. Besides, all other
singular values of XA are zero. From the GF solution, the
test risk can be expressed as (see Appendix C.4 for a detailed
derivation and Appendix E for plots of the GF test risk):

2 EGF
test(t)=

∥β − β̂0∥2

d

[
max(0, p− n)+EΛr

Tr e−2
Λ2

r
n t

]
+
((

1− p

d

)
∥β∥2 + µ2

)[
1+EΛrTrΛ

−2
r

(
Ir − e−

Λ2
r

n t
)2]

(27)

When t → ∞, this expression becomes exactly the one
from (Belkin et al., 2020) (deduced directly form least-
squares and can also be computed for finite n, p, d).

For the second term in (26), giving the correction to the test
error coming from the stochastic term, we obtain:

γ

2
EA;X,y [Tr{CCC (t)}] = γ

2
· ∥β − β̂0∥2

d
·∫ t

0

dτ EΛr

[
Tr

{
Λ2
r

n
e−2

Λ2
r

n (t−τ)
}
Tr

{
Λ2
r

n
e−2

Λ2
r

n τ

}]
+
γ

2

((
1− p

d

)
∥β∥2 + µ2

)
·

· 1
n

(
max

(
0,
n− p

2

)
· EΛr

[
Tr

{
Ir − e−2

Λ2
r

n t

}]

+

∫ t

0

dτ EΛr

[
Tr

{
Λ2
r

n
e−2

Λ2
r

n (t−τ)
}
Tr

{
e−2

Λ2
r

n τ

}])
.

(28)

In the remaining part of this paragraph, we discuss the
asymptotic regime n, d, p → ∞ with p/n → α, d/n →
ψ with α and ψ fixed positive numerical constants. Note

that p ≤ d hence α ≤ ψ. At the same time, in order to
obtain a well defined limit for (28), one should rescale the
learning rate in SGF as follows: γ = γ′/d with γ′ fixed.
Indeed, in (6) the order of magnitude of the diffusion term
is E

∥∥√γ dη(τ)
∥∥2 = γndτ and the scaling ensures that it

is of the same order dτ as the drift. This sort of scaling
has been discussed in (Veiga et al., 2022; Ben Arous et al.,
2022). We observe that the diffusion contribution vanishes
if γ goes to zero faster than 1/d.

With our normalizations the empirical distribution
n−1#{eigenvalues of Λ2

r/n ∈ [a, b]} tends weakly to the
(a.c part of) Marchenko-Pastur law

ρα([a, b]) =

∫ b

a

dσ

√
(α+ − σ)(σ − α−)

2πασ
1(σ ∈ [α−, α+])

with α± = (1 ±
√
α)2; from which we can express the

expectations of traces in (27) in the limit n, d, p → ∞
(noting that ∥β − β̂0∥2 → 2 for two random vectors on the
high dimensional unit sphere):

lim EGF
test(t) = max

(
0,
α− 1

ψ

)
+

α

2ψ

∫
ρα(dσ)e

−2σt

+
1

2

((
1− α

ψ

)
+ µ2

)[
1 + α

∫
ρα(dσ)

(1− e−σt)2

σ

]
.

(29)

Using the concentration of expressions n−1 Tr
{
φ(Λ2

r/n)
}

for any ‘reasonable’ function φ, we can compute the limit
for n, p, d → ∞ using again the Marchenko-Pastur distri-
bution. With the scaling γ = γ′/d, we get the well-defined
limit (again note ∥β − β̂0∥2 → 2 for two random vectors
on the high dimensional unit sphere):

lim
γ

2
EA;X,y [Tr{CCC (t)}] =

=
γ′α

2ψ

[
2α

ψ
F1(α, t) +

(
1− α

ψ
+ µ2

)
·

·
(
α F2(α, t) + max(1− α, 0)

∫
ρα(dσ)

1− e−2σt

2

)]
,

(30)
where

F1(α, t) =

∫∫
ρα(dσ1)ρα(dσ2)σ1σ2K(t, σ1, σ2) ,

F2(α, t) =
1

2

∫∫
ρα(dσ1)ρα(dσ2)(σ1 + σ2)K(t, σ1, σ2) ,

and

K(t, σ1, σ2) =
e−2σ1t − e−2σ2t

2(σ2 − σ1)
.

4.3. Discussion and comparison with simulations

Eqs. (29) and (30) give the complete time dependence of
the test risk (or average generalization error) under SGF
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dynamics for small learning rate. To interpret these formulas
correctly, one should recall that α ∈ [0, ψ] and ψ ≥ 0.

The dominant contribution is given by (29). The t→ +∞
limit of this expression agrees with the well known double
descent curve obtained by the least-squares estimator. Such
finite time dependencies have been obtained and discussed
in detail in (Bodin & Macris, 2021; 2022) for the random
features and Gaussian covariate models.

Here we concentrate on the correction term which is our
main interest, i.e., ESGF

test (t)− EGF
test(t) or Eq. (30). It can be

computed for t → +∞ after the large size limit n, p, d →
∞, and we find:

γ′

4

α

ψ

((
1− α

ψ

)
+ µ2

)
max(1− α, 0), α ≤ ψ . (32)

For α ≤ 1 this is a cubic polynomial (in α) with roots at
α1 = 0, α2 = 1 and α3 = (1+µ2)ψ. The last root is always
‘unphysical’ since α3 > ψ. The root α2 = 1 (the interpola-
tion threshold) is present only for ψ ≥ 1. For infinitely large
times the correction to GF brought about by the stochastic
term in SGF is present only in the underparametrized regime
α < 1. In the overparametrized regime α > 1 (hence also
ψ > 1) there is no such correction for infinite time. This re-
sult is compared with numerical simulations of the discrete
time stochastic gradient descent in Fig. 2. The agreement
is satisfying given that (i) the continuous time dynamics
is a heuristic approximation of stochastic gradient descent
and, (ii) the analysis of the stochastic process uses a Laplace
approximation of the path integral.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
U = ?/=

0.000

0.005

0.010

0.015

0.020

E
SG

F
te

st
−

E
GF te

st

Simulation
Theory

Figure 2. Continuous curve: difference between SGF and GF test
risks for t→ +∞ according to Eq. (32). Dots: difference of SGD
and GD test risks obtained from numerical simulations (averaged
over 1000 different random subsets A). Simulation parameters:
d = 1000, n = 400, such that ψ = 2.5, and γ = 10−3 (hence
γ′ = 1). Vectors β, β0 are taken at random on the unit 1000-
dimensional sphere and here ∥β − β0∥2 ≈ 2.11.

Figs. 3 and 4 show various aspects of the finite time be-
havior of ESGF

test (t)− EGF
test(t). In Fig. 3 we observe that (for

ψ = 2.5) the maximum difference between the test risk
curves occurs above the interpolation threshold for ‘early’
times and this maximum moves below the interpolation
threshold at ‘later’ times. For intermediate times, however,
our analytical theory underestimates the difference in test
risks (see Appendix E for more details).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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−

E
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Figure 3. Continuous curves: difference between test risk of SGF
and GF for various times t ∈ [10−3, 103] according to (30). Dots:
difference of test risk of SGD and GD obtained from numerical
simulations with same parameters as in Fig 2. Asymptotic analyti-
cal theory underestimates SGD quantities for intermediate times
1 ⪅ t ⪅ 10 but works well for small and large times.

In Fig. 4 the difference in test risks of GF and SGF shows
a knee structure. This bending occurs roughly at times
corresponding to the onset of double descent.
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Figure 4. Theoretical prediction for the difference between test risk
of SGF and GF in the (t, α) plane. Here we fix ψ = 2.5.

5. Conclusion
The general framework developed here gives concrete
means to compute the whole-time evolution of the gen-
eralization error under stochastic gradient flow dynamics.
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In particular, we provide general formulas, Eqs. (21), for
the covariance of the fluctuations around the deterministic
pure gradient flow.

In this work the formalism is applied only to a situation
where the dynamics is very simple. It will be interesting
to investigate to what extent one can apply it beyond the
weak features model for more complicated landscapes with
many minima and saddles. Random features with non-linear
activation, diagonal linear networks, generalized linear or
multi-index models might still be tractable. More broadly, it
is of interest to further develop the theory extracting general
properties from the covariance formula by leveraging statis-
tical analysis of the data matrix and of the Hessian. Recent
activity in the literature connects the eigenvalues of the Hes-
sian to the optimization landscape, see e.g., (Gur-Ari et al.,
2018; Sagun et al., 2018; Xie et al., 2022; Sabanayagam
et al., 2023).

There exist more sophisticated SGFs yielding better approx-
imations of SGD (Li et al., 2019). The analysis is then more
complicated as there are new correction terms in the path
integral. In the same vein, it would be desirable to investi-
gate the use of alternative processes, other than Brownian
motion, to model the SGD fluctuations.

We plan to come back to these issues in forthcoming works.
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Jastrzębski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Bengio, Y., and Storkey, A. Width of minima reached
by stochastic gradient descent is influenced by learning
rate to batch size ratio. In Artificial Neural Networks and
Machine Learning – ICANN 2018, pp. 392–402, Cham,
2018. Springer International Publishing. ISBN 978-3-
030-01424-7.

Kushner, H. J. and Yin, G. G. Stochastic Approximation
and Recursive Algorithms and Applications. Stochastic
Modelling and Applied Probability. Springer-Verlag, 2
edition, 2003. doi: 10.1007/b97441.

Li, Q., Tai, C., and E, W. Dynamics of stochastic gradient
algorithms, 2015.

Li, Q., Tai, C., and E, W. Stochastic modified equations and
adaptive stochastic gradient algorithms. In Proceedings of
the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
pp. 2101–2110. PMLR, 06–11 Aug 2017.

Li, Q., Tai, C., and E, W. Stochastic modified equations and
dynamics of stochastic gradient algorithms I: Mathemati-
cal foundations. Journal of Machine Learning Research,
20(40):1–47, 2019.

Mandt, S. and Blei, D. M. Continuous-time limit of stochas-
tic gradient descent revisited, 2015.

Mandt, S., Hoffman, M., and Blei, D. A variational analysis
of stochastic gradient algorithms. In Proceedings of The
33rd International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,

pp. 354–363, New York, New York, USA, 20–22 Jun
2016. PMLR.

Mandt, S., t, Hoffman, M. D., and Blei, D. M. Stochas-
tic gradient descent as approximate Bayesian inference.
Journal of Machine Learning Research, 18(134):1–35,
2017.

Mignacco, F., Krzakala, F., Urbani, P., and Zdeborová, L.
Dynamical mean-field theory for stochastic gradient de-
scent in Gaussian mixture classification. In Advances in
Neural Information Processing Systems, volume 33, pp.
9540–9550. Curran Associates, Inc., 2020.

Mignacco, F., Urbani, P., and Zdeborová, L. Stochasticity
helps to navigate rough landscapes: comparing gradient-
descent-based algorithms in the phase retrieval problem.
Machine Learning: Science and Technology, 2(3):035029,
jul 2021. doi: 10.1088/2632-2153/ac0615.

Mori, T., Ziyin, L., Liu, K., and Ueda, M. Power-law
escape rate of SGD. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 15959–
15975. PMLR, 17–23 Jul 2022.

Paquette, C. and Paquette, E. Dynamics of stochastic mo-
mentum methods on large-scale, quadratic models. In
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 9229–9240. Curran Associates, Inc., 2021.

Paquette, C., Paquette, E., Adlam, B., and Pennington, J.
Implicit regularization or implicit conditioning? Exact
risk trajectories of SGD in high dimensions. In Advances
in Neural Information Processing Systems, volume 35,
pp. 35984–35999, 2022a.

Paquette, C., Paquette, E., Adlam, B., and Pennington, J.
Homogenization of SGD in high-dimensions: Exact dy-
namics and generalization properties, 2022b.

Pesme, S. and Flammarion, N. Saddle-to-saddle dynamics
in diagonal linear networks. In Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 7475–7505.
Curran Associates, Inc., 2023.

Pesme, S., Pillaud-Vivien, L., and Flammarion, N. Implicit
bias of SGD for diagonal linear networks: a provable ben-
efit of stochasticity. In Advances in Neural Information
Processing Systems, volume 34, pp. 29218–29230, 2021.

Sabanayagam, M., Behrens, F., Adomaityte, U., and Dawid,
A. Unveiling the Hessian’s connection to the decision
boundary. In NeurIPS 2023 Workshop on Mathematics
of Modern Machine Learning, 2023.

10



SGF Dynamics of Test Risk and its Exact Solution for Weak Features

Sagun, L., Evci, U., Güney, V. U., Dauphin, Y. N., and
Bottou, L. Empirical analysis of the Hessian of over-
parametrized neural networks. In 6th International Con-
ference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Workshop
Track Proceedings. OpenReview.net, 2018.

Sakurai, J. J. and Napolitano, J. Modern Quantum Mechan-
ics. Cambridge University Press, 3 edition, 2020. doi:
10.1017/9781108587280.

Veiga, R., Stephan, L., Loureiro, B., Krzakala, F., and Zde-
borová, L. Phase diagram of stochastic gradient descent in
high-dimensional two-layer neural networks. In Advances
in Neural Information Processing Systems, volume 35,
pp. 23244–23255, 2022.

Wang, Y. and Wu, S. Asymptotic analysis via stochastic
differential equations of gradient descent algorithms in
statistical and computational paradigms. Journal of Ma-
chine Learning Research, 21(199):1–103, 2020.

Warming, R. and Hyett, B. The modified equation approach
to the stability and accuracy analysis of finite-difference
methods. Journal of Computational Physics, 14(2):159–
179, 1974. ISSN 0021-9991. doi: https://doi.org/10.1016/
0021-9991(74)90011-4.

Weinberg, S. The Quantum Theory of Fields, volume 1.
Cambridge University Press, 1995. doi: 10.1017/
CBO9781139644167.

Xie, Z., Tang, Q.-Y., Cai, Y., Sun, M., and Li, P. On the
power-law Hessian spectrums in deep learning, 2022.

11



SGF Dynamics of Test Risk and its Exact Solution for Weak Features

A. General Path Integral Formulation
In this appendix, we provide the details on the general path integral framework and on the derivation of the covariance
matrix. For easy readability and to make this section as self-contained as possible, some equations from the main part are
rewritten here.

Consider the following general stochastic differential equation (SDE) for a process w(τ) ∈ Rd, sampled between t0 and
t > t0:

dw(τ) = f (τ,w(τ)) dτ +
√
γ G (τ,w(τ)) dη(τ) , (33)

where f (τ,w(τ)) ∈ Rd and G (τ,w(τ)) ∈ Rd×n are the drift vector and the diffusion matrix, respectively; while η(τ) is
a standard n-dimensional Wiener process, with dη(τ) = η(τ + dτ)− η(t) ∈ Rn as its forward increment. The initial and
terminal conditions are w(t0) = w0 and w(t) = w, respectively. We assume that this SDE has a unique solution. Standard
conditions ensuring existence and uniqueness are Lipshitzness and linear growth of f and G w.r.t w uniformly in τ (see for
example Evans 2012, Section 5.B.3).

The continuous-time equation Eq. (33) must be understood according to its discrete-time companion process wk = w(k∆τ):

wk+1 = wk + f(k, w̃k)∆τ +
√
γ G(k, w̃k)∆ηk , (34)

where the time interval [t0, t] has been discretized into N slices of length ∆τ ≡ t−t0
N with τk = t0+ k∆τ for k = 0, . . . , N

and τN = t. The drift and the diffusion functions are evaluated at the point

w̃k = wk + α∆wk , (35)

with 0 ≤ α ≤ 1 and ∆wk ≡ wk+1 − wk. The choice of α fully determines the discretization scheme and α ̸= 0
introduces additional contributions to the drift on the path-integral (de Pirey et al., 2023). Such contributions are also
related to different SDEs as studied in (Li et al., 2019). In the present work, we adopt the simplest Itô discretization, α = 0,
w̃k = wk. The discrete quantities ∆ηk are sampled independently at each step k from a Gaussian with E[∆ηk] = 0,
E[∆ηk(∆ηk)

⊤] = ∆τ In.

The matrix G(k,wk)G(k,wk)
⊤ is positive semi-definite, and in particular when d > n it certainly has zero eigenvalues3,

which can make the process singular in sub-manifolds of Rd. A regularization parameter ϵ > 0 is then introduced, allowing
us to write:

∆wk≡wk+1−wk∼N
(
fk∆τ, γ∆τ

(
GkG

⊤
k + ϵId

))
, (36)

with fk ≡ f(k,wk) and Gk ≡ G(k,wk).

Let Pγ(w, t|w0, t0) be the probability of the process to be at w at time t given it starts from w0 at time t0. And
P∆τ (wk+1, τk+1|wk, τk) the one-step propagator associated with Eq. (33). Since the process is Markovian, the Chap-
man–Kolmogorov equation holds over the intermediate time windows [tk, tk+1]:

Pγ(w, t|w0, t0) = lim
ϵ→0

lim
N→∞

∫ N−1∏
k′=1

dwk′

N−1∏
k=0

P∆τ (wk+1, τk+1|wk, τk) . (37)

The transition probability over each intermediate time window [τk, τk+1] is known from Eq.(36). Replacing in Eq.(37), we
have:

Pγ(w, t|w0, t0) = lim
ϵ→0

lim
N→∞

∫ N−1∏
k′=1

dwk′

(2πγ∆τ)
d/2

(detΩϵ
k)

1/2
exp

[
−∆τ

2γ

N−1∑
k=0

(
∆wk

∆τ
−fk

)⊤

(Ωϵ
k)

−1

(
∆wk

∆τ
−fk

)]
,

(38)
where Ωϵ

k ≡ GkG
⊤
k + ϵId is the regularized covariance.

In the continuous-time limit, the expression above becomes a path integral over all possible trajectories w(τ) ∈ Rd for the
process to be in w at time t given the process starts in w0 at time t0:

Pγ(w, t|w0, t0) = lim
ϵ→0

∫ w(t)=w

w(t0)=w0

D [w(·)] exp
(
− 1

γ
Sϵ [w(·)]

)
. (39)

3In the learning theory context, d > n means overpametrization.
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The action functional is defined as

Sϵ [w(·)] ≡
∫ t

t0

dτ Lϵ (τ,w(τ), ẇ(τ)) , (40)

where the continuous-time Lagrangian function is given by

Lϵ (τ,w(τ), ẇ(τ)) =
1

2

(
dw(τ)

dτ
− f (τ,w(τ))

)⊤

Ωϵ(τ,w(τ))−1

(
dw(τ)

dτ
− f (τ,w(τ))

)
(41)

with Ωϵ(τ,w(τ)) ≡ G (τ,w(τ))G (τ,w(τ))
⊤
+ ϵ Id. The path measure is expressed as

D [w(·)] ≡ lim
N→∞

N−1∏
k′=1

dwk′

(2πγ∆τ)
d/2

(detΩϵ
k)

1/2
, (42)

and the integrals must be understood under the Itô discretization. For example∫ t

t0

dτ

(
dw(τ)

dτ
− f (τ,w(τ))

)
= lim
N→∞

N−1∑
k=0

∆τ

(
∆wk

∆τ
− f (k,wk)

)
. (43)

We observe that, by construction, G(τ,w(τ))G(τ,w(τ))⊤ is positive semi-definite, then the pseudo-inverse Ωϵ(τ,w(τ))−1

is well-defined and also positive semi-definite. Therefore, for any point τ in the time-interval [t0, t]:

Lϵ (τ,w(τ), ẇ(τ)) ≥ 0 , (44)

which allows us to write:
Sϵ [w(·)] ≥ 0 . (45)

Realizing that the action is non-negative will play an important role on identifying the high-probability paths in the limit
γ → 0.

A.1. Laplace approximation

If γ is small enough, the path integral in Eq. (39) is dominated by the paths minimizing the action Sϵ [w(·)]. This is
equivalent to the variational statement of classical mechanics known as the Hamilton’s action principle (Fetter & Walecka,
2003), which requires the vanishing of the first order variation of the action functional,

δSϵ [w(·)] = δ

∫ t

t0

dτ Lϵ (τ,w(τ), ẇ(τ)) , (46)

satisfying the two boundary conditions w(t0) = w0, w(t) = w. The path is a stationary point of the action if and only if it
satisfies the Euler-Lagrange equations(

d

dτ

∂

∂ẇj
− ∂

∂wj

)
Lϵ (τ,w(τ), ẇ(τ)) = 0 , (47)

for j = 1, . . . , d.

Writing Lϵ (τ,w(τ), ẇ(τ)) explicitly as sum over the components,

Lϵ (τ,w(τ), ẇ(τ)) =
1

2

d∑
l,m=1

(
dwl(τ)

dτ
− fl(τ,w(τ))

)(
Ωϵ(τ,w(τ))−1

)
lm

(
dwm(τ)

dτ
− fm(τ,w(τ))

)
. (48)

and the Jacobian matrix of f along the trajectory w(τ):

JJJf (τ,w(τ)) ≡

∇f1(τ,w(τ))⊤

...
∇fd(τ,x(τ))

⊤

 =


∂f1(τ,w(τ))

∂w1

∂f1(τ,w(τ))
∂w2

. . . ∂f1(τ,w(τ))
∂wd

∂f2(τ,w(τ))
∂w1

∂f2(τ,w(τ))
∂w2

. . . ∂f2(τ,w(τ))
∂wd

...
...

. . .
...

∂fd(τ,w(τ))
∂w1

∂fd(t,w(τ))
∂w2

. . . ∂fd(τ,w(τ))
∂wd

 ∈ Rd×d , (49)

13
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the derivatives of the Lagrangian with respect to the components of w and ẇ are given by

∂

∂ẇj
Lϵ (τ,w(τ), ẇ(τ)) =

d∑
l=1

(
dwl(τ)

dτ
− fl(τ,w(τ))

)(
Ωϵ(τ,w(τ))−1

)
lj
, (50a)

∂

∂wj
Lϵ (τ,w(τ), ẇ(τ)) =−

d∑
l,m=1

(
dwl(τ)

dτ
− fl(τ,w(τ))

)(
Ωϵ(τ,w(τ))−1

)
lm

(JJJf (τ,w(τ)))mj

+
1

2

d∑
l,m=1

(
dwl(τ)

dτ
− fl(τ,w(τ))

)(
∂

∂wj

(
Ωϵ(τ,w(τ))−1

)
lm

)(
dwm(τ)

dτ
− fm(τ,w(τ))

)
,

(50b)
where we have used the fact that Ωϵ(τ,w(τ)) is symmetric.

Reverting to matrix notation, the set of Euler-Lagrange equations (47) can then be represented by:

d

dτ

[(
dw(τ)

dτ
− f(τ,w(τ))

)⊤

Ωϵ(τ,w(τ))−1

]

+

(
dw(τ)

dτ
− f(τ,w(τ))

)⊤

Ωϵ(τ,w(τ))−1JJJf (τ,w(τ))

− 1

2

(
dw(τ)

dτ
− f(τ,w(τ))

)⊤
∂Ωϵ(τ,w(τ))−1

∂w

(
dw(τ)

dτ
− f(τ,w(τ))

)⊤

= 0 ,

(51)

where ∂Ωϵ(τ,w(τ))−1

∂w is defined as the tensor with components(
∂Ωϵ(τ,w(τ))−1

∂w

)lm
j

≡ ∂

∂wj

(
Ωϵ(τ,w(τ))−1

)
lm

. (52)

Similarly to the covariant formulation of classical electromagnetism and special relativity, we assumed that upper indices
are the ones to be contracted on vector-tensor multiplication.

A.2. Dominant paths

Eqs. (51) constitute an intricate set of second order differential equations. Nevertheless, we recall that wode(τ) is assumed
to be the unique global solution of the initial value problem:

dw(τ)

dτ
= f(τ,w(τ)) , wode(t0) = w0 . (53)

If the terminal condition wode(t) = w is also satisfied, then wode(·) is also a solution of the Euler-Lagrange equations for
all τ in the interval [t0, t]. Moreover, the action would vanish for this solution:

Sϵ
[
wode(·)

]
=

∫ t

t0

dτ Lϵ
(
τ,wode(τ), ẇode(τ)

)
= 0 . (54)

From Eq. (45), we know that Sϵ [w(·)] is non-negative. Thus, for any solution of the initial value problem (53) with
terminal condition wode(t) ̸= w, the action is greater than zero. Since the Pγ(w, t|w0, t0) ∝ e−

1
γ Sϵ[w(·)], paths wode(τ)

not satisfying both initial wode(t0) = w0 and terminal conditions wode(t) = w are exponentially less probable in the limit
γ → 0. Henceforth, we will refer to the paths wode(τ) satisfying both initial and terminal conditions,{

wode(t0) = w0 ,

wode(t) = w ,
(55)

as the dominant paths.
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A.3. Fluctuations around dominant paths

Consider now a small time-dependent stochastic perturbation zzz(τ) around a dominant path such that the trajectory w̄(τ)
satisfying Eq. (33) can be written as

w̄(τ) = wode(τ) +
√
γzzz(τ) , (56)

where wode(τ) is the high-probability path satisfying the initial and terminal conditions wode(t0) = w0 and wode(t) = w,
respectively. The random perturbation zzz(τ) is constrained to satisfy the boundary conditions zzz(t0) = zzz(t→ ∞) = 0. For
intermediate times, there is no constrain on the fluctuations.

In order to study the fluctuations effects on the probability measure, the key quantity is the covariance matrix:

CCC (τ) ≡ E [w(τ)− E [w(τ)]]E [w(τ)− E [w(τ)]]
⊤
, (57)

where E[·] stands for the expectation over all sources of randomness. For w(τ) = w̄(τ), the only stochasticity is the
perturbation and the covariance reduces to

CCC (τ) = γ
(
Ezzz
[
zzz(τ)zzz(τ)⊤

]
− Ezzz [zzz(τ)]Ezzz [zzz(τ)]⊤

)
, (58)

where Ezzz[·] stands for the expectation over the perturbation zzz(·). Up to now, the probability distribution for zzz is unknown.
Assuming γ → 0, we will construct a measure for zzz in order to compute the covariance. We first Taylor expand the elements
of f (τ,w(τ)) and Ωϵ(τ,w(τ))−1 around wode(τ):

fl (τ, w̄(τ)) = fl(τ,w
ode(τ)) +

√
γ zzz(τ)⊤∇fl(τ,w

ode(τ)) +O(γ) , (59a)(
Ωϵ (τ, w̄(τ))

−1
)
lm

=
(
Ωϵ
(
τ,wode(τ)

)−1
)
lm

+
√
γ zzz(τ)⊤∇

(
Ωϵ
(
τ,wode(τ)

)−1
)
lm

+O(γ) . (59b)

for l,m = 1, . . . , d. Additionally, since by assumption wode(τ) is the solution of dw(τ)
dτ = f(τ,w(τ)) satisfying the

boundary conditions (55):

dw̄l(τ)

dτ
− fl(τ,w(τ)) ≈ dzl(τ)

dτ
− zzz(τ)⊤∇fl(τ,w

ode(τ)) . (60)

Plugging it into the Lagrangian together with Eqs. (59) and retaining contributions up to order two on zzz(·), we obtain:

Lϵ
(
τ, w̄(τ), ˙̄w(τ)

)
=

=
γ

2

d∑
l,m=1

(
dzl(τ)

dτ
− zzz(τ)⊤∇fl(τ,w

ode(τ))

)(
Ωϵ
(
τ,wode(τ)

)−1
)
lm

(
dzm(τ)

dτ
− zzz(τ)⊤∇fm(τ,wode(τ))

)

=
γ

2

(
dzzz(τ)

dτ
−JJJf (τ,w

ode(τ))zzz(τ)

)⊤

Ωϵ
(
τ,wode(τ)

)−1
(
dzzz(t)

dt
−JJJf (t,w

ode(t))zzz(t)

)
,

(61)
where in the second line we have used the Jacobian matrix defined in (49). Therefore, the measure governing the fluctuations
zzz(t) in the limit γ → 0 is given by

P̄ (zzz, t|0, t0) ∝ lim
ϵ→0

∫ zzz(t)=zzz

zzz(t0)=0

D̄ [zzz(·)] exp
(
−
∫ t

t0

dτ L̄ϵ (τ,zzz(τ), żzz(τ))
)
, (62)

where

L̄ϵ (τ,zzz(τ), żzz(τ)) ≡ 1

2

(
dzzz(τ)

dτ
−JJJf (τ,w

ode(τ))zzz(τ)

)⊤

Ωϵ
(
τ,wode(τ)

)−1
(
dzzz(t)

dt
−JJJf (t,w

ode(t))zzz(t)

)
. (63)

The diffusion matrix appearing on the path-measure,

D̄ [zzz(·)] ≡ lim
N→∞

N−1∏
k′=1

∆zzzk′

(2π∆τ)
d/2
(
detΩϵ,ode

k

)1/2
, (64)
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is now calculated on the discretized dominant trajectory: Ωϵ,ode
k = G(k,wode

k )G(k,wode
k )⊤ + ϵ Id.

For the purpose of simplifying the Lagrangian (63), we perform the change of variables:

zzz(τ) = T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

}
z̃zz(τ) , (65)

where the object inside the brackets is a matrix in Rd×d. The exponential of a matrix is, as usual, defined via Taylor series.
The symbol T indicates time-ordering in the sense that the exponential is understood as a Dyson series (Weinberg, 1995).
For the convenience of the reader, we review the time-ordered exponential for time dependent non-commutative matrices in
Appendix B.

Under the change of variables, the time derivative of zzz(t) is written as

dzzz(τ)

dτ
= JJJf (τ,w

ode(τ)) T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

}
z̃zz(τ) + T

{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

} dz̃zz(τ)

dτ

= JJJf (τ,w
ode(τ))zzz(τ) + T

{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

} dz̃zz(τ)

dτ
,

(66)

so that the Lagrangian (63), in terms of z̃zz(τ), is written as

L̄ϵ
(
τ, z̃zz(τ), ˙̃zzz(τ)

)
≡ 1

2

dz̃zz(τ)

dτ

⊤
Ψϵ(τ,wode(τ))

dz̃zz(τ)

dτ
. (67a)

with

Ψϵ(τ,wode(τ)) ≡ T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

}⊤
Ωϵ
(
τ,wode(τ)

)−1 T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

}
. (67b)

Let us mention in passing an analogy that can be made with techniques from quantum mechanics at this point. One could
interpret (67b) as a kind of transformation from a mix of Schrödinger and Heisenberg pictures to the interaction picture, with
JJJf (s,w

ode(s)) and Ψϵ(τ,wode(τ)) playing the role of time-dependent Hamiltonian and potential, respectively (Sakurai &
Napolitano, 2020).

With the intention of computing the expectations in (58), which are over the original coordinates zzz(·), we consider the quan-

tities Ez̃zz [z̃zz(·)] and Ez̃zz
[
z̃zz(·)z̃zz(·)⊤

]
, where Ez̃zz indicates expectation over the measure ∝ e

− 1
2

∫ t
t0

dτ
dz̃zz(τ)
dτ

⊤
Ψϵ(τ,wode(τ))

dz̃zz(τ)
dτ .

At this point, it is convenient to return to the discretized form and to define a new discrete variable:

z̃zzk =

k−1∑
k′=0

(z̃zzk′+1 − z̃zzk′) ≡
k−1∑
k′=0

uk′ , (68)

as the assumption z̃zz(t0) = 0 implies that z̃zz(t0) = z̃zz0 = 0. Similarly, the discretized derivative in terms of the variable uk is
given by:

∆z̃zzk
∆τ

=
z̃zzk+1 − z̃zzk

∆τ
=

uk
∆τ

. (69)

The discretized measure then reads:

exp

[
−1

2

∫ t

t0

dτ
dz̃zz(τ)

dτ

⊤
Ψϵ(τ,wode(τ))

dz̃zz(τ)

dτ

]
→ exp

[
−1

2

N−1∑
k=0

∆τ
∆z̃zzk
∆τ

⊤
Ψϵ(k,wode

k )
∆z̃zzk
∆τ

]

= exp

[
−1

2

N−1∑
k=0

∆τ

(∆τ)2
u⊤
kΨ

ϵ(k,wode
k )uk

]

=

N−1∏
k=0

exp

[
− 1

2∆τ
u⊤
kΨ

ϵ(k,wode
k )uk

]
,

(70)

where Ψϵ(k,wode
k ) means the discretization of Ψϵ(τ,wode(τ)) on the discretized dominant path. We then conclude that the

first and second moments of uk are given by:

E [uk] = 0 , (71a)

E
[
uku

⊤
k

]
= ∆τ Ψϵ(k,wode

k )−1 , (71b)
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respectively. From Eq. (71a), we immediately conclude that E [z̃zz(τ)] = E [zzz(τ)] = 0. With respect to the second moment,
we observe that:

E
[
z̃zzkz̃zz

⊤
k

]
=

k−1∑
k′,k′′=0

E
[
uk′u

⊤
k′′
]
=

k−1∑
k′=0

E
[
uk′u

⊤
k′
]

=

k−1∑
k′=0

∆τ Ψϵ(k,wode
k )−1 ,

(72)

where we have used the Markovian property. In the continuous-time limit:

E
[
z̃zz(t)z̃zz(t)⊤

]
=

∫ t

t0

dτ Ψϵ(τ,wode(τ))−1 . (73)

Returning to the original coordinates:

E
[
zzz(t)zzz(t)⊤

]
= T

{
e
∫ t
t0

ds JJJf (s,w
ode(s))

}
E
[
z̃zz(t)z̃zz(t)⊤

]
T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))

}⊤
=

= T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))

}∫ t

t0

dτ Ψϵ(τ,wode(τ))−1 T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))

}⊤
.

(74)

Hitherto, the covariance matrix can then be expressed as

CCC (t) = γ lim
ϵ→0

T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))

}∫ t

t0

dτ Ψϵ(τ,wode(τ))−1 T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))⊤

}
, (75)

with
Ψϵ(τ,wode(τ)) = T

{
e
∫ τ
t0

ds JJJf (s,w
ode(s))⊤

}
Ωϵ
(
τ,wode(τ)

)−1 T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

}
, (76)

and
Ωϵ(τ,wode(τ)) = G

(
τ,wode(τ)

)
G
(
τ,wode(τ)

)⊤
+ ϵ Id . (77)

We continue by explicitly inverting Ψϵ,

Ψϵ(τ,wode(τ))−1 =

=
(
T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

})−1

Ωϵ
(
τ,wode(τ)

) (
T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))⊤

})−1

=
(
T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

})−1 (
G
(
τ,wode(τ)

)
G
(
τ,wode(τ)

)⊤
+ ϵ Id

) (
T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))⊤

})−1

(78)

and replacing it in the expression (75) for the covariance matrix, which leads to:

CCC (t) = γ T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))

}∫ t

t0

dτ
(
T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

})−1

G
(
τ,wode(τ)

)
G
(
τ,wode(τ)

)⊤ ·

·
(
T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))⊤

})−1

T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))⊤

} (79)

where we have already computed the limit ϵ→ 0. Since, for any τ such that t0 < τ < t:

T
{
e
∫ t
t0

ds JJJf (s,w
ode(s))

}
= T

{
e
∫ t
τ
ds JJJf (s,w

ode(s))
}
· T
{
e
∫ τ
t0

ds JJJf (s,w
ode(s))

}
, (80)

we have the final expression for the covariance matrix:

CCC (t) = γ

∫ t

t0

dτ T
{
e
∫ t
τ
ds JJJf (s,w

ode(s))
}
G
(
τ,wode(τ)

)
G
(
τ,wode(τ)

)⊤ T
{
e
∫ t
τ
ds JJJf (s,w

ode(s))⊤
}
. (81)

Setting U ode(t, τ) ≡ T
{
e
∫ t
τ
dsJJJf (s,w

ode(s))
}

and observing that Ω0(τ,wode(τ)) = G
(
τ,wode(τ)

)
G
(
τ,wode(τ)

)⊤
, we

obtain:

CCC (t) = γ

∫ t

t0

dτ U ode(t, τ) Ω0(τ,wode(τ)) U ode(t, τ)⊤ , (82)

which is exactly the same expression as in Eqs. (16) presented in the main text.
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A.4. Special cases

A.4.1. CONSERVATIVE DRIFTS

If there exists a scalar function Φ(τ,w(τ)) such that the drift f(τ,w(τ)) ∈ Rd is given by:

f(τ,w(τ)) = −∇Φ(τ,w(τ)) , (83)

we say that the drift is conservative, in analogy with the conservative forces in classical mechanics (Fetter & Walecka, 2003).
In this case, the Jacobian matrix of f is nothing but the negative of the Hessian of Φ:

JJJf (τ,w(τ)) = −HΦ(τ,w(τ)) , (84)

where

HΦ(τ,w(τ)) ≡ ∇⊗∇Φ(τ,w(t)) =


∂Φ(τ,w(τ))

∂w2
1

∂Φ(τ,w(t))
∂w1∂w2

. . . ∂Φ(τ,w(τ))
∂w1∂wd

...
...

. . .
...

∂Φ(τ,w(τ))
∂wd∂w1

∂Φ(τ,w(τ))
∂wd∂w2

. . . ∂Φ(τ,w(τ))
∂w2

d

 ∈ Rd×d . (85)

A.4.2. CHOLESKY-LIKE DIFFUSIONS

If the diffusion matrix G(τ,w(τ)) ∈ Rd×n is such that there exists a matrix Ξ(τ,w(τ)) ∈ Rd×d given by

Ξ(τ,w(τ)) = G(τ,w(τ))G(τ,w(τ))⊤ , (86)

we say that G(τ,w(τ)) is a Cholesky-like diffusion matrix. In this case, we use the convention G(τ,w(τ)) ≡√
Ξ(τ,w(τ)).

A.5. Machine learning realm

We consider now the particular case of the stochastic gradient flow modelling of SGD:

dβ̂(t) = −∇L
(
β̂(t);X,y

)
dt+

√
γ Σ

(
β̂(t);X,y

)
db(t) , (87)

which is Eq. (4) in the main text (where all the quantities are defined). Clearly, the drift is conservative with the Jacobian
equal to minus the Hessian of the loss. The diffusion matrix is also Cholesky-like. Additionally, if γ = 0, the SDE is
reduced to the gradient flow equation, and this is why we term the solution of the ODE in this context as β̂GF(τ).

In summary, for SGF the covariance (82) reduces to

CCC SGF(t) = γ

∫ t

t0

dτ UGF(t, τ) Σ
(
β̂GF(τ);X,y

)
UGF(t, τ)⊤ , (88a)

with
UGF(t, τ) ≡ T

{
e−

∫ t
τ
dsHL (β̂GF(s);X,y)

}
, (88b)

which are equivalent to Eqs. (21) in the main text.

A.6. Discrete to continuous-time approximation guarantees

If the drift is conservative and the diffusion Cholesky-like, we have:

dw(τ) = −∇Φ(τ,w(τ))dτ +
√
γ Ξ(τ,w(τ)) dη(τ) . (89)

From Corollary 10 in (Li et al., 2019):

max
k=0,...,N

|E [h (wk)]− E [h (w(k∆τ))]| ≤ Cγ , (90)

for a suitable set of ‘smooth’ functions h with ‘polynomial growth’.
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Let us also mention that one may look at an ‘improved’ SGF modelling:

dw(τ) = −∇
(
Φ(τ,w(τ)) +

1

4
γ∥∇Φ(τ,w(τ))∥2

)
dτ +

√
γ Ξ(τ,w(τ)) dη(τ) , (91)

where the convergence is improved to (Theorem 9 in (Li et al., 2019)):

max
k=0,...,N

|E [h (wk)]− E [h (w(k∆τ))]| ≤ Cγ2 , (92)

again for a suitable set of ‘smooth’ functions h with ‘polynomial growth’.

B. Time-ordered exponential
The concept of time-ordering integrals was first introduced by Dyson (Dyson, 1949) in the context of time-dependent
perturbation theory applied to scattering problems in quantum mechanics. Let B(t) and A(t) be two time-dependent square
real matrices of the same dimension. Consider the following first order differential equation:

dB(t)

dt
= A(t)B(t) (93)

with initial condition B(t0) = I. In quantum-mechanics, both matrices could be complex with B(t) representing the
time-evolution operator and A(t) a potential in the interaction picture.

Observe that Eq. (93) (with initial condition) can be reformulated as an integral equation:

B(t) = I−
∫ t

t0

dτ A(τ)B(τ) . (94)

Iterating the expression above:

B(t) = I−
∫ t

t0

dτ1 A(τ1) +

∫ t

t0

dτ1

∫ τ1

t0

dτ2 A(τ1)A(τ2)−
∫ t

t0

dτ1

∫ τ1

t0

dτ2

∫ τ2

t0

dτ3 A(τ1)A(τ3)A(τ3) + . . . . (95)

The time-ordered product T {·} of any time-dependent matrix is defined as the product with factors arranged in such a way
that the factor latest in time takes the leftmost position, the next-latest next to the leftmost, and so on. For example:

T {A(τ)} = A(τ) , (96a)
T {A(τ1)A(τ2)} = Θ(τ1 − τ2)A(τ1)A(τ2) + Θ(τ2 − τ1)A(τ2)A(τ1) , (96b)

where Θ(τ) is the Heaviside step function equal to 1 for τ > 0 and to zero for τ < 0. This definition generalizes to the time
ordered product of A’s for ‘n time instants’ as a sum over all n! permutations. Each permutation gives the same integral
over τ1, τ2, . . . , τn. Eq. (95) can then be written as

B(t) = Id +
(−1)n

n!

∞∑
n=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τn−1

t0

dτn T {A(τ1)A(τ2) . . .A(τn)} , (97)

which in the context of quantum mechanics is referred to as the Dyson series.

If the A(τ)’s would be commuting matrices for all τ , one could simply represent the series (97) by e
∫ t
t0

dτA(τ). Nevertheless,
since commutation in time is not guaranteed in general, we introduce the notation for the time-ordered exponential:

T
{
e
∫ t
t0

dτA(τ)
}
≡ I+

(−1)n

n!

∞∑
n=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τn−1

t0

dτn T {A(τ1)A(τ2) . . .A(τn)} , (98)

for any square time-dependent real matrix A(τ).
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C. Application to the weak features model: details of derivations
C.1. Preliminaries

For arbitrary n1, n2 ∈ N, we use notation 0n1×n2 for all-zero n1 × n2 matrix, In1×n2 for n1 × n2 matrix with elements
(In1×n2)ij = δij . (A)

† ∈ Rn2×n1 denotes Moore-Penrose inverse of a matrix A ∈ Rn1×n2 . We use Unif to denote uniform
(Haar) measure over a group.

We will find SVD’s useful for our derivations. Suppose r = rankXA ≤ min(n, p). Now, let

XA = UΛV ⊤, U ∈ Rn×n,Λ ∈ Rn×p,V ∈ Rp×p (99a)

be a ‘full’ singular value decomposition, and

XA = UrΛrV
⊤
r , Ur ∈ Rn×r,Λr ∈ Rr×r,Vr ∈ Rp×r (99b)

be ‘truncated’ the one. We also denote columns of U as {ui}ni=1, of V as {vi}pi=1 and positive singular values as {λi}ri=1.
For convenience, we also utilize thenotation λi = 0 for i > r. Besides, we make use of Ur⊥ := [ur+1 | · · · | un] ∈
Rn×(n−r) and Vr⊥ := [vr+1 | · · · | vp] ∈ Rp×(p−r) – i.e., Ur⊥ and Vr⊥ consist of columns of U and V respectively
which are not included in Ur and Vr.

Let us state some useful properties. We keep in mind that U⊤
r Ur = V ⊤

r Vr = Ir, U⊤
r⊥Ur⊥ = In−r and V ⊤

r⊥Vr⊥ = Ip−r,
and U⊤

r Ur⊥ = 0r×(n−r) and V ⊤
r Vr⊥ = 0r×(p−r). Besides, the Moore-Penrose inverse of XA can be written as

(XA)
†
= VrΛ

−1
r U⊤

r , . (100)

Using properties of matrix exponentials,

e−
1
nXAX⊤

At = Ue−
1
nΛΛ⊤tU⊤ = Ure

− 1
nΛ2

rtU⊤
r +Ur⊥U

⊤
r⊥

t→∞−→ Ur⊥U
⊤
r⊥ , (101a)

e−
1
nX⊤

AXAt = V e−
1
nΛ⊤ΛtV ⊤ = Vre

− 1
nΛ2

rtV ⊤
r + Vr⊥V

⊤
r⊥

t→∞−→ Vr⊥V
⊤
r⊥ . (101b)

In the model we look at, elements of XA ∈ Rn×p are sampled independently from a standard normal distribution. This
has several consequences. First, with probability 1, XA is a full rank matrix, i.e. r = rankXA = min(n, p). Second, this
allows us to characterize some properties of distribution of SVD components from Eq. (99) – we can consider U ,Λ,V to
be mutually independent; in addition, U and V are distributed uniformly on orthogonal groups of unitary matrices O (n)
and O (p) of size n and p and respectively.

C.2. SDE modeling

We apply SDE modeling of Eq. (4) to the simple regression model. To do this, we first find the drift vector

∇L
(
β̂(t);X,y;A

)
= − 1

n
X⊤

A

(
y −XAβ̂A(t)

)
(102)

and then the diffusion matrix. For the latter, we define, according to Eq. (3), stochastic perturbation

ξkν
(
β̂;X,y;A

)
= ∇l

(
β̂;xkν , ykν ;A

)
−∇L

(
β̂;X,y;A

)
= −

(
ykν − β̂⊤

Ax
kν
A

)
xkνA +

1

n
X⊤

A(y −XAβ̂A)

= −

[(
ykν − β̂⊤

Ax
kν
A

)
xkνA − 1

n

n∑
k=1

(
yk − β̂⊤

Ax
k
A

)
xkA

]
.

(103)

Let {ej}nj=1 be a set of vectors composing the standard orthonormal basis in Rn: e⊤j el = δjl. The random variable ξ can
then be rewritten as

ξkν
(
β̂;X,y;A

)
= −X⊤

A

[(
ykν − β̂⊤

Ax
kν
A

)
ekν − 1

n

n∑
k=1

(
yk − β̂⊤

Ax
k
A

)
ek

]
. (104)
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Additionally, since the samples are picked uniformly at random, we can replace the sum in the second term with the
expectation:

ξkν
(
β̂;X,y;A

)
= −X⊤

A

[(
ykν − β̂⊤

Ax
kν
A

)
ekν − Eqν∼U{1,n}

[(
yqν − β̂⊤

Ax
qν
A

)
eqν
]]

. (105)

The first moment is zero:
Ekν∼U{1,n}

[
ξkν
(
β̂;X,y;A

)]
= 0 . (106)

We now aim to compute the covariance matrix

Σ
(
β̂;X,y;A

)
= Ekν∼U{1,n}

[
ξkν
(
β̂;X,y;A

)
ξkν
(
β̂;X,y;A

)⊤]
=

= X⊤
A

 1

n

n∑
kν=1

(
ykν − β̂⊤

Ax
kν
A

)2
ekν e⊤kν − 1

n2

n∑
kν ,qν=1

(
ykν − β̂⊤

Ax
kν
A

)(
yqν − β̂⊤

Ax
qν
A

)
ekν e⊤qν

XA

= X⊤
A

 2

n

n∑
kν=1

l
(
β̂;xkν , ykν ;A

)
ekν e⊤kν − 1

n2

n∑
kν ,qν=1

(
ykν − β̂⊤

Ax
kν
A

)(
yqν − β̂⊤

Ax
qν
A

)
ekν e⊤qν

XA

=
2

n
X⊤

A


l
(
β̂A;x

1, y1;A
)

0 . . . 0

0 l
(
β̂A;x

2, y2;A
)

. . . 0
...

...
. . .

...
0 0 . . . l

(
β̂A;x

n, yn;A
)
XA +O

(
1

n2

)
.

(107)

We neglect O
(
n−2

)
contributions and assume that the individual loss function l

(
β̂A;x

k, yk;A
)

is equal to its average
L
(
β̂;X,y;A

)
. Indeed, the result is then

Σ
(
β̂(t);X,y;A

)
≈ 2

n
L
(
β̂(t);X,y;A

)
X⊤

AXA , (108)

which matches Eq. (22). Along with Eq. (102), we obtain Eq. (23).

C.3. Solving gradient flow equation

We assume initial condition β̂A(0) ≡ β̂0
A. When γ = 0, SDE (23) becomes the following ODE:

dβ̂A

dt
=

1

n
X⊤

A(y −XAβ̂A) . (109)

This is a first-order matrix differential equation. Applying (99), we can write it as:

dβ̂A

dt
= − 1

n
V Λ⊤ΛV ⊤β̂A +

1

n
V Λ⊤U⊤y . (110)

Now, we can transform it to a system of independent linear ODEs by multiplying both sides by V ⊤, which is full-rank:

d(V ⊤β̂A)

dt
= − 1

n
Λ⊤Λ(V ⊤β̂A) +

1

n
Λ⊤U⊤y , (111)

i.e., we solve:
dβ̃A

dt
= − 1

n
Λ⊤Λβ̃A +

1

n
Λ⊤U⊤y , (112)

where β̃A ≡ V ⊤β̂A. Let β̃A(t) =
(
β̃1(t), . . . , β̃p(t)

)
be its component representation. Then, the system can be written

as:
dβ̃i
dt

=

{
− 1
nλ

2
i β̃i +

1
nλiu

⊤
i y for i ≤ r ;

0 for i > r .
(113)
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with initial condition β̃A(0) = V ⊤β̂A(0) = V ⊤β̂0
A. The solution of the system is then:

β̃i(t) =

{
e−

1
nλ

2
i t
(
β̃i(0)− u⊤

i y
λi

)
+

u⊤
i y
λi

for i ≤ r ;

β̃i(0) for i > r .
(114)

In vector form it can be written as:

β̃A(t) = e−
1
nΛ⊤Λtβ̃A(0) + Ip×rΛ−1

r

(
Ir − e−

1
nΛ2

rt
)
U⊤
r y . (115)

Multiplying by V , we get back to the original basis

β̂A(t) = V e−
1
nΛ⊤ΛtV ⊤β̂A(0) + VrΛ

−1
r U⊤

r

(
In −Ure

− 1
nΛ2

rtU⊤
r

)
y , (116)

or
β̂A(t) = e−

1
nX⊤

AXAtβ̂A(0) +X†
A

(
In −Ure

− 1
nΛ2

rtU⊤
r

)
y . (117)

Note that, using Eq. (101):

X†
Ae

− 1
nXAX⊤

At = VrΛ
−1
r U⊤

r ·Ue− 1
nΛΛ⊤tU⊤ = VrΛ

−1
r U⊤

r

(
Ure

− 1
nΛ2

rtU⊤
r +Ur⊥U

⊤
r⊥

)
=

= VrΛ
−1
r U⊤

r Ure
− 1

nΛ2
rtU⊤

r = X†
AUre

− 1
nΛ2

rtU⊤
r ,

(118)

which leads us to the concluding form of the GF trajectory solution shown in Eq. (24):

β̂GF
A (t) = e−

1
nX⊤

AXAtβ̂A(0) +X†
A

(
In − e−

1
nXAX⊤

At
)
y . (119)

When t→ ∞, we can observe using Eq. (101):

β̂GF
A (t)

t→∞−→ Vr⊥V
⊤
r⊥ β̂A(0) +X†

A
(
In −Ur⊥U

⊤
r⊥

)
y = Vr⊥V

⊤
r⊥ β̂A(0) +X†

Ay . (120)

Therefore, GF converges to the minimum norm solution of the least-squares problem minβ̂A∈Rp L
(
β̂;X,y;A

)
with one

caveat – when r < p the problem is overparametrized and therefore the solution includes the projection of β̂A(0) onto the
subspace orthogonal to row space of XA. In the Gaussian setting, aside of cases with probability 0, this happens iff n < p.

C.4. Evaluating the generalization error for gradient flow

Our goal is to compute:

EGF
test(t) = EA;X,y

[
Exnew,ynew

[
l
(
β̂GF
A (t);xnew, ynew)]] = 1

2
EA;X,y;xnew,ynew

[(
ynew − (xnew

A )
⊤
β̂GF
A (t)

)2]
, (121)

where xnew, ynew ∼ P(xnew, ynew) is a new sample from the distribution described in Section 4.

First, we look at the expectation over a new sample; as ynew = β⊤xnew + µϵnew = β⊤
Ax

new
A + β⊤

Acxnew
Ac + µϵnew and

xnew
A ∼ N (xnew

A |0, Ip),xnew
Ac ∼ N (xnew

Ac |0, Id−p), ϵnew ∼ N (ϵnew|0, 1) are mutually independent,

Exnew,ynew

[(
ynew − (xnew

A )
⊤
β̂GF
A (t)

)2]
=

= Exnew
A

[((
βA − β̂GF

A (t)
)⊤

xnew
A

)2
]
+ Exnew

Ac

[(
β⊤
Acxnew

Ac

)2]
+ µ2Eϵnew

[
(ϵnew)

2
]

=
(
βA − β̂GF

A (t)
)⊤

Exnew
A

[
xnew
A (xnew

A )
⊤
] (

βA − β̂GF
A (t)

)
+ β⊤

AcExnew
Ac

[
xnew
Ac (xnew

Ac )
⊤
]
βAc + µ2

= ∥βA − β̂GF
A (t)∥2 + ∥βAc∥2 + µ2 .

(122)

We then continue deriving expression for Eq. (121) by taking the expectation over (X,y). Only the first term of the resulting
sum of Eq. (122) depends on it, therefore our goal now is to compute EX,y

[
∥βA − β̂GF

A (t)∥2
]
.
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We denote ϵ :=
(
ϵ1, . . . , ϵn

)
∈ Rn as a vector of additive Gaussian noises. Then, we can write target vector as:

y = XAβA +XAcβAc + µϵ . (123)

The vector of differences between true value of parameter and GF estimate from Eq. (119) is:

βA − β̂GF
A (t) = βA − e−

1
nX⊤

AXAtβ̂A(0)−X†
A

(
In − e−

1
nXAX⊤

At
)
y =

=
(
Ip −X†

A

(
In − e−

1
nXAX⊤

At
)
XA

)
βA − e−

1
nX⊤

AXAtβ̂A(0)−X†
A

(
In − e−

1
nXAX⊤

At
)
(XAcβAc + µϵ) . (124)

As XAcβAc + µϵ is zero-mean vector independent from XA, we can write:

EX,y

[
∥βA − β̂GF

A (t)∥22
]
= EXA

[
∥
(
Ip −X†

A

(
In − e−

1
nXAX⊤

At
)
XA

)
βA − e−

1
nX⊤

AXAtβ̂A(0)∥2
]

+ EXA,XAc ,ϵ

[
∥X†

A

(
In − e−

1
nXAX⊤

At
)
(XAcβAc + µϵ) ∥2

]
.

(125)

Using Eqs. (99), (100), (101), we can simplify the first term, because:(
Ip −X†

A

(
In − e−

1
nXAX⊤

At
)
XA

)
βA =

=
(
Ip − VrΛ

−1
r U⊤

r

(
In −Ure

− 1
nΛ2

rtU⊤
r −Ur⊥U

⊤
r⊥

)
UrΛrV

⊤
r

)
βA =

=
(
Ip − VrV

⊤
r + Vre

− 1
nΛ2

rtV ⊤
r

)
βA =

(
Vre

− 1
nΛ2

rtV ⊤
r + Vr⊥V

⊤
r⊥

)
βA =

= e−
1
nX⊤

AXAtβA ,

(126)

and, therefore:

EXA

[
∥
(
Ip −X†

A

(
In − e−

1
nXAX⊤

At
)
XA

)
βA − e−

1
nX⊤

AXAtβ̂A(0)∥2
]
=

= EXA

[
∥e− 1

nX⊤
AXAt(βA − β̂A(0))∥2

]
=
(
βA − β̂A(0)

)⊤
EXA

[
e−

2
nX⊤

AXAt
] (

βA − β̂A(0)
)
. (127)

Going back to representation of Eq. (101), we can rewrite it in terms of the singular values of the matrix XA. Indeed,
applying trace trick (again, Λ and V are independent):

EXA

[
∥
(
Ip −X†

A

(
In − e−

1
nXAX⊤

At
)
XA

)
βA − e−

1
nX⊤

AXAtβ̂A(0)∥2
]
=

= Tr

{
EΛ,V

[(
V ⊤

(
βA − β̂A(0)

))⊤
e−

2
nΛ⊤ΛtV ⊤

(
βA − β̂A(0)

)]}
=

= Tr

{
EΛ

[
e−

2
nΛ⊤Λt

]
EV

[
V ⊤

(
βA − β̂A(0)

)(
βA − β̂A(0)

)⊤
V

]}
.

(128)

As V ∼ Unif (O (p)), if a ∈ Rp is arbitrary vector of dimensionality p, then

V ⊤a ∼ Unif
(
Sp−1 (∥a∥)

)
, (129a)

where Sd−1 (r) denotes d-dimensional sphere with radius r, and thus

EV

[
V ⊤a

]
= 0p, EV

[
V ⊤a

(
V ⊤a

)⊤]
=

1

p
∥a∥2 · Ip . (129b)

This results in:
EXA

[
∥
(
Ip −X†

A

(
In − e−

1
nXAX⊤

At
)
XA

)
βA − e−

1
nX⊤

AXAtβ̂A(0)∥2
]
=

=
1

p
∥βA − β̂A(0)∥2 Tr

{
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[
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2
nΛ⊤Λt

]}
= ∥βA − β̂A(0)∥2 ·

1

p
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{
EΛ

[
e−

2
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rt + (p− r)
]}

=

= ∥βA − β̂A(0)∥2 ·
(
1

p
Tr
{
EΛ

[
e−

2
nΛ2

rt
]}

+max

(
0, 1− n

p

))
.

(130)
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For the second term of Eq. (125), we can apply trace trick again:

EXA,XAc ,ϵ

[
∥X†

A

(
In − e−

1
nXAX⊤

At
)
(XAcβAc + µϵ) ∥2

]
=

= EXA,XAc ,ϵ

[
Tr

{
(XAcβAc + µϵ)

⊤
(
X†

A

(
In − e−

1
nXAX⊤

At
))⊤

X†
A

(
In − e−

1
nXAX⊤

At
)
(XAcβAc + µϵ)

}]
=

= Tr

{
EXA

[(
In − e−

1
nXAX⊤

At
)(

X†
A

)⊤
X†

A

(
In − e−

1
nXAX⊤

At
)]

EXAc ,ϵ

[
(XAcβAc + µϵ) (XAcβAc + µϵ)

⊤
]}

.

(131)
We note that the vector XAcβAc + µϵ is distributed as:

XAcβAc + µϵ ∼ N
(
0,
(
∥βAc∥2 + µ2

)
In
)
, (132)

and that on the other hand,

X†
A

(
In − e−

1
nXAX⊤

At
)
= VrΛ

−1
r U⊤

r

(
In −Ure

− 1
nΛ2

rtU⊤
r −Ur⊥U

⊤
r⊥

)
=

= VrΛ
−1
r

(
U⊤
r − e−

1
nΛ2

rtU⊤
r

)
= VrΛ

−1
r

(
Ir − e−

1
nΛ2

rt
)
U⊤
r ; (133)

thus it follows from Eq. (131):

EXA,XAc ,ϵ

[
∥X†

A

(
In − e−

1
nXAX⊤

At
)
(XAcβAc + µϵ) ∥2

]
=

=
(
∥βAc∥2 + µ2

)
Tr
{
EU ,Λ,V

[
Ur

(
Ir − e−

1
nΛ2

rt
)
Λ−1
r V ⊤

r VrΛ
−1
r

(
Ir − e−

1
nΛ2

rt
)
U⊤
r

]}
=

=
(
∥βAc∥2 + µ2

)
Tr

{
EΛ

[
Λ−2
r

(
Ir − e−

1
nΛ2

rt
)2]}

.

(134)

Gathering expressions from (130) and (134) back to (125), we obtain:

EX,y

[
∥βA − β̂GF

A (t)∥22
]
= ∥βA − β̂A(0)∥2 ·

(
max

(
0, 1− n

p

)
+

1

p
Tr
{
EΛ

[
e−

2
nΛ2

rt
]})

+

+
(
∥βAc∥2 + µ2

)
Tr

{
EΛ

[
Λ−2
r

(
Ir − e−

1
nΛ2

rt
)2]}

, (135)

which can be used to obtain average test error over X,y by taking the expectation over both first and last equal expressions
of Eq. (122) and substituting one of the terms with this one.

We return to test error Eq. (121) and average over A. The only terms depending on A are ∥βA − β̂A(0)∥2 and ∥βAc∥2. As
A in our model is a uniformly random subset of [d] of cardinality p,

EA

[
∥βA − β̂A(0)∥2

]
=
p

d
· ∥β − β̂0∥2, EA

[
∥βAc∥2

]
=
(
1− p

d

)
∥β∥2 . (136)

Finally, we obtain:

EGF
test(t) =

1

2
EA

[
EX,y

[
∥βA − β̂GF

A (t)∥22
]
+ ∥βAc∥2 + µ2

]
=

=
1

2

(
∥β − β̂0∥2 ·

(
max

(
0,

p− n

d

)
+

1

d
Tr
{
EΛ

[
e−

2
nΛ2

rt
]})

+

+
((

1− p

d

)
∥β∥2 + µ2

)[
1 + Tr

{
EΛ

[
Λ−2
r

(
Ir − e−

1
nΛ2

rt
)2]}])

,

(137)

which matches expression (27).
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C.5. Evaluating train error for gradient flow

In this section, we compute the average train error for GF solution:

EGF
train(t) = EA;X,y

[
L
(
β̂GF
A (t);X,y;A

)]
=

1

2n
EA;X,y

[
∥y −XAβ̂

GF
A (t)∥2

]
. (138)

While in this paper we do not insist on the properties of the train error, the derivation itself will prove useful in C.6. This is
not surprising, as the train error is involved in modeling of diffusion matrix.

First, we look at the ’vector of train errors’; we substitute the gradient flow estimator with the solution from Eq. (119):

y −XAβ̂
GF
A (t) =

[
In −XAX

†
A

(
In − e−

1
nXAX⊤

At
)]

y −XAe
− 1

nX⊤
AXAtβ̂A(0) . (139)

The multiplier in the first term can be simplified utilizing Eqs. (133), (101):

In −XAX
†
A

(
In − e−

1
nXAX⊤

At
)
= In −UrΛrV

⊤
r VrΛ

−1
r

(
Ir − e−

1
nΛ2

rt
)
U⊤
r =

= UrU
⊤
r +Ur⊥U

⊤
r⊥ −UrU

⊤
r +Ure

− 1
nΛ2

rtU⊤
r = Ure

− 1
nΛ2

rtU⊤
r +Ur⊥U

⊤
r⊥ = e−

1
nXAX⊤

At ; (140)

with this and the explicit form of y from Eq. (123), we obtain:

y −XAβ̂
GF
A (t) = e−

1
nXAX⊤

AtXAβA −XAe
− 1

nX⊤
AXAtβ̂A(0) + e−

1
nXAX⊤

At (XAcβAc + µϵ) . (141)

Now, using properties of SVD of XA, we can see that:

e−
1
nXAX⊤

AtXA =
(
Ure

− 1
nΛ2

rtU⊤
r +Ur⊥U

⊤
r⊥

)
UrΛrV

⊤
r = UrΛre

− 1
nΛ2

rtV ⊤
r ;

XAe
− 1

nX⊤
AXAt = UrΛrV

⊤
r

(
Vre

− 1
nΛ2

rtV ⊤
r + Vr⊥V

⊤
r⊥

)
= UrΛre

− 1
nΛ2

rtV ⊤
r .

(142)

Then, the vector of train errors can be split into two terms – one depending on βA − β̂A(0), another on XAcβAc + µϵ:

y −XAβ̂
GF
A (t) = UrΛre

− 1
nΛ2

rtV ⊤
r

(
βA − β̂A(0)

)
+ e−

1
nXAX⊤

At (XAcβAc + µϵ) . (143)

Now, we would like to take expectation of ∥y −XAβ̂
GF
A (t)∥2 over X,y, or, equivalently, over XA,XAc , ϵ. We start with

the latter two. Again XAcβAc + µϵ is zero-mean vector independent from XA, so we can write:

EXAc ,ϵ

[
∥y −XAβ̂

GF
A (t)∥2

]
= ∥UrΛre

− 1
nΛ2

rtV ⊤
r

(
βA − β̂A(0)

)
∥2 + EXAc ,ϵ

[
∥e− 1

nXAX⊤
At (XAcβAc + µϵ) ∥2

]
.

(144)
The first term can be reduced to:

∥UrΛre
− 1

nΛ2
rtV ⊤

r

(
βA − β̂A(0)

)
∥2 =

(
βA − β̂A(0)

)⊤
Vre

− 1
nΛ2

rtΛrU
⊤
r UrΛre

− 1
nΛ2

rtV ⊤
r

(
βA − β̂A(0)

)
=
(
βA − β̂A(0)

)⊤
VrΛ

2
re

− 2
nΛ2

rtV ⊤
r

(
βA − β̂A(0)

)
,

(145)

To take the expectation in the second one, along the lines of Eq. (131), we use again use trace trick and the covariance of
vector XAcβAc + µϵ (see Eq. (132)):

EXAc ,ϵ

[
∥e− 1

nXAX⊤
At (XAcβAc + µϵ) ∥2

]
= Tr

{
EXAc ,ϵ

[
(XAcβAc + µϵ)

⊤
e−

2
nXAX⊤

At (XAcβAc + µϵ)
]}

=

= Tr
{
e−

2
nXAX⊤

At · EXAc ,ϵ

[
(XAcβAc + µϵ) (XAcβAc + µϵ)

⊤
]}

=
(
∥βAc∥2 + µ2

)
Tr
{
e−

2
nXAX⊤

At
}
. (146)

We write this result in terms of SVD’s of matrices (noting that in fact the expectation over U is not necessary here):

Tr
{
e−

2
nXAX⊤

At
}
= Tr

{
Ue−

2
nΛΛ⊤tU⊤

}
= Tr

{
e−

2
nΛΛ⊤t

}
= Tr

{
e−

2
nΛ2

rt
}
+ n− r . (147)
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All in all, we collect everything back into Eq. (144):

EXAc ,ϵ

[
∥y −XAβ̂

GF
A (t)∥2

]
=

=
(
βA − β̂A(0)

)⊤
VrΛ

2
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− 2
nΛ2

rtV ⊤
r

(
βA − β̂A(0)

)
+
(
∥βAc∥2 + µ2

) (
Tr
{
e−

2
nΛ2

rt
}
+ n− r

)
. (148)

Now, to average over XA, we start with the expectation over U and V first, because the result would be convenient to
employ in section C.6. U is not present at all, and V is found only in the first term. With an application of trace trick,

EV

[(
V ⊤
r

(
βA − β̂A(0)

))⊤
Λ2
re

− 2
nΛ2

rtV ⊤
r

(
βA − β̂A(0)

)]
=

= Tr

{
Λ2
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nΛ2

rtEV

[
V ⊤
r

(
βA − β̂A(0)

)(
V ⊤
r

(
βA − β̂A(0)

))⊤]}
. (149)

We discussed distribution of the vector V ⊤
(
βA − β̂A(0)

)
in Eq. (129); then, we can see that V ⊤

r

(
βA − β̂A(0)

)
are

simply first r components of it, and, therefore, the new vector is also zero-mean with covariance matrix is 1
p∥βA−β̂A(0)∥2Ir.

This leads us to:

EU ,V ;XAc ,ϵ

[
∥y −XAβ̂

GF
A (t)∥2

]
= ∥βA − β̂A(0)∥2
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Tr
{
Λ2
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nΛ2
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}
+
(
∥βAc∥2 + µ2

) (
Tr
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2
nΛ2

rt
}
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)
.

(150)

At last, the whole expectation of square of train error over X,y is found to be

EX,y

[
∥y −XAβ̂

GF
A (t)∥2

]
= EXA;XAc ,ϵ

[
∥y −XAβ̂

GF
A (t)∥2

]
=

= ∥βA − β̂A(0)∥2
1

p
Tr
{
EΛ

[
Λ2
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nΛ2
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]}

+
(
∥βAc∥2 + µ2

) (
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{
EΛ

[
e−

2
nΛ2

rt
]}

+max(0, n− p)
)
, (151)

and, by taking average over feature set A (sampled as in Eq. (136)) we obtain the final expression for Eq. (138):

EGF
train(t) =

1
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(
1
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∥β − β̂0∥2 · 1

n
Tr
{
EΛ

[
Λ2
re
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nΛ2
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+

+
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d
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(
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n
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{
EΛ

[
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2
nΛ2

rt
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(
0, 1− p

n

)))
. (152)

C.6. Evaluating generalization error for stochastic gradient flow

Now, we would like to evaluate stochastic gradient flow test error, i.e. error for estimator β̂SGF
A (t) = β̂GF

A (t) +
√
γzzz(t), with

zzz(0) = 0 and zzz(t) being a mean-zero Gaussian process with the covariance matrix CCC (t).

First of all, it is easy to see that the derivations in Eq. (122) are still valid if we replace β̂GF
A with β̂SGF

A , and therefore:

ESGF
test (t) = EA;X,y;b

[
Exnew,ynew

[
l
(
β̂SGF
A (t);xnew, ynew)]]

=
1

2
EA;X,y;b

[
Exnew,ynew

[(
ynew − (xnew

A )
⊤
β̂SGF
A (t)

)2]]
=

1

2
EA

[
EX,y;b

[
∥βA − β̂SGF

A (t)∥2
]
+ ∥βAc∥2 + µ2

]
,

(153)

so we can easily obtain equality from Eq. (25).
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Now, as we can decompose:

Eb

[
∥βA − β̂SGF

A (t)∥2
]
= Eb

[∥∥∥(βA − β̂GF
A (t)

)
−√

γzzz(t)
∥∥∥2]

=
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A (t)
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√
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A (t)
)
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[
zzz⊤(t)zzz(t)

]
=
∥∥∥βA − β̂GF

A (t)
∥∥∥2 + γ Tr{CCC (t)} ,

(154)

we can see that ESGF
test (t) indeed can be split into sum of test error EGF

test(t) of deterministic gradient flow and a term coming
from perturbation and proportional to learning rate γ as in Eq. (26):

ESGF
test (t) = EGF

test(t) +
γ

2
EA;X,y [Tr{CCC (t)}] . (155)

Evaluation of the first term was done in Section C.4. To complete it for the second term, we refer to Eq. (21a). In our setting,
L
(
β̂;X,y;A

)
= 1

2n∥y −XAβ̂A∥2, and its Hessian is

HL

(
β̂;X,y;A

)
= ∇β̂A

⊗∇β̂A
L
(
β̂;X,y;A

)
=

1

n
X⊤

AXA ∈ Rp×p . (156)

Then, the term in Eq. (21b) in our model becomes:

UGF (t, τ ;X,y;A) ≡ T
{
e−

∫ t
τ
dsHL

(
β̂GF

A (t);X,y;A
)}

= T
{
e−

1
n

∫ t
τ
dsX⊤

AXA
}
= e−

1
nX⊤

AXA(t−τ) . (157)

On the other hand, the diffusion matrix is, as stated in Eq. (22):

Σ
(
β̂(t);X,y;A

)
≈ 1

n2
X⊤

AXA · ∥y −XAβ̂A(t)∥2 . (158)

This results in the following covariance matrix of the process:

CCC (t) =

∫ t

0

dτ UGF (t, τ ;X,y;A) Σ
(
β̂GF
A (τ);X,y;A

)
UGF (t, τ ;X,y;A)

⊤
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(159)

As ∥y −XAβ̂
GF
A (τ)∥2 is scalar and with Eq. (101),

Tr
{
X⊤

AXA e−
2
nX⊤

AXA(t−τ)
}
= Tr

{
V Λ⊤U⊤UΛV ⊤V e−
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nΛ⊤Λ(t−τ)V ⊤
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=
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Λ⊤Λe−
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}
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{
Λ2
re
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nΛ2
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}
, (160)

we obtain the following expression for trace of covariance matrix:

Tr{CCC (t)} =
1

n2

∫ t

0

dτ ∥y −XAβ̂
GF
A (τ)∥2 · Tr

{
Λ2
re
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nΛ2

r(t−τ)
}
. (161)

Now, we would like to compute EA;X,y [Tr{CCC (t)}]. Expectation over X,y is the same as expectation over
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U ,Λ,V ,XAc , ϵ, and thus, following Eq. (150),
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(162)

We avoid taking integral of time over product of traces right now as it makes further approximation complicated; however,
the term below is easy to simplify:∫ t

0

dτ EΛ

[
Tr
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r∑
i=1

1

n
λ2i
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=
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. (163)

With averaging over feature set A sampling as in Eq. (136) and substituting as above, we get the expression:
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(164)

which matches Eq. (28).

D. Asymptotic generalization error
In Appendix C, we derived precise formulas for generalization errors of GF and SGF solutions. However, to analyze these
results, we need to find expectation for several functions of Λ.

D.1. Reformulation with empirical distribution of eigenvalues

We consider p× p matrix 1
nX

⊤
AXA. As elements of XA are i.i.d. standard normal, the former matrix follows the Wishart

distribution Wp

(
n, 1

n Ip
)

with n degrees of freedom. Let ν(p×n) be empirical distribution of eigenvalues of 1
nX

⊤
AXA. As

XA = UΛV ⊤, the spectral decomposition is

1

n
X⊤

AXA = V

(
1

n
Λ⊤Λ

)
V ⊤ , (165)

i.e., eigenvalues are values on the diagonal of Λ⊤Λ. Following that, the measure ν(p×n) can be defined as:

ν(p×n) (A) =
1

p
#

{
1

n
λ2i ∈ A | i ∈ 1, p

}
, A ⊂ R . (166)
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If p ≤ n, with probability 1, all eigenvalues are positive; {0} is a set of measure 0, and ν(p×n) is an absolutely continuous
distribution. Otherwise, it has measure 1− n/p.

Let φ : R 7→ R be a pointwise function. For arbitrary diagonal m × m matrix D = diag(d11, . . . , dmm), we define
φ(D) := diag (φ(d11), . . . , φ(dmm)) ∈ Rm×m. Then,

Eσ∼ν(p×n)
[φ(σ)] =

1

p

p∑
i=1

Eλi

[
φ

(
1

n
λ2i

)]
=

1

p
EΛ

[
Tr

{
φ

(
1

n
Λ⊤Λ

)}]
=

=
1

p
EΛ

[
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{
φ

(
1

n
Λ2
r

)}
+ (p− r) φ(0)

]
= max

(
0, 1− n

p

)
φ(0) +

1

p
EΛ

[
Tr

{
φ

(
1

n
Λ2
r

)}]
. (167)

Thus, when p ≤ n, we can express 1
p EΛ

[
Tr
{
φ
(
1
nΛ

2
r

)}]
in terms of expected value of absolutely continuous measure.

When p > n, we can repeat our line of thought for ν(n×p), which is an empirical distribution of eigenvalues of n× n matrix
1
pXAX

⊤
A . 1

pXAX
⊤
A also has Wishart distribution – Wn

(
p, 1

p In
)

, – and spectral decomposition

1

p
XAX

⊤
A = U

(
1

p
ΛΛ⊤

)
U⊤ , (168)

and obtain:

Eσ∼ν(n×p)
[φ(σ)] = max

(
0, 1− p

n

)
φ(0) +

1

n
EΛ

[
Tr

{
φ

(
1

p
Λ2
r

)}]
. (169)

Now, let φ′ : R 7→ R be such function that ∀x ∈ R : φ′(x) = φ
(
n
px
)

. Then, φ′ ( 1
nΛ

2
r

)
= φ

(
1
pΛ

2
r

)
, and we can write:

1
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[
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r

)}]
=
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p
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[
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{
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(
1

p
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)}]
=
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(
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)
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[
φ′
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n
σ
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(
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n

p
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)
φ(0) .

(170)

To sum up, for φ : R 7→ R, we can use the following representations:

1

p
EΛ

[
Tr

{
φ

(
1

n
Λ2
r

)}]
=

{
Eσ∼ν(p×n)

[φ(σ)] for p ≤ n ;
n
p Eσ∼ν(n×p)

[
φ
(
p
nσ
)]

for p > n .
(171)

D.2. Asymptotic approximation with Marchenko-Pastur distribution

Unfortunately, to our knowledge, there is no explicit expression for probability density of ν(n×p) which would be convenient
to use for analysis of generalization error of solutions for finite sizes. However, for high enough values of n, d, p we can
approximate the results asymptotically.

More precisely, as mentioned in Section 4.2, we consider n, d, p → ∞ such that p/n → α, d/n → ψ, where α and ψ are
fixed positive values. As p must be less or equal than d, α ≤ ψ. Under these conditions, as XA has i.i.d. standard normal
elements, empirical distribution ν(p×n) of eigenvalues of 1

nX
⊤
AXA weakly converges to well-known Marchenko-Pastur law

να. Its measure can be written as

να(A) =

{(
1− 1

α

)
1 (0 ∈ A) + ρα(A) , α > 1

ρα(A) , 0 ≤ α ≤ 1
; A ⊂ R, (172)

where ρα is a following measure:

ρα(dσ) =

√
(α+ − σ)(σ − α−)

2πασ
1(σ ∈ [α−, α+]) dσ , where α± = (1±

√
α)2 . (173)
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We remark that ρα is not a probability measure when α > 1 as ρα(R) ̸= 1. Likewise to ν(p×n), ν(n×p) converges to ν1/α.

Then, we derive from Eq. (171) that if φ : R 7→ R is a pointwise function,

1

p
EΛ

[
Tr

{
φ

(
1

n
Λ2
r

)}]
n,p→∞, p/n→α−−−−−−−−−−→

{
Eσ∼να [φ(σ)] , α ≤ 1;
1
α Eσ∼ν1/α [φ (ασ)] , α > 1.

(174)

Now, when α ≤ 1,

Eσ∼να [φ(σ)] =

∫
φ(σ) ρα(dσ), (175)

and when α > 1,

1

α
Eσ∼ν1/α [φ (ασ)] =
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∫ (1/α)+
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)
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dσ . (176)

We can transform the latter expression; as(
1

α

)
±
=

(
1± 1√

α

)2

=
1

α
(1±

√
α)2 =

1

α
· α± , (177)

we continue

1

α
Eσ∼ν1/α [φ (ασ)] =

∫ α+/α

α−/α

φ(ασ)

√
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φ(ζ)

√
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2παζ
dζ =

∫
φ(ζ) ρα(dζ) . (178)

Combining results from Eqs. (175) and (178) with Eq. (174), we can state for any α ∈ (0, ψ] that
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EΛ

[
Tr

{
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)}]
n,p→∞, p/n→α−−−−−−−−−−→

∫
φ(σ) ρα(dσ) . (179)

D.2.1. GRADIENT FLOW TEST ERROR

With findings above, we can give approximate estimate for GF and SGF generalization error. Starting with the former, i.e.,
Eq. (137), we can provide asymptotic limits:
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and
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which results in

lim
n,d,p→∞

d/n→ψ, p/n→α
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(182)
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this coincides with Eq. (29) when ∥β∥ = 1 and ∥β − β̂0∥2 → 2.

To obtain an infinite-time limit for the test error, we can see that for α ̸= 1,∫
e−2σt ρα(dσ) ≤ e−2α−t

(∫
ρα(dσ)

)
t→+∞−−−−→ 0 ;∫

e−kσt

σ
ρα(dσ) ≤ e−kα−t

(∫
ρα(dσ)

σ

)
t→+∞−−−−→ 0 , k ∈ N .

(183)

Therefore, the first integral term of Eq. (182) will go away, and in the integral second term, we can set aside a part
independent of t:

α
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(1− e−σt)

2

σ
ρα(dσ) = α

∫
1

σ
ρα(dσ) + α

∫
e−2σt − 2e−σt

σ
ρα(dσ) , (184)

which will be the only one remaining when t→ +∞ and can be simplified as
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(185)

Now, as

1 + α

∫
1

σ
ρα(dσ) =

{
1

1−α , α ≤ 1 ,
α
α−1 , α > 1

=
1

1−min (α, 1/α)
, (186)

we retrieve a GF test error limit when t→ +∞:
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lim
n,d,p→∞

d/n→ψ, p/n→α

EGF
test(t) =

1

2

(
1

ψ
∥β − β̂0∥2 max (0, α− 1) +

((
1− α

ψ

)
∥β∥2 + µ2

)
1

1−min (α, 1/α)

)
.

(187)

D.2.2. STOCHASTIC GRADIENT FLOW TEST ERROR

Now, we are going to SGF, i.e., the stochastic component additive to GF error from Eq. (164). There, however, we have to
deal with expressions of form EΛ

[
Tr
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(
1
nΛ

2
r

)}
Tr
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)}]
for φ1, φ2 : R 7→ R. However, for large n, p, we can

assume that the (normalized) traces concentrate so that:
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. (188)

Then
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(189)

Similarly, by taking φ1(σ) := e−2στ , φ2(σ) := σe−2σ(t−τ), we get:
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We can now integrate over τ by changing order of integration:
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(191)

In the same way:
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(192)

Finally, EΛ

[
Tr
{
Ir − e−
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}]

can be treated as seen before in Eq. (179):
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Then, if we denote

F1(α, t) ≡
∫ ∫

ρα(dσ1)ρα(dσ2)σ1σ2K(t, σ1, σ2) , (194)

F2(α, t) ≡
∫ ∫
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=
1
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2(σ2 − σ1)
, (196)
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we obtain an asymptotic result for stochastic component of SGF error:
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(197)

or, with scaling
γ

2
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the expression is
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(199)

which matches Eq. (30) when ∥β∥ = 1 and ∥β − β̂0∥2 → 2.

Now, we obtain infinite-time limit. With argument similar to Eq. (183), we can write for α ̸= 1:

lim
t→+∞

F1(α, t) = 0, lim
t→+∞

F2(α, t) = 0 ; (200)

besides, from Eq. (172) we can see: ∫
ρα(dσ) = min
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1
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)
, (201)

and as
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α

)
= max (0, 1− α) , (202)

the infinite-time limit of difference between test errors of SGF and GF is:
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·max (0, 1− α) . (203)

E. Additional numerics for the weak features model
Gradient flow – Plots for the test risk of deterministic gradient flow estimator are found in Fig. 5. Fig. 5(a) focuses on the
risk dependence on α. One can see a limiting double descent picture (with degenerate first descent) described in (Belkin
et al., 2020). Besides, our derivations, particularly Eq. (29), also allows to see the emergence of the double descent with
time. This is illustrated by Fig. 5(b) which depicts the time evolution of the test risk for GF estimator. We observe that under
our choice of model parameters early stopping is beneficial for most values of α. The gradient descent simulations come
very close to our prediction. The discrepancy between the theoretical and empirical predictions is slightly more pronounced
for values of α close to 1, which we hypothesize to be caused by a lower rate of convergence of the empirical distribution of
eigenvalues of Λ2

r/n to Marchenko-Pastur distribution for such α’s.
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Figure 5. Plots depicting EGF
test(t) for ψ = 2.5. Solid lines represent theoretical asymptotic estimation. Markers on 5(b) represent the

results of numerical simulations of GD (averaged over 1000 different random subsets A). Simulation parameters: d = 1000, γ = 10−3;
vectors β, β0 are taken at random on the unit 1000-dimensional sphere and here ∥β − β0∥2 ≈ 2.11

Difference between SGF and GF – We illustrate the time-evolution of the difference ESGF
test − EGF

test and its numerical
simulation counterpart ESGD

test − EGD
test, as well as finite-size effects. These differences are presented in Fig. 6 as a function of

t/γ for different values of α, below and above the interpolation threshold. Note that t/γ can be interpreted as teh number of
iterations in gradient descent. Fig. 6(a) depicts the comparison with simulations for d = 100 and Fig. 6(b) with simulations
for d = 1000.
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(b) Simulations with d = 1000

Figure 6. Time-evolution of ESGF
test − EGF

test with ψ = 2.5 for different values of α. Markers represent simulations while lines represent the
theoretical predictions. The learning rate is scaled as γ = 1/d. Vectors β, β0 are taken at random on the unit d-dimensional sphere. Here
∥β − β0∥2 ≈ 1.78 for d = 100 and ∥β − β0∥2 ≈ 2.11 for d = 1000.

We note pronounced finite-size effects when comparing Figs. 6(a) (with d = 100) and Figs. 6(b) (with d = 1000), particularly
below the interpolation threshold and high values of t/γ.

Additionally, for finite-times, we observe that the theoretical results are less accurate for times of order t ∼ 1 (corresponding
to roughly 1/γ = d GD iterations). That is already apparent from the ‘red curve’ in Fig. 3 in the main text. To further
investigate this point, we define ∆ETheory

test ≡ ESGF
test − EGF

test and ∆ESimul
test ≡ ESGD

test − EGD
test, and compare the difference between

∆ETheory
test −∆ESimul

test (for the same setting as that of Fig. 6). These differences are presented in Fig. 7 for different values of
α, and with d = 100, d = 1000.

For values of α well below the interpolation threshold, the finite size effects are clearly visible in the whole time-evolution
and go away as d increases. Above the threshold, the discrepancy is more pronounced around t ∼ 1 and there is no clear
evidence that this is a finite size effect. It remains to be seen if better continuous time modelling (for example second order
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Figure 7. Time-evolution of the difference between the theory and simulation (d = 100, 1000 and ψ = 2.5) results for ∆ETheory
test −∆ESimul

test

(defined in the text) for different values of α, below and above the interpolation threshold. The time scaling is adjusted according to the
fine size simulation: γd = 1/d.

SDE modelling) would be tractable and make the discrepancy disappear.
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