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Abstract

We consider the task of active geo-localization (AGL) in which an agent uses a
sequence of visual cues observed during aerial navigation to find a target specified
through multiple possible modalities. This could emulate a UAV involved in a
search-and-rescue operation navigating through an area, observing a stream of
aerial images as it goes. The AGL task is associated with two important challenges.
Firstly, an agent must deal with a goal specification in one of multiple modalities
(e.g., through a natural language description) while the search cues are provided in
other modalities (aerial imagery). The second challenge is limited localization time
(e.g., limited battery life, urgency) so that the goal must be localized as efficiently
as possible, i.e. the agent must effectively leverage its sequentially observed aerial
views when searching for the goal. To address these challenges, we propose
GOMAA-Geo – a goal modality agnostic active geo-localization agent – for zero-
shot generalization between different goal modalities. Our approach combines
cross-modality contrastive learning to align representations across modalities with
supervised foundation model pretraining and reinforcement learning to obtain
highly effective navigation and localization policies. Through extensive evaluations,
we show that GOMAA-Geo outperforms alternative learnable approaches and that
it generalizes across datasets – e.g., to disaster-hit areas without seeing a single
disaster scenario during training – and goal modalities – e.g., to ground-level
imagery or textual descriptions, despite only being trained with goals specified as
aerial views. Our code is available at: https://github.com/mvrl/GOMAA-Geo.

1 Introduction

A common objective among many search-and-rescue (SAR) operations is to locate missing individuals
within a defined search area, such as a specific neighborhood. To this end, one may leverage indirect
information about the location of these individuals that may come from natural language descriptions,
photographs, etc, e.g. through social media or eyewitness accounts. However, such information may
not allow us to precisely identify actual locations (for example, these may not be provided on social
media), and potential GPS information may be unreliable. In such situations, deploying a UAV to
explore the area from an aerial perspective can be effective for accurate localization and subsequent
assistance to those who are missing. However, the field of view of a UAV is typically limited (at
least in comparison with the area to be explored), and the inherent urgency of search-and-rescue
tasks imposes an effective temporal budget constraint. We refer to this general task and modeling
framework as goal modality agnostic active geo-localization. Pirinen et al. [24] recently introduced a
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deep reinforcement learning (DRL) approach for a significantly simpler version of this setup, where
goals are always assumed to be specified as aerial images. This is severely limiting in practical
scenarios, where goal contents are instead often available as ground-level imagery or natural language
text (e.g., on social media following a disaster). Also, since no two geo-localization scenarios are
alike, zero-shot generalizability is a crucial aspect to consider when developing methods for this task.

To this end, we introduce GOMAA-Geo, a novel framework for tackling the proposed GOal Modality
Agnostic Active Geo-localization task. Our framework allows for goals to be specified in several
modalities, such as text or ground-level images, whereas search cues are provided as a sequence
of aerial images (akin to a UAV with a downwards-facing camera). Furthermore, GOMAA-Geo
effectively leverages past search information in deciding where to search next. To address the potential
misalignment between goal specification and observational modalities, as well as facilitating zero-shot
transfer, we develop a cross-modality contrastive learning approach that aligns representation across
modalities. We then combine this representation learning with foundation model pretraining and
DRL to obtain policies that efficiently localize goals in a specification-agnostic way.

Given the scarcity of high-quality datasets that combine aerial imagery with other modalities like
natural language text or ground-level imagery, evaluating GOMAA-Geo becomes challenging. To
address this limitation, we have created a novel dataset that allows for benchmarking of multi-modal
geo-localization. We then demonstrate that our proposed GOMAA-Geo framework is highly effective
at performing active geo-localization tasks across diverse goal modalities, despite being trained
exclusively on data from a single goal modality (i.e., aerial views).

In summary, we make the following contributions:

• We introduce GOMAA-Geo, a novel framework for effectively tackling goal modality agnostic
active geo-localization – even when the policy is trained exclusively on data from a single goal
modality – and perform extensive experiments on two publicly available aerial image datasets,
which demonstrate that GOMAA-Geo significantly outperforms alternative approaches.

• We create a novel dataset to assess various approaches for active geo-localization across three
different goal modalities: aerial images, ground-level images, and natural language text.

• We demonstrate the significance of each component within our proposed GOMAA-Geo framework
through a comprehensive series of quantitative and qualitative ablation analyses.

• We assess the zero-shot generalizability of GOMAA-Geo by mimicking a real-world disaster
scenario, where goals are presented as pre-disaster images and where policy training is done
exclusively on such pre-disaster data, while the active geo-localization only has access to post-
disaster aerial image glimpses during inference.

2 Related Work

Geo-localization. There is extensive prior work on one-shot visual geo-localization [41, 38, 46,
43, 26, 40, 34, 6, 5, 47, 12]. Such works aim to infer relationships between images from different
perspectives, typically predicting an aerial view corresponding to a ground-level image. This problem
is commonly tackled by exhaustively comparing a query image with respect to a large reference
dataset of aerial imagery. Alternatively, as in [3], a model is trained to directly predict the global
geo-coordinates of a given query image. In contrast, our active geo-localization (AGL) setup aims
to localize a target from its location description in one of several modalities by navigating the
geographical area containing it.

LLMs for RL. LLMs have been applied to RL and robotics for planning [35, 42, 15]. Our work
instead focuses on learning goal-modality agnostic zero-shot generalizable agents and aims to leverage
LLMs in order to learn goal-conditioned history-aware representations to guide RL agents for AGL.

Embodied learning. Our setup is also related to embodied goal navigation [2, 48, 19], where an
agent should navigate (in a first-person perspective) in a 3d environment towards a goal specified e.g.
as an image. This task may sometimes be more challenging than our setup since the agent needs to
explore among obstacles (e.g. walls and furniture). On the other hand, the agent may often observe
the goal from far away (e.g. from the opposite side of a recently entered room), while our task is
more challenging in that the goal can never be partially observed prior to reaching it.

Autonomous UAVs. There are many prior works about autonomously controlling UAVs [36, 18, 10, 4,
30, 45, 25]. Many of these (e.g. [36, 30, 45]) revolve around exploring large environments efficiently,
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so that certain inferences can be accurately performed given only a sparse selection of high-resolution
observations. There are also works that are closer to us in terms of task setup [4, 18, 10, 32, 31, 24].
For example, [24] also considers the task of actively localizing a goal, assuming an agent with aerial
view observations of a scene. However, this work only considers the idealized setting in which the
goal is speci�ed in terms of a top-view observation from the exact same scenario in which the agent
operates. In contrast, we allow for �exibly specifying goals in an agnostic manner.

Multi-modal representation learning in remote sensing.Recent studies [17, 11] have shown that
satellite image representations can be aligned with the shared embedding space learned by CLIP [28],
by using co-located ground-level imagery as an intermediary to link satellite images and language.
We utilize such aligned multi-modal embedding to represent goals in a modality-agnostic manner.

3 Active Geo-localization Setup

To formalize the active geo-localization (AGL) setup, we consider an agent (e.g. a UAV in a
search-and-rescue scenario) that aims to localize a goal within a pre-de�ned search area. This
area is discretized into aX � Y grid superimposed on a given aerial landscape (larger image),
with each grid corresponding to a position (location) and representing the limited �eld of view
of the agent (UAV) – i.e., the agent can only observe the aerial content of a sub-imagex t
corresponding to the grid cell in which it is located at time stept. The agent can move between
cells by taking actionsa 2 A (up, down, left, right, in a canonical birds-eye-view orientation).

Figure 1: Active geo-localization across
different goal modalities. The agent must
navigate to the goal (yellow dot) based on
partial aerial glimpses, i.e. the full area is never
observed in its entirety.

The search goal is associated with one of the grid cells,
including a description in one of several modalities, and
the agent's task is to reach this goal – relying solely
on visual cues in the form of sequentially observed
aerial sub-images – within a �xed number of stepsB.
More precisely, letsg be the semantic content andpg the
location (within the search area) of the goal. We usexg
to denote the provideddescriptionof the goal, available
to the agent in the form of either(i) natural language text,
(ii) ground-level image, or (iii) aerial image(sub-image
within the top-view perspective search area). Notably,
the true locationpg of the goal isnot provided to the
agent, so it must be inferred by the agent during the
search process. The AGL task is deemed accomplished
when the agent's current positionpt aligns with the goal
positionpg, i.e., whenpt = pg. An overview is provided
in Figure 1.

We model this problem as aGoal-Conditioned Partially Observable Markov Decision Process (GC-
POMDP)and consider a family ofGC-POMDPenvironmentsM e = f (Se; A ; X e; T e; Ge;  )je 2 � g
wheree is the environment index. Each environment comprises a state spaceSe, shared action space
A , observation spaceX e, transition dynamicsT e, goal spaceGe � S e, and discount factor 2 [0; 1].
The observationxe 2 X e is determined by statese 2 S e and the unknown environmental factor
be 2 F e, i.e.,xe(se; be), whereF e encompasses variations related e.g. to disasters, diverse geospatial
regions, varying seasons, and so on. We usexe

t to denote the observation at statese and stept, for
domaine.

The primary objective in aGC-POMDP is to learn a history-aware goal conditioned policy
� (at jxe

h t
; ge), wherexe

h t
= ( xe

t ; at � 1; xe
t � 1; : : : ; a0; xe

0) combines all the previous observations
and actions up to timet, that maximizes the discounted state density functionJ (� ) across all domains
e 2 � as follows:

J (� ) = Ee � �;g e � G e ;�

"

(1 �  )
1X

t =0

 t pe
� (st = gej ge)

#

(1)

Herepe
� (st = gej ge) represents the probability of reaching the goalge at stept within domaineunder

the policy� (:jxe
h t

; ge), ande � � andg � G e refer to uniform samples from each set. Throughout
the training process, the agent is exposed to a set of training environmentsf ei gN

i =1 = � train � � ,
each identi�ed by its environment index. We also assume during training that the goal content is
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always available to the agent in the form of anaerial image. Our objective is to train a history-aware
goal-conditioned RL agent capable of generalizing across goal modalities (such as natural language
text, ground-level images, aerial images) and environmental variations, such as natural disasters.

4 Proposed Framework for Goal Modality Agnostic Active Geo-localization

In this section we introduceGOMAA-Geo, a novel learning framework designed to address the
goal modality agnostic active geo-localization (AGL) problem.GOMAA-Geoconsists of three
components:(i) representation alignment across modalities; (ii) RL-aligned representation learning
using goal aware supervised pretraining of LLM; and(iii) planning. We next describe in detail each
of these components within the proposed framework, and then we explain how these modules are
integrated to train a goal-conditioned policy� , capable of generalizing to unseen test environments
and unobserved goal modalities after training on� train (cf. Section 3).

Aligning representations across modalities.As we aspire to learn a goal modality agnostic policy
� , it is essential to ensure that the embedding of the goal content – regardless of its modality (such as
natural language text) – is aligned with the aerial image modality, as in the AGL setup we assume
access only to aerial view glimpses during navigation. To this end, we take motivation from CLIP [28],
which is designed to understand ground-level images and text jointly by aligning them in a shared
embedding space through contrastive learning. Recent works [17, 11] have demonstrated that it is
possible to align the representations of aerial images with the shared embedding space learned via
CLIP. The key insight is to use co-located internet imagery taken on the ground as an intermediary
for connecting aerial images and language. Following [17, 11], we proceed to train an image encoder
tailored for aerial images, aiming to align it with CLIP's image encoder by utilizing a large-scale
dataset comprising paired ground-level and aerial images. To align the embeddings of aerial images
with those of ground-level images from CLIP, we employ contrastive learning on the aerial image
encoders� (parameterized by� ) using the InfoNCE loss [21] in the following manner:

L align =
1
N

i = NX

i =0

� log

 
exp(si

� � f i
� =� )

P j = N
j =0 exp(si

� � f j
� =� )

!

(2)

Here we represent the CLIP image encoder asf � and� denotes the temperature. We optimize the
L align loss(2) to reduce the gap between co-located aerial and ground-level images within the CLIP
embedding space. It is important to highlight that the CLIP image encoder remains unchanged
throughout training. Therefore, our training methodology essentially permits aerial images to
approach images from their corresponding ground-level scenes and natural language text within the
CLIP space. Combining the trained aerial image encoders� with the CLIP model allows us to achieve
embeddings within a uni�ed embedding space for goal contents that span diverse modalities (in
particular, aerial images, ground-level images, and natural language text). We refer to this combined
model as aCLIP-based Multi-Modal Feature Extractor (CLIP-MMFE).

RL-aligned representation learning using goal aware supervised pretraining of
LLM. Large Language Models (LLMs) are in general not pro�cient planners [39],

Figure 2:GASPstrategy for pretraining LLMs for AGL.

but recent studies have
effectively utilized the
capabilities of LLMs to
grasp abstract concepts
of the world model
dynamics in addressing
decision-making
challenges [35, 42, 1].
However, discrepancies
between the knowledge
of LLMs and the
environment can
lead to inaccuracies
and constrain their
functional effectiveness
due to insuf�cient
grounding.
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In a GC-POMDP (cf. Section 3), we aim to learn a goal-conditioned latent representation that
encompasses the complete history of observed state and action sequences, aiding the agent in
decision-making within the partially observed environment. For this purpose, we leverage state-of-
the-art LLMs, which excel in long-range autoregressive and sequence modeling tasks. However,
employing such a model naively is not conducive to obtaining a latent representation that is
advantageous for goal-conditioned active geo-localization (AGL). Therefore, we devise aGoal-
Aware Supervised Pretraining (GASP)strategy that enables learning a history-aware goal-conditioned
latent representation, which assists in decision-making for the subsequent policy. An overview
of the GASP strategy is depicted in Figure 2, and involves a two-step training process. First, we
generate a random sequence of movement actions. Each random sequence of lengtht comprises
all the previous observations and actions up to timet. A t-length random sequence is denoted
xh t = f x0; a0; x1; a1; : : : ; x t g. Second, we train the LLM on a sequence modeling task that involves
predicting the optimal actions at timet that will bring the agent closer to the goal location, based on
the observed trajectory dataxh t and the goal contentxg. Accordingly, we train an LLM using the
binary cross entropy loss de�ned as:

L BCE =
NX

i =1

� (yi log(pi ) + (1 � yi ) log(1 � pi ))

pi = � (LLM( ojxh i � 1 ; g)) ; wherejpi j = jAj (3)

HereN is the length of the random sequence,pi is the predicted probability of actions at time stepi
whenxh i � 1 andg are given as the input to LLM, andyi encodes information regarding the set of
actionsA opt

i � A that are considered optimal at time stepi , implying that these actions will lead
the agent closer to the goal location. Each element ofyi corresponds to an action in the setA , so
thatyi = [ y(1)

i ; y(2)
i ; : : : ; y( jAj )

i ], wherey( j )
i = 1 if j 'th action2 A opt

i , and otherwisey( j )
i = 0 . We

perform extensive experiments to validate the ef�cacy of the GASP strategy (see Section 6), and refer
to the appendix section K for details about the GASP architecture and training process.

Planning. So far we have focused on the learning of a history-aware, goal modality agnostic latent
representation useful for the AGL task in partially observable environments. Now, we describe the
approach for learning an effective policy that leverages the learned latent representation to address this
GC-POMDP. We refer to the latent representation obtained from the LLM at timet aseLLM

t (xh t ; g).
Formally, we aim to learn a policy� that maximizes the expected discounted sum of rewards for
any given goalg 2 G. To this end, we use an actor-critic style PPO algorithm [33] that involves
learning both anactor (policy network, parameterized by� ) � � : eLLM

t (xh t ; g) �! p(A ) and acritic
(value function, parameterized by� ) V � : eLLM

t (xh t ; g) �! R that approximates the true value
V true (x t ; g) = Ea� � � ( :jeLLM

t (x h t ;g)) [R(x t ; a; g) + V (T (x t ; a); g)]. We optimize both the actor and
critic networks using the following loss function:

L planner
t (�; � ) = Et

�
�L clip (� ) + � L crit (� ) � � H

�
� � (:jeLLM

t (xh t ; g))
��

(4)

Here� and� are hyperparameters, andH denotes entropy, so minimizing the �nal term of(4)
encourages the actor to exhibit more exploratory behavior. TheL crit loss is used speci�cally to
optimize the parameters of the critic network and is de�ned as a squared-error loss, i.e.L crit =
(V� (eLLM

t (xh t ; g)) � V true (x t ; g))2. The clipped surrogate objectiveL clip is employed to optimize
the parameters of the actor network while constraining the change to a small value� relative to the
old actor policy� old and is de�ned as:

L clip (� ) = min
�

� � (:jeLLM
t (xh t ; g))

� old (:jeLLM
t (xh t ; g))

A t ; clip
�

1 � �; 1 + �;
� � (:jeLLM

t (xh t ; g))
� old (:jeLLM

t (xh t ; g))
)A t

��

A t = r t + r t +1 + : : : +  T � t +1 r T � 1 � V� (eLLM
t (xh t ; g)) (5)

After every �xed update step, we copy the parameters of the current policy network� � onto the old
policy network� old to enhance training stability. All hyperparameter details for training the actor
and critic network are in the appendix section K.

There are numerous options for crafting the reward function for the AGL task. One potential approach
involves designing a sparse reward signal, where the agent only receives a positive reward upon
reaching the goal location and receives either no or a negative reward otherwise. Nevertheless,
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Figure 3: Our proposedGOMAA-Geoframework for goal modality agnostic active geo-localization.

incorporating a denser reward structure has been demonstrated to expedite learning and improve
the ef�cacy of the learned policy (shown in section 6). Speci�cally, we formulate a dense reward
function customized for the AGL task as follows:

R(xh t ; at ; xg; x t +1 ) =

8
<

:

1; if jjpt +1 � pg jj2
2 < jjpt � pg jj2

2
� 1; if jjpt +1 � pg jj2

2 > jjpt � pg jj2
2 _ x t +1 2 f xh t g

2; if x t +1 = xg

(6)

In other words, our approach involves penalizing the agent when an action takes it away from the
goal or when it revisits the same state. Conversely, the agent receives a positive reward when its
current action brings it closer to the goal, with the highest reward granted when the action results in
reaching the goal location.

GOMAA-Geo. Our full GOMAA-Geoframework integrates all the previously introduced components
(see Figure 3). Initially, the aerial image encoders� is trained to align the aerial image and CLIP
embeddings. Next, the LLM is trained using the GASP strategy while maintainings� and the CLIP
model frozen. Finally, the LLM is also frozen, and only the actor and critic are trained using RL.

5 Experiments and Results

Baselines.In this and the subsequent section 6, we evaluate and analyzeGOMAA-Geoand compare
its performance against the following baseline approaches:(i) Random policyselects an action
uniformly at random from the action setA at each time step;(ii) AiRLoc[24] is an RL-based model
designed for uni-modal AGL tasks [24]. The approach involves training the policy using DRL and
encoding the history of state observations using an LSTM [13]. Note thatAiRLocis not agnostic to
the goal modality;(iii) PPO policy[33] selects actions based solely on the current observation;(iv)
Decision Transformer (DiT)[8] is trained using a collection of of�ine optimal trajectories that span
from randomly selected start to randomly selected goal grids.

Evaluation metric. We evaluate the proposed approaches based on thesuccess ratio(SR), which
is measured as the ratio of the number of successful localizations of the goal within a prede�ned
exploration budgetB to the total number of AGL tasks. We evaluate the SR ofGOMAA-Geoand
the baselines across different distancesCfrom the start to the goal location. In the main paper, we
analyzeGOMAA-Geowith a 5 � 5 grid structure,B = 10, and varying start-to-goal distanceC
2 f 4; 5; 6; 7; 8g. In the appendix section A, we conduct additional experiments across various grid
con�gurations, each employing different values ofB with varyingC.

Datasets. We primarily utilize the Massachusetts Buildings (Masa) dataset [20] for both the
development and evaluation ofGOMAA-Geoin settings where the goal content is provided as
aerial imagery. The dataset is split into70%for training and15%each for validation and testing.

Many existing datasets containing paired aerial and ground-level images lack precise coordinate
locations, which are pivotal for the AGL task. Furthermore, the ground-level images typically contain
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Table 1: Evaluation with aerial image goals.GOMAA-Geoobtains the highest success ratio (SR).

Evaluation using Masa Dataset Evaluation using MM-GAG Dataset

Method C = 4 C = 5 C = 6 C = 7 C = 8 C = 4 C = 5 C = 6 C = 7 C = 8

Random 0.1412 0.0584 0.0640 0.0247 0.0236 0.1412 0.0584 0.0640 0.0247 0.0236
PPO 0.1427 0.1775 0.1921 0.2269 0.2595 0.1489 0.1854 0.1879 0.2176 0.2432
DiT 0.2011 0.2956 0.3567 0.4216 0.4559 0.2023 0.2856 0.3516 0.4190 0.4423
AiRLoc 0.1786 0.1561 0.2134 0.2415 0.2393 0.1745 0.1689 0.2019 0.2156 0.2290
GOMAA-Geo 0.4090 0.5056 0.7168 0.8034 0.7854 0.4085 0.5064 0.6638 0.7362 0.7021

little to no meaningful information about the goal (e.g. images of roads, trees, and so on). In particular,
to the best of our knowledge, no open-source dataset is currently available for evaluating the zero-shot
generalizability ofGOMAA-Geoacross diverse goal modalities, such as ground-level images and
natural language text. To alleviate this, we have collected a dataset from different regions across
the world, which allows for specifying the goal content as aerial imagery, ground-level imagery,
or natural language text. This dataset allows us to conduct proof-of-concept AGL experiments in
contexts where the goal modality may vary at test time. Note that the data is only used for evaluation
– training is done on Masa using only aerial imagery as a goal modality. We refer to this dataset as
Multi-ModalGoal Dataset forActiveGeolocalization (MM-GAG). It consists of 73 distinct search
areas from different parts of the world. For each area, we select 5 pairs of start and goal locations
corresponding to each start-to-goal distanceC(resulting in 365 evaluation scenarios for eachC). We
provide more details about the dataset in the appendix section L.

Finally, to further evaluate the zero-shot generalization capability, we also compare theGOMAA-Geo
with baseline approaches using the xBD dataset introduced by Gupta et al. (2019). This dataset
includes aerial images from different regions, both before (xBD-pre) and after (xBD-disaster) various
natural disasters such as wild�res and �oods. It is important to emphasize that all the results we
present in this work – including the zero-shot generalization settings with the xBD-pre and xBD-post
disaster datasets, as well as all across the three different goal modalities of the MM-GAG dataset –are
evaluated using a model trained exclusively on the Masa dataset(where goals are always speci�ed
from an aerial perspective).

Implementation details. We provide comprehensive details on network architectures and training
hyperparameters for each training stage in the appendix section K.

Evaluation of GOMAA-Geo. We initiate our evaluation of the proposed methods using the
Masa and MM-GAG datasets withaerial imageas goal modality. During the evaluation, for
each AGL task, we randomly select 5 pairs of start and goal locations for each value ofC. We
report the result in Table 1 and observe a signi�cant performance improvement compared to
the baseline methods, with success ratio (SR) improvements ranging from129:00% to 232:67%
relative to the baselines across various evaluation settings, showcasing the ef�cacy ofGOMAA-GEO
for active geo-localization (AGL) tasks where goals are provided in the form of aerial images.

Table 2:GOMAA-Geogeneralizes well across goal modalities.

Goal Modality C = 4 C = 5 C = 6 C = 7 C = 8

Text 0.4000 0.4978 0.6766 0.7702 0.6595
Ground Image 0.4383 0.5150 0.6808 0.7489 0.6893
Aerial Image 0.4085 0.5064 0.6638 0.7362 0.7021

We next evaluate the performance
of GOMAA-Geo across various
goal modalitiesusing the MM-GAG
dataset and present the results in
Table 2. For this evaluation, we
employ the model trained on the
Masa dataset. We see thatGOMAA-
Geoef�ciently performs the AGL task across different goal modalities – with comparable
performance observed across different modalities – despite only being trained with aerial views
as goal modality. This highlights the effectiveness of the CLIP-MMFE (cf. Section 4) module
in learning modality-invariant representations. Further analyses of CLIP-MMFE are provided in
Section 6. The experimental outcomes also demonstrate the zero-shot generalization capability of
GOMAA-Geoacross different goal modalities.

Zero-shot generalization capabilities ofGOMAA-Geo. For additional assessments ofGOMAA-
Geo's zero-shot generalizability, we employ trainedGOMAA-Geomodel exclusively trained on the
Masa dataset and evaluate them on both non-disaster data from xBD-pre and disaster data from
xBD-disaster. For fair evaluation, we ensure that the training data from Masa depicts geographical
areas different from those in xBD. Moreover, in both pre-and post-disaster evaluation scenarios, the
goal content is always presented to the agent as an aerial image capturedbeforethe disaster. For
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Figure 4:Example exploration behavior ofGOMAA-Geoacross different goal modalities.The stochastic
policy selects actions probabilistically, whereas theargmaxpolicy selects the action with the highest probability.

the xBD-disaster setup, this thus depicts the challenging scenario of localizing a goal whose visual
description is provided prior to a disaster, which may look drastically different when exploring the
scene after said disaster. The evaluation dataset comprises 800 distinct search areas from both xBD-
pre and xBD-disaster. These 800 search areas are identical in both xBD-pre and xBD-disaster. For
each of these areas, we randomly select 5 pairs of start and goal locations corresponding to each value
of C. We present the zero-shot generalization results using both xBD-pre and xBD-disaster in Table 3.
The results show a substantial performance improvementranging between221:15%to 346:83%
compared to the baseline approaches and justify the effectiveness ofGOMAA-Geoin zero-shot
generalization.

Table 3:GOMAA-Geoshowcases superior zero-shot generalization than the alternatives in all settings.

Evaluation using xBD-pre Dataset Evaluation using xBD-disaster Dataset

Method C = 4 C = 5 C = 6 C = 7 C = 8 C = 4 C = 5 C = 6 C = 7 C = 8

Random 0.1412 0.0584 0.0640 0.0247 0.0236 0.1412 0.0584 0.0640 0.0247 0.0236
PPO 0.1237 0.1262 0.1425 0.1737 0.2075 0.1132 0.1146 0.1292 0.1665 0.1953
DiT 0.1132 0.2341 0.3198 0.3664 0.3772 0.1012 0.2389 0.3067 0.3390 0.3543
AiRLoc 0.1191 0.1254 0.1436 0.1676 0.2021 0.1201 0.1298 0.1507 0.1631 0.1989
GOMAA-Geo 0.3825 0.4737 0.6808 0.7489 0.7125 0.4002 0.4632 0.6553 0.7391 0.6942

6 Further Analyses and Ablation Studies

Effectiveness of the CLIP-MMFE module. In addition to the quantitative results in Table 2, we
here conduct a qualitative analysis to assess the effectiveness of the CLIP-MMFE module in learning
a modality-agnostic goal representation. For this purpose, we employ theGOMAA-Geomodel trained
on the Masa dataset. During the evaluation, we maintain a �xed search area with identical start
and goal locations while varying the goal modality, and then compare the exploration behavior of
GOMAA-Geoin each scenario. Our observations (Figure 4) reveal that exploration behaviors are
consistent across different goal modalities. This suggests that the learned representation of the goal
token remains consistent regardless of the goal modality, given that the other components of the
GOMAA-Geoframework remain �xed in each scenario. Additional visualizations are in the section B.

Table 4: Providing goal information is crucial.

Method C = 4 C = 5 C = 6 C = 7 C = 8

Mask-GOMAA 0.2913 0.3566 0.4912 0.5200 0.5478
GOMAA-Geo 0.4090 0.5056 0.7168 0.8034 0.7854

Importance of learning a goal
conditioned policy. To investigate
the signi�cance of goal information
in the GOMAA-Geo framework, we
assess aGOMAA-Geovariant – denoted
Mask-GOMAA– where we mask out the
goal token and compare its performance against the fullGOMAA-Geo. Results on the Masa dataset
are presented in Table 4. We observe a substantial drop in performance ranging from40:40%to
54:50% across different evaluation settings, underscoring the critical role of goal information in
learning an effective policy for AGL.
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Figure 5: Examples of successful exploration behaviors ofGOMAA-Geo.

Importance of the planner module. To evaluate the signi�cance of the planner module, we
conduct experiments when removing it fromGOMAA-Geoand compare the performance of
this modi�ed version, termedLLM-Geo, with the originalGOMAA-Geo. The only distinction
betweenLLM-Geo and GOMAA-Geois the presence of the planner module in the latter.

Table 5:On the importance of the planner module.

Method C = 4 C = 5 C = 6 C = 7 C = 8

LLM-Geo 0.2331 0.2591 0.3121 0.3967 0.4051
GOMAA-Geo 0.4090 0.5056 0.7168 0.8034 0.7854

We compare their performances across
various evaluation settings using the Masa
dataset, with results presented in Table 5. We
observe that the performance ofLLM-Geois
signi�cantly inferior to GOMAA-Geo, with
performance gaps ranging from75:46% to
129:66%across various evaluation settings. The empirical results indicate that relying solely on the
LLM is insuf�cient for solving tasks that involve planning, highlighting the importance of combining
an LLM – which excels at capturing history – with a planning module that learns to make decisions
while considering future outcomes.

Visualizing the exploration behavior of GOMAA-Geo. In Figure 5, we present a series of
exploration trajectories generated using the trained stochastic policy for a speci�c start and goal
pair. Alongside these trajectories, we include an additional exploration trajectory obtained using the
deterministic (argmax) policy. Please refer to the appendix for several additional qualitative results.

Figure 6: GOMAA-Geo(red)
vs. GOMAA-Geo w/o history
(white).

Ef�cacy of GASP pretraining. We assess the effectiveness of
GASP (cf. Section 4) by comparing the performance of the original
GOMAA-Geowith a version ofGOMAA-Geothat involves pre-
training an LLM using a commonly used input token masking-
based autoregressive modeling task tailored for AGL. We call
the resultingGOMAA-GeomodelRelativePosition toGoal aware
GOMAA(RPG-GOMAA). Details of theRPG-GOMAAframework,
along with the masking-based LLM pre-training strategy, are
provided in the appendix section F. We compare the performance of
GOMAA-Geowith RPG-GOMAAon the Masa dataset and present
the results in Table 6. Our �ndings indicate that RPG-GOMAA
shows a signi�cant decline in performance compared toGOMAA-
Geo as the distance between the start to the goalC increases,
which highlights the ef�cacy of GASP in learning an effective
history-aware policy for AGL. We also compare the zero-shot generalization capabilities of these
methods using the xBD-disaster dataset and report the results in the appendix section E.

Table 6:GASP (bottom) yields the best results overall.

Method C = 4 C = 5 C = 6 C = 7 C = 8

RPG-GOMAA 0.4116 0.5167 0.6589 0.7643 0.7023
GOMAA-Geo 0.4090 0.5056 0.7168 0.8034 0.7854

Furthermore, we qualitatively assess GASP's
effectiveness in learning a history-aware
representation for planning. To achieve
this, we choose a task whereGOMAA-
Geo successfully locates the goal. We
then remove the context by masking out all
previously visited states and actions except for the current statex t and goal statexg, and observe
the action selected by the policy. We compare this action to what the policy selects when the entire
history is provided as input to the LLM (i.e., the defaultGOMAA-Geo). From Figure 6 we see that
the policy takes optimal actions with context but suboptimal actions without it, which suggests that
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