
Lightweight Neural Architecture Search with
Parameter Remapping and Knowledge Distillation

Hayeon Lee∗1 Sohyun An∗1 Minseon Kim1 Sung Ju Hwang1,2

1
KAIST, Seoul, South Korea

2
AITRICS, Seoul, South Korea

Abstract Designing diverse neural architectures taking into account resource constraints or datasets is

one of the main challenges in Neural Architecture Search (NAS). However, existing sample-

based or one-shot NAS approaches require excessive time or computational cost to be used

in multiple practical scenarios. Recently, to alleviate such issues, zero-shot NAS methods

that are efficient proxies have been proposed, yet their performance is rather poor due

to the strong assumption that they predict the final performance of a given architecture

with random initialization. In this work, we propose a novel NAS based on block-wise

parameter remapping (PR) and knowledge distillation (KD), which shows high predictive

performance while being fast and lightweight enough to be used iteratively to support

multiple real-world scenarios. PR significantly shortens training steps and accordingly we

can reduce the required time/data for KD to work as an accurate proxy to just few batches,

which is largely practical in real-world. In the experiments, we validate the proposed method

for its accuracy estimation performance on CIFAR-10 from the MobileNetV3 search space. It

outperforms all relevant baselines in terms of performance estimation with only 20 batches.

1 Introduction

Neural Architecture Search (NAS), which aims to automate the neural architecture design process to

build a better model with stronger performance and higher efficiency for a given task, is born out of

practical needs that reduce human efforts to design multiple models differently considering resource

budgets and datasets in real-world scenarios. Recently, while many NAS methods [4, 42, 16, 19, 23,

29, 21, 38, 10] have been proposed and demonstrated their potential in benchmark settings, existing

NAS frameworks suffer from being actively used for real-world tasks due to computationally

expensiveness and time-consuming costs. For example, the search costs of sample-based NAS

methods [35, 6] are 40,000 and 200 GPU hours for each device. Hardware-aware one-shot NAS

methods [5, 33] alleviate such limitations by decoupling the supernet training process and the search

process. We refer to those methods as the "one-shot NAS" because training of supernet [26], which

is trained progressively while shrinking each dimension in the search space, requires constant one-

time training cost. However, building a supernet still requires excessive computational cost and time

such as 1,200 GPU hours on V100 GPU on a single dataset [5], which hinders their applicability to

a new dataset. Moreover, training a supernet requires complicated techniques [5, 33] and the multi-

model forgetting phenomenon can occur [26]. To further reduce the cost of architecture evaluation,

zero-shot NAS methods [24, 1] that do not require training have been proposed. However, despite

their high efficiency, the accuracy of prediction is very poor and most of them cannot capture the

distributional distinctiveness of the various datasets [26].

To overcome such limitations, in this work, we propose a lightweight NAS approach based

on block-wise parameter remapping (PR) and knowledge distillation (KD) for only in few batches,

enabling rapid prediction of the performance of a given neural architecture using just few batches

* Equal Contribution

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:hayeon926@kaist.ac.kr
mailto:cownow4425@gmail.com
mailto:minseonkim@kaist.ac.kr
mailto:sjhwang82@kaist.ac.kr
https://creativecommons.org/licenses/by/4.0/

Fast & Accurate
Proxy!

Predicted Acc.

Tr
u

e
 A

cc
.

Remapping

(a) One-shot NAS (c) Our PR + KD Proxy

(b) Zero-shot Cost NAS

R
ea

l-
w

o
rl

d
 D

at
as

et
s

……

Excessive
Computational
Cost and Time

to Train
SuperNet

for Each Dataset

Few-batch
Knowledge
Distillation

Fast,
Yet Inaccurate Proxy

Predicted Acc.

Tr
u

e
 A

cc
.

SuperNet

…

Depth (Layer) - level Width (Channel) - level
Layer Channel

…… …

…

Parameter

Reference NetDataset

Reference Blocks

Input
Feature

Output
Feature

Reference
Block

…

Lo
ss

Lo
ssC
a

n
d

id
a

te
 B

lo
ck

s

Block Zoo

Assemble

Candidate
Model

…

…

Figure 1: (a)While one-shot NAS frameworks train the supernet on each new dataset, such training is

too difficult and requires a heavy cost to actively use for each individual in the real world.

(b) Zero-shot NAS methods have shown high efficiency in the search process, yet their proxy

performances need to be improved. (c)We design lightweight proxy by combining parameter

remapping and knowledge distillation. The proposed proxy is fast enough and show accurate

proxy performance to be used in practical scenarios.

(see Figure 1). Specifically, we first prepare reference blocks by learning a reference model consisting

of reference blocks, on a target dataset. Then, we construct a block zoo via block-wise PR and

KD from the reference to candidate blocks which are included in the search space. The former is

performed by two-level steps such as layer-wise and channel-wise PR between each reference block

and possible other candidate blocks. The latter is to make candidate blocks mimic each reference

block via distilling knowledge of output feature map. During search process, candidate models are

made by assembling the blocks provided from the block zoo. Finally, the accuracy of a candidate

model with remapped and distilled parameters is used as a proxy to evaluate the final performance

of the model. After selecting the final model based on the proposed proxy, we can obtain the model

with high-performing parameters on target dataset rapidly though a few fine-tuning from distilled

parameters instead of training a large number of parameters from random initialization. Notably,

the PR from reference blocks before KD significantly improves the search speed compared to a

proxy using KD only. Moreover, since the building block zoo is a one-time cost, the block zoo once

created can be used repeatedly to support designing models suitable for different resource budgets.

The experimental results demonstrate that the proposed method shows a high-ranking correla-

tion between the predicted values and the final performance of the architecture candidates in the

MobileNetV3 search space, outperforming other baselines. We believe that the proposed method

with high prediction performance in decent time is a new alternative bridge between the high cost

of one-shot NAS and the poor performance of zero-shot NAS for real-world scenarios.

2 Related Work

NAS Methods Neural Architecture Search (NAS) suggests to automate designing the optimal

architecture. Early NAS, which is based on reinforcement learning [42, 4, 41] or evolutionary

algorithms [31, 20, 11, 30], was impossible to be applied without huge computing resources as the

process of training and evaluating the sampled model was repeated. To overcome tremendous

computing costs, two types of approaches are introduced : one-shot [2, 33] and zero-shot NAS

methods [1, 9, 18, 22, 24, 27]. The former can reduce the evaluation cost by sharing parameters in

the search space. However, they still take a lot of computational cost and time to train the supernet.

Also, because the parameters are shared among all architectures in the search space, multi-model

forgetting can occur [26]. The later zero-shot NAS, reduced both training and evaluation costs

because it measures the performance of a model in random state. However, their proxies show

2

worse performance than the parameter size or FLOPs-based proxies in some search space [26]. In

addition, there is a problem that the stability of the proxy is different for each search space.

Parameter Remapping Parameter remapping (PR) can reduce the tedious process caused by training

a new model from scratch by reusing the parameters of the previously trained network. Some NAS

methods [29, 11, 7, 34, 5] use parameter sharing to evaluate the architecture in the search space,

which can be interpreted as PR on various levels, e.g., kernel size, depth, width, and resolution.

Furthermore, other studies [8, 13, 12] utilize PR for effective initialization of the models. However,

in previous studies, conducting PR was for succession from a supernet to a child model to evaluate

the performance as it is, or for accelerating training of a new model. We present a novel method of

taking advantage of PR as a proxy by applying PR before the knowledge distillation (KD) so that

our proxy can approximate the actual performance of a model candidate within a few batches.

Block-wise Knowledge Distillation Knowledge distillation (KD) is proposed to transfer knowledge

from a large teacher model to a smaller student model [3]. In order tomake the student model imitate

the teacher model, the student model is trained with soft labels [14], logits [36] or intermediate

features [28, 32, 37, 39, 40] from the teacher model. To perform block-wise KD, [37] regards the

model as a block-unit configuration and proposes a method for sequential KD for each block.

Furthermore, to shorten the time required, [17] presents a parallel method for block-wise KD.

However, the existing method is difficult to operate as a fast proxy because it takes a lot of time by

performing KD. We address this problem by devising a new proxy that combines PR with KD.

3 Building a Lightweight Accuracy Proxy
In this section, we introduce a guideline to build our lightweight proxy to be used for the search

process in several practical scenarios.

Preparing a Reference Model We first train the reference model
˜F (·; ˜θ) on a target dataset 𝐷 ,

which the model is compositions of𝑀 blocks by
˜F (𝑥 ; ˜θ) = ˜B𝑀 ◦ · · · ◦ ˜B1(𝑥 ; ˜θ1) where 𝑥 is an input

tensor (input image or intermediate feature) and B𝑖 is the 𝑖-th block of the model. In this work, to

maximize the effectiveness of KD in student networks, we regard the largest network we can get

from the search space as the reference model.

Building a Block Zoo In the next two steps, we build a block zoo by making student blocks

{B𝑚,𝑛 (·;θ)}𝑁𝑛=1 mimic the trained reference blocks
˜B𝑚 for𝑚 = 1, . . . , 𝑀 via PR and KD.

Block-wise Parameter Remapping In this step, we map the trained parameters
˜θ𝑚 of the𝑚-th

reference block
˜B𝑚 to {θ𝑚,𝑛}𝑁𝑛=1 of the candidate blocks {B𝑚,𝑛}𝑁𝑛=1. Unlike KD-only performance

proxy [17, 25], we observe that including PR improves the performance and efficiency of the proxy

(see Figure 2). As the number of layers and parameters (channels) for each layer between the

reference and candidate block can be different, we consider layer-wise and channel-wise PR. In

other words, a candidate block B𝑚,𝑛 (𝑥) = O𝑚,𝑛,𝑂𝑚,𝑛
◦ · · · ◦O𝑚,𝑛,1(𝑥 ;θ𝑚,𝑛,1) where the number of

layers in B𝑚,𝑛 is 𝑂𝑚,𝑛 and O𝑚,𝑛,𝑜 is the 𝑜-th layer (operations) with parameter θ𝑚,𝑛,𝑜 in the 𝑛-th

candidate block B𝑚,𝑛 . We first consider layer-wise PR. For each block B𝑚,𝑛 , we assume the number

of layers 𝑂𝑚,𝑛 in a candidate is always less than or equal to that of the reference block 𝑂𝑚,𝑛 ≤ �̃�𝑚 .

Then we remap parameters of each layer as follows:

θ𝑚,𝑛,𝑜 = ˜θ𝑚,𝑜 for 𝑜 = 1, . . . ,𝑂𝑚,𝑛 . (1)

Next, we consider channel-wise PR. Similar with the layer-wise PR, we assume that the number of

kernels 𝐾𝑚,𝑛,𝑜 of each layer O𝑚,𝑛,𝑜 in a candidate block is always less than or equal to that of the

reference block 𝐾𝑚,𝑛,𝑜 ≤ �̃�𝑚,𝑜 . We can remap the channels for each layer O𝑚,𝑛,𝑜 as follows:

θ𝑚,𝑛,𝑜,𝑘 = ˜θ𝑚,𝑜,𝑘 for 𝑘 = 1, . . . , 𝐾𝑚,𝑛,𝑜 . (2)

3

Table 1: Comparison of Spearman’s rank correlation between the estimated and actual accuracies on

CIFAR-10. 𝐵 is the number of batches required to train the reference net (one-time cost). 𝑖 is

the number of candidate networks.

Type Proxy Type

of Training Final Accuracy of

Batch Scratch (SC) Params. Remap.(PR) Knowl. Distill (KD)

Gradnorm [1] 20𝑖 0.540 0.739 0.679

Fisher [1] 20𝑖 0.422 0.578 0.523

Snip [1] 20𝑖 0.408 0.610 0.573

Baseline Synflow [1] 20𝑖 0.208 0.449 0.416

NASWOT [24] 20𝑖 0.785 0.765 0.749

FLOPs - 0.328 0.490 0.556

L2norm 20𝑖 0.070 0.275 0.249

Initial Accuracy of PR - 0.275 0.214 0.343

Ablation Study

Initial Accuracy of KD

𝐵 + 20𝑖 0.216 0.232 0.202

𝐵 + 650𝑖 (1 epoch) 0.786 0.861 0.853

Ours Initial Accuracy of PR + KD 𝐵 + 20𝑖 0.797 0.893 0.887

Figure 2: The efficiency of

the proposed proxy (PR+KD).

Scratch
Parameter Remapping (PR)
Knowledge Distillation (KD)
PR + KD (Ours)

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

90

91

92

93

94

Network Index
0 5 10 15 20 25 30 35 40

Figure 3: Final performance comparison

dependent on initialization types.

Block-wise Few-batch Knowledge Distillation We conduct a distillation of block-wise feature

maps by minimizing the Mean Square Error (MSE) loss between the reference block
˜B𝑚 (·; θ̃) and

the parameter-remapped student block B𝑚,𝑛 (·;θ) in Equation (3). 𝐶 is the number of channels

in a feature map, θ𝑚,𝑛 are the weights of the candidate block B𝑚,𝑛 , �̃�𝑚 = ˜B𝑚 (�̃�𝑚−1; ˜θ𝑚) is the
target output feature of the reference block

˜B𝑚 , 𝜋𝑚,𝑛 = B𝑚,𝑛 (�̃�𝑚−1;θ𝑚,𝑛) is the output of the 𝑛-th
candidate block B𝑚,𝑛 .

L(θ𝑚,𝑛 ; �̃�𝑚−1, �̃�𝑚) =
1

𝐶

𝐶∑︁
𝑐=1

∥�̃�𝑐𝑚 − 𝜋𝑐𝑚,𝑛 ∥2, (3)

Now, we can perform training (block-wise KD) within just few batches 𝑇 as follows:

θ (𝑡+1)
𝑚,𝑛 = θ (𝑡)

𝑚,𝑛 − 𝛼∇θ
(𝑡)
𝒎,𝒏

L(θ𝑚,𝑛 ; �̃�
(𝑡)
𝑚−1, �̃�

(𝑡)
𝑚) for 𝑡 = 1, . . . ,𝑇 , (4)

where 𝛼 is a learning rate. We conduct the distillation step with Equation (3) for all reference blocks

{ ˜B𝑚 (·; ˜θ)}𝑀𝑚=1
. The total number of components in the block zoo is𝑀 × 𝑁 .

Scoring Model Candidates We can assemble any candidate model F𝑖 (·;θ) by taking the blocks

corresponding to a configure of the model from the block zoo {B𝑚,𝑛 (·;θ)} for𝑚 = 1 . . . 𝑀 and

𝑛 = 1 . . . 𝑁 . We use an average accuracy of the given model F𝑖 (·;θ) computed on 𝑇 batches that

were used to train blocks, as the proxy for the final accuracy of the model. Moreover, we can obtain

the final model by fine-tuning and it outperforms the baselines trained from scratch (see Figure 3).

4 Experiment

We validate the performance of our proxy on the accuracy prediction of architectures on CIFAR-10.

We considerMobileNetV3 [15, 5, 25] search space which supports many CNNs of different sizes

that is tuned for mobile applications. Specifically, our search space consists of 5 stages, and in

4

each stage, the number of layers ranges across {1, 2, 3, 4}, the kernel size is 3, and the channel

expansion ratio should be chosen from {2, 4, 6, 8, 10}. This leads the search process to a choice out

of (51 + 5
2 + 5

3 + 5
4)5 ≈ 10

15
.

Effectiveness and Efficiency of the Proposed Proxy In Table 1, we report the Spearman’s rank

correlation (higher the better) between the estimated accuracies and three types of actual accuracies

when 40 neural architectures are trained after random initialization (SC), parameter remapping

(PR), and knowledge distillation (KD), respectively. We compare against two types of baselines: 1) a

proxy predictor with FLOPs and 2) zero-shot proxies [1, 24] such as Gradnorm, NASWOT, etc. For

fair comparison with our method, the results of zero-shot proxies are obtained using the average

zero-shot proxy values measured with those same 𝑇 batches in Equation (4) for a given model.

The results show that zero-shot proxies are better than FLOPs based proxy, yet their prediction

performances are still low. Surprisingly, our proxy achieves the best Spearman’s rank correlations

of 0.797, 0.893, and 0.887 on SC, PR, and KD, respectively. This shows the clear advantage of our

method, as the superior estimation accuracy with decent sample-efficiency in practical scenarios.

Ablation Study We analyze the effect of the PR and KD combination in Table 1. We observe

that using both PR and KD (PR + KD) largely outperforms the others that consider only a single

component. Correlation values of PR-only proxy are less than 0.343 on three final accuracies and

those of KD-only (20 batches) proxy are less than 0.232. Even if we use more training batches such

as 650, KD-only proxy still underperforms the proposed proxy. In Figure 2, we further demonstrate

the effect of the number of training batches on the performance of the accuracy proxy. In particular,

when the number of training batches is 15 or more, our PR + KD proxy achieve over 0.6 correlation

on 40 neural architectures. Contrarily, KD-only proxy shows very poor performance with few

training batches (<20). Here, we show that PR largely helps our proxy to predict the performance

more accurately even in the early batches by utilizing the trained parameters.

Final Performance with Initialization Type In Figure 3, we analyze the effect of fine-tuning the

pre-trained models with the proposed method. Most of fine-tuning knowledge-distilled models

(KD) outperform models that are trained from the random initialization (SC). Initializing with PR or

PR + KD also shows better performance compared to SC, and comparable performance to KD-only.

5 Conclusion
We proposed a simple-yet-effective accuracy proxy that combines parameter remapping (PR) and

knowledge distillation (KD) which allows NAS to estimate accuracy more precisely with the fast

time speed. Specifically, we build a block zoo by remapping the parameters from trained model on

target dataset and distilling its features block-wisely. The PR significantly reduces the number of

training steps as just few steps during the KD. Training accuracy of models that is assembled with

blocks from block zoo is used as our proxy. Moreover, the model is also used as a pre-trained weight

that makes model to obtain higher performance at the end. We validated our method by measuring

its accuracy estimation performance on CIFAR-10. Our method outperforms the baselines with

high predictive performance within only 20 training batches.

6 Limitations and Broader Impact Statement
LimitationsWhile we have observed that the PR from the reference to the candidate block from the

front of the layers and channels of the reference are sufficient to obtain a good proxy, we believe

that deciding which channel parameters of the reference is mapped to those of the candidate block

is important to get better proxy. In addition, more flexible search can be possible by performing PR

and KD from a reference block with a smaller size to the blocks with larger size.

Broader Impact Since our method requires only a few batches to evaluate each network, we can

largely reduce the waste of energy consumption and CO2 emissions. Since the proposed method

is fast, lightweight, and high performing, it can have a huge impact as people can easily use it to

design a model optimized for their own dataset.

5

Ackowledgement This work was supported by the Engineering Research Center Program through

the National Research Foundation of Korea (NRF) funded by the Korean Government MSIT (NRF-

2018R1A5A1059921).

References

[1] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane. Zero-cost proxies for lightweight

nas. International Conference on Learning Representations (ICLR), 2021.

[2] Y. Akimoto, S. Shirakawa, N. Yoshinari, K. Uchida, S. Saito, and K. Nishida. Adaptive stochastic

natural gradient method for one-shot neural architecture search. In International Conference
on Machine Learning (ICML), 2019.

[3] J. Ba and R. Caruana. Do deep nets really need to be deep? Advances in neural information
processing systems, 27, 2014.

[4] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using

reinforcement learning. In In International Conference on Learning Representations (ICLR),
2017.

[5] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once for all: Train one network and specialize

it for efficient deployment. In International Conference on Learning Representations (ICLR),
2020.

[6] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture search on target task

and hardware. In International Conference on Learning Representations (ICLR), 2019.

[7] S. Chen, Y. Chen, S. Yan, and J. Feng. Efficient differentiable neural architecture search with

meta kernels. arXiv preprint arXiv:1912.04749, 2019.

[8] T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating learning via knowledge transfer.

International Conference on Learning Representations (ICLR), 2016.

[9] W. Chen, X. Gong, and Z. Wang. Neural architecture search on imagenet in four gpu hours: A

theoretically inspired perspective. International Conference on Learning Representations (ICLR),
2021.

[10] X. Chen, R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh. Dr{nas}: Dirichlet neural architecture

search. In International Conference on Learning Representations (ICLR), 2021.

[11] T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via

lamarckian evolution. International Conference on Learning Representations (ICLR), 2019.

[12] J. Fang, Y. Chen, X. Zhang, Q. Zhang, C. Huang, G. Meng, W. Liu, and X. Wang. Eat-nas:

Elastic architecture transfer for accelerating large-scale neural architecture search. Science
China Information Sciences, 64(9):1–13, 2021.

[13] J. Fang, Y. Sun, Q. Zhang, K. Peng, Y. Li, W. Liu, and X. Wang. Fna++: Fast network adaptation

via parameter remapping and architecture search. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(9):2990–3004, 2020.

[14] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. In NIPS
Deep Learning and Representation Learning Workshop, 2015.

6

[15] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,

V. Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1314–1324, 2019.

[16] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing. Neural architecture

search with bayesian optimisation and optimal transport. In Advances in neural information
processing systems (NeurIPS), 2018.

[17] C. Li, J. Peng, L. Yuan, G. Wang, X. Liang, L. Lin, and X. Chang. Block-wisely supervised neural

architecture search with knowledge distillation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1989–1998, 2020.

[18] M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, and R. Jin. Zen-nas: A zero-shot nas

for high-performance deep image recognition. International Conference on Computer Vision
(ICCV), 2021.

[19] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and

K. Murphy. Progressive neural architecture search. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018.

[20] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representa-

tions for efficient architecture search. In International Conference on Learning Representations
(ICLR), 2018.

[21] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In In International
Conference on Learning Representations (ICLR), 2019.

[22] V. Lopes, S. Alirezazadeh, and L. A. Alexandre. Epe-nas: Efficient performance estimation

without training for neural architecture search. In International Conference on Artificial Neural
Networks, pages 552–563. Springer, 2021.

[23] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural architecture optimization. In Advances
in neural information processing systems (NeurIPS), 2018.

[24] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural architecture search without training.

In International Conference on Machine Learning (ICML), pages 7588–7598. PMLR, 2021.

[25] B. Moons, P. Noorzad, A. Skliar, G. Mariani, D. Mehta, C. Lott, and T. Blankevoort. Distilling

optimal neural networks: Rapid search in diverse spaces. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021.

[26] X. Ning, C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang. Evaluating efficient

performance estimators of neural architectures. Advances in Neural Information Processing
Systems, 34, 2021.

[27] D. S. Park, J. Lee, D. Peng, Y. Cao, and J. Sohl-Dickstein. Towards nngp-guided neural

architecture search. arXiv preprint arXiv:2011.06006, 2020.

[28] N. Passalis and A. Tefas. Learning deep representations with probabilistic knowledge transfer.

In Proceedings of the European Conference on Computer Vision (ECCV), pages 268–284, 2018.

[29] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via

parameter sharing. In International Conference on Machine Learning (ICML), 2018.

7

[30] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier

architecture search. In Proceedings of the aaai conference on artificial intelligence (AAAI), 2019.

[31] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin. Large-

scale evolution of image classifiers. In International Conference on Machine Learning (ICML),
2017.

[32] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for

thin deep nets. International Conference on Learning Representations (ICLR), 2015.

[33] M. Sahni, S. Varshini, A. Khare, and A. Tumanov. Compofa: Compound once-for-all networks

for faster multi-platform deployment. International Conference on Learning Representations
(ICLR), 2021.

[34] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, and D. Marculescu.

Single-path nas: Designing hardware-efficient convnets in less than 4 hours. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases, pages 481–497.
Springer, 2019.

[35] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. Mnasnet:

Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[36] G. Urban, K. J. Geras, S. E. Kahou, O. Aslan, S. Wang, R. Caruana, A. Mohamed, M. Philipose,

and M. Richardson. Do deep convolutional nets really need to be deep and convolutional?

arXiv preprint arXiv:1603.05691, 2016.

[37] H. Wang, H. Zhao, X. Li, and X. Tan. Progressive blockwise knowledge distillation for neural

network acceleration. In International Joint Conferences on Artificial Intelligence Organization
(IJCAI), pages 2769–2775, 2018.

[38] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong. Pc-darts: Partial channel

connections for memory-efficient architecture search. In International Conference on Learning
Representations (ICLR), 2020.

[39] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast optimization, network

minimization and transfer learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4133–4141, 2017.

[40] Z. Zhang, G. Ning, and Z. He. Knowledge projection for deep neural networks. arXiv preprint
arXiv:1710.09505, 2017.

[41] Z. Zhong, J. Yan,W.Wu, J. Shao, and C.-L. Liu. Practical block-wise neural network architecture

generation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2423–2432, 2018.

[42] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. International
Conference on Learning Representations (ICLR), 2017.

8

7 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1.

(b) Did you describe the limitations of your work? [Yes] See Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work has

no potential negative social impact.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [No] As our work is ongoing, the code, data, and instructions have

not been released yet. We plan to release them along with our main paper.

(b) Did you include the raw results of running the given instructions on the given code and

data? [N/A] The Figure 2, 3 and the Table 1 that are generated based on the raw results are

included.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [N/A]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [N/A]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces,

fixed hyperparameter settings, and how they were chosen)? [Yes] Our experiments were

conducted on publicly available datasets (Cifar10) and we specified training details (e.g.,

search spaces, the number of training batches, etc.).

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] We compared different methods exactly on the same

search space, dataset, set of architecture candidates, and hyperparameters. See section 4.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See section 4.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We used

the same evaluation protocol with a proxy score averaged for 20 training batches with

regard to the architecture candidates we specified.

(i) Did you compare performance over time? [No]

(j) Did you perform multiple runs of your experiments and report random seeds? [No]

9

https://automl.cc/ethics-accessibility/

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [No] We have not experimented repeatedly yet, but so far we have not

had any error bars to report on.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] We did not

use any other benchmarks for in-depth evaluations.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [No] We will include them in the main paper.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] We used publicly available

dataset (CIFAR10) and we cited all the creators who provided the code used to measure the

baselines in References.

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a url? [No]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

10

	Introduction
	Related Work
	Building a Lightweight Accuracy Proxy
	Experiment
	Conclusion
	Limitations and Broader Impact Statement
	Reproducibility Checklist

