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Abstract

GNNs have achieved remarkable performance across a range of tasks, but their
reliability under distribution shifts remains a significant challenge. In particular,
energy-based OOD detection methods—which compute energy scores from GNN
logits—suffer from unstable performance due to a fundamental coupling between
the norm and direction of node embeddings. Our analysis reveals that this coupling
leads to systematic misclassification of high-norm OOD samples and hinders reli-
able ID–OOD separation. Interestingly, GNNs also exhibit a desirable inductive
bias known as angular clustering, where embeddings of the same class align in
direction. Motivated by these observations, we propose GeoEnergy (Geometric
Logit Decoupling for Energy-Based OOD Detection), a plug-and-play framework
that enforces hyperspherical logit geometry by normalizing class weights while
preserving embedding norms. This decoupling yields more structured energy dis-
tributions, sharper intra-class alignment, and improved calibration. GeoEnergy can
be integrated into existing energy-based GNNs without retraining or architectural
modification. Extensive experiments demonstrate that GeoEnergy consistently
improves OOD detection performance and confidence reliability across various
benchmarks and distribution shifts.

1 Introduction

Graph Neural Networks (GNNs) [1, 2] have achieved remarkable success in diverse applications,
including social network analysis [3], drug discovery [4, 5], and traffic forecasting [6, 7]. However,
their effectiveness relies on the assumption that training and testing data are independently and
identically distributed (i.i.d.), an assumption that often fails in real-world scenarios. When deployed
in open environments, GNNs frequently encounter out-of-distribution (OOD) inputs [8] —samples
that differ significantly from the training distribution. The inherent structural dependencies in graph-
structured data further complicate OOD detection, as node relationships can propagate distributional
shifts across the graph. Consequently, conventional GNNs often produce overconfident yet incorrect
predictions for OOD samples [9, 10], undermining model reliability in safety-critical applications. To
address this challenge, a growing body of research has explored OOD detection in graph-structured
data. Generative models like GraphDE [11] model uncertainty via variational inference, while
Bayesian methods such as GPN [12] propagate uncertainty using posterior distributions. More
recently, energy-based methods [13, 14, 15] have gained attention for their simplicity and post-hoc
applicability. These approaches define energy scores based on the logit outputs of GNNs and flag
high-energy samples as potential OOD nodes. However, our analysis reveals that the effectiveness of
energy scores hinges critically on the geometric structure of the logits themselves.
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Figure 1: Energy distributions under GNNSafe with and without GeoEnergy. Across different graph shifts,
integrating GeoEnergy significantly improves ID-OOD energy separation and stabilizes score distributions,
leading to more reliable OOD detection.

Specifically, current energy-based methods typically compute the logit for class j as an inner product:
fj = W⊤

j hi, where W j is the class weight vector and hi is the node embedding. This formulation
implicitly incorporates both the direction and the magnitude of hi. In graph settings, however, the
norm ∥hi∥ is highly sensitive to various structural factors—such as degree heterogeneity, local
noise, and the stochastic nature of message passing—which often causes unpredictable shifts in
logit values. As a result, OOD nodes with large embedding norms may be incorrectly assigned low
energy scores and misclassified as ID. We refer to this failure mode as coupling-induced misdetection.
Further our analysis in section 2 reveals that GNNs tend to naturally promote a desirable geometric
structure: angular clustering, where node embeddings from the same class align closely in direction,
while embeddings from different classes diverge. This directional separability implies that angular
similarity offers a more stable and semantically meaningful signal for classification than the raw
inner product. These insights motivate us to explicitly decouple the norm and angle components in
the logit computation. By preserving angular structure while regularizing the influence of magnitude,
we aim to produce cleaner energy landscapes and more reliable ID–OOD discrimination.

Motivated by these geometric insights, we propose GeoEnergy (Geometric Logit Decoupling for
Energy-Based OOD Detection), a principled approach that restructures the logit space through
hyperspherical projection. By normalizing class weights to enforce hyperspherical geometry while
preserving the embedding norm as a confidence signal, GeoEnergy disentangles angular similarity
from magnitude. This yields sharper intra-class alignment, larger inter-class angular margins, and
more reliable energy landscapes—without altering the GNN backbone or training process. GeoEnergy
is fully compatible with existing energy-based frameworks and can be plugged in without architectural
changes. In details, our contributions are summarized as follows:

• Geometric diagnosis. We revisit the geometric structure of GNN representations and identify two
key phenomena—angular clustering and coupling-induced misdetection—that fundamentally limit
the reliability of energy-based OOD detection.

• Simple yet principled solution. We propose GeoEnergy, a lightweight hyperspherical logit
formulation that decouples direction and norm by normalizing class weights while preserving
confidence sharpness, yielding structured and well-calibrated energy landscapes.

• Modular integration. GeoEnergy can be seamlessly plugged into existing energy-based GNN
frameworks without architecture modification.

2 Revisiting Geometric Properties of GNNs

The effectiveness of energy-based OOD detection in GNNs is closely tied to the geometry of node
embeddings. In this section, we uncover two empirical phenomena that highlight both the benefits and
limitations of this geometry. These findings motivate our GeoEnergy approach, which addresses the
coupling between embedding norm and angular similarity without modifying the GNN architecture.

2



Observation 1: Coupling-Induced Misdetection. In GNNs, logits are typically computed as:

fj = W⊤
j hi = ∥W j∥︸ ︷︷ ︸

weight norm

× ∥hi∥︸︷︷︸
feature norm

× cos(θj,i),

entangling both the class weight norm and feature norm with the angular similarity. In graph-
based settings, these norms are prone to fluctuations due to degree heterogeneity, noisy aggregation,
and training dynamics, resulting in unstable logit values. Consequently, energy scores derived
from these logits become sensitive to norm variations and less reflective of semantic alignment.
Empirically, we observe that under various distribution shifts—structural, feature-level, label, and
domain—this instability gives rise to a persistent failure mode: OOD nodes with large norms may
yield deceptively low energy scores despite poor directional alignment with class prototypes. As
shown in Figure 1(a–d), this manifests as a “low-energy tail” of OOD samples intruding into the
ID region, causing systematic false negatives. This coupling-induced misdetection underscores a
fundamental weakness of conventional energy-based detection: when norm and direction interact
nontrivially, ID–OOD separation breaks down.

Figure 2: Illustration of Angular Clustering in GNNs.

Observation 2: Angular Clustering. We em-
pirically observe that GNNs promote angular
clustering in their node embeddings: same-
class nodes exhibit high cosine similarity and
align closely in direction, whereas different-
class nodes show lower cosine similarity and
more dispersed orientations. As shown in Fig-
ure 2, across datasets (Cora and Citeseer), the
cosine similarity distribution of same-class pairs
peaks sharply near 1, while that of different-
class pairs is more diffuse. This implies that
directional information alone provides a strong
semantic signal, making angular similarity a robust and discriminative feature for classification.

These observations highlight a geometric tension in GNN embeddings that undermines energy-based
OOD detection. To resolve this, we propose GeoEnergy, a geometry-aware formulation that decouples
angular similarity from magnitude. By normalizing class weights, GeoEnergy aligns the decision
process with the intrinsic angular structure of GNNs, while retaining feature norms to preserve
confidence sharpness. This disentangled design yields more stable energy scores and significantly
improves ID–OOD separability without modifying the GNN backbone or training strategy.

3 Method

Let G = (V, E , X) denote a graph, where V = {v1, . . . , vN} is the node set, E ⊆ V × V is the
edge set, and X = [x1, . . . ,xN ] ∈ RN×D denotes node features. The graph structure is encoded
via an adjacency matrix A ∈ {0, 1}N×N , where Aij = 1 indicates an edge between nodes i and
j. GNNs [1, 2] learn node representations through iterative message passing. At each layer k, the
hidden representation h

(k)
i of node vi is updated as:

h
(k)
i = AGGREGATE(k)

(
{h(k−1)

j : j ∈ N (i)}
)
, (1)

where N (i) is the neighborhood of node i and h
(0)
i = xi. The final representation hi is used for

downstream tasks such as node classification. In semi-supervised settings, we are given a labeled
subset Is = {(xi, yi)}Ns

i=1, where yi ∈ {1, . . . , C} is the ground-truth label. The GNN is trained to
minimize the cross-entropy loss:

LCE = − 1

|Is|
∑
i∈Is

log
efyi (xi,A)∑C
c=1 e

fc(xi,A)
, (2)

where fc(xi, A) denotes the logit of class c. However, in real-world applications, the distribution
between Is and Iu often varies, leading to a significant challenge for the model: identifying and
addressing instances where the distribution deviates, known as OOD cases. This challenge gives rise
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Figure 3: Decision Boundary Evolution: From Euclidean Softmax to GeoEnergy.

to the problem of OOD detection, aiming to recognize unlabeled nodes that do not conform to the
feature distribution of the labeled node set Is. The OOD detection task can be formulated as a binary
classification problem to detect whether an input node x is an OOD case:

g (x;Gx, fθ) =

{
1, x is an in-distribution instance,
0, x is an out-of-distribution instance.

(3)

where Gx denotes the L-hop ego-graph around x, and g is a scoring function designed to reflect
uncertainty. This formulation considers the inter-dependence among nodes in the graph, which is a
unique aspect of OOD detection in graph-based contexts compared to traditional OOD detection.

3.1 Geometric Decoupling of Logits

We decouple magnitude and direction by projecting each class weight onto a unit hypersphere. Logits
are reformulated as:

fj = s · ∥hi∥ · cos(θj,i), (4)
where θj,i is the angle between embedding hi and weight W j , and s is a scaling factor. This
design enforces angular structure via normalized weights while retaining ∥hi∥ to preserve confidence
expressiveness. Compared to traditional formulations where fj = W⊤

j hi = ∥W j∥ · ∥hi∥ · cos(θj,i),
GeoEnergy enforces ∥W j∥ = 1 to eliminate magnitude-based distortions. This enhances geometric
interpretability, aligning with the goal of making class separation rely solely on direction. Such a
formulation encourages tighter intra-class alignment and enlarged inter-class angular margins, which
is theoretically beneficial for classification in high-dimensional spaces.

Proposition 1 (Reduced Intra-Class Variation). By normalizing the class weight vectors while
preserving the feature norm for energy scaling, GeoEnergy promotes directional alignment among
features of the same class, leading to improved angular compactness:

cos(θj,i) =
W⊤

j hi

∥W j∥ · ∥hi∥
, with ∥W j∥ = 1. (5)

The expected pairwise cosine similarity for same-class features increases:

Exi,xj∼yi

[
1− cos

(
∠(h̃(k)

i , h̃
(k)
j )

)]
→ 0 (6)

indicating tighter angular compactness.

Proposition 2 (Increased Inter-Class Separation). The scaling factor s amplifies angular differences
in the logit space, thus increasing margin:

zi = s · cos(θi), zj = s · cos(θj), ∥zi − zj∥ = s · | cos(θi)− cos(θj)|. (7)

If the feature mapping ϕ satisfies Lipschitz continuity, i.e.,

∥ϕ(xi)− ϕ(xj)∥ ≤ L∥xi − xj∥, (8)
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Table 1: Performance of OOD detection using metrics such as AUROC(↑), AUPR(↑), and FPR95(↓), alongside
ID ACC on the Cora dataset across three types of OOD scenarios. The best results are highlighted in bold.

Model OOD Expo Cora-Structure Cora-Feature Cora-Label
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP No 70.90 45.73 87.30 75.50 85.39 73.70 64.88 75.30 91.36 78.03 34.99 88.92
ODIN No 49.92 27.01 100.0 74.90 49.88 26.96 100.0 75.00 49.80 24.27 100.0 88.92

Mahalanobis No 46.68 29.03 98.19 74.90 49.93 31.95 99.93 74.90 67.62 42.31 90.77 88.92
Energy No 71.73 46.08 88.74 76.00 86.15 74.42 65.81 76.10 91.40 78.14 41.08 88.92
GKDE No 68.61 44.26 84.34 73.70 82.79 66.52 68.24 74.80 57.23 27.50 88.95 89.87
GPN No 77.47 53.26 76.22 76.50 85.88 73.79 56.17 77.00 90.34 77.40 37.42 91.46

GNNSafe No 87.52 77.46 73.15 75.80 93.44 88.19 38.92 76.40 92.80 82.21 30.83 88.92
+ GeoEnergy No 90.83 80.28 47.53 79.20 94.36 88.90 28.91 78.10 95.58 90.87 19.68 91.46

NodeSafe No 94.07 83.98 25.63 77.20 95.30 88.82 23.08 78.70 93.80 85.22 29.41 89.87
+ GeoEnergy No 95.21 85.32 22.46 77.30 96.76 88.90 21.54 78.21 96.11 86.46 23.77 90.21

OE Yes 67.98 46.93 95.31 71.80 81.83 70.84 83.79 73.30 89.47 77.01 46.55 87.97
Energy FT Yes 75.88 49.18 67.73 75.50 88.15 75.99 47.53 75.30 91.36 78.49 37.83 90.51

GNNSafe++ Yes 90.62 81.88 53.51 76.10 95.56 90.27 27.73 76.80 92.75 82.64 34.08 91.46
+ GeoEnergy Yes 91.27 81.04 42.61 76.50 96.48 90.62 16.25 77.10 92.85 83.39 31.74 91.46
NodeSafe++ Yes 94.64 85.63 23.34 76.40 96.56 91.96 14.73 77.10 94.88 86.66 22.52 91.46
+ GeoEnergy Yes 95.22 86.15 21.89 77.20 97.36 92.45 10.41 77.67 95.36 89.25 17.85 91.53

then logit differences satisfy:
∥zi − zj∥ ≥ s · L · ∥xi − xj∥, (9)

providing a lower bound for decision margin controlled by s.

3.2 Energy-Based OOD Detection via Angular Regularization

Following GNNSafe [13], we define the Helmholtz free energy for OOD detection as:

E(x,Gx) = − log

C∑
c=1

exp(fc). (10)

Under our angular logit formulation, the energy score becomes:

Eangular(xi) = − log

C∑
j=1

exp(s · ∥hi∥ · cos(θj,i)). (11)

This reshaped energy surface allows ID samples to cluster in low-energy regions while pushing OOD
nodes to high-energy areas. Moreover, the preservation of ∥hi∥ enables confidence sharpness that
supports calibration. GeoEnergy acts as a plug-in logit head and energy scoring mechanism, which
can be seamlessly applied to energy-based graph models such as GNNSafe [13], NodeSafe [15], and
TopoOOD [14]. During training, it replaces the standard dot-product logit formulation, while during
inference, its angular energy serves as the OOD scoring function. Crucially, GeoEnergy requires no
modification of the graph encoder, making it a practical and generalizable to existing frameworks.

4 Experiments

In previous sections, we introduced GeoEnergy, a hyperspherical logit reparameterization strategy
designed to improve OOD detection and confidence calibration in GNNs. This section presents a
comprehensive evaluation of GeoEnergy, examining its robustness under various OOD shifts and
its effect on uncertainty estimation. To rigorously assess its capabilities, we explore the following
Research Questions (RQs):

RQ1: How effectively does GeoEnergy improve the detection of OOD samples, compared to
traditional methods?

RQ2: What impact does GeoEnergy have on confidence calibration for GNNs?

RQ3: Does the enhanced confidence calibration and optimized logit distribution provided by GeoEn-
ergy lead to better self-training outcomes?

To address these questions, we conduct experiments on OOD detection and confidence calibration
to evaluate GeoEnergy’s ability to distinguish OOD from ID samples without compromising ID
performance. We also compare its calibration against existing methods and assess how improved
calibration enhances self-training, demonstrating GeoEnergy’s robustness and reliability.
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Table 2: Performance of OOD detection across three OOD scenarios, using AUROC (↑). Additional metrics
such as AUPR, FPR95, and ID accuracy are detailed in Appendix B.1. The best results are highlighted in bold.

Model OOD Expo Citeseer Pubmed
Structure Feature Label Structure Feature Label

MSP No 66.34 78.32 88.42 74.31 83.28 85.71
ODIN No 49.23 49.86 51.33 49.76 49.67 56.24

Mahalanobis No 45.26 49.92 53.46 55.28 69.12 75.77
Energy No 65.62 79.19 89.98 74.33 84.16 86.81
GKDE No 61.48 74.68 82.69 74.02 82.25 83.36
GPN No 70.55 78.46 85.65 74.96 82.56 86.51

GNNSafe No 79.79 83.46 90.01 87.52 94.28 88.02
+ GeoEnergy No 81.23 88.94 92.57 88.92 95.83 89.90

NodeSafe No 88.40 90.41 91.66 94.13 95.97 93.80
+ GeoEnergy No 89.75 92.12 93.18 95.45 96.13 94.19

OE Yes 58.74 72.06 89.44 74.41 82.34 81.97
Energy FT Yes 68.87 79.23 91.34 73.54 78.95 91.83

GNNsafe++ Yes 82.43 83.27 91.57 90.62 95.16 87.98
+ GeoEnergy Yes 84.96 86.80 92.19 91.99 96.97 88.18
Nodesafe++ Yes 86.90 91.14 91.98 96.30 95.26 93.48
+ GeoEnergy Yes 87.67 93.13 93.23 97.87 96.51 94.38

4.1 Out-of-distribution Detection

In response to RQ1, we conduct graph OOD detection experiments under two settings to thoroughly
evaluate our approach. Without OOD Exposure: The model is trained without any OOD data,
simulating real-world scenarios where unexpected data types emerge post-deployment. With OOD
exposure: OOD samples are introduced during training, allowing the model to learn and adapt to
anomalies, assessing its ability to generalize and detect OOD instances with prior knowledge.

4.1.1 Datasets and Splits

Following recent work on graph OOD detection [13, 16, 15], our experiments use five benchmark
datasets to reflect real-world scenarios with OOD instances. These datasets cover two scenarios:

Single-graph scenario: OOD instances exist within the same graph as training data but remain
unseen during training. (1) Cora, Citeseer, Pubmed [1]: OOD data is synthetically generated using
structure manipulation, feature interpolation, and label leave-out. ID data is split into training,
validation, and testing sets in a 1:1:8 ratio. (2) ogbn-Arxiv [17]: This large citation dataset spans
1960–2020. Papers published before 2015 serve as ID data, while those after 2017 are OOD. Papers
from 2015–2016 are used for OOD exposure during training. ID data follows a 1:1:8 split.

Multi-graph scenario: OOD instances come from entirely separate graphs or subgraphs with no
direct connections to the training set. Twitch-Explicit [18]: It derived from the Twitch streaming
platform, represents users as nodes, with edges indicating mutual friendships. Node features capture
user activities and interactions. It consists of multiple subgraphs; we use the DE subgraph as ID
data, while EN, ES, FR, and RU serve as OOD data. The ENGB subgraph is used for OOD exposure
during training. ID data is randomly split into training, validation, and testing sets in a 1:1:8 ratio.

4.1.2 Evaluation Metrics

We assess OOD detection and ID accuracy using key metrics: ID Accuracy evaluates performance
on known data, AUROC measures the ability to separate ID from OOD instances, AUPR captures
the precision-recall trade-off for imbalanced data, and FPR95 quantifies the false positive rate at a
95% true positive rate. Detailed metric descriptions are in Appendix A.2.

4.1.3 Comparison Methods

We evaluate GeoEnergy’s effectiveness in OOD detection under two settings. Without OOD Expo-
sure. We compare GeoEnergy-enhanced models against two categories of baselines that do not use
auxiliary OOD supervision during training. The first category includes classical OOD detection meth-
ods originally developed for vision tasks under the i.i.d. assumption, such as MSP [19], ODIN [20],
Mahalanobis [21], OE [22], and Energy [23]. To adapt these methods to graph-structured data, we re-
place their CNN backbones with GCN encoders. The second category consists of graph-specific OOD
detection methods that explicitly model topological dependencies, including GKDE [24], GPN [12],
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Table 3: OOD detection results and ID accuracy on Twitch, where nodes from different subgraphs serve as OOD
data, and Arxiv, where papers published after 2017 are considered OOD. Detailed results for each OOD dataset
(i.e., subgraph or year) are provided in Appendix B.1.

Model OOD Expo Twitch Arxiv
AUROC AUPR FPR95 ACC AUROC AUPR FPR95 ACC

MSP No 33.59 49.14 97.45 68.72 63.91 75.85 90.59 53.78
ODIN No 58.16 72.12 93.96 70.79 55.07 68.85 100.0 51.39

Mahalanobis No 55.68 66.42 90.13 70.51 56.92 69.63 94.24 51.59
Energy No 51.24 60.81 91.61 70.40 64.20 75.78 90.80 53.36
GKDE No 46.48 62.11 95.62 67.44 58.32 72.62 93.84 50.76
GPN No 51.73 66.36 95.51 68.09 - - - -

GNNSafe No 66.82 70.97 76.24 70.40 71.06 80.44 87.01 53.39
+ GeoEnergy No 72.28 78.13 66.62 72.80 71.99 81.05 84.85 52.76

NodeSafe No 89.99 93.33 47.00 71.79 72.44 81.51 84.27 51.20
+ GeoEnergy No 90.12 94.47 44.56 71.84 73.19 82.32 81.65 51.76

OE Yes 55.72 70.18 95.07 70.73 69.80 80.15 85.16 52.39
Energy FT Yes 84.50 88.04 61.29 70.52 71.56 80.47 80.59 53.26

GNNSafe++ Yes 95.36 97.12 33.57 70.18 74.77 83.21 77.43 53.50
+ GeoEnergy Yes 95.50 97.18 32.51 70.16 75.73 83.70 73.79 52.12
NodeSafe++ Yes 98.50 99.18 3.43 71.85 75.49 83.71 75.24 52.93
+ GeoEnergy No 98.87 99.24 3.11 71.95 77.21 84.21 72.18 52.76

GNNSafe [25], and the recently proposed NodeSafe [15]. We integrate GeoEnergy into GNNSafe and
NodeSafe in a plug-and-play fashion—without any retraining or architectural changes—and compare
their performance with and without GeoEnergy. Across all benchmarks, GeoEnergy consistently
improves OOD detection performance by mitigating norm-induced logit distortions while preserving
angular separability. With OOD Exposure. We further assess GeoEnergy under settings where
a small set of auxiliary OOD samples is available during training. This setting follows protocols
introduced in prior work such as OE [22], Energy Fine-Tuning [23], and GNNSafe++ [25]. We
evaluate GeoEnergy-enhanced variants, including GNNSafe++(w GeoEnergy) and NodeSafe++(w
GeoEnergy), and compare them against their corresponding base models.

4.1.4 Comparative Results

We explore the enhancements brought by GeoEnergy to OOD detection through detailed experimental
evaluations. In Table 1, 2 and 3, we report the OOD detection performance and ID accuracy of
GeoEnergy with other competitive methods. Table 1 presents a comparative analysis of OOD detection
performance of various methods on Cora under three different OOD perturbations, including structure
manipulation, feature interpolation and label leave-out, along with their ability to maintain accuracy
on ID data. Due to space constraints, Table 2 distills the AUROC comparisons for each method across
Cora, Amazon and Coauthor under different OOD perturbations. The detailed comparisons of AUPR,
FPR95, and ID accuracy on these datasets are provided in the Appendix B.1. For dataset Twitch
and Arxiv, Table 3 provides a comparison of OOD detection performance between our method and
various baselines. Additionally, detailed results on Twitch’s sub-graphs and Arxiv papers published
across different years are presented in Appendix B.1.

GeoEnergy significantly enhances OOD detection performance. We highlight several key findings:
(1) Overall Superior Performance: Under settings with and without OOD exposure, the rows for
GeoEnergy and +GeoEnergy in the tables represent the performance of our method. GeoEnergy
consistently shows superior performance across all three perturbation types on the Cora dataset,
surpassing other methods. Additionally, GeoEnergy achieves higher AUROC scores across Cora,
Amazon, and Coauthor datasets, and also exhibits improved performance on the Twitch and Arxiv
datasets compared to SOTA methods. These results highlight the broad effectiveness of GeoEnergy
in OOD detection, demonstrating its efficacy across both single-graph and multi-graph scenarios.
(2) Significant Reduction in FPR95: GeoEnergy exhibits remarkable improvements in the FPR95
metric. Specifically, it reduces FPR95 by 35% in the structure manipulation scenario, 25.7% in the
feature interpolation scenario, and 36.1% in the label leave-out scenario compared to the previous
state-of-the-art method GNNSafe. This highlights its significant advantage in minimizing false
positive rates. Additionally, we detail the optimal hyperparameter selection for the scaling factor s
across various datasets and different OOD scenarios in Appendix B.1.

GeoEnergy maintains classification accuracy. GeoEnergy preserves competitive ID accuracy and
even achieves slight improvements in some cases. As shown in Table 1 and 3, our method maintains
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Figure 4: Analysis of confidence distributions and reliability diagrams for GCN on Cora with L/C = 20.

ID accuracy and, in some instances, enhances in-distribution classification precision. This highlights
GeoEnergy’s ability to improve the representation of graph data.

4.2 Confidence Calibration and Self-training

Table 4: ECE (M=20) of different calibration methods on GCN,
GAT, and GraphSAGE. Bold texts indicate the best results.

Dataset Model Calibration Methods

Uncal. TS MS CaGCN GCL GeoEnergy

Cora
GCN 0.1347 0.0488 0.0414 0.0401 0.0394 0.0361
GAT 0.1558 0.0717 0.0544 0.0450 0.0444 0.0430

GraphSage 0.1037 0.0463 0.0371 0.0398 - 0.0360

Citeseer
GCN 0.1248 0.0641 0.0644 0.0595 0.0579 0.0539
GAT 0.1534 0.0916 0.0633 0.0572 0.0660 0.0552

GraphSage 0.1135 0.0808 0.0866 0.0691 - 0.0579

Pubmed
GCN 0.0586 0.0541 0.0476 0.0405 0.0394 0.0332
GAT 0.0835 0.0656 0.0501 0.0356 0.0417 0.0316

GraphSage 0.0338 0.0337 0.0342 0.0364 - 0.0259

Recent studies have demonstrated that
GNNs often exhibit an underconfi-
dence tendency [9, 10], with pre-
dictions systematically less confident
than actual probabilities. This under-
confidence, due to the complex and
noisy nature of graph-structured data
and challenges in aggregating neigh-
bor information [26], impedes accu-
rate OOD detection by blurring the
distinction between ID and OOD data.
In response to RQ2 and RQ3, we
empirically validated the impact of
GeoEnergy on improving confidence
calibration in GNNs. Our experiments
focused on how this adjustment aligns confidence scores more closely with true probabilities. Fur-
thermore, we explored self-training to illustrate the practical benefits of enhanced calibration.

Datasets and Benchmarks. We use three citation network datasets: Cora, Citeseer, and Pubmed [27].
For semi-supervised node classification, we set the label rate L/C ∈ {20, 40, 60}. We select three
GNN models for node classification: GCNs [1], GATs [2], and GraphSAGE [28]. This diversity
allows for a comprehensive evaluation of confidence calibration across different GNN architectures.
We selected four baseline methods for comparison, including two traditional calibration methods,
Temperature Scaling (TS) and Matrix Scaling (MS) [29], as well as two GNN-specific calibration
methods, CaGCN [9] and GCL [10].

Evaluation Metrics. We evaluate confidence calibration using Expected Calibration Error (ECE) [30],
which quantifies the gap between model confidence and accuracy. Specifically, predictions are parti-
tioned into M bins, and ECE is computed as the weighted average of the absolute difference between
average confidence and accuracy in each bin: ECE =

∑M
m=1

|Bm|
n |acc(Bm)− conf(Bm)| . Here,

Bm denotes the set of predictions in the m-th bin, and n is the total number of samples. A lower
ECE indicates better calibration. We use M = 20 in all experiments.

Visualization Analysis. To illustrate GeoEnergy’s impact on confidence calibration, Figure 1 analyzes
a GCN’s performance on the Cora dataset with L/C = 20. The left histograms reveal a notable
shift in confidence distribution for correct (gray) and incorrect (red) predictions. Initially, correct
predictions are dispersed across confidence levels, indicating uncertainty. After applying GeoEnergy,
confidence for correct predictions becomes more concentrated at higher values, reflecting improved
certainty and reliability. The right reliability diagrams further quantify calibration improvements.
Initially, the model shows underconfidence, with accuracy exceeding predicted confidence (solid line
above the ideal dashed line). After applying GeoEnergy, the solid line aligns closely with the ideal,
indicating better-calibrated predictions.

Comparative Results Detailed experimental results on calibration performance at a label rate of
L/C = 20 are meticulously documented in Table 4, which provides the ECE for GCN, GAT,
and GraphSage models across various datasets, utilizing different calibration techniques, where
"Uncal." denotes an uncalibrated model. Detailed analyses for L/C = 40 and 60 are discussed in
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Figure 5: Self-training accuracy comparison of various methods under different labelrates.

Appendix B.2, which also summarizes the optimal hyperparameter selection for the scaling factor s
in GeoEnergy across multiple datasets.

GeoEnergy enhances confidence calibration performance. Detailed analysis of Table 4 illustrates
that GeoEnergy significantly enhances calibration accuracy, outperforming both traditional and
GNN-specific methods across various scenarios. This superior calibration performance not only
ensures more accurate confidence estimates but also crucially supports the generation of reliable
pseudo labels, enhancing the model’s effectiveness in self-training contexts. This robust calibration
capability is instrumental in maintaining high accuracy on ID data while effectively identifying and
handling out-of-distribution samples.

GeoEnergy boosts self-training efficacy. GeoEnergy validates its impact on self-training by examining
its influence on classification accuracy within these settings. As depicted in Figure 5, GeoEnergy
substantially elevates classification accuracy across diverse datasets and label rates, illustrating its dual
benefits: precision in calibration and enhancement of self-training outcomes through the utilization
of precise pseudo labels. These experiments affirm that GeoEnergy synchronizes GNNs’ confidence
estimates with actual probabilities, markedly delineating ID from OOD samples.

5 Related Work

OOD detection for GNNs. To tackle the complexities of graph data with inter-dependent nodes,
OOD detection for GNNs is a burgeoning field. GraphDE [11] utilizes a variational approach
combined with mixed generative models to identify distribution shifts and effectively down-weight
outliers, enhancing OOD detection capabilities for new datasets. In node classification, techniques
like Graph-based Kernel Dirichlet Distribution Estimation (GKDE) [24] and Graph Posterior Network
(GPN) [12] employ Bayesian GNN models that effectively consider the inter-dependence among
nodes. Additionally, GNNSafe [13] introduces an energy-based OOD discriminator that operates
independently of specific GNN architectures, offering a versatile solution to OOD challenges in graph
neural networks. Uniquely, our method GeoEnergy harnesses the crucial insights provided by the
intrinsic properties of node embeddings, specifically the natural clustering within the feature space
based on angular relationships. This method extends the softmax loss to angular similarity loss and
constrains weight vectors to a hypersphere, optimizing the angles between features. By leveraging the
inherent low-dimensional manifold structure of graph data, GeoEnergy enhances the discriminative
power of GNNs for effective OOD detection. A comprehensive review of related work is provided in
Appendix C.

6 Conclusion

This paper presents GeoEnergy, a simple yet effective approach for improving energy-based OOD
detection in graph neural networks. Through an in-depth analysis of GNN logit geometry, we identify
two critical phenomena—angular clustering and coupling-induced misdetection—that undermine the
reliability of conventional energy scoring. GeoEnergy addresses these issues by decoupling magnitude
and direction via weight normalization, thereby enhancing intra-class compactness, inter-class
separation, and energy stability. Importantly, GeoEnergy is model-agnostic and can be seamlessly
integrated into existing energy-based frameworks without retraining. Extensive experiments across
diverse OOD benchmarks demonstrate that GeoEnergy consistently improves detection performance
and calibration, providing a strong geometric foundation for robust and trustworthy GNN deployment
in open-world environments.
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A Details of Experiments

A.1 Details of datasets

Following the setup from recent work on graph OOD detection and generalization, our experiments
utilize five widely recognized node classification benchmark datasets to reflect real-world scenarios
involving OOD instances within graphs. These datasets encompass two distinct scenarios:

Single-graph scenario: In this scenario, we use the datasets Cora[27], Amazon-Photo[31], Coauthor-
CS[32], and ogbn-Arxiv[17]. Here, OOD testing instances exist within the same graph as the training
instances but remain unseen during training.

• Cora, Amazon-Photo, Coauthor-CS: Cora is a citation network where nodes represent
scientific papers and edges indicate citations between them. Amazon-Photo is a co-purchase
network with nodes representing products and edges signifying frequent co-purchases.
Coauthor-CS is a co-authorship network where nodes represent authors and edges denote
co-authorship of papers in the field of Computer Science. Due to the lack of explicit domain
distinctions, we synthetically generate OOD data using three different approaches: Structure
manipulation: The original graph is utilized as in-distribution data, while a new graph
generated using the stochastic block model serves as OOD data. Feature interpolation:
Random interpolation is applied to create node features for OOD data, with the original
graph as in-distribution data. Label leave-out: Nodes with specific class labels are used
as in-distribution data, and nodes with other class labels are treated as OOD data. For
Amazon-Photo and Coauth-CS, we randomly split the ID data into training, validation, and
testing sets in a 1:1:8 ratio. For Cora, we split the ID data following the semi-supervised
learning setting by [1].

• ogbn-Arxiv: A large graph dataset that records citation information from 1960 to 2020. Each
node represents a paper, labeled with its subject area, and edges denote citation relationships.
Nodes have 128-dimensional feature vectors obtained from the word embeddings of their
titles and abstracts. ID data is split in a 1:1:8 ratio based on publication year.

Multi-graph scenario: This scenario is represented by the dataset Twitch-Explicit[18], where OOD
instances originate from a completely different graph or subgraph that has no connections with nodes
in the training set.

• Twitch-Explicit: Derived from the Twitch streaming platform, each node represents a user,
edges denote mutual friendships between users, and node features capture user activities and
interaction patterns. The dataset includes multiple subgraphs; we use the DE subgraph as the
ID data, while the other subgraphs (EN, ES, FR, and RU) serve as OOD data. Additionally,
the ENGB subgraph is used for OOD exposure during training. We randomly split the ID
data into training, validation, and testing sets in a 1:1:8 ratio.

Table 5: Dataset Details for In-Distribution (ID), Out-of-Distribution (OOD), and OOD Exposure Data

Dataset ID Data OOD Data OOD Exposure Data

Cora
Original graph

Structure manipulation,
Feature interpolation,

Label leave-out

Synthetically generated
OOD instancesAmazon-Photo

Coauthor-CS
Twitch DE subgraph Five other subgraphs ENGB subgraph
Arxiv Papers before 2015 Papers after 2017 Papers in 2015 and 2016

A.2 Details of evaluation metrics

In our experiments, we use several evaluation metrics to comprehensively evaluate the model’s ability
to recognize known data and detect OOD instances, ensuring robustness and reliability in diverse
scenarios.

ID Accuracy is the ratio of correctly predicted instances to the total instances within the in-distribution
(ID) data. This metric measures how well the model performs on data it has seen during training or

12



data from the same distribution. High ID Accuracy indicates that the model effectively learns the
patterns in the ID data.

AUROC (Area Under the Receiver Operating Characteristic Curve) measures the model’s ability
to distinguish between ID and OOD instances across all possible classification thresholds. This
metric evaluates the trade-off between the true positive rate (sensitivity) and the false positive rate
(1-specificity). It provides a single scalar value representing the model’s overall ability to separate ID
from OOD instances.

AUPR (Area Under the Precision-Recall Curve) evaluates the trade-off between precision (the
fraction of true positive instances among all instances predicted as positive) and recall (the fraction of
true positive instances among all actual positive instances) for different thresholds. This metric is
particularly useful in scenarios with imbalanced data, where the number of OOD instances may be
much smaller than ID instances. It provides a more detailed picture of the model’s performance in
detecting OOD instances by focusing on the precision-recall trade-off.

FPR95 (False Positive Rate at 95% True Positive Rate) measures the false positive rate when the
true positive rate is at 95%. This metric assesses the model’s reliability in identifying OOD instances
by ensuring that a high true positive rate does not come at the cost of a high false positive rate. It
provides insight into the model’s performance in critical regions of the ROC curve.

A.3 Details of baselines

MSP (Maximum Softmax Probability) [19]: MSP is a simple yet effective baseline for OOD
detection. It uses the maximum predicted probability from the softmax output as a confidence score.
Instances with low confidence scores are considered OOD. This approach is straightforward but can
struggle in scenarios with complex data distributions.

ODIN (Out-of-DIstribution detector for Neural networks) [20]: ODIN improves upon MSP by
applying temperature scaling and small perturbations to the input. These adjustments enhance the
separability between ID and OOD data by making the softmax scores more discriminative. ODIN
requires fine-tuning on a validation set to determine optimal parameters for temperature scaling and
perturbation magnitude.

Mahalanobis [21]: This method estimates the class-conditional distributions of the model’s features
using a multivariate Gaussian distribution. The Mahalanobis distance between a test sample and the
closest class mean is used as a confidence score. Lower distances indicate higher confidence of being
ID, making this approach effective for OOD detection, especially in scenarios with well-separated
feature distributions.

OE (Outlier Exposure) [22]: OE leverages an auxiliary dataset containing OOD examples during
training. The model is trained to assign low confidence scores to these OOD samples while main-
taining high confidence for ID samples. This exposure to OOD data during training helps the model
learn better decision boundaries, improving its OOD detection capabilities.

Energy and Energy FineTune [23]: The energy-based model uses the concept of energy from
statistical physics to measure prediction confidence, with lower energy indicating higher confidence.
Energy scores are computed from the model’s logits, providing a unified approach for ID and OOD
detection. Energy FineTune extends this by incorporating OOD data during training, fine-tuning the
model to better discriminate between ID and OOD samples, thus improving calibration and detection
accuracy.

GKDE (Graph-based Kernel Dirichlet distribution Estimation) [24]: GKDE is specifically
designed for graph data, leveraging kernel density estimation to model the uncertainty in node
embeddings. By estimating the Dirichlet distribution over the graph’s features, GKDE provides a
probabilistic framework for detecting OOD nodes. This approach effectively captures the dependen-
cies and topological structures unique to graph data.

GPN (Graph Posterior Network) [12]: GPN integrates Bayesian principles with graph neural
networks to model posterior distributions over node labels. This method uses a probabilistic encoder
to generate latent variables and a decoder to predict labels, capturing the uncertainty in predictions.
GPN’s Bayesian framework makes it robust for OOD detection by effectively quantifying prediction
uncertainty.
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Table 6: Performance of out-of-distribution detection using metrics such as AUROC(↑), AUPR(↑), and FPR95(↓),
alongside in-distribution accuracy (ID ACC) on the Amazon dataset across three types of OOD scenar-
ios—structure manipulation, feature interpolation, and label leave-out—is presented. The best results are
highlighted in bold.

Model OOD Expo Amazon-Structure Amazon-Feature Amazon-Label
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP No 98.27 98.54 6.13 92.84 97.31 95.16 8.72 92.89 93.97 91.32 26.65 95.76
ODIN No 93.24 95.26 65.44 92.84 81.15 78.47 100.0 92.71 65.97 57.80 90.23 96.08

Mahalanobis No 71.69 79.01 99.91 92.79 76.50 71.14 76.12 92.86 73.25 66.89 74.30 95.76
Energy No 98.51 98.72 4.97 92.86 97.87 95.64 6.00 92.96 93.81 91.13 28.48 95.72
GKDE No 76.39 81.58 99.25 87.57 58.96 66.76 99.28 86.18 65.58 65.20 96.87 89.37
GPN No 97.17 96.39 11.65 88.51 87.91 84.77 49.11 90.05 92.72 90.34 37.16 90.07

GNNSafe No 99.58 99.76 0.00 92.53 98.55 98.99 0.31 92.81 97.35 97.12 6.59 95.76
+GeoEnergy No 99.63 99.56 0.00 92.76 98.94 99.08 0.64 92.66 97.57 97.40 7.90 95.80

OE Yes 99.60 99.61 0.51 92.61 98.39 96.24 4.34 92.30 95.39 92.53 17.72 95.72
Energy FT Yes 98.83 99.14 1.31 92.79 98.68 96.82 2.84 92.52 96.61 94.92 13.78 94.83

GNNSafe++ Yes 99.82 99.89 0.00 92.22 99.64 99.68 0.13 92.39 97.51 97.07 6.18 95.84
+GeoEnergy Yes 99.96 99.98 0.00 92.38 99.80 99.75 0.18 92.68 97.19 96.71 8.66 95.76

Table 7: Performance of out-of-distribution detection using metrics such as AUROC(↑), AUPR(↑), and FPR95(↓),
alongside in-distribution accuracy (ID ACC) on the Coauthur dataset across three types of OOD scenar-
ios—structure manipulation, feature interpolation, and label leave-out—is presented. The best results are
highlighted in bold.

Model OOD Expo Coauthor-Structure Coauthor-Feature Coauthor-Label
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP No 95.30 94.37 24.75 92.47 97.05 96.93 15.55 92.45 94.88 97.99 23.81 95.18
ODIN No 52.14 48.83 99.92 92.34 51.54 45.50 100.0 92.39 51.44 74.79 100.0 95.15

Mahalanobis No 80.46 76.65 70.75 92.33 93.23 90.88 28.10 92.34 85.36 93.61 45.41 95.19
Energy No 96.18 95.25 18.02 92.75 97.88 97.69 9.75 92.75 95.87 98.34 18.69 95.20
GKDE No 65.87 72.65 99.48 88.62 80.69 86.47 96.57 84.72 61.15 81.39 94.60 89.05
GPN No 34.67 40.21 99.57 89.45 81.77 80.56 74.46 87.05 93.24 97.55 34.78 91.68

GNNSafe No 99.60 99.69 0.26 92.73 99.64 99.66 0.51 92.73 97.23 98.98 12.06 95.21
+GeoEnergy No 99.92 99.86 0.15 92.10 99.83 99.78 0.51 92.60 97.90 99.23 9.48 95.37

OE Yes 97.86 96.81 9.23 92.60 99.04 98.80 4.44 92.64 96.04 98.50 18.17 95.10
Energy FT Yes 98.84 97.78 3.97 92.61 99.43 99.25 2.25 92.50 96.23 98.51 17.07 95.20

GNNSafe++ Yes 99.99 99.99 0.02 92.92 99.97 99.95 0.09 92.87 97.89 99.24 9.43 95.24
+GeoEnergy Yes 99.99 99.99 0.03 92.31 99.97 99.95 0.08 92.54 98.18 99.34 8.25 95.30

GNNSafe and GNNSafe++ [25]: GNNSafe combines energy-based models with graph neural net-
works to enhance OOD detection in graph data. It uses energy scores derived from node embeddings
to differentiate between ID and OOD instances, leveraging graph structure for improved perfor-
mance and robustness. GNNSafe++ extends GNNSafe by incorporating OOD data during training,
fine-tuning the energy-based detection mechanism. This enhanced version uses OOD exposure to
further improve the model’s ability to distinguish between ID and OOD instances, achieving superior
detection performance.

Table 8: Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on OOD
sub-graphs ES, FR and RU of Twitch dataset.

Model OOD Expo Twitch-ES Twitch-FR Twitch-RU
AUROC AUPR FPR95 AUROC AUPR FPR95 AUROC AUPR FPR95

MSP No 37.72 53.08 98.09 21.82 38.27 99.25 41.23 56.06 95.01
ODIN No 83.83 80.43 33.28 59.82 64.63 92.57 58.67 72.58 93.98

Mahalanobis No 45.66 58.82 95.48 40.40 46.69 95.54 55.68 66.42 90.13
Energy No 38.80 54.26 95.70 57.21 61.48 91.57 57.72 66.68 87.57
GKDE No 48.70 61.05 95.37 49.19 52.94 95.04 46.48 62.11 95.62
GPN No 53.00 64.24 95.05 51.25 55.37 93.92 50.89 65.14 99.93

GNNSafe No 49.07 57.62 93.98 63.49 66.25 90.80 87.90 89.05 43.95
+GeoEnergy No 49.15 57.34 92.67 63.63 66.34 90.50 87.94 89.10 43.83

OE Yes 55.97 69.49 94.94 45.66 54.03 95.48 55.72 70.18 95.07
Energy FT Yes 80.73 87.56 76.76 79.66 81.20 76.39 93.12 95.36 30.72

GNNSafe++ Yes 94.54 97.17 44.06 93.45 95.44 51.06 98.10 98.74 5.59
+GeoEnergy Yes 94.90 97.34 41.33 93.54 95.49 50.65 98.07 98.69 5.56
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B Additional Experiment Results

B.1 Additional OOD detection experiment results

Further experiment results on the Amazon and Coauthor datasets. In the main text, we
succinctly present AUROC data for GeoEnergy across the Cora, Amazon, and Coauthor datasets.
This appendix provides an in-depth exploration of those results, detailing comprehensive metrics
including AUPR, FPR95, and ID ACC. As depicted in Table 6 and Table 7, extensive experimental
outcomes for three distinct OOD perturbations—structure manipulation, feature interpolation, and
label leave-out—are elaborated upon. These detailed analyses supplement the overview given in the
main text, offering thorough insights into the performance across various models and experimental
conditions. Notably, GeoEnergy consistently exhibits superior AUROC and AUPR scores under all
scenarios, showcasing its robustness and efficacy in handling complex OOD challenges.

Further experiment results on the Arxiv and Twitch datasets. We provide average OOD detection
performance results across sub-graphs for Arxiv and Twitch in main text. This appendix presents
detailed results for specific sub-graphs within the Twitch and Arxiv datasets, demonstrating the
effectiveness of GeoEnergy and its variants under varied scenarios. For the Twitch dataset, as shown
in Table 8, detailed OOD detection performances are documented across three distinct sub-graphs (ES,
FR, and RU). The table lists outcomes for different models under three types of OOD perturbations:
structure manipulation, feature interpolation, and label leave-out. GeoEnergy consistently shows
superior performance across all sub-graphs, particularly in reducing the FPR95, highlighting its
capability to accurately identify OOD samples. Regarding the Arxiv dataset, Table 9 illustrates the
performance for papers published in the years 2018, 2019, and 2020, treated as OOD samples. These
results further validate the effectiveness of GeoEnergy in handling recent scientific publications.

Summary of optimal hyperparameters for OOD detection. As shown in Table 10, we provide a
summary of the optimal hyperparameter settings for the scaling factor s used in the GeoEnergy and
+GeoEnergy across various datasets and OOD scenarios.

Figure 6: Impact of scaling factor variation on performance metrics for different OOD scenarios in graph neural
networks on the Cora dataset.

Sensitivity analysis of the scaling factor s in GeoEnergy. The three graphs in Figure 6 depict a
sensitivity analysis of the scaling factor s in GeoEnergy across different OOD scenarios (structure
manipulation, feature interpolation, and label leave-out) on the Cora dataset. Each graph illustrates
how performance metrics (AUROC, AUPR, FPR, and IND Test Score) evolve as the scaling factor
varies from 1 to 25. AUROC and AUPR: Both metrics generally increase or stabilize with higher
values of s, demonstrating improved classification and prediction precision under the influence of
GeoEnergy. This suggests that increasing s enhances the model’s ability to distinguish between
in-distribution and OOD samples, leading to more reliable predictions. FPR95: The false positive rate
decreases significantly as s increases, indicating that GeoEnergy effectively reduces the likelihood of
false alarms in OOD detection. This is particularly evident in the sharp declines observed in the initial
values of s. IND Test Score: The in-distribution accuracy remains relatively stable across different
values of s, which implies that the model maintains its performance on seen data while improving its
robustness to OOD samples.

B.2 Expanded calibration results across different label rates

Further calibration results across different label rates. This section extends the examination
of confidence calibration performance by providing detailed results for a broader range of label
rates, specifically L/C = 20, 40, 60. Table 11 provides a comprehensive comparison of ECE
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Table 9: Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on OOD
datasets of papers published in 2018, 2019 and 2020, respectively, on Arxiv.

Model OOD Expo Arxiv-2018 Arxiv-2019 Arxiv-2020
AUROC AUPR FPR95 AUROC AUPR FPR95 AUROC AUPR FPR95

MSP No 61.66 70.63 91.67 63.07 66.00 90.82 67.00 90.92 89.28
ODIN No 53.49 63.06 100.0 53.95 56.07 100.0 55.78 87.41 100.0

Mahalanobis No 57.08 65.09 93.69 56.76 57.85 94.01 56.92 85.95 95.01
Energy No 61.75 70.41 91.74 63.16 65.78 90.96 67.70 91.15 89.69
GKDE No 56.29 66.78 94.31 57.87 62.34 93.97 60.79 88.74 93.31
GPN No - - - - - - - - -

GNNSafe No 66.47 74.99 89.44 68.36 71.57 88.02 78.35 94.76 83.57
+GeoEnergy No 67.30 75.70 87.88 69.33 72.45 86.20 79.33 95.01 80.48

OE Yes 67.72 75.74 86.67 69.33 72.15 85.52 72.35 92.57 83.28
Energy FT Yes 69.58 76.31 82.10 70.58 72.03 81.30 74.53 93.08 78.36

GNNSafe++ Yes 70.40 78.62 81.47 72.16 75.43 79.33 81.75 95.57 71.50
+GeoEnergy Yes 71.23 79.10 78.51 73.12 76.16 75.93 82.83 95.82 66.94

Table 10: Optimal hyperparameter selection for the scaling factor s in GNNSafe(+GeoEnergy) and
GNNSafe++(+GeoEnergy) across multiple datasets and OOD types.

Model Cora Amazon Coauthor Twitch ArxivStructure Feature Label Structure Feature Label Structure Feature Label
GNNSafe(+GeoEnergy) 20 15 15 20 20 10 20 5 5 1.5 1.5

GNNSafe++(+GeoEnergy) 20 15 2 20 5 2 5 5 1.5 1.2 1.5

for GCN, GAT, and GraphSage models across various datasets. The ECE values are recorded
under several calibration techniques: uncalibrated (Uncal), temperature scaling (TS), matrix scaling
(MS), and several methods specifically developed for GNN architectures including CaGCN, GCL,
and our method, GeoEnergy. Each method’s performance is scrutinized at different label rates,
showcasing the robustness and consistency of GeoEnergy’s superior calibration capability. The results
highlight GeoEnergy’s consistent outperformance across different settings and models, affirming its
effectiveness in refining the calibration process, thereby enhancing the models’ predictive accuracy
and reliability across diverse scenarios. The detailed numerical results underscore the methodological
advancements facilitated by GeoEnergy, reinforcing its role in improving both in-distribution and
out-of-distribution detection by providing more accurate and reliable pseudo labels for effective
self-training.

Summary of optimal hyperparameters for confidence calibration across various scenarios.
We provide detailed hyperparameter settings for model calibration across various datasets and
models, specifically GCN, GAT, and GraphSAGE. These settings pertain to optimal values used for
experiments, which were not specified in the main text due to space constraints. The table 12 presents
the selected parameters for each dataset (Cora, Citeseer, Pubmed) at different label rates (L/C of
20, 40, and 60), facilitating a clearer understanding of how these configurations influence model
performance.

Table 11: ECE (M=20) of different calibration methods on GCN, GAT, and GraphSAGE for different datasets
with label rate L/C = 20, 40, 60.

Dataset L/C GCN GAT GraphSAGE

Uncal. TS MS CaGCN GCL Ours Uncal. TS MS CaGCN GCL Ours Uncal. TS MS CaGCN GCL Ours

Cora
20 0.1347 0.0488 0.0414 0.0401 0.0394 0.0391 0.1558 0.0717 0.0544 0.0450 0.0444 0.0430 0.1037 0.0463 0.0371 0.0398 - 0.0360
40 0.1134 0.0417 0.0372 0.0407 0.0371 0.0338 0.1340 0.0485 0.0491 0.0365 0.0356 0.0330 0.0847 0.0330 0.0418 0.0368 - 0.0281
60 0.0937 0.0886 0.0366 0.0376 0.0353 0.0302 0.1201 0.1192 0.0396 0.0308 0.0258 0.0241 0.0803 0.0323 0.0332 0.0339 - 0.0312

Citeseer
20 0.1248 0.0641 0.0644 0.0595 0.0579 0.0539 0.1534 0.0916 0.0633 0.0572 0.0660 0.0552 0.1135 0.0808 0.0866 0.0691 - 0.0579
40 0.0957 0.0601 0.0538 0.0545 0.0575 0.0504 0.1252 0.0797 0.0590 0.0532 0.0603 0.0511 0.0942 0.0657 0.0586 0.0544 - 0.0468
60 0.0806 0.0559 0.0521 0.0546 0.0501 0.0480 0.1090 0.0648 0.0519 0.0527 0.0522 0.0513 0.0684 0.0506 0.0416 0.0497 - 0.0400

Pubmed
20 0.0586 0.0541 0.0476 0.0405 0.0394 0.0332 0.0835 0.0656 0.0501 0.0356 0.0417 0.0316 0.0338 0.0337 0.0342 0.0364 - 0.0259
40 0.0444 0.0446 0.0436 0.0402 0.0395 0.0349 0.0869 0.0658 0.0539 0.0308 0.0309 0.0265 0.0310 0.0275 0.0327 0.0275 - 0.0271
60 0.0445 0.0367 0.0318 0.0311 0.0310 0.0302 0.0993 0.0669 0.0483 0.0308 0.0304 0.0293 0.0280 0.0321 0.0315 0.0239 - 0.0219
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Table 12: Summary of used parameters on model calibration in GCN, GAT and GraphSAGE.
Dataset Cora Citseer Pubmed

L/C GCN GAT GraphSage GCN GAT GraphSage GCN GAT GraphSage
20 15 15 15 10 10 15 4 3 16
40 15 10 15 8 7 15 3 3 20
60 15 12 15 7 6 15 3 3 15

C Related Work

C.1 Out-of-distribution Detection

OOD detection is crucial for identifying and managing samples that diverge from the training data
distribution. This field has been rigorously researched and implemented across various neural
network architectures, including traditional DNNs and the more complex GNNs. Due to the inherent
differences in their architectures and data processing mechanisms, the methodologies appropriate for
OOD detection differ between these types of networks.

OOD detection for NNs. Two principal approaches have been developed to tackle OOD detection
in neural networks: scoring-based methods and training-time regularization techniques. The first
focuses on designing scoring functions that utilize various metrics to assess the outlierness of
samples. Notable examples include maximum softmax probability (MSP) [19], OpenMax score [33],
Mahalanobis distance-based score [21], ODIN score [20], and energy-based scores [23, 34]. These
functions provide quantifiable measures of how likely a sample is to be anomalous based on model
predictions. Training-Time regularization techniques modify the training process to enhance models’
OOD detection abilities. Strategies such as encouraging uniform prediction distributions for outliers
[35, 22] and promoting higher energy outputs for potential OOD samples [23, 36, 37] have been
explored. These techniques, aligning with log-likelihood shaping theories, are inherently suitable for
OOD detection. Efforts to further enhance OOD detection also include methods leveraging unlabeled
data for outlier identification [38]. However, they typically target i.i.d. instances and often overlook
the interdependence between data points.

OOD detection for GNNs. To tackle the complexities of graph data with inter-dependent nodes,
OOD detection for GNNs is a burgeoning field. GraphDE [11] utilizes a variational approach
combined with mixed generative models to identify distribution shifts and effectively down-weight
outliers, enhancing OOD detection capabilities for new datasets. In node classification, techniques
like Graph-based Kernel Dirichlet Distribution Estimation (GKDE) [24] and Graph Posterior Network
(GPN) [12] employ Bayesian GNN models that effectively consider the inter-dependence among
nodes. Additionally, GNNSafe [13] introduces an energy-based OOD discriminator that operates
independently of specific GNN architectures, offering a versatile solution to OOD challenges in graph
neural networks. Uniquely, our method GeoEnergy harnesses the crucial insights provided by the
intrinsic properties of node embeddings, specifically the natural clustering within the feature space
based on angular relationships. This method extends the softmax loss to angular similarity loss and
constrains weight vectors to a hypersphere, optimizing the angles between features. By leveraging the
inherent low-dimensional manifold structure of graph data, GeoEnergy enhances the discriminative
power of GNNs for effective OOD detection.

C.2 Confidence Calibration of GNNs

The objective of confidence calibration is to align predicted probabilities with the actual likelihood of
correctness. Calibration methods fall into two categories: post-hoc adjustments and regularization
techniques. Post-hoc methods, such as Temperature Scaling (TS)[29], recalibrate predictions using a
temperature parameter learned from validation data. Regularization techniques, like Focal Loss[39],
mitigate overconfidence by minimizing KL divergence, while approaches such as Mixup[40] and
Label Smoothing[41] adjust label entropy for better calibration. For GNNs, traditional calibration
methods often underperform due to their unique structure. CaGCN[9] adapt TS, and GCL[10]
introduce end-to-end calibration techniques tailored for GNNs, leveraging graph topology and
entropy regularization to improve calibration. A GNN fθ is perfectly calibrated when the predicted
confidence p̂i equals the actual probability pi of correctly predicting node i, ideally satisfying:
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P(ŷi = yi | p̂i = p) = p, ∀p ∈ [0, 1]. The Expected Calibration Error (ECE) quantifies deviations
from this ideal.

Underconfidence Leading to Blurred OOD Detection. Recent studies have shown that commonly
used GNNs typically exhibit an underconfidence tendency [9], where the predicted confidence scores
are systematically lower than the true probabilities. While underconfidence can reduce the risk of
overconfident incorrect predictions, it has negative implications for OOD detection. Specifically,
underconfidence makes it difficult for GNNs to effectively distinguish between in-distribution and out-
of-distribution data, as the model’s confidence estimates are insufficient to provide clear discriminative
evidence.

18



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our two key observations (an-
gular clustering and coupling-induced misdetection) and the GeoEnergy contributions;
these align precisely with the experiments and theoretical results in Sections 1–4.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We devote Section 6 (“Limitations and Future Work”) to discuss assump-
tions (e.g., homophily dependence), dataset scope (five benchmarks), and potential
performance under heterophilic graphs.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions
and a complete (and correct) proof?
Answer: [Yes]
Justification: Propositions 1–2 include all geometric assumptions and are formally
proved in Appendix B with cross-references to the main text.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results?
Answer: [Yes]
Justification: Section 5 and Appendix C detail datasets, data splits, hyperparameters,
random seeds, and all baseline implementations; code and instructions are provided in
the supplemental material.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results?
Answer: [Yes]
Justification: We release anonymized code and data preprocessing scripts at the URL
in the supplemental; detailed README guides reproduction of all figures.

6. Experimental setting/details
Question: Does the paper specify all the training and test details necessary to understand
the results?
Answer: [Yes]
Justification: Section 5 (“Experimental Setup”) lists graph splits, optimizer settings,
learning rates, epochs, and evaluation metrics; Appendix C provides full YAML config
files.

7. Experiment statistical significance
Question: Does the paper report error bars or other information about statistical
significance?
Answer: [Yes]
Justification: All OOD detection metrics (AUROC, FPR95) are averaged over 10 runs
with standard-deviation error bars shown in Tables 2–3.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
compute resources needed?
Answer: [Yes]
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Justification: Appendix D reports use of NVIDIA V100 GPUs (4×), total training time
( 48 GPU hours), and memory footprints per dataset.

9. Code of ethics
Question: Does the research conform with the NeurIPS Code of Ethics?
Answer: [Yes]
Justification: Our work involves no sensitive personal data or high-risk applications; all
authors have reviewed and adhered to NeurIPS ethics guidelines.

10. Broader impacts
Question: Does the paper discuss potential positive and negative societal impacts?
Answer: [Yes]
Justification: Section 7 outlines improved reliability in critical graph applications (e.g.,
drug discovery) and notes potential misuse in adversarial detection settings.

11. Safeguards
Question: Does the paper describe safeguards for responsible release of data or models
with high misuse risk?
Answer: [NA]
Justification: No pretrained models or scraped datasets are released; risk of misuse is
minimal.

12. Licenses for existing assets
Question: Are external assets properly credited and licensed?
Answer: [Yes]
Justification: We cite each benchmark’s source paper and include license references
(e.g., Cora/CiteSeer under CC-BY) in Appendix C.

13. New assets
Question: Are new assets introduced well documented?
Answer: [NA]
Justification: We do not release new datasets or pretrained models.

14. Crowdsourcing and research with human subjects
Question: Does the paper include full details for crowdsourcing/human subjects?
Answer: [NA]
Justification: The work does not involve human participants or crowdsourcing.

15. Institutional review board (IRB) approvals
Question: Does the paper describe IRB approvals for human subjects?
Answer: [NA]
Justification: No human-subject research was conducted.

16. Declaration of LLM usage
Question: Does the paper describe usage of LLMs if they impact core methods?
Answer: [NA]
Justification: We did not use any large language models in the method development or
experiments.
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