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Abstract001

Large language models (LLMs) are known to002
be sensitive to input phrasing, but the mecha-003
nisms by which semantic cues shape reason-004
ing remain poorly understood. We investigate005
this phenomenon in the context of comparative006
math problems with objective ground truth, re-007
vealing a consistent and directional framing008
bias: logically equivalent questions contain-009
ing the words “more”, “less”, or “equal” sys-010
tematically steer predictions in the direction011
of the framing term. To study this effect, we012
introduce MATHCOMP, a controlled bench-013
mark of 300 comparison scenarios, each eval-014
uated under 14 prompt variants across three015
LLM families. We find that model errors fre-016
quently reflect linguistic steering—systematic017
shifts toward the comparative term present in018
the prompt. Chain-of-thought prompting re-019
duces these biases, but its effectiveness varies:020
free-form reasoning is more robust, while struc-021
tured formats may preserve or reintroduce di-022
rectional drift. Finally, we show that including023
demographic identity terms (e.g., “a woman”,024
“a Black person”) in input scenarios amplifies025
directional drift, despite identical underlying026
quantities, highlighting the interplay between027
semantic framing and social referents. These028
findings expose critical blind spots in standard029
evaluation and motivate framing-aware bench-030
marks for diagnosing reasoning robustness and031
fairness in LLMs.032

1 Introduction033

Despite their remarkable fluency and benchmark034

success, large language models remain sensitive035

to how a task is phrased, not just in whether they036

succeed, but in how they reason. This paper shows037

a systematic and directional form of reasoning bias:038

LLMs can produce different answers to logically039

equivalent comparison questions depending solely040

on how the question is framed. For instance, a pair041

of comparative contexts like Figure 1 with differ-042

ent question framing can steer the model toward043

contradictory conclusions. 044

Unlike prior work that examines robustness to 045

surface-level perturbations, such as lexical rephras- 046

ings, numerical substitutions, or changes in prob- 047

lem format (Sclar et al., 2023; Razavi et al., 2025; 048

Yang et al., 2022; Li et al., 2024), we focus on 049

semantic framing and its influence on the direction- 050

ality of reasoning errors. Specifically, we investi- 051

gate how comparative terms like “more”, “less”, 052

or “equal” affect model predictions, and whether 053

these effects are modulated by the position of the 054

framing within the prompt (i.e., beginning vs. end). 055

These framings introduce no ambiguity or factual 056

variation, yet we find that they consistently and 057

measurably bias model outputs toward particular 058

comparative categories. 059

To investigate this effect, we construct a dataset 060

of 300 controlled comparison tasks, each involving 061

two individuals and a quantifiable activity (e.g., 062

hours spent, dollars spent, or actions taken). The 063

correct answer in each case can be “more”, “equal”, 064

or “less”, where the second person’s associated 065

value is compared to the first person’s. We de- 066

sign seven prompt variants for each task, ranging 067

from neutral to directly comparative to contextu- 068

ally suggestive, and place the framing either be- 069

fore or after the main question, yielding a fine- 070

grained manipulation of both semantic content 071

and prompt structure. We evaluate two model 072

sizes from three widely used LLM families (GPT, 073

Claude, and Qwen), comparing both free-form 074

and structured (i.e., JSON) output formats. Our 075

results show that linguistic framing consistently 076

and predictably shifts model outputs. For exam- 077

ple, “more”-framed prompts increase the rate of 078

“more” responses, while “less”-framed prompts in- 079

crease “less” responses, even when both are in- 080

correct. These biases are not fully mitigated by 081

structured prompting strategies such as chain-of- 082

thought or constrained decoding, although such 083

techniques can partially reduce error rates. This 084
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Context A (Person A)
[Person A] spent 3 h cleaning the
kitchen, 2 h organizing the bedroom,
and 4 h decorating the living room.

Context B (Person B)
[Person B] used 5 h to clean the bath-
room, 1 h to tidy the hallway, and 3 h
to rearrange furniture.

Label: Equal Quantity: Time

Task: Home maintenance

Options: A) Less B) More C) Equal

Neutral framing
How does the amount of time [Person B] spends on home maintenance com-
pare to that of [Person A]?

Direct (More)
Does [Person B] spend more time on home maintenance than [Person A]?

Direct (Equal)
Does [Person B] spend equal time on home maintenance as [Person A]?

Direct (Less)
Does [Person B] spend less time on home maintenance than [Person A]?

Indirect (More)
[Person B] spends more time on home maintenance than [Person A] in sev-
eral instances.
Does [Person B] spend more time on home maintenance than [Person A]?

Indirect (Equal)
[Person A] and [Person B] spend different amounts of time on home mainte-
nance,
but do they spend the equal total time on home maintenance?

Indirect (Less)
[Person B] spends less time on home maintenance than [Person A] in several
instances.
Does [Person B] spend less time on home maintenance than [Person A]?

Figure 1: Comparison of prompt framing effects on response patterns for time-based home maintenance tasks.

reveals a potential research direction for design-085

ing models and prompts that are robust not just to086

surface variation, but to deeper semantic framing087

effects.088

We further examine how framing effects interact089

with social identity cues by modifying the descrip-090

tions of one individual to reflect protected attributes091

such as gender or race. We find that LLMs’ com-092

parative decisions shift based not only on how the093

question is framed, but also on who is being de-094

scribed, particularly in domains like caregiving, ed-095

ucation, or shopping, where gendered or racialized096

stereotypes may influence model behavior. These097

effects suggest that linguistic framing and social098

cues can interact in ways that amplify reasoning099

disparities across demographic contexts.100

Our findings reveal an underappreciated limi-101

tation in current evaluation paradigms: standard102

accuracy metrics obscure directional and socially103

conditioned reasoning errors that emerge from sub-104

tle changes in linguistic framing. We call for105

framing-aware evaluation protocols and introduce106

a framework for analyzing how language structure107

and identity markers jointly affect LLM reason-108

ing, even in tasks with unambiguous answers. We109

release our dataset and code, including templated110

scripts for systematically varying prompt framing111

and inserting protected attributes, to support future112

work on fairness and robustness in LLM reasoning.113

Our contributions are: (1) We introduce a con- 114

trolled dataset of comparative reasoning problems 115

designed to isolate framing effects, called MATH- 116

COMP1 ; (2) We show that simple variations 117

in linguistic framing, such as the use and posi- 118

tion of “more”, “less”, or “equal”, systematically 119

bias model predictions; (3) We evaluate mitiga- 120

tion strategies, including chain-of-thought prompt- 121

ing and structured outputs, and show they only 122

partially reduce framing-induced errors; (4) We 123

demonstrate that framing effects are usually am- 124

plified or reversed when protected attributes such 125

as gender and race are presented, especially in 126

stereotype-associated domains; (5) We release our 127

dataset and templated generation framework to sup- 128

port future framing-aware and bias-sensitive evalu- 129

ations. 130

2 Related Work 131

Prompt Sensitivity and Robustness in LLMs 132

LLMs are known to be sensitive to how prompts 133

are phrased, even when the underlying semantic 134

intent remains unchanged (Gu et al., 2023; Sun 135

et al., 2024; Sclar et al., 2023; Voronov et al., 2024; 136

Mizrahi et al., 2024). Prior work has evaluated this 137

sensitivity across tasks including math problem 138

solving (Yang et al., 2022; Li et al., 2024), focus- 139

1https://anonymous.4open.science/r/more_or_
less_wrong-33B2
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ing on robustness to paraphrasing, formatting dif-140

ferences, or other surface-level variations. These141

studies show that small changes in wording can142

cause large performance shifts, leading to efforts143

to stabilize LLM behavior via prompt engineering,144

ensembling, or training-time alignment. However,145

these works typically evaluate performance as a146

function of overall accuracy or consistency, rather147

than isolating whether specific phrasings systemat-148

ically bias model outputs in a particular direction.149

That is, they examine whether models succeed or150

fail, not how the way a question is asked may steer151

them toward specific, incorrect answers.152

Framing Effects in Prompted Language Models153

Framing effects refer to systematic shifts in judg-154

ments or outputs based on how logically equivalent155

information is presented. In cognitive science, the156

framing effect is a well-established phenomenon157

that explains how people make different decisions158

when faced with identical choices described in dif-159

ferent ways (Druckman, 2001; Gong et al., 2013).160

Recent studies show that LLMs exhibit similar sen-161

sitivities: subtle changes in prompt wording, such162

as cognitive or emotional cues, can “nudge” model163

responses in predictable directions (Wu and Zheng,164

2025; Flusberg and Holmes, 2024; Cao et al.,165

2024). Unlike general prompt sensitivity, which166

captures inconsistency or instability, framing ef-167

fects involve directional biases introduced by spe-168

cific linguistic formulations, such as loss-framed169

versus gain-framed descriptions. Framing has been170

studied across tasks such as decision making, ques-171

tion answering, and relation extraction (Lin and172

Ng, 2023; Flusberg and Holmes, 2024; Itzhak et al.,173

2024). For example, Lin and Ng (2023) demon-174

strate that LLMs reflect classic framing patterns,175

such as preference reversals in gain/loss scenarios,176

using sentiment and QA prompts, while Itzhak et al.177

(2024) show that instruction-tuned models repli-178

cate a range of cognitive biases, including fram-179

ing, when evaluated on behavioral-style vignettes.180

These studies typically focus on opinion-based or181

evaluative tasks, where outputs are subject to inter-182

pretation and world knowledge. In contrast, we in-183

vestigate framing in a setting with objective ground184

truth: simple numeric comparisons where the cor-185

rect answer is “more”, “less”, or “equal”. We focus186

on comparative phrasing and its position within the187

prompt (beginning vs. end). Our setup allows us to188

isolate semantic framing as a source of systematic,189

directional error in LLM reasoning, independent190

of ambiguity, external knowledge, or model uncer- 191

tainty. To our knowledge, this is the first work to 192

reveal framing-induced reasoning bias in grounded 193

arithmetic tasks. 194

2.1 LLMs for Mathematical Reasoning 195

LLMs have shown rapid progress on mathemat- 196

ical reasoning benchmarks, aided by techniques 197

like chain-of-thought prompting (Wei et al., 2022). 198

Subsequent work has introduced stronger bench- 199

marks and prompting strategies to improve model 200

reliability, self-consistency, and tool use (Imani 201

et al., 2023; Lu et al., 2024; Ahn et al., 2024; Ya- 202

mauchi et al., 2023). However, most research fo- 203

cuses on improving reasoning accuracy, with lim- 204

ited attention to how the phrasing of math problems 205

may systematically bias model predictions. While 206

some studies evaluate robustness to paraphrasing 207

or number substitutions (Yang et al., 2022; Li et al., 208

2024; Sivakumar and Moosavi, 2023), they do not 209

isolate the effects of semantic framing or the struc- 210

ture of comparative language. Our work fills this 211

gap by examining how comparative terms and their 212

position in the prompt influence reasoning in sim- 213

ple math tasks with objective ground truth. 214

2.2 Demographic Bias in LLMs 215

LLMs have been shown to reflect and amplify so- 216

cietal biases related to gender, race, and other de- 217

mographic attributes. These biases manifest in 218

tasks ranging from generation and classification to 219

reasoning and question-answering (Gallegos et al., 220

2024; Sheng et al., 2019; Parrish et al., 2022; Wan 221

et al., 2023; Ding et al., 2025; Demidova et al., 222

2024). Recent studies show that assigning different 223

personas or social roles to LLM prompts can lead 224

to divergent outputs, exposing reasoning disparities 225

tied to identity markers (Gupta et al., 2024). Addi- 226

tionally, researchers have introduced frameworks 227

to systematically evaluate LLM behavior across 228

sensitive attributes, revealing nuanced and intersec- 229

tional patterns of bias (Marchiori Manerba et al., 230

2024; Saffari et al., 2025). A growing line of work 231

also explores bias in numerically grounded tasks, 232

such as estimating salaries or solving math word 233

problems with identity-laden prompts (Nghiem 234

et al., 2024; Salinas et al., 2024; Kaneko et al., 235

2024; Opedal et al., 2024). Our work builds on 236

this direction by analyzing how demographic cues 237

affect performance on controlled quantitative com- 238

parison tasks, and how such effects interact with 239

linguistic framing and task domain (e.g., caregiv- 240
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ing vs. technical).241

3 Dataset242

MATHCOMP is a diagnostic dataset designed to243

probe how LLMs reason under comparative lin-244

guistic framing. Each instance presents two in-245

dividuals and a pair of math word problems, en-246

abling precise measurement of directional reason-247

ing bias, i.e., whether particular phrasings system-248

atically steer models toward incorrect conclusions.249

250

3.1 Dataset Structure251

MATHCOMP comprises 300 base comparative252

math scenarios, each of which can be instantiated253

with multiple identity markers and evaluated with254

14 framing-prompt variants, yielding thousands255

of distinct evaluation cases that probe reasoning256

robustness under linguistic variation. These sce-257

narios were generated semi-automatically using a258

prompting pipeline with an LLM (Claude Sonnet259

3.7), followed by expert filtering, symbolic verifi-260

cation, and annotation.2 Each scenario is annotated261

with the following attributes:262

• Comparison context: Each instance con-263

tains two math word problems involving two264

individuals, where quantities such as time,265

money, or discrete actions must be compared,266

as shown in Figure 1. We compare the sec-267

ond person’s associated value with the first268

person’s value.269

• Task and category: Each problem is associ-270

ated with a specific activity (e.g., caregiving,271

coding, reading), grouped into broader cate-272

gories such as health, shopping, or dining.3273

• Studied quantity: The compared values in-274

volve time, money, or other measurable quan-275

tities.276

• Number format: Most samples use standard277

Arabic numerals (e.g., 30), but some include278

verbal numeric expressions (e.g., “twice as279

much”, “half”) to test compositional reason-280

ing and linguistic generalization.281

• Demographic markers: Each individual in282

a comparison is represented by a placeholder283

(i.e., [Person A], [Person B]), which can284

be instantiated with neutral names or entities285

associated with protected attributes such as286

2See Appendix A for dataset generation details.
3Section A.1 in Appendix shows the distribution of each

feature.

gender or race. This flexible templating sup- 287

ports controlled experiments on social bias 288

and fairness by varying only the identity cues 289

while holding the reasoning task fixed. 290

• Prompt framing variants: Each scenario 291

is paired with multiple prompt formulations 292

that systematically vary both (i) the compar- 293

ative framing term (“more”, “less”, “equal”), 294

and (ii) the way that framing is introduced, 295

i.e., either as a direct question (e.g., “Did Per- 296

son A spend more...”) or as an indirect con- 297

textual prime (e.g., “Person A often spends 298

more...”). We additionally vary the position 299

of this framing (at the beginning vs. end of 300

the prompt). This design enables controlled 301

analysis of whether linguistic structure alone 302

can steer model predictions in a directional 303

and measurable way. 304

• Label and answer space: Each instance is 305

labeled with the result of the comparison be- 306

tween the total quantity associated with the 307

second individual relative to the first. The 308

gold label is always one of “more”, “equal”, 309

or “less”. 4 During evaluation, models must 310

choose among exactly these three options, al- 311

lowing us to quantify framing-induced direc- 312

tional errors. 313

4 Evaluation Setup 314

We design our evaluation protocol to measure how 315

wording, structure, and position of a framing cue 316

systematically bias LLM reasoning on comparative 317

tasks. In particular, we track the direction of each 318

deviation from the gold label. For example, cases 319

in which a model selects “more” when the correct 320

answer is “equal”, or even inverts the comparison 321

by choosing “less” when the label is “more”. 322

4.1 Prompt Variants and Output Modes 323

Each comparison scenario is paired with 14 distinct 324

prompt variants, crossing three dimensions: fram- 325

ing type (neutral, direct, indirect), framing term 326

(“more”, “less”, “equal”), and framing position 327

(beginning vs. end). These prompt templates allow 328

us to isolate the effects of different framing strate- 329

gies on model outputs. We vary prompt position 330

(beginning vs. end) to test whether framing effects 331

interact with instruction order, which prior work 332

shows can influence model behavior independently 333

4In the 300 templates, 94 have the gold label equal, 119
are less, and 87 are more.
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of content (Mao et al., 2024; Zeng et al., 2025).334

To disentangle framing effects from output for-335

matting, we run every model under two baseline336

settings: (1) Unstructured output: No output for-337

mat is specified; the model is expected to return a338

single comparative label, and (2) Structured out-339

put: The model is required to return a JSON object340

containing a single answer field.341

After establishing the magnitude of framing bias342

in these baselines, we investigate chain-of-thought343

prompting as a mitigation strategy. In these exper-344

iments, we run the models under these two addi-345

tional settings: (1) Chain-of-thought, free-form:346

The model produces an open-ended justification,347

and we use GPT-4o-mini to extract the final an-348

swer using a standardized judgment prompt, and349

(2) Chain-of-thought, structured: The model re-350

turns a JSON object with reasoning and answer351

fields, prompting it to explain its logic explicitly.5352

4.2 Model Families353

We evaluate six LLMs drawn from three widely354

used families, i.e., GPT, Claude, and Qwen, cov-355

ering both proprietary and open-source systems.356

To assess whether framing sensitivity correlates357

with model size or capability, we include one358

large and one lightweight model from each fam-359

ily: 6 (1) GPT: GPT-4o and GPT-4o-mini; (2)360

Claude: Claude Sonnet 3.7 and Claude Haiku 3.5;361

(3) Qwen: Qwen2.5-7B-Instruct and Qwen2.5-3B-362

Instruct.363

4.3 Framing with Demographic Attributes364

To assess whether linguistic framing interacts with365

social identity cues, we apply the full set of366

prompt variants to an identity-augmented version367

of MATHCOMP. In these examples, the second368

individual is instantiated with a gendered or race-369

associated value (e.g., “man” vs. “woman”). We370

examine two gender categories (man and woman)371

and five racial/ethnic groups (White, Black, Asian,372

Hispanic, and African).373

This setup allows us to evaluate whether model374

predictions are influenced not only by how a ques-375

tion is framed, but also by who is being described,376

particularly in domains where social stereotypes377

may be more salient. Due to computational con-378

straints, we conduct this analysis using the one-379

word multiple-choice format, where models are380

5See Table 7 in the appendix for instructions.
6All models are evaluated at zero temperature for deter-

ministic outputs. Responses were collected in May 2025.

asked to select from “less”, “more”, or “equal”. 381

4.4 Directional Error Analysis 382

To quantify the direction of the model’s mis- 383

takes, we compute, for every label y ∈ 384

{less,more, equal}, the proportion of cases in 385

which the model incorrectly selects y among all 386

cases in which y would be an erroneous choice: 387

DirErr(y) =

∣∣{ i | ŷi = y ∧ yi ̸= y}
∣∣∣∣{ i | yi ̸= y}

∣∣ 388

where ŷi is the model’s prediction for instance i, 389

yi is the gold label for that instance, and
∣∣.∣∣ denotes 390

set cardinality. 391

In DirErr the numerator is the number of test 392

instances in which the model predicts y while the 393

true label is different, and the denominator is total 394

number of instances for which y is not the correct 395

label, i.e., every opportunity to error in that direc- 396

tion. Consequently, DirErr = 1 (100%) means the 397

model always drifts toward y whenever the true la- 398

bel is not y, whereas DirErr = 0 indicates it never 399

makes that particular error. Reporting DirErr for 400

each y reveals whether specific framings bias a 401

model toward “less”, “more”, or “equal” when it 402

misclassifies a comparison. 403

5 One-word evaluation: Directional 404

Errors 405

Figure 2 visualizes the DirErr metric (Eq. 4.4) for 406

all six models and the fourteen framing prompts. 407

Each heat-map fixes an error direction, i.e., left: 408

errors in which the model predicts Less; centre: 409

Equal; right: More. Within a panel, columns are 410

the seven prompt types; rows are the models. The 411

upper trio places the framing clause at the begin- 412

ning of the prompt, the lower trio at the end. Darker 413

cells therefore indicate a stronger systematic drift 414

toward that answer. We observe the following pat- 415

terns based on the results. 416

417

Neutral baseline. Without any cue word the ma- 418

jority of models show their largest drift toward 419

“More”: DirErr%(more) ranges from 26% for Son- 420

net to 93% for Qwen-3B (begin-position prompts). 421

Errors toward “Less” are the second most common, 422

whereas “Equal” is rarely over-predicted. 423

424
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Figure 2: Directional error percentages (DirErr %) for one-word answers under framing variation. Each heat-map
shows a single error direction—the proportion of all opportunities in which a model wrongly answers Less (left),
Equal (centre), or More (right). Columns are the seven prompt variants (Neutral, Direct, Indirect); rows are the
six models. Darker cells indicate stronger drift toward that label. The upper trio uses prompts with the framing
sentence at the beginning of the input, the lower trio with the framing at the end.

Lexical framing. Cue words steer the direction425

of the error. Introducing more, either as a direct426

question or an indirect prime, markedly increases427

DirErr%(more) for most models, particularly428

those that already have a high DirErr%(more) un-429

der the neutral prompt. Analogously, less framings430

inflate DirErr%(less), while equal framings raise431

DirErr%(equal) to as much as 94%, while it was432

negligible in the neutral condition.433

434

Position of the framing clause. Shifting the435

framing sentence from the beginning to the end436

affects models differently, but lexical content gen-437

erally outweighs positional effects.438

439

Model scale. Directional drift diminishes with440

model capacity: GPT-4o and Claude Sonnet 3.7 ex-441

hibit the lowest rates (never exceeding 55% in any442

framing except Indirect-Equal), whereas smaller443

models often exceed 90% drift toward the cue-444

word framing.445

In summary, across all framings the mere446

presence of a comparative term—less, more, or 447

equal—reliably biases predictions toward that 448

term, even when it is incorrect. Larger models 449

exhibit different directional-error profiles and gen- 450

erally lower error rates (e.g., they are less swayed 451

by more framings but more sensitive to equal fram- 452

ings), yet they still display substantial directional 453

drift in some cases. Section 7 shows that explicit 454

chain-of-thought prompting offers the most effec- 455

tive mitigation to date. The JSON-formatted ex- 456

periments show the same overall pattern, with the 457

equal framing producing an even stronger direc- 458

tional drift in every model. The full results are 459

included in Figure 4 in Appendix. 460

6 Demographic Identity and Directional 461

Drift 462

We extend our framing analysis by investigating 463

whether demographic references in prompts modu- 464

late directional bias. Specifically, we replace Per- 465

son A with “a person” and Person B with a de- 466

mographic identity phrase (e.g., “a woman”, “an 467

6



Figure 3: Directional error percentages (DirErr % under chain-of-thought prompting with the framing clause placed
at the end of the prompt. Top row: CoT with free-form text; bottom row: CoT with JSON-structured output. Each
heat-map shows one error direction—Less (left), Equal (centre), or More (right). Columns are the seven prompt
variants; rows are the six models; darker cells indicate stronger drift toward that label.

Asian person”) across the same prompt templates.468

Table 1 reports DirErr%(More) for Sonnet 3.7,469

with analyses of Less and Equal errors, as well as470

results for GPT-4o-mini, included in the Appendix.471

Demographic Phrasing Increases Drift. We ob-472

serve that even subtle changes in surface identity473

descriptors can meaningfully alter model behavior.474

Across many framing conditions, the presence of a475

protected demographic term increases the rate of476

erroneous “More” responses relative to the stan-477

dard template. These shifts occur despite identi-478

cal underlying math, highlighting the sensitivity of479

LLMs to demographic phrasing. This pattern holds480

consistently across both Sonnet and GPT-4o-mini.481

Framing Reversal under “Less”. Surprisingly,482

less framings, designed to cue a “Less” response,483

often result in higher directional error in Sonnet484

toward “More” than do More framings. For ex-485

ample, indirect “Less” prompts produce some of486

the highest DirErr%(More) values across identity487

groups, occasionally exceeding their “More” coun-488

terparts. This could reflect a form of framing over-489

ride, where the model’s internal priors around de-490

mographic phrases bias it toward “More” regard-491

less of the explicit comparative term.492

Nonlinear Interactions Between Cues and Iden- 493

tity. Overall, these findings show that linguis- 494

tic framing effects are not isolated phenomena. 495

The interaction between comparative cues and de- 496

mographic referents can introduce non-linear ef- 497

fects, i.e., sometimes amplifying, sometimes mut- 498

ing the intended directional pull of the prompt. 499

This demonstrates the importance of evaluating 500

model robustness not only to linguistic variation in 501

isolation, but also in its entanglement with socially 502

salient references.7 503

7 Chain-of-thought as a mitigation 504

strategy 505

Figure 5 shows directional-error rates when models 506

are prompted to think step-by-step. The framing 507

sentence is positioned at the end of the prompt; the 508

upper row shows free-form CoT, while the lower 509

row constrains the model to a JSON schema con- 510

taining a reasoning and an answer field.8 511

512

7We further analyze directional errors across task cate-
gories (e.g., shopping, education) for selected demographic
identities. Detailed results are provided in the appendix B.3.

8For the free-form CoT, a second model (GPT–4o–mini)
extracts the final label from the rationale; see Table 8 in the
appendix for judgment prompt.
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Framing Std Af As H Wh B M W
equal:Indirect (End) 1.88 5.63 3.29 2.35 3.29 0.47 4.23 4.23
equal:Indirect (Begin) 0.94 0.47 0.47 0.94 0.94 0.47 1.88 1.41
equal:Direct (End) 16.90 30.99 28.17 33.80 23.94 22.07 28.17 33.33
equal:Direct (Begin) 5.16 10.80 10.33 8.45 9.39 8.45 15.02 15.49
less:Indirect (End) 58.22 69.48 62.44 67.61 68.08 60.56 65.73 69.48
less:Indirect (Begin) 51.17 73.71 75.59 77.00 74.18 74.65 59.15 59.62
less:Direct (End) 31.46 55.87 55.66 58.02 57.28 49.53 35.68 41.31
less:Direct (Begin) 23.94 44.60 40.38 40.85 41.78 39.62 44.60 34.74
more:Indirect (End) 24.88 23.94 31.46 29.11 11.74 19.25 30.99 36.15
more:Indirect (Begin) 28.17 51.17 54.46 53.52 48.83 46.01 46.95 55.87
more:Direct (End) 20.19 40.38 40.09 43.87 35.21 36.79 40.38 38.97
more:Direct (Begin) 20.19 36.62 36.62 29.11 32.86 31.46 44.60 46.01
neutral (End) 45.54 40.09 37.62 42.45 37.56 38.21 32.39 37.56
neutral (Begin) 26.29 20.28 19.25 17.84 22.54 17.37 32.86 35.68

Table 1: Directional error rates (%) for errors as More for Sonnet 3.7 model, across demographic identity markers.
Each row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect,
Direct, Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian,
Af=African, H=Hispanic, Wh=White, B=Black.

Substantial Mitigation. Explicit reasoning513

helps reduce framing-induced bias. Across all514

models, free-form CoT drastically reduces direc-515

tional error compared to short-answer formats,516

bringing most DirErr% values below 30%. The517

effect of cue terms is visibly muted, especially for518

“more” and “equal”.519

520

Residual framing effects. Despite overall im-521

provements, lexical cues still subtly influence pre-522

dictions. In both free-form and structured CoT,523

prompts containing comparative cues tend to in-524

crease DirErr% in that direction, though the mag-525

nitude is notably smaller than in non-CoT settings.526

527

Format sensitivity. Structured CoT (with JSON528

outputs) is less robust than open-ended reasoning.529

While this setting shows different directional error530

patterns compared to the one-word format, it re-531

mains susceptible to linguistic framing, though in532

a distinct way. In particular, it is more affected by533

“equal” and “less” cues than by “more”. Based on534

our manual analysis, models often solve the prob-535

lem correctly, but phrase their answer using the536

cue term introduced in the framing. For example,537

if the correct answer is that Person B spends more538

money than Person A, but the prompt emphasizes539

“less”, the model may respond with: “Person A540

spends less money than Person B”. Thus, while541

the underlying computation is correct, the model’s542

output adopts the linguistic frame of the prompt,543

leading to label-level misclassification.544

8 Conclusion 545

We present a systematic investigation of how lin- 546

guistic framing affects comparative reasoning in 547

large language models. Using a controlled set of 548

math word problems with objectively correct an- 549

swers, we reveal that models exhibit consistent and 550

directional errors—predicting “more”, “less”, or 551

“equal” depending on how the question is framed, 552

even when the underlying quantities are the same. 553

These biases are robust across model families, 554

framing types, and demographic variations. We 555

show that chain-of-thought prompting can miti- 556

gate—but not eliminate—these effects, and that 557

structured outputs may still reflect the semantic 558

cues embedded in the prompt. Our analysis further 559

reveals that identity language (e.g., gender or race 560

references) can subtly interact with framing, shift- 561

ing model predictions even when the math remains 562

unchanged. To support further analysis, we release 563

MATHCOMP: a diagnostic benchmark that isolates 564

framing sensitivity in reasoning. Unlike traditional 565

accuracy-focused math datasets, our benchmark 566

enables evaluation of how models reason, not just 567

whether they arrive at the right answer. We advo- 568

cate using it as a complementary tool to existing 569

benchmarks, especially for assessing robustness, 570

fairness, and alignment in reasoning under natural- 571

istic prompting conditions. 572

Limitations 573

Our work is not without limitations. First, the 574

size of our dataset comparative samples in, MATH- 575

COMP, is 300. Although generating a larger dataset 576

would be relatively straightforward, running our 577

8



extensive set of experiments on a larger resource is578

computationally infeasible, as for each sample, we579

run many experiments.580

Second, our treatment of gender is binary, lim-581

ited to man and woman categories. We recognize582

this as a limitation, when examining interactions583

between demographic features and framing effects.584

These constraints are due to cost limitations, not585

value judgments. In line with (Mohammad, 2020),586

we encourage future research to adopt more inclu-587

sive representations of gender.588

Additionally, while our analysis includes race as589

a protected attribute, it is limited to five categories.590

Also, we do not test other protected attributes like591

religion, income-level, etc.592
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A Appendix: Dataset generation and its803

analysis804

In this section, we first provide further information805

regarding our MATHCOMP dataset, then explain806

the process of generating it.807

A.1 Dataset Details808

This subsection provides the distribution of fields809

in our dataset. Table 2 shows the counts of each810

category, while the the table 3 present the distribu-811

tion of the studied quantities. Moreover, tables 4812

and 5 contain the label counts and the number for-813

mat counts. Number format can be either Arabic814

numerals such 1 or 2. Verbal numeric expression815

are like twice.816

Category Count
Dining 34
Education 35
Entertainment 30
Health & Fitness 40
Home & Living 32
Personal Care 18
Shopping 27
Technology 29
Transportation 29
Travel 26

Table 2: Category Counts

Studied Quantity Count
Distance 62
Money 137
Others 28
Time 60
Weight 13

Table 3: Studied Quantity Counts

Label Count
Equal 94
Less 119
More 87

Table 4: Label Counts

Number format Count
Arabic numerals 158
verbal numeric expressions 142

Table 5: Number format Counts

A.2 Dataset Generation Details 817

To generate the base comparison scenarios in 818

MATHCOMP, we employed a semi-automated 819

approach that combines large language model 820

prompting with expert filtering and symbolic veri- 821

fication. Specifically, we used Claude Sonnet 3.7 822

to produce pairs of math word problems involving 823

two individuals and a shared task (e.g., spending 824

money, tracking time). Each generated pair was 825

accompanied by symbolic equations representing 826

the total quantity for each individual. 827

A.3 Prompting and Generation 828

We prompted the model to generate diverse sam- 829

ples by varying task types, studied quantities (e.g., 830

time, money), and comparative labels. In addition 831

to the word problems, we asked the model to re- 832

turn an interpretable mathematical expression for 833

each individual’s quantity. While final values were 834

sometimes incorrect, the symbolic equations were 835

consistently accurate and formed the basis of our 836

annotation pipeline. 837

A.4 Annotation and Filtering 838

Our manual filtering process applied several crite- 839

ria to ensure semantic clarity, mathematical valid- 840

ity, and syntactic consistency: 841

• Arithmetic reasoning: We retained only ex- 842

amples requiring at least one compositional 843

arithmetic operation (e.g., addition or multi- 844

plication). 845

• Human agency: Both sentences had to center 846

on human subjects (e.g., “Person A bought. . . ” 847

rather than passive constructions). 848

• Task relevance: The annotated task had to de- 849

scribe the full chain of actions involved in the 850

computation, not just a partial element. For 851

instance, if a person bought both apples and 852

oranges, the task would be annotated as “buy- 853

ing fruits”, not “buying oranges”, to ensure 854

that the task meaning aligns with the complete 855

mathematical operation. 856
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A.5 Equation Validation and Label857

Assignment858

To ensure the ground-truth label was valid, two re-859

viewers independently verified the symbolic equa-860

tions produced by the model. After validation, we861

used a Python script to compute final totals for each862

individual and compare them automatically. This863

process demonstrates that prompting LLMs for in-864

terpretable symbolic reasoning can be an effective865

strategy for scalable, semi-automatic generation of866

labeled math problems requiring minimal human867

intervention.868

A.6 Prompt Example869

To generate the examples, we used the following870

category definitions:871

• Entertainment: This includes activities re-872

lated to leisure and enjoyment, such as873

movies, concerts, theme parks, video games,874

events, and other forms of recreational spend-875

ing.876

• Shopping: Any purchase of goods, whether877

it’s clothing, electronics, groceries, or other878

items. It’s the act of buying things for per-879

sonal use or gifts.880

• Dining: Spending on food outside the home,881

such as restaurant meals, takeout, or delivery882

services. This category also covers café and883

fast food expenditures.884

• Travel: Expenses related to going on trips,885

whether for business or leisure. This can886

include flights, hotels, car rentals, vacation887

packages, and sightseeing.888

• Health & Fitness: Anything related to per-889

sonal health, well-being, and physical fitness,890

such as gym memberships, fitness equipment,891

medical expenses, supplements, or wellness892

retreats.893

• Education: Costs associated with learning894

and academic pursuits, including tuition fees,895

books, online courses, workshops, and any896

other learning-related expenses.897

• Transportation: Spending on travel from one898

location to another. This includes gas, pub-899

lic transport, car maintenance, ride-sharing900

services, and vehicle leasing or purchasing.901

• Home & Living: Expenses related to main- 902

taining a home, such as rent, mortgage pay- 903

ments, home repairs, furniture, décor, appli- 904

ances, and utility bills. 905

• Personal Care: This category covers spend- 906

ing on grooming and self-care items, such 907

as skincare products, haircuts, cosmetics, toi- 908

letries, and wellness services like massages 909

or spa visits. 910

• Technology: Costs related to electronic gad- 911

gets, software, and internet services. This 912

includes smartphones, computers, apps, sub- 913

scriptions to streaming services, or any tech- 914

related purchases. 915

Table 6 shows a representative example of the 916

prompt template used to elicit structured compara- 917

tive word problems from the model. 918
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Generate pairs of sentences that include chains of calculations where the final results in both sentences
are [label].
Requirements

• Create 20 pairs of sentences.

• Each pair should contain calculations.

• The intermediate values and operations in each pair can be different

• In all the pairs, [PERSON_A] and [PERSON_B] are the subjects.

• Each sentence in a pair must be complete without the other one.

• The sentences must not be ambiguous.

• With each pair, you must provide additional information about these items

– Studied quantity: can be very different, like time, distance, etc.
– Equations: The equation for each sentence includes its chain of calculations, like (3 * 2) + 5 -

10 / 2 = 6.
– Task: indicating the specific act done. It might be “buying apples”, “cleaning”, etc.
– Category: [list of categories]

Output structure: Separate the values using “|”. sentence1 | sentence2 | category | studied_quantity |
equation_sentence1 | equation_sentence2 | task
Example [Person_A] spends 8 hours cleaning on Mondays, half of Monday’s time on Wednesdays, and
twice Monday’s time on Saturdays. | [Person_B] spends 8 hours cleaning on Mondays, twice Monday’s
time on Wednesdays, and half of Monday’s time on Saturdays. | Home & Living | time | 8 + (8/2) + (2*8)
= 28 | 8 + (2*8) + (8/2) = 28 | cleaning
Now give me 20 pairs.

Table 6: The prompt used to generate the initial dataset.
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B Appendix: Additional Results919

This section presents results in addition to what920

has already been discussed in the main paper. We921

mainly divided this section into three subsections.922

The first part is about the prompts. The second part923

is around the results that were achieved without924

involving the protected attributes, such as man or925

woman. In the third subsection, we provided a926

more detailed analysis of the results when demo-927

graphic features were included.928

B.1 Prompts929

The table 7 provide the four instruction types that930

were tested in our experiments. Each framing was931

attached to these instructions, based on the potion932

of the framing that could be either the beginning933

of the prompt or the end. We mainly have two type934

of output structure instructions: JSON-based and935

simple free-form output. We also have simple one936

word answers or explicit reasoning.937

The table 8 also provide the prompt used to ex-938

tract the final answer from the responses provided939

by the model under CoT reasoning with free-form940

output. The judgment prompt was given to GPT4O-941

mini.942

B.2 Results without protected attributes943

In this subsection, we present the additional results944

related to the four types of experiments based on945

the four instruction types, provided in the table 7.946

Figure 4 presents the results using the second947

instruction type in the table 7. Accordingly, we948

can see that the results are comparable to the one-949

word output. Moreover, for the equal case, we can950

see that the DirErr rates even are increased com-951

pared to the one-word case. The upper row shows952

when framing where positioned at the beginning953

while then other row present the results when the954

framings where positioned at the end.955

Figure 5 provides the results for the third in-956

struction type in the table 7. This figure provides957

the results for both when the framings where at958

the beginning and at the end, compared to the 3959

that provides only the end cases for the two CoT960

instruction types.961

Finally, the figure 6 presents the results of the962

fourth instruction type in the table 7. We can see963

that there is not much difference between the be-964

ginning and end cases in general. However, there965

are patterns of difference like the neutral case for966

sonnet 3.7. For the more case, we can see that there967

are also some differences such the larger error rates 968

in the beginning case. 969

B.3 Results with Protected attributes 970

This section provides an important part of our re- 971

sults. We, here, present the results when the set of 972

protected attributes like gender and race included 973

in our experiments. As described in the paper, we 974

only tested the first instruction type in the table 7 975

due to the hight costs. 976

We here present two types of results. The set of 977

tables for sonnet 3.7 and GPT4O-mini similar to 978

the Table 1 as well as the figures that explore the 979

framing effects along with the protected attributes 980

based on the categories. Tables 9 and 10 contain 981

the DirErr percentages for the Less and Equal label, 982

while including the protecting attribute values. The 983

tables 11, 12, and 13 show the similar values for 984

GPT4O-mini. It is observed that the pattern is 985

similar across the two models and as explained in 986

the main paper, there is a shift toward the more 987

class. Moreover, we present the results of these 988

two models across categories that we have in our 989

resource to capture potential types of categorical 990

biases and see how they interact with the framing 991

effects when demographic features are involved. 992

Our observation of the figures 7, 8, 9, and 10 are 993

related to the sonnet model. In these figures, we 994

can see the comparison between the times when 995

the framings are placed at the beginning of the 996

prompt as well as the times they are located at the 997

end. As we can see, there are patterns of difference 998

between these two locations, such as the different 999

ranges of values for the less label as DirErr for 1000

African. 1001

The figures 11, 12, 13, and 14 provide similar 1002

information for GPT4O-mini. In terms of specific 1003

categorical differences across genders and races, 1004

we can see that for example sonnet has a larger 1005

DirrErr values for shopping for man than woman, 1006

meaning that it associates such activity with man 1007

less that woman. Moreover, for personal care cat- 1008

egory, the DirrErr as more is larger for woman, 1009

suggesting the potential bias of the model toward 1010

this category and women. Also, shopping DirrErr 1011

as less is larger for Africans than Asians as well 1012

as Hispanics. Interestingly, the travel category for 1013

white people has a larger less DirrErr than black 1014

people. For GPT4o-mini, we can see that DirrErr 1015

as equal is even less than the sonnet model. This 1016

suggest that the model is general is more biased 1017

toward more or less values. 1018
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Instruction Type Instruction Text
One-word Answer A) less B) more C) equal

ONLY RETURN ONE WORD THAT IS THE TRUE OPTION’S TEXT [less, more, or equal],
WITHOUT ANY EXPLANATION.

JSON Answer A) less B) more C) equal
Return only a JSON object with a single field ‘answer‘, whose value is one of: less, more, or equal.
Example: {"answer": “less”}.

CoT A) less B) more C) equal
Let’s think step by step.

CoT with JSON A) less B) more C) equal | Return only a JSON object with two fields:
- ‘reasoning‘: a concise explanation of how you reached your conclusion.
- ‘answer‘: one of the following strings: less, more, or equal.
Example:
{
"reasoning": "Person B spent more time lifting weights based on both sentences.",
"answer": “more”
}
Let’s think step by step.

Table 7: Instruction formats used across evaluations. Models were required to respond under different format
constraints ranging from one-word output to structured reasoning with chain-of-thought.

System Prompt: You are a helpful assistant. Your job is to judge a model’s response.
Based on the provided text, how does the amount of {studied_quantity} person B spends on {task} compare to that of person A?
Only answer with: less, more, or equal.

Table 8: The judgement prompt used for the GPT4o-mini to provide the final answer of CoT experiments..

Figure 4: Directional error percentages (DirErr %) for JSON-formatted answers (the second instruction type) under
framing variations. Each heat-map shows a single error direction—the proportion of all opportunities in which a
model wrongly answers Less (left), Equal (center), or More (right). Columns are the seven prompt variants (Neutral,
Direct, Indirect); rows are the six models. Darker cells indicate stronger drift toward that label. The upper trio uses
prompts with the framing sentence at the beginning of the input, the lower trio with the framing at the end.
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Figure 5: Directional error percentages (DirErr % under chain-of-thought prompting (the third instruction type).
Top row: framing variations are placed at the beginning; bottom row: framing variations are placed at the end. Each
heat-map shows one error direction—Less (left), Equal (center), or More (right). Columns are the seven prompt
variants; rows are the six models; darker cells indicate stronger drift toward that label.

Framing Std Af As H Wh B M W
equal:Indirect (End) 24.31 7.73 6.63 3.87 13.81 7.18 4.42 3.87
equal:Indirect (Begin) 2.21 3.87 4.42 4.42 7.73 3.31 4.97 4.42
equal:Direct (End) 35.36 18.23 19.34 16.57 13.81 11.60 20.99 22.65
equal:Direct (Begin) 23.20 20.44 19.34 15.47 20.99 13.81 32.60 33.70
less:Indirect (End) 19.89 6.08 8.84 7.73 4.97 3.31 11.60 11.05
less:Indirect (Begin) 13.26 9.39 6.63 6.08 8.84 6.63 22.10 19.89
less:Direct (End) 41.44 15.47 16.02 14.92 12.71 12.71 34.81 30.94
less:Direct (Begin) 34.25 21.55 24.86 18.78 30.39 21.55 27.62 37.02
more:Indirect (End) 46.41 45.86 39.78 37.57 50.83 32.04 39.78 40.33
more:Indirect (Begin) 30.94 18.78 18.78 19.34 24.31 22.65 24.86 19.34
more:Direct (End) 46.96 29.28 27.07 25.97 28.18 21.55 27.62 32.04
more:Direct (Begin) 35.36 27.07 24.31 27.07 28.18 22.65 27.62 25.97
neutral (End) 12.15 10.50 14.36 11.60 9.94 9.39 15.47 17.68
neutral (Begin) 16.02 14.36 14.36 12.71 16.57 6.63 18.78 17.68

Table 9: DirErr rates (%) for errors as Less for Sonnet 3.7 model, across demographic identity markers. Each row
represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.
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Figure 6: Directional error percentages (DirErr % under chain-of-thought prompting (the fourth instruction type)
with JSON answers. Top row: framing variations are placed at the beginning; bottom row: framing variations are
placed at the end. Each heat-map shows one error direction—Less (left), Equal (center), or More (right). Columns
are the seven prompt variants; rows are the six models; darker cells indicate stronger drift toward that label.

Measurement Std Af As H Wh B M W
equal:Indirect (End) 75.73 87.86 90.78 93.69 86.41 92.72 89.81 91.26
equal:Indirect (Begin) 94.66 93.69 94.66 94.17 89.81 92.23 92.23 94.66
equal:Direct (End) 31.55 36.89 38.83 40.78 53.88 60.19 43.20 39.81
equal:Direct (Begin) 57.28 58.74 60.19 59.71 62.62 65.05 36.89 33.98
less:Indirect (End) 9.22 17.48 20.87 18.93 20.87 33.98 10.68 9.22
less:Indirect (Begin) 15.53 6.31 7.28 6.31 5.34 6.80 7.28 6.31
less:Direct (End) 12.14 22.33 23.41 21.95 26.70 33.17 16.99 17.96
less:Direct (Begin) 22.33 17.48 17.96 22.33 14.08 22.93 8.25 12.14
more:Indirect (End) 12.62 16.50 15.05 14.56 24.76 46.12 16.99 13.11
more:Indirect (Begin) 21.84 7.77 9.22 7.28 6.80 7.28 10.19 7.28
more:Direct (End) 15.05 17.48 19.02 17.56 24.76 33.66 17.96 15.53
more:Direct (Begin) 22.82 16.99 21.36 23.79 22.33 27.18 9.22 8.25
neutral (End) 33.98 42.44 43.84 40.98 50.49 48.78 42.23 33.98
neutral (Begin) 42.72 48.78 59.71 61.65 49.51 67.96 31.07 31.07

Table 10: DirErr rates (%) for errors as Equal for Sonnet 3.7 model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.
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Condition Std M W Af As H Wh B
equal:Indirect(Begin) 56.34 80.28 77.00 79.34 77.93 77.46 79.34 79.81
more:Indirect(End) 95.77 99.53 99.06 99.06 100.00 99.53 99.06 99.53
equal:Indirect(End) 36.15 59.62 64.32 47.89 39.44 43.19 51.64 53.05
more:Direct(Begin) 74.18 90.14 91.08 84.04 84.98 87.79 90.14 84.04
more:Direct(End) 81.69 93.90 96.24 82.16 84.51 87.79 89.20 84.51
more:Indirect(Begin) 86.38 95.77 94.84 91.08 93.43 92.96 91.55 89.20
neutral(Begin) 63.38 81.69 77.93 78.40 75.59 76.53 86.38 78.40
neutral(End) 69.48 88.73 85.92 64.32 69.48 65.73 86.38 69.48
equal:Direct(End) 53.99 66.20 63.38 33.33 30.05 23.94 48.83 28.64
equal:Direct(Begin) 44.13 77.93 71.83 72.30 70.42 65.73 78.40 65.26
less:Direct(Begin) 5.63 25.82 21.60 33.80 35.21 34.74 54.93 36.15
less:Indirect(End) 0.47 1.88 0.94 0.00 0.00 0.00 0.47 0.00
less:Direct(End) 13.15 46.01 27.70 15.02 10.80 8.45 40.85 13.62
less:Indirect(Begin) 2.82 2.82 2.35 8.45 4.69 4.69 10.33 5.63

Table 11: DirErr rates (%) for errors as More for GPT4O-mini model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.

Condition Std M W Af As H Wh B
equal:Indirect(Begin) 48.62 13.81 14.36 13.26 11.60 13.81 13.81 11.05
more:Indirect(End) 3.87 0.55 1.10 0.00 0.00 0.00 0.55 0.00
equal:Indirect(End) 70.17 19.34 16.57 30.94 31.49 25.97 27.07 25.41
more:Direct(Begin) 24.86 9.94 6.63 15.47 13.81 12.15 4.97 16.02
more:Direct(End) 16.02 7.18 1.66 19.34 18.23 13.26 11.60 16.02
more:Indirect(Begin) 8.29 2.21 3.31 7.73 6.08 6.08 6.08 9.94
neutral(Begin) 35.36 15.47 20.99 20.44 20.99 22.65 12.15 20.99
neutral(End) 27.07 12.15 14.36 35.91 32.04 27.07 14.36 26.52
equal:Direct(End) 44.75 36.46 30.94 64.64 67.40 72.38 53.04 68.51
equal:Direct(Begin) 46.41 16.02 23.20 19.34 22.65 23.76 16.02 26.52
less:Direct(Begin) 92.27 71.82 72.93 60.77 61.88 62.43 43.65 56.91
less:Indirect(End) 98.34 95.58 97.24 99.45 98.90 98.90 98.34 98.34
less:Direct(End) 82.87 62.43 71.27 80.11 83.43 83.43 56.91 78.45
less:Indirect(Begin) 95.03 93.92 94.48 86.74 91.71 90.06 87.29 90.61

Table 12: DirErr rates (%) for errors as Less for GPT4O-mini model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.

Condition Std M W Af As H Wh B
equal:Indirect(Begin) 2.43 2.91 3.40 2.91 4.85 3.88 4.37 4.37
more:Indirect(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
equal:Indirect(End) 2.43 25.73 18.93 21.36 31.07 27.67 25.24 25.73
more:Direct(Begin) 0.00 0.00 0.00 0.49 0.49 0.49 0.49 0.49
more:Direct(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
more:Indirect(Begin) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neutral(Begin) 0.00 0.00 0.49 0.49 0.49 0.00 0.00 0.00
neutral(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
equal:Direct(End) 0.00 0.49 0.97 0.49 0.97 0.97 0.49 1.94
equal:Direct(Begin) 0.49 0.97 0.97 2.43 1.94 1.46 1.46 1.94
less:Direct(Begin) 0.00 0.00 0.00 0.49 0.49 0.97 0.00 0.49
less:Indirect(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
less:Direct(End) 0.00 0.00 0.00 0.49 0.00 0.00 0.49 0.49
less:Indirect(Begin) 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00

Table 13: DirErr rates (%) for errors as Equal for GPT4O-mini model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.
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Figure 7: DirErr % for sonnet 3.7, the best model on average while including Asian and African races, when the
framing variations are positioned at the beginning and end of the prompt.

Figure 8: DirErr % for sonnet 3.7, the best model on average while including White and Black races, when the
framing variations are positioned at the beginning and end of the prompt.
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Figure 9: DirErr % for sonnet 3.7, the best model on average while including Hispanic race, when the framing
variations are positioned at the beginning and end of the prompt.

Figure 10: DirErr % for sonnet 3.7, the best model on average while including Woman and Man, when the framing
variations are positioned at the beginning and end of the prompt.
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Figure 11: DirErr % for GPT4O-mini on average while including Asian and African races, when the framing
variations are positioned at the beginning and end of the prompt.

Figure 12: DirErr % for GPT4O-mini on average while including White and Black races, when the framing
variations are positioned at the beginning and end of the prompt.
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Figure 13: DirErr % for GPT4O-mini on average while including Hispanic race, when the framing variations are
positioned at the beginning and end of the prompt.

Figure 14: DirErr % for GPT4O-mini on average while including Woman and Man, when the framing variations
are positioned at the beginning and end of the prompt.
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