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ABSTRACT

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and a leading
cause of dementia worldwide. Accurate diagnosis requires integrating diverse
patient data modalities. With the rapid advancement of foundation models in
neurobiology and medicine, integrating foundation models from various modalities
has emerged as a promising yet underexplored direction for multi-modal AD
diagnosis. A central challenge is enabling effective interaction among these models
without disrupting the robust, modality-specific representations learned from large-
scale pretraining. To address this, we propose a novel multi-modal framework for
AD diagnosis that enables joint interaction among uni-modal foundation models
through modality-anchored interaction. In this framework, one modality and its
corresponding foundation model are designated as an anchor, while the remaining
modalities serve as auxiliary sources of complementary information. To preserve
the pre-trained representation space of the anchor model, we propose modality-
aware Q-formers that selectively map auxiliary modality features into the anchor
model’s feature space, enabling the anchor model to jointly process its own features
together with the seamlessly integrated auxiliary features. We evaluate our method
on AD diagnosis and progression prediction across four modalities: sMRI, fMRI,
clinical records, and genetic data. Our framework consistently outperforms prior
methods in two modality settings, and further demonstrates strong generalization to
external datasets and other neurodegenerative diseases such as Parkinson’s disease.

1 INTRODUCTION

Alzheimer’s disease (AD) (Li et al., 2022b; Cahill, 2020; Ning et al., 2021; Association, 2019; Dong
et al., 2024) is one of the most common causes of dementia worldwide, leading to a progressive
decline in cognitive function that significantly interferes with daily activities (Xue et al., 2024; Qiu
et al., 2022) among the elderly. With the growing aging population, there is a pressing need for more
precise early detection and progression prediction of Alzheimer’s disease.

While deep learning has advanced AD analysis, most existing studies focus on developing models
on uni-modal data (Liu et al., 2024), such as medical imaging (Wang et al., 2023) or cognitive
assessment scores (Fang et al., 2024). However, Alzheimer’s disease is a complex neurodegenerative
disorder involving diverse and interacting pathological mechanisms, reflected across multiple data
modalities. Structural MRI (sMRI) highlights brain atrophy (Ferreira & Busatto, 2011), functional
MRI (fMRI) captures neural activity (Dong et al., 2024), non-imaging data (including demographics
and clinical assessments) reflect overall patient status (Li et al., 2024a), and genetic data reveal
hereditary risks (Beebe-Wang et al., 2021). Recent AD guidelines from NIA-AA also emphasize
the necessity of integrating biomarkers from multiple modalities, as each provides complementary
and valuable insights (Jack Jr et al., 2024). Therefore, integrating complementary information from
multiple modalities is essential for a comprehensive understanding and accurate prediction of AD.

While conventional multi-modal approaches have predominantly relied on training models from
scratch (Xue et al., 2024; Qiu et al., 2022; Feng et al., 2023a), deep learning is undergoing a paradigm
shift toward leveraging large-scale, pre-trained foundation models for downstream tasks adaptation.
This approach is particularly advantageous in medical domains like AD, where labeled data are
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scarce and a more efficient and robust learning method is required. A range of uni-modal foundation
models in neurobiology and medicine show strong potential for enhancing AD diagnosis, such as
BrainMVP (Rui et al., 2025) and Brain-JEPA (Dong et al., 2024) for brain imaging, large language
models for clinical records, and gene foundation models (Dalla-Torre et al., 2025) for genomics, all
demonstrating strong performance in their respective domains.

Despite the availability of powerful uni-modal foundation models, integrating them into a unified
multi-modal AD diagnosis framework remains a significant challenge. The core difficulty lies in
effectively enabling meaningful interaction among foundation models, which requires aligning their
feature spaces and integrating their outputs to leverage complementary information. Since each
foundation model is pre-trained to capture distinct, modality-specific features, their representations
are inherently heterogeneous and well-structured. Naively aligning or merging these spaces may
compromise their integrity and reduce their effectiveness.

As a result, our goal is to strike a balance between enabling sufficient interaction among foundation
models and preserving the integrity of their pre-trained feature spaces. To address this, we propose
a unified multi-modal framework for Alzheimer’s Disease diagnosis based on modality-anchored
foundation model interaction. Specifically, we designate one modality’s foundation model as an
anchor and freeze most of its parameters to preserve its feature space, while projecting auxiliary
modalities’ features extracted by other foundation models into this space for cross-modal interaction.
This alignment is achieved by our Modality-aware Q-formers (Tong et al., 2024; Zong et al., 2024;
Alayrac et al., 2022; Liu et al., 2023a), which use learned queries to selectively extract relevant
information from the auxiliary modalities and project it to anchor model feature space, enabling
the anchor foundation model to jointly process them with the anchor features. Modality-anchored
interaction is applied to each modality in turn, and final predictions are aggregated, allowing us to
retain the strengths of each foundation model while enabling effective multi-modal integration.

In experiments, the proposed method is evaluated on AD diagnosis and progression prediction tasks
involving the four most common data modalities (i.e., sMRI, fMRI, clinical records, and genetic data).
By integrating four uni-modal foundation models, our method achieves state-of-the-art performance
under both modality-complete and modality-incomplete scenarios from the ADNI dataset (Mueller
et al., 2005). We further evaluate our approach on the external OASIS (LaMontagne et al., 2019) and
PPMI (Marek et al., 2011) datasets, where it achieves state-of-the-art performance and shows strong
generalization to both out-of-distribution AD diagnosis tasks and other neurodegenerative diseases.

2 RELATED WORKS

Multi-modal Fusion Methods for AD Diagnosis. Alzheimer’s Disease (AD) is a complex neuro
disorder, and its accurate diagnosis requires multi-modal data integration. Early efforts focus on
neuroimaging data combination. Modalities such as MRI, PET, fMRI, and DTI are integrated via
methods including shared representations (Ning et al., 2021), GCNs (Song et al., 2022), and 3D
networks (Qiu et al., 2024). Subsequent studies integrated non-imaging data, for instance, by using
LLMs or deep learning to combine MRI with cognitive scores (Hett et al., 2021; Feng et al., 2023b;
Qiu et al., 2022; Chen & Hong, 2024; Xue et al., 2024). Methodologies also evolved to address
data challenges like missing modalities (Liu et al., 2023c) or limited labeled samples (Feng et al.,
2023a). While prior methods often relied on a limited subset of modalities, our framework is the
first to incorporate all three major types of AD-related data: genetic, neuroimaging, and clinical.
Our broader modality coverage, combined with the adaptation of foundation models, enables a more
comprehensive understanding of AD pathology and improves diagnostic accuracy.

Adaptation Methods on Foundation Models. The development of foundation models has sig-
nificantly impacted healthcare by enabling powerful uni-modal data analysis. In medical imaging,
diverse foundation models are utilized for imaging analysis (Wang et al., 2023; Rui et al., 2025; Caro
et al., 2023; Dong et al., 2024), and shows impressive performance in downstream tasks. In genomics,
foundation models pre-trained on DNA sequences (Dalla-Torre et al., 2025; Nguyen et al., 2023;
Zhou et al., 2023) have shown considerable success in cross-species genomic modeling and analysis.
In clinical records, previous efforts (Ben Shoham & Rappoport, 2024; Singhal et al., 2023; Li et al.,
2024a) either focus on scaling predictors or attempting to adapt LLMs to clinical predictions. While
powerful uni-modal foundation models exist, how to effectively leverage them remains underexplored.
Efforts (Zhang et al., 2023b) like M4Survive (Lee et al., 2025) try to integrate medical foundation
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models using symmetric late-fusion, which may hinder deep inter-modal interactions. In contrast, our
work targets more effective interaction across various uni-modal foundation models.

Q-formers in Multi-modal Pretrained Models Prior studies primarily used query transformers
(q-formers) Li et al. (2022a) or connectors Liu et al. (2023a) to project non-text modalities, such
as images, video, or audio, into the text embedding space of large language models (LLMs) for
multimodal alignment. For example, BLIP-2 Li et al. (2023) and MiniGPT-4 Zhu et al. (2023) use
query transformer to extract features from image patches and output query embeddings that the
LLM consumes. InstructBLIP Dai et al. (2023) extend this approach to fuse images, video, and
audio, with separate query transformers for each modality projecting their features into the LLM
text space. Similarly, speech-, video-, and audio-visual models like EmoQ Yang & Mak (2025),
Video-LLaMA Zhang et al. (2023a), and MMS-LLaMA Yeo et al. (2025) employ query transformer to
compress their own modality embeddings into textual representations for LLM processing. Differing
from those prior works, where query transformers project each modality exclusively into the text
embedding space of LLMs, our modality-anchored interaction sequentially treats each modality as
the anchor, with the remaining three modalities serving as auxiliary modalities. Consequently, our
Q-former is designed to be more general, capable of projecting into any of the four modality spaces
when designated as the anchor, rather than being restricted to text.

3 METHOD

In this section, we present the methodology of our proposed multi-modal framework for Alzheimer’s
Disease diagnosis. The overall pipeline to train a multi-modal AD diagnosis model contains two
stages. The first stage, uni-modal foundation model adaptation described in Section 3.1, individu-
ally fine-tunes each foundation model on its respective modality data to extract highly expressive,
modality-specific features for the AD diagnosis tasks. In the second stage, given the uni-modal AD
diagnosis models obtained in the first stage, a Modality-anchored Foundation Models Interaction
Strategy (elaborated in section 3.2) is adopted to enable interaction among uni-modal models without
compromising the integrity of feature space from each model. This is achieved by aligning the
feature of auxiliary modalities to the primary modality feature space with Modality-aware Q-formers
(elaborated in section 3.3), designed to learn a set of learnable queries to extract relevant information
from the auxiliary modalities. Finally, our method gives the final AD diagnosis predictions by
combining the outputs of the fine-tuned modality-specific foundation model.

3.1 UNI-MODAL FOUNDATION MODEL ADAPTATION

In the first stage, the primary goal is to adapt each uni-modal foundation model to AD diagnosis
using limited labeled data from its corresponding modality, leveraging the model’s inherent strong
representations.

Problem formulation Our objective is to predict an individual’s Alzheimer’s disease status or
prodromal progression patterns using multi-modal inputs. In this paper, we focus on four data
modalities denoted as m ∈ M = {s, f, c, g}, where s and f refer to neuroimaging data sMRI and
fMRI, c refers to clinical records and g refers to genetic data. As depicted in stage 1 in Fig 1, given
a training dataset Dm = {(xm

i , yi)}Nm

i=1 for modality m, where xm
i is the input sample, yi is the

corresponding diagnosis label, Nm is the size of dataset for modality m. All uni-modal foundation
models used for AD diagnosis are based on transformer architectures. Each model Fm(·; θm) is
attached with a linear classification head that takes the output class token from the transformer
predicts the diagnostic label and is fine-tuned individually using the standard cross-entropy loss:

Lm =
1

Nm

Nm∑
i=1

LCE (Fm(xm
i ; θm), yi) . (1)

Next, we detail the process of adapting each foundation model and its corresponding uni-modal data
for the AD diagnosis task, including the choice of foundation model and the preprocessing steps
applied to each input modality, as illustrated in Stage 1 of Fig 1.

Neuro-image Modalities Neural-image modalities include structural MRI and functional MRI
data. For structural MRI, we adopt BrainMVP (Rui et al., 2025), a large-scale medical imaging
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Figure 1: The overall pipeline of the proposed multi-modal AD diagnosis framework. a) In the first
stage, the uni-modal foundation model is finetuned to AD diagnosis using limited labeled data from
its corresponding modality. b) In the second stage, four uni-modal AD diagnosis models from the first
stage are further finetuned to enable cross-modality interactions by modality-anchored interaction.
c) Modality-aware Q-former (Auxiliary Q-Former in stage 2) is a transformer-based connector that
selectively projects the features from the auxiliary modality to the feature space of the anchor model.

foundation model trained on volumetric data with rich anatomical priors. For functional MRI, we
employ Brain-JEPA (Dong et al., 2024), which learns generalizable representations of brain dynamics
through predictive learning across fMRI datasets.

Gene Modality For genetic data, we adopt the NT Transformer (Dalla-Torre et al., 2025), a genomic
foundation model pre-trained on nucleotide sequences to support tasks such as disease association
and phenotype prediction. The genetic training dataset is constructed with whole genome sequencing
(WGS) studies for AD, which provides base-pair level coverage of the entire genome, allowing for a
comprehensive assessment of individual genetic variation. We provide full details of variant selection
for genetic input and sequence representation constructing pipeline are provided in the Appendix A.2.

Textual Modality The textual modality encompasses subjects’ comprehensive clinical records,
including demographic information, cognitive assessments, neuropsychiatric symptoms, functional
abilities, and medical history. To model this modality, we employ LLaMA-2 (Touvron et al., 2023), a
large language model capable of capturing latent patterns in both textual and tabular clinical features.
We adopt a text template strategy to convert clinical records into description and task prompts. The
converting pipeline is detailed in the Appendix A.1.

3.2 MODALITY-ANCHORED FOUNDATION MODELS INTERACTION

As shown in Fig 1, in the second stage of the multi-modal training pipeline, we fine-tune the
four uni-modal AD diagnosis models from the previous stage introduced in section 3.1 to enable
modality-anchored foundation model interaction.

Instead of allowing all uni-modal models to interact equally, the modality-anchored interaction
designates one modality as the anchor modality along with its corresponding anchor model obtained
from stage 1. For a specific anchor modality m̂, its auxiliary modalities refer to all remaining
modalities whose features will be aligned to the anchor modality’s feature space, denoted as M′ =
{m ∈ M|m ̸= m̂}. Given a set of input signals, including anchor modality input xm̂ and auxiliary
modality inputs {Xm|m ∈ M′}, we first extract features from the auxiliary inputs using their
corresponding uni-modal AD diagnosis models obtained from Stage 1. The extracted features from
the auxiliary modalities are then aligned to the feature space of the anchor model Fm̂ using the
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proposed modality-aware Q-former in section 3.3. Specifically, the aligned auxiliary representation
Ha is computed as follows:

Ha = Qformer
(
Concat({Fm(Xm)}m∈M′)

)
, (2)

where Concat(·) denotes the concatenation of the input features vectors, Qformer(·) refers to the
modality-aware Q-former elaborated in the next sub-section 3.3. Then the interaction is achieved
by feeding the aligned auxiliary modality tokens Ha into the anchor model Fm̂ alongside with the
anchor modality input to produce the diagnosis prediction. Finally, the anchor model Fm̂ is further
fine-tuned with a standard cross-entropy loss:

Lm̂ =
1

Nm̂

Nm̂∑
i=1

LCE

(
Fm̂

(
Concat(Xm̂, Ha)

))
. (3)

Building on the modality-anchored interaction described above, we fine-tune each uni-modal model
Fm from Stage 1 by designating it as the anchor modality, while treating the remaining modalities
as auxiliary inputs. To better preserve the original feature space of the anchor model, we apply
LoRA (Hu et al., 2022) fine-tuning, where only a small subset of parameters is updated. The final
diagnostic prediction is obtained by aggregating the outputs from all fine-tuned models.

3.3 MODALITY-AWARE Q-FORMERS

As shown in Equation 2, to allow effective interaction between the anchor model and the auxiliary
models, a transformer-based connector is proposed to selectively project features from the auxiliary
modality to the feature space of the anchor model, called modality-aware Q-former. As illustrated in
Fig 1, our modality-aware Q-former incorporates two types of information, namely uni-modal and
cross modal information.

Uni-modal Q-formers Modality-aware Q-former first extracts the uni-modality information from
a specific auxiliary modality m ∈ M′. Specifically, we create a set of learnable tokens to serve
as uni-modality queries, denoted as Xuq ∈ RNq×C . Given the auxiliary features extracted from
the corresponding auxiliary model Fm, we first project them to the same dimension as the anchor
modality:

Zm = Linear
(
Fm(Xm)

)
∈ RLm×C . (4)

Then, the learnable uni-modal queries interact with the projected features through a cross-attention
layer, which further projects the auxiliary modality features into the anchor feature space and extracts
information relevant to the anchor modality from the auxiliary one m:

X̂m = CrossAttn(Q = Xm
uq,K = Zm, V = Zm) (5)

The resulting output X̂m ∈ RNq×C are features containing uni-modal information from auxiliary
modality m.

Cross-modal Q-former Besides uni-modal information, we further propose a set of cross-modal
queries Xcq ∈ RNq×C that enables feature interaction among all auxiliary modalities. Specifically, the
cross-modal queries interact with all the output tokens of uni-modal Q-formers {X̂m|m ∈ M′} with
a cross-attention layer to capture cross-modality correlations among different auxiliary modalities,
resulting in the cross-modality auxiliary features denoted as X̂c:

X̂c = CrossAttn
(
Q = Xcq,K = Za, V = Za

)
, (6)

where
Za = Concat({X̂m}m∈M′). (7)

Finally, the cross-modal auxiliary feature X̂c and a set of uni-modal auxiliary features {X̂m|m ∈
M′} are concatenated to obtain the final output of the modality-aware Q-former:

Ha = Concat
(
{X̂m}m∈M′ , X̂c

)
∈ R4Nq×C . (8)
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Table 1: Results of three AD prediction tasks across three ADNI cohorts. Experiments are conducted
under the Modality-complete setting, which includes only individuals with all four data modalities
available. (C: Clinical records, F: fMRI, S: sMRI, G:Genetic data) The best results are in bold.

Modality Method NC vs. MCI NC vs. AD sMCI vs. pMCI

ACC SPE SEN ACC SPE SEN ACC SPE SEN

Uni-Modality
C RandomForest 0.709 0.724 0.612 0.745 0.738 0.557 0.696 0.736 0.602
C LLaMA 2 0.793 0.854 0.640 0.814 0.879 0.687 0.721 0.809 0.574
F Brain-JePA 0.777 0.838 0.542 0.807 0.857 0.576 0.714 0.723 0.522
F BrainLM 0.768 0.809 0.537 0.781 0.841 0.575 0.705 0.735 0.509
S BrainMVP 0.724 0.819 0.589 0.730 0.832 0.669 0.703 0.774 0.601
S SamMed3D 0.714 0.807 0.597 0.714 0.814 0.675 0.689 0.758 0.607
S Swin-UNETR 0.609 0.628 0.495 0.612 0.724 0.579 0.521 0.595 0.503
S M3AE 0.647 0.665 0.538 0.671 0.778 0.609 0.622 0.666 0.591
G NT-Human 0.694 0.775 0.521 0.751 0.857 0.492 0.652 0.719 0.424
G SEI 0.483 0.500 0.462 0.568 0.680 0.491 0.415 0.657 0.342
G DNA-Bert2 0.709 0.724 0.612 0.746 0.840 0.557 0.659 0.813 0.460

Multi-Modality
C+G+F+S M4Survive 0.827 0.865 0.568 0.804 0.879 0.657 0.746 0.840 0.557
C+G+F+S LateFusion 0.818 0.894 0.433 0.798 0.867 0.581 0.714 0.782 0.582
C+G+F+S Ours 0.871 0.921 0.700 0.846 0.902 0.707 0.763 0.876 0.617

Table 2: Results of three AD prediction tasks under the Modality-incomplete setting. * denotes the
use of pretrained weights from the original paper for evaluation.

Modality Method NC vs. MCI NC vs. AD sMCI vs. pMCI

ACC SPE SEN ACC SPE SEN ACC SPE SEN

bi-Modality
S+C Ncomms 0.945 0.932 0.947 0.928 0.939 0.911 0.773 0.766 0.698
S+C AI-diagnosis 0.924 0.947 0.938 0.910 0.920 0.890 0.766 0.839 0.574
S+C AI-diagnosis* 0.950 0.937 0.955 0.924 0.939 0.895 0.825 0.849 0.740
S+C SMART 0.932 0.943 0.877 0.917 0.944 0.891 0.810 0.832 0.768

Multi-Modality
C+G+F+S M4Survive 0.926 0.921 0.931 0.911 0.936 0.851 0.812 0.879 0.652
C+G+F+S LateFusion 0.881 0.927 0.861 0.899 0.912 0.879 0.801 0.871 0.693
C+G+F+S Ours 0.979 0.957 0.963 0.945 0.960 0.931 0.846 0.901 0.711

4 EXPERIMENTS

4.1 DATASETS

We leverage the ADNI (Mueller et al., 2005) dataset to evaluate our method in AD diagnosis and
progression prediction task. Alzheimer’s Disease Neuroimaging Initiative (ADNI) offers the most
comprehensive set of modalities, including structural and functional MRI (sMRI and fMRI), genetic
data, and textual and tabular clinical records. ADNI includes participants across three main diagnostic
categories: normal controls (NC), mild cognitive impairment (MCI), and Alzheimer’s Disease (AD).

We use two datasets for external evaluation: PPMI (Marek et al., 2011) dataset focuses on Parkinson’s
disease, providing the same set of modalities as ADNI. It includes subjects across three diagnostic
categories: normal controls (NC), mild cognitive impairment (MCI), and Parkinson’s disease (PD).
OASIS-3 (LaMontagne et al., 2019) is a multi-modal dataset providing sMRI, fMRI, and clinical
records, but unlike ADNI, it lacks genetic data. It comprises subjects diagnosed as normal controls
(NC) and Alzheimer’s disease (AD). Further details on the three datasets and preprocessing pipelines
for the four modalities are provided in the Appendix A.

4.2 EXPERIMENTAL SETTINGS

In this study, we focus on two types of multi-modal diagnostic tasks: Alzheimer’s disease (AD)
diagnosis and prediction of prodromal progression, evaluated under both modality-complete and
modality-incomplete settings.
AD prediction. For AD diagnosis evaluation, we follow established practices (Ning et al., 2021;
Song et al., 2022; Hett et al., 2021; Feng et al., 2023a) by assessing performance on two binary
classification tasks: normal controls (NC) vs. Alzheimer’s Disease (AD) and NC vs. mild cognitive

6
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Table 3: Results of PD prediction tasks on PPMI.

Modality Method NC vs. MCI NC vs. PD pPD vs sPD

ACC AUC ACC AUC ACC AUC

C LLaMA 2 0.857 0.839 0.913 0.909 0.694 0.681
F Brain-JePA 0.808 0.797 0.871 0.875 0.652 0.669
S BrainMVP 0.781 0.783 0.898 0.882 0.647 0.650
G NT-Human 0.633 0.629 0.745 0.750 0.615 0.603

S+C Ncomms 0.867 0.854 0.919 0.922 0.707 0.711
S+C SMART 0.892 0.888 0.940 0.943 0.748 0.751
S+C AI-diagnosis 0.909 0.905 0.934 0.948 0.731 0.739

C+G+F+S M4Survive 0.889 0.910 0.954 0.968 0.752 0.753
C+G+F+S LateFusion 0.860 0.846 0.940 0.951 0.707 0.719
C+G+F+S Ours 0.927 0.944 0.967 0.969 0.769 0.773

Table 4: AD prediction task on OASIS.

Modality Method NC vs. AD

ACC AUC

C LLaMA 2 0.697 0.650
F Brain-JePA 0.681 0.667
S BrainMVP 0.655 0.621
G NT-Human 0.491 0.489

S+C Ncomms 0.662 0.636
S+C SMART 0.701 0.679
S+C AI-diagnosis 0.705 0.688

C+G+F+S M4Survive 0.722 0.640
C+G+F+S LateFusion 0.694 0.648
C+G+F+S Ours 0.722 0.699

impairment (MCI). All models are evaluated under identical conditions to ensure a fair comparison
using standard performance metrics: accuracy (ACC), specificity (SPE), and sensitivity (SEN).
Prodromal progression prediction. We extend the AD diagnosis task into a more challenging
task of predicting AD progression (Rahim et al., 2023; El-Sappagh et al., 2020) by distinguishing
between stable MCI (sMCI) and progressive MCI (pMCI). Both sMCI and pMCI patients are initially
diagnosed with MCI at baseline, but the cognitive condition of sMCI group remained stable and did
not convert to AD within 36 months after their first visit. In contrast, the pMCI group progressed to a
clinical diagnosis of AD during the same 36-month follow-up period. (Ning et al., 2021)
Modality setting. To comprehensively assess the robustness of our framework, we evaluate its
performance on all three tasks under two different modality settings: Modality-complete setting
includes only individuals with all four data modalities available. Under this strict requirement, from
the ADNI1, ADNI2, and ADNI3 cohorts, we obtained 414 CN, 68 AD, and 273 MCI samples for
two AD prediction tasks, and 182 sMCI and 44 pMCI samples for the progression prediction task.
Modality-incomplete setting includes individuals with at least one available modality, better reflecting
real-world clinical scenarios and enabling fuller data utilization. We collected 898 CN, 416 AD, and
986 MCI samples for AD prediction, as well as 220 sMCI and 81 pMCI samples for sMCI vs. pMCI.
Cross-domain generalization setting. To assess generalization ability, we conduct out-of-distribution
(OOD) evaluation under modality-complete setting. Our framework is trained on NC vs. AD data
from ADNI. For OOD testing, we use 120 NC and 42 AD subjects from OASIS-3, all of which are
unseen during training and with all three modalities (sMRI, fMRI, and clinical records) available.
Predictions are obtained by combining the outputs of the three corresponding foundation models
trained on ADNI. To further demonstrate the adaptability of our method to other brain diseases,
we train our framework on PPMI dataset and evaluate on Parkinson’s disease (PD) diagnosis and
progression prediction. Similar to AD, PD prediction assesses the performance on NC vs. PD and NC
vs. MCI tasks, and prodromal progression prediction of PD follows the same protocol to distinguish
between stable PD (sPD) and progressive PD (pPD). Under modality-complete setting, we obtained
743 NC, 329 PD, and 143 MCI samples for NC vs. PD and NC vs. MCI classification, as well as 225
sPD and 104 pPD samples for sPD vs. pPD classification.
Implementation Details. In our framework, each modality is processed by a dedicated pre-trained
foundation model: LLaMA2-13B (Touvron et al., 2023) for clinical records, Brain-JEPA (Dong et al.,
2024) for fMRI, BrainMVP (Rui et al., 2025) for sMRI, and NT-500M (Dalla-Torre et al., 2025) for
genetic data. Full details of models, data split, and hyper parameters are in the Appendix B.

4.3 MAIN RESULTS

Baselines. We compare our proposed method against representative uni-modality (Rigatti, 2017;
Touvron et al., 2023; Dong et al., 2024; Caro et al., 2024; Rui et al., 2025; Wang et al., 2023;
Tang et al., 2022; Liu et al., 2023b; Nguyen et al., 2023; Chen et al., 2022; Zhou et al., 2024),
bi-modality (Xue et al., 2024; Chen & Hong, 2024; Qiu et al., 2022), and multi-modality models (Lee
et al., 2025) on diagnosis and progression prediction tasks. Baselines’ details are in the Appendix D.1.

AD classification Results. We compare our method with SOTA baselines under both modality-
complete and incomplete settings on ADNI, with results presented in Table 1 and 2. Overall, our
method outperforms all baselines in overall accuracy across all three AD classification tasks under
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Figure 2: Analysis of Anchor and Auxiliary modality fusion methods for AD Diagnosis on ADNI
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Figure 3: Overall performance trend with different modality combinations. C: Clinical records;
F: fMRI; S: sMRI; G: Genetic data. Red striped bars indicate performance where one modality is
removed from a given multi-modal combination. Figure Details are in the Appendix D.7.

two settings. Compared to conventional Multi-Modal methods including M4Survive and Late Fusion,
our Modality-anchored Interaction ensures the anchor modality feature space to be preserved while
integrating sufficient auxiliary features into the anchor representation. Therefore, our joint interaction
and adoption framework is robust to both limited data availability and missing modalities. Modality-
anchored interaction between anchor and auxiliary modalities preserves well-structured feature space
of each pre-trained model and avoids representation degradation caused by missing modality inputs.
For each modality, we select the most recent and representative foundation models and evaluate their
uni-modal performance on the ADNI dataset in Table 1. Among the baselines, LLaMA2 (clinical
records), BrainMVP (sMRI), BrainJePA (fMRI), and NT-Human (genetic data) achieve the highest
overall performance for their respective modalities.

Cross-Domain Generalization. Table 3 demonstrates that our method generalizes effectively beyond
AD, significantly outperforming both uni- and multi-modal baselines in Parkinson’s disease diagnosis
on the PPMI dataset. Similarly, Table 4 shows that when transferring a model trained on ADNI to the
out-of-distribution dataset like OASIS-3, our approach achieves state-of-the-art AUC performance.
These results highlight both the adaptability of our framework across different neurodegenerative
diseases and its strong generalization ability to unseen AD datasets.

4.4 ABLATION STUDY

Effectiveness of key components. To assess the effectiveness of our proposed modality-aware
Q-former, we replace it with two alternative fusion strategies in Fig. 2: (1) Linear Projection (Proj),
where features from each modality are projected to a shared space and concatenated; (2) Q-Former,
where features from each modality interact only with their own learnable query tokens via attention
and are then concatenated. While both Proj and Q-Former surpass the late-fusion baseline, their ability
to align heterogeneous modalities is limited. Our proposed modality-aware Q-Former consistently
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Table 5: Fusion baselines comparison un-
der modality-incomplete setting on ADNI.

Methods NC vs MCI NC vs AD

Fusion Baselines ACC AUC ACC AUC

Feature Concatenation 0.894 0.885 0.833 0.846
Linear Fusion 0.881 0.851 0.899 0.851
Self-Attention Fusion 0.921 0.917 0.901 0.861

Modality-anchored interaction (Ours)

- Train from pre-trained 0.979 0.969 0.945 0.944

Table 6: Ablation study on choice of foundation models
for each modality on ADNI.

Modality Foundation Models NC vs. MCI NC vs.AD sMCI vs. pMCI

sMRI Sammed 3D (Wang et al., 2023) 0.961 0.941 0.825
vs. BrainMVP -0.018 -0.004 -0.021

Genetic DNA-Bert 2 (Zhou et al., 2024) 0.960 0.931 0.830
vs. NT-Transformer -0.019 -0.013 -0.016

fMRI BrainLM (Caro et al., 2024) 0.958 0.924 0.839
vs. BrainJePA -0.021 -0.021 -0.007

Clinical records MedGemma (Sellergren et al., 2025) 0.967 0.931 0.813
vs. Llama 2 -0.012 -0.014 -0.033
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Figure 4: Attention maps of fMRI images across three anchor modalities and their models. Attention
across seven brain networks is computed for NC/MCI classification.

outperforms those baselines, demonstrating the effectiveness of our cross-modal query design in
extracting synergistic information while preserving the structured representations of each modality.

Comparison with fusion baselines. In Table 5, we compare our modality-anchored interaction
with three fusion baselines using the same pre-trained foundation models. Feature Concatenation:
concatenate features from all modalities. Linear Fusion / Self-Attention: project features from each
modality into a shared space using linear / self-attention layer. Our input-level interaction method
achieves superior performance and shows richer modality integration than output-level fusion.
Performance trend with different modality combinations. Fig 3 presents the performance trend
from uni-modal to bi-modal and full multi-modal. Combining modalities generally improves perfor-
mance (denoted by red striped bars), with clinical records and fMRI showing the most significant
performance gains. Using all four modalities (C+G+S+F) achieves the highest performance, showing
the complementary nature of cross-modal information and the effectiveness of our method to enable
sufficient interaction among foundation models.

0.899

0.913

0.935

0.941*

0.881

0.903

0.956

0.971*

Figure 5: Query numbers ablation.

Number of queries. Fig 5 shows an ablation study on the
number of queries. When set to 0, the model degrades to
a late-fusion baseline. As the number increases, the ACC
performance on two tasks improves on the ADNI dataset.
The performance with 16 queries suggests that sufficient
cross-modal interaction has been achieved at this point.
Ablation on foundation model selection. To validate our
foundation model choices, we conduct ablation studies by
replacing the foundation model of one modality at a time
while keeping the others fixed. Accuracy comparisons in Table 6 show that our selected models
consistently achieve better performance, confirming their suitability for our framework.
Visualization and Interpretability. We visualize the attention maps of fMRI images in the NC/MCI
classification task. In Stage 2, each anchor modality model takes fMRI representations as input. To
identify which fMRI regions are most attended to, we compute the average attention weights that
anchor models’ embeddings assign to each brain parcel using the Attention-Rollout method (Abnar
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& Zuidema, 2020). With the Schaefer functional atlas (Schaefer et al., 2018), the brain network is
partitioned into seven subnetworks. We then average the ROI attention values within each subnetwork
and normalize them to derive the network-level attention distribution. As shown in Fig. 4, when
serving as the anchor modality, sMRI predominantly attends to the DMN, LN, and CN; genetic data
emphasizes the DAN, LN, and SMN; and clinical records highlight the DMN, SAN, and CN. Our
findings show that modality-anchored interaction enables each anchor modality to selectively focus
on its most discriminative fMRI regions while facilitating complementary information exchange
across modalities. Averaged across the three anchor modalities (Fig. 4 d), the attention emphasizes
the roles of DMN, CN, SAN, and LN in cognitive impairment, in line with prior research (Talwar
et al., 2021; Sheline & Raichle, 2013; Brier et al., 2014). (More visualization in Appendix D.5)

5 CONCLUSION

In this paper, we propose a unified multi-modal framework for Alzheimer’s Disease diagnosis that
leverages pre-trained uni-modal models with modality-anchored interaction and modality-aware Q-
Former to enable early and effective anchor and auxiliary modalities interaction. Broad evaluations on
ADNI, PPMI, and OASIS-3 demonstrate the strong performance and generalization of our framework,
underscoring the potential of foundation model adaptation for medical multi-modal learning.

REPRODUCIBILITY STATEMENT

To support replication, we provide implementation details of our method in Appendix B, including
settings, data splits, and training hyper parameters for experiments and foundation models across
four modalities. The training parameters of modality-aware Q-former are in Appendix D.8. The
implementation details of compared methods are in Appendix D.1. The preprocessing pipelines
for each modality are described in Appendix A. Currently, only the supplementary code version is
provided with this submission. The full open-access release will follow upon publication.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human or animal experiments were conducted.
All datasets (ADNI, PPMI, and OASIS) were publicly available and used in accordance with their
respective guidelines, ensuring privacy protection. We are committed to maintaining ethical standards
and fostering responsible AI use.
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age gender LM recall Trail A race

84 Male 19/16 31.0 White

76 female 19/15 29.0 white

a. Clinical Textual Data

b. Convert tabular input to natural prompt

Prompt
Your task is to determine whether a patient is likely to have
 Alzheimer’s disease based on their diagnosis descriptions 
provided below. Clinical Record Input. Diagnosis

Converted input The patient is an 84-year-old146female with 18 years of 
education. The patient’s race is white. The MMSE score is 28 …..
There is a reported family history of cognitive impairment.

LLM

CLS Token

AD

N
C

Figure 6: Tabular Data Prompt Construction Pipeline.

A DATA CONSOLIDATION AND AUGMENTATION

A.1 CLINICAL RECORDS PROMPT TEMPLATE.

To use a LLM for clinical tabular records, the tabular input and classification task must be transformed
into natural text. Fig 6 give a instance of tabular data.

Tabular Data. Our tabular data includes a set of clinical features covering multiple main cate-
gories: demographic information (e.g., age, gender, education, ethnicity, and race), genetic risk
factors (APOE genotype), cognitive assessment scores (including MMSE, CDR, MoCA, and other
neuropsychological tests), neuropsychiatric symptoms (from item-level NPI-Q responses), functional
ability metrics (from the Functional Activities Questionnaire), medical history and lifestyle indicators
(e.g., cardiovascular conditions, psychiatric disorders, smoking and alcohol use), and imaging-related
parameters such as scanner strength.

Task prompt To serialize structured tabular data into natural language prompts, we adopt a text
templating strategy that systematically enumerates each feature along with its corresponding value in
natural language form. The detailed prompt and prefix are as follows:

Listing 1: Task Prompt.

Task prompt (AD vs. NC) = ’’’
Your task is to determine whether a patient is likely to have an

Alzheimer’s disease based on their diagnosis descriptions
provided below.

’’’
Task prompt (MCI vs. NC) = ’’’
Your task is to determine whether a patient is likely to have mild

cognitive impairment based on their diagnosis descriptions
provided below.

’’’
Task prompt (sMCI vs. pMCI) = ’’’
Your task is to determine whether a patient with mild cognitive

impairment is likely to remain stable or progress to Alzheimer’
s disease based on their diagnosis descriptions provided below.

’’’
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Description Prompt. To generate the description prompt, for categorical and numerical attributes,
we combine the name and its values into a sentence. And for binary features, we include the feature
name in the prompt only if the value is True to avoid generating unnecessary and false information.

Listing 2: Description Prompt.

Description Prompt = ’’’
The patient is a {age}-year-old {gender} with {education} years of

education. Their ethnicity is coded as {hispanic}, and their
race is {race}. The APOE status is {apoe}. The MMSE score is {
mmse}, and the CDR score is {cdr} with a sum of boxes score of
{cdrSum}. MRI Tesla strength is recorded as {Tesla}.

Cognitive test results include Trail A ({trailA}), Trail B ({
trailB}), LM immediate recall ({lm_imm}), LM delayed recall ({
lm_del}), Boston naming test ({boston}), Animal fluency ({
animal}), Digit span backward ({digitB}), Digit Span Backward
Longest ({digitBL}), Digit span forward ({digitF}), Digit Span
Forward Longest ({digitFL}). Neuropsychiatric inventory (NPI-

Q) results indicate symptoms of {Mild/Moderate/Severe +
symptom list}, or: Neuropsychiatric inventory (NPI-Q) results
indicate no reported symptoms. Functional assessment (FAQ)
shows difficulties in {faq_BILLS (label), faq_TAXES (label),
..., faq_TRAVEL (label)}. Medical history includes {
Cardiovascular events (Yes), Psychiatric disorders (Yes), ...,
Other depression-related conditions (Yes)}. GDS score: {gds}.
MoCA score: {moca}.

’’’

A.2 GENOMIC DATASETS CONSTRUCTION.

Construction Fig 7 illustrates the genomic datasets construction process. Firstly, we construct a
genetic dataset with whole genome sequencing (WGS) studies for Alzheimer’s disease (AD) Mueller
et al. (2005), which provides base-pair level coverage of the entire genome, allowing for a compre-
hensive assessment of individual genetic variation. To enable downstream machine learning models
to process genetic data within their input length limitations, for ADNI, we select two major genes,
APOE and TOMM40, as the primary sources of genetic input. For PPMI, we select RIMS2 and
TMEM108. These genes have been identified as being most strongly associated with AD or PD
susceptibility Saykin et al. (2010). For each individual, up to 80 genetic variants were selected from
two major genomic regions. Then a sequence extractor is used to convert those genetic variants
records by locating the position of variants in the human reference genome.

Usage Following Li et al. (2024b), for each variant, we located its position in the GRCh38/hg38
human reference genome and reconstructed the corresponding reference (ref) and alternate (alt)
sequences. Variants located on rare configs not present in the reference genome were filtered out.
These sequences were then concatenated separately, namely refs with refs and alts with alts, to
construct a pair of representation of ref and alt sequences per individual, capturing AD-relevant
genomic features for downstream prediction tasks.

Genetic Variants Record Formulation Following this construction process in Fig 7, the minimum
unit of ADNI gene dataset is individual variants record, which is an (x, y) pair. Here, x = (ref, alt),
and y denotes the individual’s diagnostic label.

A.3 MRI PRE-PROCESS PIPELINE.

We adopted two distinct pre-processing pipelines for structural and functional MRI data respectively.

The pre-processing pipeline for sMRI. We use the T1-weighted MRI scan closest to each subject’s
baseline visit. To ensure consistency and quality, we exclusively selected 3T MRI scans, as they
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ADNI WGS Data

APOE

TOMM40

Chrom:Position. Ref. Alt.

G Tchr19:45411941

Subject Variants Records

Filter

Extraction

Subject Labels

MCI / Normal Control

AD  / Normal Control

Stable MCI / Progression MCI

C Tchr19:44908684

A Tchr19:44904126

C Gchr19:44899045
…

Sequence 
Extractor

Subject 
 Records

Finetune Genomic Model

Extraction

Predict

Figure 7: Genetic Dataset Construction and Usage. The workflow of gene dataset from ADNI
dataset. Genetic variant records are first extracted from selected APOE and TOMM40 gene for each
individual. These records are paired with diagnostic labels of individual derived from the ADNI
dataset. A sequence extractor then organizes the variants into fixed-length sequences, which serve as
model inputs for downstream genetic foundation models.

Table 7: Multimodal modalities and subject distributions across datasets.
Datasets Type Modalities #NC #MCI #AD #PD

ADNI NC/MCI/AD C+G+F+S 898 986 416 -
OASIS NC/AD C+F+S 120 - 43 -

PPMI NC/MCI/PD C+G+F+S 743 143 - 329

provide higher signal-to-noise ratio, better spatial resolution, and improved image quality compared to
1.5T scans, which benefits downstream learning. Pre-processing structural MRI specifically involves
resampling all 3D structural T1-weighted (T1w) MRI volumes to a standardized spatial resolution of
128× 128× 128, in accordance with the input requirements of the SAM-Med3D Wang et al. (2023)
pretrained model.

The pre-processing pipeline for fMRI. Following the preprocessing pipeline of Brain-JEPA Dong
et al. (2024), functional MRI data were preprocessed using the fMRIPrep pipeline Esteban et al.
(2019), which incorporates high-precision anatomical reference via T1w MRI images. The pipeline
included skull stripping, cortical surface reconstruction, slice-timing correction, followed by co-
registration of fMRI time series to the corresponding anatomical scans. Spatial normalization to the
MNI152 standard space was subsequently performed using nonlinear transformation. Following
normalization, the fMRI time series were parcellated into n = 450 regions of interest (ROIs), with
cortical regions delineated by the Schaefer-400 atlas Schaefer et al. (2018) and subcortical regions
defined using the Tian-Scale III atlas Tian et al. (2020). To enhance inter-subject comparability
and mitigate inter-participant variability, robust scaling was applied to each ROI by subtracting the
across-subject median and dividing by the interquartile range Caro et al. (2023).
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A.4 DATASETS DETAILS.

As illutstrated in Table 7, three public multi modal datasets are evaluated in our study, considering
four medical modalities, including two imaging modalities, genetic data, and clinical records.

ADNI. We evaluate our method using the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset Mueller et al. (2005), which is the publicly available dataset that offers the most comprehensive
set of modalities, including structural and functional MRI (sMRI and fMRI), genetic data, and textual
and tabular clinical records. ADNI includes participants across three main diagnostic categories:
normal controls (NC), mild cognitive impairment (MCI), and Alzheimer’s Disease (AD).

PPMI. PPMI is a public dataset Marek et al. (2011) focused on Parkinson’s disease, providing the
same set of modalities as ADNI. It includes subjects across three diagnostic categories: normal
controls (NC), mild cognitive impairment (MCI), and Parkinson’s disease (PD).

OASIS-3. The OASIS-3 dataset LaMontagne et al. (2019) is a multimodal neuroimaging and clinical
record resource that provides sMRI, fMRI, and textual and tabular clinical information, but lacks
the genetic data available in ADNI. It comprises subjects diagnosed as normal controls (NC) and
Alzheimer’s disease (AD).

B PRETRAINED FEATURE EXTRACTION IMPLEMENTATION DETAILS

B.1 SETTINGS OF EXPERIMENTS.

All experiments were conducted on NVIDIA A100 80GB GPUs, with a total of 32 GPUs used. Each
compute worker was equipped with 64 CPU cores and 512 GB of RAM. Training under the modality-
complete setting typically took around 1.5 hours per epoch. We adopt 16 as the number of queries
in our proposed Modality-aware Q-former. Both Stage 1 (uni-modal foundation model adaptation)
and Stage 2 (Modality-anchored interaction), illustrated in Fig 1, are trained in a supervised setting.
The ground truth labels are determined based on established clinical diagnostic criteria Mueller
et al. (2005). For the three datasets, we performed strict de-duplication of subjects using their
unique IDs across all phases to ensure that each subject appears only once in the entire dataset. This
guarantees that there is no overlap of subject data between the training, validation, and test sets,
effectively eliminating the risk of data leakage. The dataset is partitioned into 60% for training, 20%
for validation, and 20% for testing. We conducted test experiments using 5-fold cross-validation.
For each fold, we record the performance on the test set. This resulted in five paired performance
values, one for each fold. We then conducted statistical significance test through a paired t-test on
these fold-wise results to assess whether the performance difference was statistically significant. The
resulting p-value below 0.01 (p = 0.005) confirms that our performance improvements reported in
the main results over the second-best aproach have been confirmed to be statistically significant.
Our approach treats each modality as the anchor one in turn. As a result, in modality-incomplete
setting, when one modality is missing, the remaining modalities can still serve as anchor inputs,
and their features are extracted using the corresponding foundation models without disruption. In
practice, when a modality is absent, we simply omit passing data to its associated Q-Former. For
the Q-Formers of the remaining modalities, we set the query tokens corresponding to the missing
modality to zero and apply an attention mask to prevent the model from attending to it.

B.2 SETTINGS AND HYPER PARAMETERS OF FOUNDATION MODELS.

Each modality is processed by a dedicated pre-trained foundation model: LLaMA2-13B Touvron et al.
(2023) for textual data, NT Dalla-Torre et al. (2025) for genetic data, Brain-JEPA Dong et al. (2024)for
fMRI, and BrainMVP Rui et al. (2025) for sMRI. Training details of each model is presented below.

Textual feature Extraction. The LLaMA2 model Touvron et al. (2023) in Fig 8 (Left) was
leveraged to extract textual features from clinical records into a latent space representation. LLaMA 2
is an auto-regressive language model based on an optimized transformer architecture. The fine-tuned
variants are aligned with human preferences through a two-stage process: supervised fine-tuning
(SFT) on curated instruction-following data, followed by reinforcement learning with human feedback
(RLHF) to further optimize for helpfulness, factuality, and safety. We utilize LLaMA2-12b-HF pre-
traind weights. For LLaMA2-13B, we use the AdamW optimizer with a learning rate of 2e-4. The
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Figure 8: Architecture of LLaMA 2 (left) and NT-Human500 (right).

model is trained for a total of 6 epochs with a batch size of 8. We apply LoRA Hu et al. (2022) using
the Hugging Face peft library with the following configuration: rank 32, α = 32, dropout = 0.1,
and no bias adaptation for classification.

Genomic Feature Extraction. The Nucleotide Transformer Dalla-Torre et al. (2025) in Fig 8
(right), was leveraged to extract genomic features from ADNI Gene Dataset constructed in Fig 7.
The Nucleotide Transformers are foundational language models pre-trained on DNA sequences from
whole genomes. Unlike traditional approaches that rely solely on a single reference genome, our
models incorporate genetic information from over 3,200 diverse human genomes and 850 genomes
across various species, including both model and non-model organisms. Through comprehensive
evaluations, we demonstrate that these large-scale models significantly outperform existing methods
in predicting molecular phenotypes with high accuracy. We utilize nucleotide-transformer-500m-
human-ref pre-traind weights, a 500M parameters transformer pre-trained on the human reference
genome. For NT-500M-Human, we use the AdamW optimizer with a learning rate of 5e-4. The
model is trained for 2 epochs with a batch size of 4. We apply LoRA Hu et al. (2022) using the
Hugging Face peft library with the following configuration: rank 32, α = 32, dropout = 0.1, and no
bias adaptation for classification.

Neuro-imaging Feature Extraction BrainJEPA Dong et al. (2024) was employed to extract latent
representations from fMRI scans, leveraging pretraining on large-scale 3D brain MRI data. We
adopt jepa-ep300 weights, the pre-trained model weights resulting from training on the UKB dataset.
The target encoder from this model serves as the feature extractor for fMRI data. We also adopted
BrainMVP Rui et al. (2025) for sMRI representation. Its fully 3D architecture includes a BrainMVP
image encoder and BrainMVP decoder, built with UniFormer backbone to capture spatial features
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Table 8: Effect of Connectors. The ACC and AUC performance across three AD diagnosis and
progression prediction tasks on ADNI dataset in modality-incomplete settings is reported.

Components NC vs. MCI NC vs. AD sMCI vs. pMCI

ACC AUC ACC AUC ACC AUC

late Fusion 0.881 0.851 0.899 0.851 0.805 0.783
Proj 0.961 0.957 0.911 0.904 0.825 0.791

Q-former 0.960 0.960 0.915 0.910 0.830 0.810

Modality-Aware Q-former 0.979 0.969 0.945 0.944 0.846 0.818

effectively. We utilize 16k mpMRI weights. For Brain-JEPA, training is conducted for 200 epochs
with a batch size of 8, using AdamW with an initial learning rate of 5e-5. For BrainMVP, we apply
AdamW with learning rate of 8e-4 and train the model for 200 epochs with a batch size of 4.

C IMPLEMENTATION DETAILS OF Q-FORMER.

C.1 DETAILS OF MODALITY-AWARE Q-FORMERS

To enable interaction between the representations from the anchor and auxiliary modalities, we
propose to employ a set of learnable queries to explicitly project the auxiliary features into the
representation space of the anchor one. As shown in Eq 2, to allow effective interaction between
the anchor model and the auxiliary models, a transformer-based connector is proposed to selectively
project features from the auxiliary modality to the feature space of the anchor model, called modality-
aware Q-former. As illustrated in Fig 1, our modality-aware Q-former incorporates two types of
information, namely uni-modal and cross modal information. Specifically, we create a set of learnable
queries X ∈ RNq×C x ∈ RC with number of learnable query tokens Nq , serving as the query:

X ∈ RNq×C , (9)

Number of learnable query tokens. We set the number of learnable query tokens Nq = 16 to
strike a balance between leveraging auxiliary modality information and maintaining stable training of
the anchor modality. As illustrated in Fig 5, increasing Nq allows the model to incorporate more in-
formation from auxiliary modalities, enhancing cross-modal interactions and semantic representation.
Conversely, reducing Nq limits the contribution of auxiliary modalities; when Nq approaches zero,
the model effectively degrades to a late fusion strategy, where only uni-modal representations from
the anchor modality are used without cross-modal guidance.

Uni-modal Q-formers Modality-aware Q-former first extracts the uni-modality information from
a specific auxiliary modality m ∈ M′. Specifically, we create a set of learnable tokens to serve
as uni-modality queries, denoted as Xuq ∈ RNq×C . Given the auxiliary features extracted from
the corresponding auxiliary model Fm, we first project them to the same dimension as the anchor
modality:

Zm = Linear
(
Fm(Xm)

)
∈ RLm×C . (10)

Then, the learnable uni-modal queries interact with the projected features through a cross-attention
layer, which further projects the auxiliary modality features into the anchor modality feature space
and extracts information relevant to the anchor modality from the auxiliary one m:

X̂m = CrossAttn(Q = Xm
uq,K = Zm, V = Zm). (11)

The resulting output X̂m ∈ RNq×C are features containing uni-modal information from auxiliary
modality m.

Cross-modal Q-former Besides uni-modal information, we further propose a set of cross-modal
queries Xcq ∈ RNq×C that enables feature interaction among all auxiliary modalities. Specifically, the
cross-modal queries interact with all the output tokens of uni-modal Q-formers {X̂m|m ∈ M′} with
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a cross-attention layer to capture cross-modality correlations among different auxiliary modalities,
resulting in the cross-modality auxiliary features denoted as X̂c:

X̂c = CrossAttn
(
Q = Xcq,K = Za, V = Za

)
, (12)

where
Za = Concat({X̂m}m∈M′). (13)

Finally, the cross-modal auxiliary feature X̂c and a set of uni-modal auxiliary features {X̂m|m ∈
M′} are concatenated to obtain the final output of the modality-aware Q-former:

Ha = Concat
(
{X̂m}m∈M′ , X̂c

)
∈ R2Nq×C . (14)

Q-former and Linear dimensions For anchor modality m ∈ M = s, f, c, g and its uni-modal
learnable query tokens Xm

uq ∈ RNq×Cm and cross-modal query tokens Xcq ∈ RNq×C , the dimen-
sionality Cm for each modality is defined as follows:

Cm =


512, if m = s

768, if m = f

5120, if m = c

1280, if m = g.

(15)

C.2 EFFECTIVENESS OF CROSS-MODALITY Q-FORMER.

Compared with conventional fusion methods such as Late-Fusion, which combine uni-modal pre-
dictions at the output level, our Q-Former design enables earlier and more effective cross-modal
interactions at the level of anchor token embeddings and auxiliary features, allowing more effective
integration of complementary information from all modalities. To isolate the effect of modality
interaction mechanisms and assess the effectiveness of our proposed Modality-aware Q-former, we
consider a setting where all four modalities (C/F/S/G) are available, and apply four types of interaction
strategies on top of pretrained uni-modal foundation models from stage 1. Specifically, we apply
four types of fusion strategies: (1) Linear Projection (Proj), where features from each modality are
projected to a shared space with simple linear modules and concatenated; (2) Late-Fusion, where
each modality is independently processed and final predictions are aggregated; (3) Q-Former, where
concatenated auxiliary modality embeddings serve as keys and values in the cross-attention layer, and
learnable query tokens attend to them, enabling interaction with the anchor modality. (3) Modality-
aware Q-Former, which introduces attention-based query tokens to adaptively gather relevant features
from auxiliary modality.

For fair comparisons, we freeze the uni-modal pretrained models from stage 1 and only train the
fusion modules and anchor models. Results are reported in Table 8 under Modality-Incomplete
scenarios. While both Projection and Late-Fusion benefit from pre-trained features, their ability to
align heterogeneous modalities is limited. Projection performs better than Late-Fusion on general
classification accuracy. Our Q-Former consistently outperforms both baselines across all tasks. This
demonstrates the effectiveness of our cross-modal query design in extracting synergistic information
while preserving the structured representations of each modality.

D EXTENDED EXPERIMENTAL ANALYSIS

D.1 IMPLEMENTATION DETAILS OF COMPARED BASELINES.

We compare our approach with SOTA multi-modal baselines. M4Survive Lee et al. (2025),
Ncomms Qiu et al. (2022), Smart Chen & Hong (2024), and AIdiagnosis Xue et al. (2024) are
SOTA multi-modality framework. M4Survive leverages various Radiology-Pathology pre-trained
models to independently process and generate modality-specific embeddings. Then the embeddings
are mapped into a joint-modality feature space and processed by a Mamba adapter to perform
interaction for downstream prediction. M4Survive adopts LLaMA, BrainMVP, BrainJEPA, and
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Table 9: Comparison to Uni-modal baselines. The performance across three AD diagnosis and
progression prediction tasks in modality-complete settings is reported.

Modality Method NC vs. MCI NC vs. AD sMCI vs. pMCI
ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%)

C RandomForest Rigatti (2017) 0.709 0.724 0.612 0.745 0.738 0.557 0.696 0.736 0.602
C LLaMA 2 Touvron et al. (2023) 0.793 0.854 0.640 0.814 0.879 0.687 0.721 0.809 0.574
F Brain-JePA Dong et al. (2024) 0.777 0.838 0.542 0.807 0.857 0.576 0.714 0.723 0.522
F BrainLM Caro et al. (2024) 0.768 0.809 0.537 0.781 0.841 0.575 0.705 0.735 0.509
S BrainMVP Rui et al. (2025) 0.724 0.819 0.589 0.730 0.832 0.669 0.703 0.730 0.640
S SamMed3D Wang et al. (2023) 0.714 0.807 0.597 0.714 0.814 0.675 0.689 0.718 0.647
S Swin-UNETR Tang et al. (2022) 0.609 0.628 0.495 0.612 0.724 0.579 0.521 0.595 0.503
S M3AE Liu et al. (2023b) 0.647 0.665 0.538 0.671 0.778 0.609 0.622 0.666 0.591
G NT-Human Nguyen et al. (2023) 0.694 0.775 0.521 0.751 0.857 0.492 0.652 0.719 0.424
G SEI Chen et al. (2022) 0.483 0.500 0.462 0.568 0.680 0.491 0.415 0.657 0.342
G DNA-Bert2 Zhou et al. (2024) 0.709 0.724 0.612 0.746 0.840 0.557 0.659 0.813 0.460

Table 10: Results of three AD prediction tasks across the ADNI-1, ADNI-2, and ADNI-3 cohorts.
Experiments are conducted under the Modality-Incomplete setting, indicating the presence of partial
clinical textual records, functional MRI, structural MRI, and genetic data.

Methods NC vs. MCI NC vs. AD pMCI vs. sMCI

ACC AUC ACC AUC ACC AUC

Feature Concatenation 0.894 0.885 0.833 0.846 0.771 0.750
Linear Classifier 0.881 0.851 0.899 0.851 0.805 0.783

Self-Attention Fusion 0.921 0.917 0.901 0.861 0.785 0.751

Ours 0.961 0.969 0.945 0.944 0.825 0.846

NT as modality-specific encoders for text, sMRI, fMRI, and genomic modalities to adapt to our
AD analysis tasks. After fine-tuning the pretrained encoders on our diagnosis tasks, We freeze the
modality-specific foundation models and train the adapter network with a batch size of 16, a learning
rate of 0.0003, over 30 epochs. Experiments employing MLP and transformer are executed on a
NVIDIA A100 GPU.

Ncomms introduces a deep learning framework that comprises three components: (1) an MRI-only
CNN model, (2) non-imaging models based on traditional machine learning classifiers, and (3) a
hybrid fusion model that integrates imaging and non-imaging data by combining a CNN with a
CatBoost classifier for final disease diagnosis. All models in Ncomms were optimized with AdamW.
The CNN for MRI data was trained with a learning rate of 0.001 for 101 epochs. The CatBoost
regression models for non-imaging data were trained with a dropout rate of 0.5, a batch size of 32,
and a learning rate of 0.001. The fusion CatBoost classifier, integrating imaging and non-imaging
inputs, was trained with the same hyperparameters as the non-imaging models (dropout 0.5, batch
size 32, learning rate 0.001).

AIdiagnosis proposes a multi-modal ML framework to process a diverse array of clinical textual
data as well as multi-modal neuro imaging data to perform disease diagnosis. Model training was
performed using a mini-batch strategy with the AdamW optimizer, employing an initial learning rate
of 0.001 over 256 total epochs. A cosine annealing learning rate scheduler with warm restarts was
used to facilitate convergence, with the first restart occurring at epoch 64 and each subsequent restart
period doubled relative to the previous one. The hyperparameters were empirically set as follows: ε
= 0.25, λ = 0.005, and β = 0.0005.

SMART consists of dual visual–textual branches, including an image encoder for MRI data and a text
encoder for clinical records. A gated attention transformer serves as the fusion module, integrating
features from both branches for joint representation learning and performing AD diagnosis. The
model is trained with the Adam optimizer using a learning rate of 3e-4, batch size of 32, for 300
epochs. The hyperparameters are set as α = β = 1 and temperature τ = 0.05.

D.2 MORE UNIMODAL COMPARED BASELINES.

Under the modality-complete setting, we evaluate several strong uni-modal baselines, including
Random Forest Rigatti (2017) and LLaMA 2 Touvron et al. (2023) for clinical records, Brain-
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Figure 9: Analysis of how query number in modality-aware Q-former and foundation pre-trained
weights affect AD diagnosis performance.

JEPA Dong et al. (2024) and BrainLM Caro et al. (2024) for fMRI, BrainMVP Rui et al. (2025),
SAM-Med3D Wang et al. (2023), Swin-UNETR Tang et al. (2022), and M3AE Liu et al. (2023b)
for sMRI, as well as NT-Transformer Nguyen et al. (2023), SEI Chen et al. (2022), and DNA-
Bert2 Zhou et al. (2024) for genomic data. Table 9 summarizes the performance of uni-modal
baselines across three distinct AD-related tasks. Among all modality-specific models, LLaMA
achieves the highest overall performance, highlighting the rich and discriminative nature of clinical
textual data in Alzheimer’s disease analysis. LLaMA, NT, BrainMVP, and BrainJePA consistently
outperform other foundation models within their respective modalities, confirming their suitability
for integration into our framework.

D.3 COMPARISON WITH FUSION BASELINES.

Table 10 compares our modality-anchored interaction with three fusion baselines, all built on the same
pre-trained foundation models. The baselines include (i) feature concatenation, which directly merges
modality features, and (ii) linear or self-attention fusion, which projects modality features into a
shared space. Our input-level modality-anchored interaction consistently outperforms these baselines,
demonstrating that performing fusion at the input level enables richer cross-modal integration than
output-level fusion.

D.4 EFFECT OF TRAIN FROM PRETRAINED WEIGHTS.

Fig. 9 (rightmost subfigure) compares training from scratch with training from pre-trained weights
on two AD diagnosis tasks on ADNI dataset. The results consistently show that initializing from
pre-trained weights yields better performance than training from scratch, highlighting the benefit of
leveraging prior knowledge encoded in foundation models.

D.5 VISUALIZATION OF ATTENTION MAPS ON TEXTUAL RECORDS AND SMRI IMAGE

To evaluate interpretability, we compare attention maps produced by our method against those from a
late-fusion baseline. Fig 10 (a) presents the attention weight distribution over clinical text descriptions.
Results indicate that our model better captures features in longer sequences. For instance, in the
sentence ‘The APOE status is 0,’ a known AD biomarker Knopman et al. (2007), the baseline assigns
little attention, whereas our model effectively identifies task-relevant words. Fig 10 (b) compares
the sMRI attention maps between our method and the late-fusion baseline. Image patches with the
highest attention weights are highlighted in red (late-fusion) and blue (ours). The baseline late fusion
method overlooks some critical medical imaging biomarkers, whereas our method more accurately
attends to these key subregions.

We further visualize the AD patients’ attention maps of sMRI images and clinical records across
different anchor modalities and their models in Fig 11. In Stage 2, each anchor modality model
takes sMRI or clinical record representations as input. To reveal which regions are most attended,
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The patient is a 84-year-old female with 18 years of education. Their ethnicity is coded as 2, 
and their race is whi. The APOE status is 0. The MMSE score is 28, and the CDR score is 0.0 
with a sum of boxes score of 0.0. MRI Tesla strength is recorded as 1.5. Cognitive test 
results include Trail A (31.0), Trail B (51.0), LM immediate recall (19), LM delayed recall (16), 
Boston naming test (27.0), Animal fluency (22), . . . Medical history includes Family history 
of cognitive impairment (Yes). GDS score: 0.  

LateFusion

The patient is a 84-year-old female with 18 years of education. Their ethnicity is coded as 2, 
and their race is whi. The APOE status is 0. The MMSE score is 28, and the CDR score is 0.0 
with a sum of boxes score of 0.0. MRI Tesla strength is recorded as 1.5. Cognitive test 
results include Trail A (31.0), Trail B (51.0), LM immediate recall (19), LM delayed recall (16), 
Boston naming test (27.0), Animal fluency (22), . . . Medical history includes Family history 
of cognitive impairment (Yes). GDS score: 0. 

Ours

LateFusion Ours

(b) sMRI Image

(ADNI)    AD subject

(a) Textual Records

Figure 10: Comparison of attention maps between the late-fusion baseline and our method on clinical
textual records and sMRI images of an AD patient from the ADNI dataset. A darker color indicates
a higher attention on text. Image patches with the highest attention weights are highlighted in red
(late-fusion) and blue (ours).

we compute the attention weights of input data assigned by the model embeddings. As shown in
Fig 11, for sMRI data, the fMRI foundation model (BrainJePA) attends to critical medical subregions,
while the gene (NT) and clinical text (LLaMA) foundation models cover broader areas. For clinical
records, both the gene (NT) and fMRI (BrainJePA) models show broad attention to demographic
information, cognitive scores, neuropsychiatric symptoms, medical history, and lifestyle factors,
whereas the sMRI foundation model (BrainMVP) focuses mainly on demographic information and
neuropsychiatric symptoms. These findings show that our modality-anchored interaction enables
each anchor modality to selectively attend to the text and sMRI regions most discriminative for its
own semantic representation, and promotes meaningful interactions between modalities, allowing
them to complement each other and produce more discriminative multi-modal representations.

D.6 MULTI-MODAL BIOMARKER ASSOCIATIONS VIA Q-FORMER

We visualize the attention maps of AD patients’ sMRI scans across different anchor-modality models
trained in Stage 2 (BrainMVP and NT-Transformer), highlighting the brain regions that each model
attends to most during prediction, as shown in Fig 12. Specifically, the NT-Transformer trained
with genetic features (including APOE 4 status) can highlight hippocampal and medial temporal
lobe regions on sMRI, as shown in Fig 12 b. This pattern aligns closely with well-established AD
neurobiology: extensive prior studies Li et al. (2016); Bailey et al. (2024) have shown that APOE
4 is strongly associated with hippocampal and parahippocampal atrophy. Therefore, the fact that
our gene-anchored model also attends to hippocampal regions on sMRI indicates that the q-former
successfully captures meaningful cross-modal biomarker relationships. This provides experimental
evidence that our model learns biologically grounded correspondences between different modalities.

D.7 FURTHER EXPLANATION OF FIGURE 3

In this section, we provide a detailed analysis of Fig. 3, focusing on ablation experiments conducted
under the modality-complete setting with various modality combinations. The combinations are
grouped into five categories: Neuroimage Unimodal, Non-imaging Unimodal, Clinical Textual
Bimodal, Neuroimage Bimodal, and Multi-modal. In the Neuroimage Unimodal group, sMRI and
fMRI are evaluated independently to assess their individual predictive capacity. The Non-imaging
Unimodal group includes clinical textual records and genomic data, also evaluated separately. For the
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BrainJePA NT transformer Llama 2

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

BrainJePA -> Clinical Records

BrainMVP -> Clinical Records

NT transformer -> Clinical Records

Figure 11: Attention maps of sMRI images and clinical text records across anchor modalities and
their models, computed for NC/AD classification on the ADNI dataset.

(a) BrainJePA (b) NT-Transformer

Figure 12: Multi-Modal Biomarker Associations via Q-Former Mechanisms.

Clinical Textual Bimodal group, clinical textual data is paired in turn with each of the other three
modalities to assess complementary effects. In the Neuroimage Bimodal group, sMRI and fMRI are
each combined with one of the remaining modalities to evaluate how neuroimaging enhances different
types of information. Finally, the Multi-modal group incorporates all four modalities to assess the
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Table 11: Ablation studies on clinical assessment scores (MMSE, MoCA, and CDR) to evaluate their
contributions to our framework under the modality-complete setting of the ADNI dataset.

Methods NC vs. MCI NC vs. AD pMCI vs. sMCI

ACC AUC ACC AUC ACC AUC

Random Forest (only scores) 0.703 ± 0.015 0.694 ± 0.012 0.738 ± 0.009 0.758 ± 0.011 0.667 ± 0.023 0.665 ± 0.015
Random Forest 0.709 ± 0.007 0.711 ± 0.020 0.745 ± 0.007 0.768 ± 0.009 0.696 ± 0.010 0.670 ± 0.012
Ours w/ Scores 0.871 ± 0.012 0.867 ± 0.010 0.846 ± 0.015 0.854 ± 0.014 0.763 ± 0.022 0.786 ± 0.027

Ours w/o Scores 0.850 ± 0.055 0.840 ± 0.103 0.819 ± 0.105 0.822 ± 0.054 0.726 ± 0.078 0.751 ± 0.027

Table 12: Parameter complexity of modality-aware Q-Former with increasing number of modalities.
Number of Modalities Modalities Q-Former Parameters (M)

1 Clinical Records 9.32
2 Clinical Records + Gene 26.52
3 Clinical Records + Gene + sMRI 45.56
4 Clinical Records + Gene + sMRI + fMRI 63.82

full potential of multi-modal integration. Striped red bars indicate ablation settings where specific
modalities are removed from a bi-modal or multi-modal combination to assess its combination
contribution. For instance, in the Clinical Textual bimodal group, the red striped bars represent the
removal of clinical data. In the Neuroimage bimodal group, the striped bars reflect the exclusion of
neuroimaging data. When sMRI and fMRI are combined, the striped bars correspond to removing
sMRI to evaluate the standalone impact of fMRI. In the Multi-modal group, the striped bars indicate
the exclusion of the G,S and F modalities.

D.8 SCALABILITY ANALYSIS OF THE MODALITY-AWARE Q-FORMER

As shown in Table 12, compared to the incorporated uni-modal foundation models, which range
in size from 500M parameters (NT-Transformer) to 7B parameters (LLaMA), the Q-Former is a
relatively lightweight module with only 60M parameters(additional cost compared to late fusion
baseline). As such, it does not introduce much computational overhead to the overall framework.
Furthermore, the Q-Former’s parameter count increases with the number of modalities, as shown in
the table below. For instance, it starts with 9.32M parameters for the Clinical records modality alone
and increases to 63.82M when all four modalities are included. This demonstrates that the additional
computational cost introduced by Q-Former remains manageable as more modalities are integrated.

D.9 ABLATION STUDIES ON CLINICAL ASSESSMENT SCORES.

We conduct an ablation studies on clinical assessment scores, and results in Table 11 show that clinical
assessment scores play an important role in model performance. Our ablation experiments confirm
that removing these scores leads to a measurable performance drop. However, the model still achieves
strong results even without them, indicating that it effectively leverages broader textual information
beyond just the structured assessment scores. Furthermore, our model achieves stronger result andd
outperforms the Random Forest baseline significantly, indicating that our method leverages rich
textual information beyond clinical scores.

E CODE AVAILABILITY

Currently, we only provide the Supplementary material code version. The full open-access version
will be released upon publication. The supplementary code is provided alongside this submission.

F USE OF LLMS

We use LLMs solely for checking grammar and polishing writing.
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