
Under review as a conference paper at ICLR 2023

DOES CONTINUAL LEARNING EQUALLY FORGET ALL
PARAMETERS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Distribution shift (e.g., task or domain shift) in continual learning (CL) usually
results in catastrophic forgetting of neural networks. Although it can be alleviated
by repeatedly replaying buffered data, the every-step replay is time-consuming
and the memory to store historical data is usually too small for retraining all
parameters. In this paper, we study which modules in neural networks are
more prone to forgetting by investigating their training dynamics during CL.
Our proposed metrics show that only a few modules are more task-specific
and sensitively alters between tasks, while others can be shared across tasks as
common knowledge. Hence, we attribute forgetting mainly to the former and find
that finetuning them only on a small buffer at the end of any CL method can bring
non-trivial improvement. Due to the small number of finetuned parameters, such
“Forgetting Prioritized Finetuning (FPF)” is efficient on both the computation and
buffer size required. We further propose a more efficient and simpler method that
entirely removes the every-step replay and replaces them by only k-times of FPF
periodically triggered during CL. Surprisingly, this “k-FPF” performs comparably
to FPF and outperforms the SOTA CL methods but significantly reduces their
computational overhead and cost. In experiments on several benchmarks of class-
and domain-incremental CL, FPF consistently improves existing CL methods by
a large margin and k-FPF further excels on the efficiency without degrading the
accuracy. We also empirically studied the impact of buffer size, epochs per task,
and finetuning modules to the cost and accuracy of our methods.

1 INTRODUCTION

Empowered by advancing deep learning techniques and neural networks, machine learning has
achieved unprecedented promising performance on challenging tasks in different fields, mostly un-
der the i.i.d. (independent and identically distributed) offline setting. However, its reliability and
performance degenerates drastically in continual learning (CL) where the data distribution or task in
training is changing over time, as the model quickly adapts to a new task and overwrites the previ-
ously learned weights. This leads to severe bias towards more recent tasks and “catastrophic forget-
ting” of previously learned knowledge, which is detrimental to a variety of practical applications.

A widely studied strategy to mitigate forgetting is experience replay (ER) (Ratcliff, 1990; Robins,
1995) and its variants (Riemer et al., 2018; Buzzega et al., 2020; Boschini et al., 2022), which store
a few data from previous tasks in a limited memory and train the model using both the current
and buffered data. However, they only bring marginal improvements when the memory is too
small to store sufficient data for recovering previously learned knowledge, which is common due
to the complicated distributions of previous tasks. In contrast, multi-task learning (Caruana, 1997)
usually adopts a model architecture composed of a task-agnostic backbone network and multiple
task-specific adaptors on top of it. While the backbone needs to be pre-trained on large-scale data,
the adaptors are usually light-weight and can be achieved using a few data. In CL, however, we
cannot explicitly pre-define and separate the task-agnostic parts and task-specific parts. Although
previous methods (Schwarz et al., 2018; Zenke et al., 2017) have studied to restrict the change of
parameters critical to previous tasks, such extra constraint might degrade the training performance
and discourage task-agnostic modules capturing shared knowledge.

1

Under review as a conference paper at ICLR 2023

In this paper, we study a fundamental but open problem in CL, i.e., are most parameters task-specific
and sensitively changing with the distribution shift? Or is the catastrophic forgetting mainly caused
by the change on a few task-specific parameters? It naturally relates to the plasticity-stability
trade-off in biological neural systems (Mermillod et al., 2013): more task-specific parameters
improves the plasticity but may cause severe forgetting, while the stability can be improved by
increasing parameters shared across tasks. In addition, how many task-specific parameters suffice
to achieve promising performance on new task(s)? Is every-step replay necessary?

To answer these questions, we investigate the training dynamics of model parameters during the
course of CL by measuring their changes over time. For different CL methods training with various
choices of buffer size and number of epochs per task on different neural networks, we consistently
observe that only a few parameters change more drastically than others between tasks. The
results indicate that most parameters can be shared across tasks and we only need to finetune a
few task-specific parameters to retain the previous tasks’ performance. Since these parameters
only contain a few layers of various network architectures, they can be efficiently and accurately
finetuned using a small buffer.

The empirical studies immediately motivate a simple yet effective method, “forgetting prioritized
finetuning (FPF)”, which finetunes the task-specific parameters using buffered data at the end of CL
methods. Surprisingly, on multiple datasets, FPF consistently improves several widely-studied CL
methods and substantially outperforms a variety of baselines. Moreover, we extend FPF to a more
efficient replay-free CL method “k-FPF” that entirely eliminates the cost of every-step replay
by replacing such frequent replay with occasional FPF. k-FPF applies FPF only k times during
CL. We show that a relatively small k suffices to enable k-FPF achieving comparable performance
with that of FPF+SOTA CL methods and meanwhile significantly reduces the computational
cost. In addition, we explore different groups of parameters to finetune in FPF and k-FPF by
ranking their sensitivity to task shift evaluated in the empirical studies. For FPF, we compare them
under different choices for the buffer size, the number of epochs per task, the CL method, and
the network architecture. FPF can significantly improve existing CL methods by only finetuning
≤ 0.127% parameters. For k-FPF, we explore different groups of parameters, k, and the finetuning
steps per FPF. k-FPF can achieve a promising trade-off between efficiency and performance. Our
experiments are conducted on a broad range of benchmarks for class- and domain-incremental CL
in practice, e.g., medical image classification and realistic domain shift between image styles.

2 RELATED WORK

Continual Learning and Catastrophic Forgetting A line of methods stores samples of past
tasks to combat the forgetting of previous knowledge. ER (Riemer et al., 2018) applies reservoir
sampling (Vitter, 1985) to maintain a memory buffer of uniform samples over all tasks. Each
mini-batch of ER is randomly sampled from current task and the buffered data. MIR (Aljundi
et al., 2019) proposes a new strategy to select memory samples suffering the largest loss increase
induced by the incoming mini-batch so those at the forgetting boundary are selected. DER and
DER++ (Buzzega et al., 2020) apply knowledge distillation to mitigate forgetting by storing the
output logits for buffered data during CL. iCaRL (Rebuffi et al., 2017) selects samples closest to the
representation mean of each class and trains a nearest-mean-of-exemplars classifier to preserve the
class information of samples. A-GEM (Chaudhry et al., 2018) constrains new task’s updates to not
interfere with previous tasks. Our methods are complementary techniques to these memory-based
methods. It can further improve their performance by finetuning a small portion of task-specific
parameters on buffered data once (FPF) or occasionally (k-FPF).

Another line of work imposes a regularization on model parameters or isolates task-specific
parameters to retain the previous knowledge. oEWC (Schwarz et al., 2018) constrains the update of
model parameters important to past tasks by a quadratic penalty. To select task-specific parameters,
SI (Zenke et al., 2017) calculates the effect of the parameter change on the loss while MAS (Aljundi
et al., 2018) calculates the effect of parameter change on the model outputs when each new task
comes. PackNet (Mallya & Lazebnik, 2018) and HAT (Serra et al., 2018) iteratively assign a
subset of parameters to consecutive tasks via binary masks. All these works try to identify critical
parameters for different tasks during CL and restrict the update of these parameters. But they
can also prevent task-agnostic parameters from learning shared knowledge across tasks. From the

2

Under review as a conference paper at ICLR 2023

training dynamics of CL, we identify the parameters sensitive to distribution shift. FPF and k-FPF
finetune these parameters to mitigate bias without restricting the update of task-agnostic parameters.

Different modules in neural networks (Ramasesh et al., 2020) shows that freezing earlier layers
after training the first task have little impact on the performance of the second task. This is
because their unfrozen part covers the last FC layer and many BN parameters, which are the most
sensitive/critical according to our empirical study. Moreover, they did not take into account that
the earlier layers have much less parameters and capacity than the top layers. (Pham et al., 2022)
only studies the effect of different normalization layers on CL while our method investigates the
sensitivity of all parameters in different network architectures. Their continual-norm still suffers
from the forgetting to task shift. Our methods directly finetune the task-specific layers on the
buffered data to eliminate the bias caused by the task drift. (Zhang et al., 2019) argues different
layers play different roles in the representation function. They find that in different architectures,
the parameters in the top layers(close to input) are more critical and perturbing them leads to poor
performance. Our empirical study is consistent with their findings in that the earlier convolutional
layer is sensitive to task drift and the induced biases on them lead to catastrophic forgetting.

3 PROBLEM SETUP

Notations We consider the CL setting, where the model is trained on a sequence of tasks indexed
by t ∈ {1, 2, . . . , T}. During each task t, the training samples (x, y) (with label y) are drawn from
an i.i.d. distribution Dt. Given a neural network fΘ(·) of L layers with parameter Θ = {θℓ}ℓ=1:L,
θℓ = {θℓ,i}i=1:nℓ

denote all parameters in layer-ℓ where θℓ,i denotes parameter-i. On each task,
fΘ(·) is trained for N epochs. We denote all parameters and the layer-ℓ’s parameters at the end of
the n-th epoch of task t by Θt

n and θtℓ,n, n ∈ {1, . . . , N}, respectively.

Settings In this paper, we mainly focus on class-incremental learning (class-IL) and domain-
incremental learning (domain-IL). In class-IL, Dt are drawn from a subset of classes Ct and
{Ct}Tt=1 for different tasks are assumed to be disjoint. class-IL is a more challenging setting of
CL(Van de Ven & Tolias, 2019) than task-incremental learning (task-IL) (Lopez-Paz & Ranzato,
2017). Unlike task-IL, class-IL cannot access to the task label during inference and has to
distinguish among all classes from all tasks. In domain-IL, tasks to be learnt remain the same but
the domain varies, i.e. the input data distribution Dt changes. The model is expected to adapt
to the new domain without forgetting the old ones. The goal of the class-IL and domain-IL is:
minΘ L(Θ) ≜

∑T
t=1 E(x,y)∼Dt

[l(y, fΘ(x))], where l is the objective function.

Class-IL datasets We conduct class-IL experiments on Seq-MNIST, Seq-OrganAMNIST, Seq-
PathMNIST, Seq-CIFAR-10, and Seq-TinyImageNet. Seq-OrganAMNIST and Seq-PathMnist
are generated by splitting OrganAMNIST or PathMNIST from MedMNIST(Yang et al., 2021), a
medical image classification benchmark. CL on medical images is important in practice but also
challenging since medical images always come as a stream with new patients and new deceases.
Moreover, medical images of different classes might only have subtle differences that are hard to
distinguish. Both Seq-OrganAMNIST and Seq-PathMnist consist of 4 disjoint classification tasks.
The number of classes per task in Seq-OrganAMNIST and Seq-PathMnist are [3, 3, 3, 2] and [3,
2, 2, 2] respectively. Seq-MNIST (Seq-CIFAR-10) are generated by splitting the 10 classes in
MNISTLeCun et al. (1998) (CIFAR-10Krizhevsky et al. (2009)) into five binary classification tasks.
Seq-TinyImageNet partitions the 200 classes of TinyImageNet(Le & Yang, 2015) into 10 disjoint
classification tasks with 20 classes per task.

Domain-IL datasets We conduct domain-IL experiments on PACS dataset (Li et al., 2017), which
is widely used for domain generalization. It can present more realistic domain-shift challenge than
the toy-setting of PermuteMNIST (Kirkpatrick et al., 2017). Images in PACS come from seven
classes and belong to four domains: Paintings, Photos, Cartoons, and Sketches. In Seq-PACS for
CL, each task only focuses on one domain and the sequence of tasks is Sketches → Cartoons →
Paintings → Photos (increasing the level of realism over time) (Volpi et al., 2021).

Models We follow the standard network architectures adopted in most previous CL works. For
Seq-MNIST, following Lopez-Paz & Ranzato (2017); Riemer et al. (2018), we employ an MLP,
i.e., a fully-connected (FC) network with two hidden layers, each composed of 100 ReLU units.
Following (Rebuffi et al., 2017; Li et al., 2020; Derakhshani et al., 2022), we train ResNet-18 (He

3

Under review as a conference paper at ICLR 2023

et al., 2016) on other five datasets. In addition, we also extend our empirical study to another
architecture, i.e., VGG-11 (Simonyan & Zisserman, 2014) on Seq-CIFAR-10.

4 FORGETTING OF DIFFERENT PARAMETERS: AN EMPIRICAL STUDY

A fundamental and long-lasting question in CL is how the distribution shift impacts different model
parameters and why it leads to harmful forgetting. Its answer could unveil the plasticity-stability
trade-off in CL, where some parameters are plastic and task-specific and thus have to be finetuned
before deploying the model, while the stable ones can be shared with and generalized to new tasks. In
order to answer this question, we conduct an comprehensive empirical study that compares the train-
ing dynamics of different parameters in three widely studied neural networks. We propose a novel
metric measuring the sensitivity of parameters to distribution shifts. On all the studied networks, it
helps us distinguish between plastic and stale parameters and allocate the task-specific ones.

4.1 MEASURING FORGETTING VIA TRAINING DYNAMICS

To measure and compare the forgetting effects of different parameters, we adopt an intuitive metric
to compute the change of parameters and investigate their dynamics over CL. In CL, the unstable
changes of parameters are mainly caused by the task shift, while the learning within each task
usually leads to smooth changes. Hence, the proposed metric focuses on the difference between
two consecutive tasks, e.g., the change of parameters between epoch-n of the two tasks, i.e.,
(1/|θℓ|)∥θt+1

ℓ,n − θtℓ,n∥1. Its results on different neural networks are displayed in Fig. 1.

4.2 FORGETTING OF DIFFERENT PARAMETERS DURING CL

We first investigate and compare the training dynamics of different parameters in three types of
neural networks. To gain insights applicable to all CL methods, we exclude any specific CL tech-
niques but simply apply SGD to train a model on a sequence of tasks, without any countermeasure
to forgetting. Then, we extend the experiment to different CL methods, hyper-parameters (e.g.,
buffer size), and datasets to verify whether the observations still hold.

2 3 4 5
Training epochs

10 2

Dy
na

m
ics

 o
f p

ar
am

et
er

s

FC layer 1
FC layer 2
FC layer 3

(a) Dynamics of MLP

12 15 18 21 24 27
Training epochs

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
FC layer 1
FC layer 2
FC layer 3

(b) Dynamics of VGG-11

12 15 18 21 24 27
Training epochs

10 6

10 5

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(c) Dynamics of ResNet-18
Figure 1: The training dynamics of different groups of parameters when applying SGD in CL to train three
types of deep neural networks. Note the the y-axis is of logarithmic scale.

Dynamics of MLP We train a three-layer MLP (including the classifier) for Seq-MNIST. Fig. 1(a)
reports how the metric introduced in Section 4.1 for each layer changes in CL. It shows that the top
FC layer (closest to the output) is the most sensitive one with the greatest changes among all the
three layers. This is because tasks in class-IL differ on their predicted classes, which are the outputs
of the FC layer. Since task shift mainly changes the top FC layer, finetuning it using all-tasks’ data
help reduce the forgetting.

Dynamics of VGG Fig. 1 (b) shows the training dynamics of parameters in VGG-11 when trained
on Seq-CIFAR10. We partition all parameters into several groups, i.e., the bottom convolutional
layer (closest to the input), convolutional layers in different blocks, and three top FC layers.
The observations on FC layers are consistent with those on MLP: the last FC layer in VGG is
much more sensitive to the task shift than other two FC layers. In contrast, the sensitivity of all
convolutional layers increases as the layer becomes closer to the input because they are producing
the representations for the input images, whose distribution shift directly impacts the bottom
convolutional layer. However, they are still more stable (or less plastic) than the last FC layer.
Since task shift mainly changes the bottom convolutional layers (among all convolutional layers),
finetuning them can be important to alleviate the forgetting.

4

Under review as a conference paper at ICLR 2023

Dynamics of ResNet Fig. 1 (c) reports the training dynamics of parameters in ResNet-18 when
trained on Seq-CIFAR10. In addition to the groups of VGG-11, ResNet-18 applies batch-
normalization (BN) layers, which have two groups of parameters, i.e., (1) their weights and bias,
and (2) their mean and variance. Unlike MLP or VGG-11, in ResNet-18, BN layers’ mean and
variance become the most changed parameters. This observation makes intuitive sense because the
mean and variance of BN layers capture the first and second order moments of the distribution for the
latent representations. Except BN mean and variance, the last FC layer and the bottom convolutional
layers are still the top-2 sensitive groups among the rest parameters, which are consistent with the
observations on MLP and VGG-11. The variance of BN weight and bias is relatively large compared
to the rest layers, please refer to Appendix for dynamics of BN weight and bias in different groups.

In the above section, we observe that for three types of deep neural networks, parameters are not
equally sensitive to the distribution shift in CL. Moreover, only a small portion of them are much
more sensitive and task-specific than others. This implies that only finetuning these task-specific
(or plastic) parameters may suffice to retain the previous tasks. That being said, the empirical study
is limited to SGD without applying any other CL techniques and only focuses on class-IL. In the
following, we extend the studies to different CL methods, buffer sizes, non-standard datasets, and
domain-IL, while fixing the model to be ResNet-18.

10 12 14 16 18 20 22 24
Training epochs

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(a) Seq-OrganAMNIST

12 15 18 21 24 27
Training epochs

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(b) ER(buffer size= 50)

12 15 18 21 24 27
Training epochs

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(c) ER(buffer size= 2000)

10 12 14 16 18 20 22 24
Training epochs

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(d) Seq-PACS

Figure 2: The training dynamics of different groups of parameters in ResNet-18: (a) on a non-standard dataset;
(b,c) using a different CL method with different buffer sizes; (d) in domain-IL setting. Note the the y-axis is of
logarithmic scale.

Dynamics on different scenarios Fig. 2 (a) extends the empirical study to a medical image dataset
Seq-OrganAMNIST. Comparing to Seq-CIFAR-10, it differs on the number of tasks, dataset size,
image size, and data type. Despite these differences, the sensitive groups of parameters stays the
same. We further replace SGD with ER using two replay buffer sizes, whose results are reported in
Fig. 2(b)-(c). The ranking order of parameter groups in terms of sensitivity stays consistent under
the change of the replay strategy and buffer size.

Dynamics on domain-IL In domain-IL, as shown in Fig. 2 (d), the training dynamics of different
parameters is in line with our observations in class-IL: only a small portion of parameters are
task-specific. However, one difference is worth noting. Since the output classes stay the same across
tasks and only the input domain changes, the most sensitive parameters in class-IL, i.e., the last FC
layer, becomes equally or less sensitive than the bottom convolutional layer. Hence, the plasticity
and stability of parameters are impacted by how close they are to the changed data distributions.

5 FORGETTING PRIORITIZED FINETUNING (FPF) METHODS

The above empirical study of the training dynamics on parameters immediately motivates a simple
but novel method for CL, i.e., “forgetting prioritized finetuning (FPF)”, which can be applied to any
existing CL method. In the more efficient k-FPF, we further remove the every-step replay and any
other CL techniques but simply applies k-times of FPF in SGD training. In Fig. 3, we provide an
illustration that compares SGD, replay-based methods and our methods.

Task 1 Task 2 Task 3 Task N

…
SGD + replay (replay-based method)

Task 1 Task 2 Task 3 Task N

…
SGD + replay + FPF

Task 1 Task 2 Task 3 Task N
…

SGD

replay FPF
Task 1 Task 2 Task 3 Task N

…
SGD + k-FPF

Figure 3: Comparison of SGD, replay-based method, FPF and k-FPF. SGD trains each task sequentially with-
out replay. Replay-based methods train model on buffered data and current data simultaneously. FPF finetunes
the most sensitive (plastic) parameters for a few iterations using the buffered data at the end of arbitrary CL
methods. k-FPF periodically (regardless of task boundaries) applies FPF for k times over the course of training.

5

Under review as a conference paper at ICLR 2023

FPF to improve CL performance. FPF applies light-weight finetuning to the most task-specific
parameters using the buffered data after the training of arbitrary CL methods. Hence, it is
complementary to any existing CL methods as a correction step to remove their biases in the
task-specific parameters by finetuning them on the unbiased buffered data. Thereby, it can improve
the performance of any existing CL methods without causing notably extra computation.

k-FPF to improve CL efficiency and performance. FPF is a simple technique that brings
non-trivial improvement but it is applied after the training of an existing CL method. Unfortunately,
many SOTA CL methods require time-consuming replay in every step, which at least doubles the
total computation. Since only a few parameters are sensitive during the task shift, can we develop
a replay-free and lazy CL that replaces every-step-replay with occasional FPF? We propose k-FPF
that applies FPF k times during CL as shown in Fig. 3. Without the costly experience replay, k-FPF
can still achieve comparable performance as FPF+SOTA CL methods but only requires nearly half
of their computation. We can apply k-FPF with any replay-free method, e.g., SGD, which is usually
used as a lower-bound for CL methods. We still maintain a small buffer by reservoir sampling but
it is only for FPF so SGD never accesses it. We lazily apply FPF on the buffer after every τ SGD
steps (in total k times over kτ SGD steps) without knowing the task boundaries.

k-FPF-CE+SGD We propose two variants of k-FPF, i.e., k-FPF-CE+SGD and k-FPF-KD+SGD.
k-FPF-CE+SGD uses the cross-entropy loss to update the sensitive parameters during FPF. In this
paper, k-FPF-CE refers to k-FPF-CE+SGD if not specified. The objective of FPF in k-FPF-CE
is: minΘ⋆ L(Θ⋆) ≜ E(x,y)∼B [lCE(y, fΘ(x))] where Θ⋆ denotes selected groups of task-specific
parameters, B refers to the buffered data and lCE is the cross-entropy loss.

k-FPF-KD+SGD to further improve performance Inspired by DER (Buzzega et al., 2020),
we further propose k-FPF-KD that introduces knowledge distillation (KD) (Hinton et al., 2015)
to the objective in k-FPF-CE. In this paper, k-FPF-KD refers to k-FPF-KD+SGD if not spec-
ified. Same as DER, the pre-softmax responses (i.e. logits) for buffered data at training time
are stored in buffer as well. During FPF, the current model is trained to match the buffered
logits to retain the knowledge of previous models. The objective of FPF in k-FPF-KD is:
minΘ⋆ L(Θ⋆) ≜ E(x,y)∼B [lCE(y, fΘ(x))] + λE(x,z)∼B [lMSE(z, hΘ(x))] where z is the logits of
buffered sample x, lMSE refers to the mean-squared loss, hΘ(x) computes the pre-softmax logits
and λ is a hyper-parameter balancing the two terms. Compared to the computation of k-FPF-CE,
the additional computation by k-FPF-KD is negligible.

Selection of sensitive parameters for FPF and k-FPF

A key challenge in both FPF and k-FPF is to select the task-specific parameters for finetuning.
Please refer to A.1 for the detailed metric of selecting sensitive parameters in different neural net-
works. In the experiments later, under different scenarios and on various benchmarks, we evaluate
the performance of FPF and k-FPF when selecting different subsets of task-specific parameters ac-
cording to the training dynamics studies in empirical study. In a nutshell, finetuning more sensitive
parameters achieve more improvement, which is in line with our findings in empirical studies. For
FPF, finetuning one or two the most sensitive groups of layers, like the last FC layer, is enough to
achieve the best performance among all evaluated combinations. In all scenarios, FPF consistently
improves CL’s performance by a large margin. For k-FPF, finetuning slightly more parameters, i.e.,
the earlier convolutional layers, achieves the best performance, which is comparable with that of
FPF+CL. This is a price of removing replay, which halves the computational cost.

6 EXPERIMENTS

In this section, to compare FPF and k-FPF with SOTA CL methods, we conduct our experiments
mainly on ResNet-18. Please refer to the Appendix for the results on other neural networks. We
apply FPF and k-FPF to multiple benchmark datasets and compare them with SOTA CL baselines
in terms of test accuracy and efficiency. Besides, we also compare the performance of finetuning
different parameters in FPF and k-FPF and show that finetuning a small portion of task-specific
parameters suffices to improve CL. FPF improves SOTA CL methods by a large margin under all
these scenarios while k-FPF achieves comparable performance with FPF but is more efficient.

6

Under review as a conference paper at ICLR 2023

Table 1: Test accuracy (%) of CL baselines, FPF and k-FPF. “-” indicates that the algorithm is not applicable
to the setting. For FPF and k-FPF, we report the best performance among all combinations of parameters in
Fig. 5. k-FPF-KD applies an additional knowledge distillation loss to the finetuning objective of k-FPF-CE.
Bold and Bold gray mark the best and second best accuracy.

BUFFER METHODS
CLASS-IL DOMAIN-IL

SEQ-ORGANAMNIST SEQ-PATHMNIST SEQ-CIFAR-10 SEQ-TINY-IMAGENET SEQ-PACS

JOINT 91.92±0.46 82.47±2.99 81.05±1.67 41.57±0.55 70.85±8.90
SGD 24.19±0.15 23.65±0.07 19.34±0.06 7.10±0.14 31.43±6.39
OEWC (SCHWARZ ET AL., 2018) 22.71±0.67 22.36±1.18 18.48±0.71 6.58±0.12 35.96±4.59

200

GDUMB (PRABHU ET AL., 2020) 61.78±2.21 46.31±5.64 30.36±2.65 2.43±0.31 34.16±3.45
k-FPF-CE 75.21±2.03 72.88±3.22 57.97±1.53 13.76±0.72 60.70 ±2.81
k-FPF-KD 80.32±1.16 74.68±4.72 58.50±1.03 14.74±0.94 63.15±1.19

ER (RIEMER ET AL., 2018) 71.69±1.71 51.66±5.86 45.71±1.44 8.15±0.25 51.53±5.10
FPF+ER 77.66±1.93 67.34±2.68 57.68±0.76 13.13±0.63 65.16±1.97
AGEM (CHAUDHRY ET AL., 2018) 24.16±0.17 27.93±4.24 19.29±0.04 7.22±0.15 40.54±3.43
FPF+AGEM 73.76±2.45 67.04±4.51 55.40±1.97 13.24±0.54 57.33±0.76

ICARL (REBUFFI ET AL., 2017) 79.61±0.56 54.35±0.94 59.60±1.06 12.13±0.20 -
FPF+ICARL 80.24±0.70 71.83±1.51 63.95±0.84 17.45±0.38 -

FDR (BENJAMIN ET AL., 2018) 68.29±3.27 44.27±3.20 41.77±4.24 8.81±0.19 45.91±3.54
FPF+FDR 76.92±1.38 70.08±4.06 52.49±2.97 12.25±0.77 58.38±1.70

DER (BUZZEGA ET AL., 2020) 73.28±1.33 54.45±5.92 47.04±3.03 9.89±0.58 46.93±4.94
FPF+DER 79.63±1.21 67.29±3.75 57.25±2.19 12.62±1.08 61.49±1.37

DER++ (BUZZEGA ET AL., 2020) 78.22±2.05 62.00±3.79 59.13±0.81 12.12±0.69 55.75±2.02
FPF+DER++ 80.99±0.91 68.78±2.99 61.98±1.04 13.78±0.57 65.28±1.02

500

GDUMB (PRABHU ET AL., 2020) 73.29±1.82 63.55±5.62 42.18±2.05 3.67±0.25 43.29±2.53
k-FPF-CE 81.28±0.71 76.72±1.94 64.35±0.87 19.57±0.37 65.90±0.72
k-FPF-KD 85.16±0.67 79.20±3.89 66.43±0.50 20.56±0.32 66.42±2.21
ER (RIEMER ET AL., 2018) 80.45±0.99 57.54±3.05 57.64±4.27 10.09±0.34 52.72±4.01
FPF+ER 84.07±1.26 69.83±2.87 65.47±2.64 18.61±0.70 64.27±1.91

AGEM (CHAUDHRY ET AL., 2018) 24.00±0.18 27.33±3.93 19.47±0.03 7.14±0.10 35.29±4.94
FPF+AGEM 79.86±0.88 73.32±3.73 57.84±1.98 17.35±0.65 62.40±1.89

ICARL (REBUFFI ET AL., 2017) 82.95±0.47 57.67±1.13 62.26±1.09 14.81±0.37 -
FPF+ICARL 84.53±0.37 74.35±4.89 67.75±0.67 17.37±0.35 -

FDR (BENJAMIN ET AL., 2018) 76.62±1.81 40.08±4.13 43.52±1.74 11.33±0.33 48.50±4.67
FPF+FDR 82.32±0.91 75.59±2.64 63.82±0.69 17.94±0.56 65.47±1.13

DER (BUZZEGA ET AL., 2020) 82.52±0.52 66.71±3.40 55.98±3.35 11.54±0.70 47.63±3.85
FPF+DER 85.24±0.55 74.80±3.45 67.52±0.83 17.60±0.50 65.69±1.66

DER++ (BUZZEGA ET AL., 2020) 84.25±0.47 71.09±2.60 67.06±0.31 17.14±0.66 57.77±2.54
FPF+DER++ 85.67±0.23 77.37±1.32 69.09±0.74 20.17±0.35 66.89±1.32

Implementation Details. We follow the settings in (Buzzega et al., 2020) to train various SOTA CL
methods on different datasets, except training each task for only 5 epochs, which is more practical
than 50 or 100 epochs in (Buzzega et al., 2020) for the streaming setting of CL. Since the epochs are
reduced, we re-tune the learning rate and hyper-parameters for different scenarios by performing a
grid-search on a validation set of 10% samples drawn from the original training set.

For both FPF and k-FPF, we use the same optimizer, i.e., SGD with the cosine-annealing learning
rate schedule, and finetune the selected parameters with a batchsize of 32 for all scenarios. The
finetuning steps for FPF and k-FPF are 300 and 100 respectively. We perform a grid-search on the
validation set to tune the learning rate and other hyper-parameters. Please refer to the Appendix for
the hyper-parameters we explored.

Baseline methods. We apply FPF to several SOTA memory-based CL methods: ER (Riemer et al.,
2018), iCaRL (Rebuffi et al., 2017), A-GEM (Chaudhry et al., 2018), FDR (Benjamin et al., 2018),
DER (Buzzega et al., 2020), and DER++(Buzzega et al., 2020). Besides, we also compare our
methods with GDUMB (Prabhu et al., 2020) and oEWC (Schwarz et al., 2018). We report the test
accuracy of these baseline methods and the best test accuracy of FPF and k-FPF among a few choices
of finetuned parameters. We take JOINT as the upper bound for CL, which trains all tasks jointly, and
SGD as the lower bound, which trains tasks sequentially without any countermeasure to forgetting.
For FPF, k-FPF, and all memory-based methods, the performance with buffer size 200 and 500 are
reported. All results reported in Table1 are averaged over five trials with different random seeds.

6.1 MAIN RESULTS

FPF considerably improves the performance of all memory-based CL methods and achieves
SOTA performance over all scenarios in class-IL and domain-IL in Table 1. For methods with
catastrophic forgetting, like AGEM, the accuracy of FPF increases exponentially. The surge of
performance illustrates that FPF can eliminate bias by finetuning task-specific parameters to adapt
to all seen tasks.

7

Under review as a conference paper at ICLR 2023

ER AGEMICARL FDR DERDER++ SGD
CL Methods

0.0

0.5

1.0

1.5

2.0

FL
OP

s

1e15

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(a) Seq-PathMNIST

ER AGEMICARL FDR DERDER++ SGD
CL Methods

0.0

0.2

0.4

0.6

0.8

1.0

FL
OP

s

1e16

0.00

0.05

0.10

0.15

0.20

Ac
cu

ra
cy

(b) Seq-Tiny-ImageNet

ER AGEM FDR DER DER++ SGD
CL Methods

0

2

4

6

8

FL
OP

s

1e15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)
Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(c) Seq-PACS

Figure 4: Comparison of FLOPs and accuracy between FPF, k-FPF and SOTA CL methods. FPF improves
all CL methods by a large margin without notably extra computation. k-FPF consumes much less com-
putation but achieves comparable performance as FPF.

k-FPF-CE replaces the costly every-step replay with efficient occasional FPF. In Table 1, the
performance of k-FPF-CE on Seq-PathMNIST, Seq-Tiny-ImageNet and Seq-PACS are better than
the best CL methods and its performance on Seq-OrganAMNIST and Seq-Cifar10 are also better
than most CL methods, which implies that finetuning the task-specific parameters on a small number
of buffer during SGD can help retain the previous knowledge and mitigate forgetting, every-step
replay is not necessary. In Fig. 4, the number of training FLOPs and accuracy of different methods
are reported. Compared to the training FLOPs of several CL methods, the computation cost of FPF
and k-FPF-CE is almost negligible. The overall training FLOPs of k-FPF-CE is still much less than
SOTA CL methods while its performance are better, which show the efficiency of k-FPF-CE.

k-FPF-KD further improves the performance of k-FPF-CE to be comparable to FPF. k-FPF-
CE propose the efficiency of CL methods, but its performance is a bit worse than that of FPF. One of
the most difference between k-FPF and FPF is the experience replay during training of CL. Inspired
by DER, we propose k-FPF-KD, which uses knowledge distillation to match the outputs of previous
models on buffered data, hence retaining the knowledge of previous tasks. The results of k-FPF-KD
in Table 1 show that it is comparable to FPF in most scenarios. Fig. 4 shows that the FLOPs of
k-FPF-KD is similar to k-FPF-CE but much less than other CL methods and FPF, and in some
cases, it outperforms FPF. k-FPF-KD shows SOTA performance in both efficiency and accuracy.

6.2 COMPARISON OF FINETUNING DIFFERENT PARAMETERS IN FPF AND k-FPF

FPF and k-FPF get the best performance when only a small portion of task-specific param-
eters are finetuned. In Fig. 5, the accuracy, training FLOPs and number of trainable parameters
during finetune of applying FPF or k-FPF to different task-specific parameters in ResNet-18 on
Seq-PathMNIST are compared. Over all different scenarios, k-FPF only needs about half FLOPs of
FPF with better performance (indicated by Red Stars). When finetuning on different task-specific
parameters, FPF performs the best when BN+FC layers are finetuned, which is only 0.127% of all
parameters (indicated by Orange Stars). This is consistent with our observations in empirical studies
where BN and FC layers are the most sensitive parameters to distribution shift. And the results
shows that only finetuning a small portion of task-specific parameters can mitigate catastrophic
forgetting and generalize the model.

The phenomenon for k-FPF is a little different. (1) In the bottom plot of Fig. 5, when FC layer is not
selected for finetuning in k-FPF, the performance is much worse. This is because in class-IL, the
output classes change across tasks so the FC layer is trained to only output the classes for the current
task (Hou et al., 2019). In contrast, when applying k-FPF to domain-IL on Seq-PACS, where the
output classes keep the same for different tasks, Fig. 11 in Appendix shows that finetuning FC
layer performs similarly as finetuning other parameters. Hence, the last FC layer is more sensitive
in class-IL than in Domain-IL. This is also shown Fig. 2 (a), (d). (2) As the red star indicates,
k-FPF needs to finetune a little more parameters (Block3 of convolutional layers, 18.91% of all
parameters) to achieve a comparable accuracy with FPF. Without experience replay during SGD,
the model has a larger bias on the current task and thus more task-specific parameters are needed
to be finetuned. This also indicates that such bias of task-specific parameters is the main reason for
catastrophic forgetting. When Block4 (75.22% of all parameters) is finetuned, since it is the most
stable parameters in our empirical study, the performance of k-FPF degrades.

6.3 ANALYSIS OF FPF AND k-FPF IN DIFFERENT SCENARIOS

8

Under review as a conference paper at ICLR 2023

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FLOPs of ER
FLOPs of FPF+ER

Accuracy of ER
Accuracy of FPF+ER

Number of trainable parameters during finetune

BN FCCONV1BN+FC
BN+CONV1

FC+CONV1 Basis
Basis+Block1

Basis+Block2
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3

FPF Finetuned Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FLOPs of SGD
FLOPs of k-FPF-CE

Accuracy of k-FPF-CE
Number of trainable parameters during finetune

Figure 5: Comparison of FLOPs, number of finetuned parameters, and
accuracy for FPF(Top) and k-FPF(Bottom) finetuning different combi-
nations of parameters. All FLOPs are normalized together to (0,1], as
well as the number of finetuning parameters. “Basis” in the x-label refers
to “BN+FC+CONV1”. Red stars highlight the best accuracy and show
both FPF and k-FPF only require to finetune a small portion of task-
specific parameters. k-FPF halves FPF’s FLOPs.

Different training FLOPs for
k-FPF In Fig. 6(a), we study the
trade-off between the training
FLOPs and the accuracy of
k-FPF on Seq-PathMNIST by
changing k and the number
of finetuning steps. τ in the
legend refers to the interval of
two consecutive FPF. Fixing k,
k-FPF saturates quickly as the
finetuning steps increase. This
implies that k-FPF is efficient
on FLOPs to achieve the best
performance. For experiments
with small k, e.g. k=2, though
the computation required is very
low, performance cannot be
further improved. This implies
that FPF needs to be applied
on buffered samples more fre-
quently to mitigate forgetting.
When k is large, e.g., k=41 or 121, the accuracy slightly improves with the price of much more
required computation. As the red star in the plot indicates, applying FPF every 1500 training steps
can achieve the best computation-accuracy trade-off.

0 2 4 6 8
FLOPs 1e14

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

k=2 (=7000)
k=5 (=2500)
k=9 (=1500)
k=25 (=500)
k=41 (=300)
k=121 (=100)

(a) FLOPs-Accuracy in k-FPF

ER BN+FC Basis
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3
0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Buffer size = 50
Buffer size = 200
Buffer size = 500
Buffer size = 2000
Buffer size = 5120

ER BN+FC Basis
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3
0.3

0.4

0.5

0.6

0.7

0.8

Number of epochs = 1
Number of epochs = 5
Number of epochs = 10
Number of epochs = 20
Number of epochs = 50

(b) Different buffer sizes and training epochs for FPF

Figure 6: (a) Trade-off between FLOPs and accuracy for k-FPF with different k and τ (the SGD steps between
two consecutive FPF). By increasing the finetunine steps per FPF, the accuracy quickly saturates. The best
trade-off is highlighted at the top-left corner when k = 9(τ = 1500). (b) Comparison between ER and
FPF+ER finetuning different parameters with different buffer sizes and number of epochs per task. In all
scenarios, FPF can significantly improve ER by only finetuning BN+FC.

Different buffer sizes and training epochs for FPF The buffer size and the training epochs
per task are usually crucial in memory-based CL methods. In Fig. 6(b), when the buffer size or
number of epochs increases, the performance of ER improves as well. However, increasing the
buffer size brings more benefits. When the buffer size or epochs grow too large, the performance
of ER seems saturate and increases slowly. For all scenarios, finetuning BN+FC layers are highly
effective to alleviate the current task’s bias and promote the performance, which is consistent with
our observations from the empirical studies.

7 CONCLUSION

We study a fundamental problem in CL, i.e., which parts of a neural network are task-specific and
more prone to catastrophic forgetting. Extensive empirical studies in diverse settings consistently
show that only a small portion of parameters is task-specific and sensitive. This discovery leads to
a simple yet effective “forgetting prioritized finetuning (FPF)” that only finetunes a subset of these
parameters on the buffered data before model deployment. FPF is complementary to existing CL
methods and can consistently improve their performance. We further replace the costly every-step
replay with k-times of occasional FPF during CL to improve the efficiency. Such k-FPF achieves
comparable performance as FPF+SOTA CL while consumes nearly half of its computation. In
future work, we will study how to further reduce the memory size required by FPF.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 139–154, 2018.

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. arXiv preprint
arXiv:1908.04742, 2019.

Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in
function space. arXiv preprint arXiv:1805.08289, 2018.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark expe-
rience for general continual learning: a strong, simple baseline. arXiv preprint arXiv:2004.07211,
2020.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Mohammad Mahdi Derakhshani, Ivona Najdenkoska, Tom van Sonsbeek, Xiantong Zhen,
Dwarikanath Mahapatra, Marcel Worring, and Cees GM Snoek. Lifelonger: A benchmark for
continual disease classification. arXiv preprint arXiv:2204.05737, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 831–839, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Sequential learning for domain
generalization. In European Conference on Computer Vision, pp. 603–619. Springer, 2020.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30:6467–6476, 2017.

10

Under review as a conference paper at ICLR 2023

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Inves-
tigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in
psychology, 4:504, 2013.

Quang Pham, Chenghao Liu, and Steven HOI. Continual normalization: Rethinking batch normal-
ization for online continual learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=vwLLQ-HwqhZ.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In European conference on computer vision, pp. 524–540.
Springer, 2020.

Vinay V Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting: Hidden
representations and task semantics. arXiv preprint arXiv:2007.07400, 2020.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. arXiv preprint arXiv:1810.11910, 2018.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In International Conference on Machine Learning, pp. 4528–4537. PMLR, 2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

Riccardo Volpi, Diane Larlus, and Grégory Rogez. Continual adaptation of visual representations
via domain randomization and meta-learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4443–4453, 2021.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical
image classification. arXiv preprint arXiv:2110.14795, 2021.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019.

11

https://openreview.net/forum?id=vwLLQ-HwqhZ

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 SELECTION OF THE SENSITIVE PART OF DIVERSE TYPES OF NEURAL NETWORKS

We select sensitive parameters according to their training dynamics in the early epochs. Examples
of the training dynamics for different layers are shown in Fig 1-2 and their ranking does not change
over epochs. Specifically, we sort layers by their training dynamics values in descent order. Then
we greedily add layers one after another to the sensitive group until the sum of all selected layers’
training dynamics exceeds p percent of the sum for all layers, where p is a hyper-parameter. In our
experiments, for models with the batch-norm layer like ResNet-18, FPF and k-FPF outperforms all
baselines when p = 97, when only 18.90% of parameters in the neural network are regarded as
sensitive parameters. For other models like MLP and VGG-11, p = 70 and only 1.12% and 0.32%
of parameters are regarded as sensitive parameters.

A.2 COMPARISON BETWEEN FPF AND THE METHOD FINE-TUNING ALL PARAMETERS

In Tab.2, we compare FPF with FPF-ALL (which finetunes all parameters) when applied to different
CL methods for two types of CL, i.e., class-IL and domain-IL. The results shows that FPF consis-
tently achieve comparable or slightly higher accuracy than FPF-ALL by spending significantly less
FLOPs. This demonstrates the advantage of FPF on efficiency.

Table 2: Comparison of accuracy and FLOPs between FPF and FPF-ALL(finetuning all parameters).

Methods Seq-PathMNIST Seq-PACS
Accuracy FLOPs(B) Accuracy FLOPs(B)

k-FPF-CE 76.72±1.94 21.35 65.90±0.72 148.25
k-FPF-ALL-CE 75.74±2.91 43.95 64.48±2.23 174.60
FPF+ER 69.83±2.87 4.68 64.27±1.91 24.39
FPF-ALL+ER 70.64±4.00 8.79 63.81±2.33 34.92
FPF+AGEM 73.32±3.73 7.07 62.40±1.89 18.47
FPF-ALL+AGEM 74.80±3.12 8.79 62.65±1.65 34.92
FPF+iCaRL 74.35±4.89 4.27 - -
FPF-ALL+iCaRL 72.77±4.12 8.79 - -
FPF+FDR 75.59±2.64 2.94 65.47±1.13 11.70
FPF-ALL+FDR 74.24±1.48 8.79 64.88±2.28 34.92
FPF+DER 74.80±3.45 2.96 65.69±1.66 18.47
FPF-ALL+DER 74.54±3.19 8.79 66.22±0.87 34.92
FPF+DER++ 77.37±1.32 4.68 66.89±1.32 24.39
FPF-ALL+DER++ 77.16±1.45 8.79 65.19±1.33 34.92

A.3 EXPERIMENTS ON THE TASK SEQUENCE CONTAINING TOTALLY DIFFERENT DATASETS

We concatenate the CL tasks from two datasets (i.e., Seq-CIFAR-10 and Seq-PathMNIST) to form
a twice-longer task sequence and evaluate the training dynamics of different groups of parameters.
The result is shown in Fig.7. The vertical dashed line at epochs = 30 is the boundary between
the two datasets. Although the two datasets are from different domains and thus have different
distributions, the sensitivity of parameters stays consistent with our observations on tasks from a
single dataset. This indicates that the sensitive parameters almost do not change across different
tasks/datasets so they can be identified at very early stages.

A.4 A MORE CLEAR VERSION OF FIG. 4 AND FIG.5

In Fig.8 and Fig.9, to make Fig.4 and Fig.5 more concise and easy to understand, we draw the
barplots of different parts separately.

12

Under review as a conference paper at ICLR 2023

10 15 20 25 30 35 40 45 50
Training epochs

10 5

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

Figure 7: The training dynamics of different groups of parameters in ResNet-18 when sequentially training
Seq-CIFAR-10 and Seq-PathMNIST.

A.5 PERFORMANCE OF VARIOUS METHODS DURING THE TRAINING OF CL

In Tab. 3 and Tab. 4, the average test accuracy of previous tasks at the end of each task during the
training of CL on Seq-PathMNIST and Seq-PACS is reported. The results show that during training,
k-FPF can always achieve the best performance among various CL methods. Whenever the training
stops, k-FPF can always achieve a model performing well on previous tasks.

Table 3: The average accuracy of previous tasks at the end of each task during the training of CL on Seq-
PathMNIST.

Methods Task 1 Task 2 Task 3 Task 4

k-FPF-CE 99.95±0.04 95.41±1.98 81.92±2.26 76.72±1.94
ER 98.62±1.59 83.06±3.12 74.60±3.18 57.54±3.05
AGEM 99.71±0.19 46.58±3.13 36.12±3.17 27.33±3.93
iCaRL 99.98±0.02 86.86±5.47 66.62±5.64 57.67±1.13
FDR 99.97±0.06 48.06±0.82 55.75±6.55 40.08±4.13
DER 99.98±0.02 91.92±3.42 76.50±5.77 66.71±3.40
DER++ 99.95±0.06 94.06±6.14 80.35±3.32 71.09±2.60

Table 4: The average accuracy of previous tasks at the end of each task during the training of CL on Seq-PACS.

Methods Task 1 Task 2 Task 3 Task 4

k-FPF-CE 70.94±2.02 73.75±2.68 62.37±0.49 65.90±0.72
ER 56.64±9.04 54.34±9.44 46.79±8.48 52.72±4.01
AGEM 47.34±7.35 38.02±5.82 32.70±7.13 35.29±4.94
FDR 58.59±4.36 54.00±4.01 46.38±4.80 48.50±4.67
DER 48.49±9.40 45.28±8.88 34.48±7.81 47.63±3.85
DER++ 55.33±7.45 64.43±6.50 50.19±7.30 57.77±2.54

A.6 DETAILED DYNAMICS OF BN WEIGHTS AND BIAS IN DIFFERENT GROUPS

In Fig. 10, the training dynamics of BN weights and biases in different groups are reported. This
provides a fine-grained explanation to the phenomenon in Fig. 1 (c): the bottom BN layer is much
more sensitive and task-specific than other BN layers. Consistent with convolutional layers, the deep
BN layers are less sensitive to task drift than the shallower ones.

In a neural network, lower layers are closer to the input. Since the distribution of the inputs changes,
the parameters of lower convolutional layers change sensitively to adapt to the distribution shift.
The weights and biases of BN, which are the scale and shift of the featuremap, will change along

13

Under review as a conference paper at ICLR 2023

ER AGEM ICARL FDR DER DER++ SGD
CL Methods

0.0

0.5

1.0

1.5

2.0

FL
OP

s

1e15

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)

ER AGEM ICARL FDR DER DER++ SGD0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(a) Seq-PathMNIST

ER AGEM ICARL FDR DER DER++ SGD
CL Methods

0.0

0.2

0.4

0.6

0.8

1.0

FL
OP

s

1e16

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)

ER AGEM ICARL FDR DER DER++ SGD0.00

0.05

0.10

0.15

0.20

Ac
cu

ra
cy

Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(b) Seq-Tiny-ImageNet

ER AGEM FDR DER DER++ SGD
CL Methods

0

2

4

6

8

FL
OP

s

1e15

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)

ER AGEM FDR DER DER++ SGD0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(c) Seq-PACS

Figure 8: Comparison of FLOPs and accuracy between FPF, k-FPF and SOTA CL methods. FPF improves
all CL methods by a large margin without notably extra computation. k-FPF consumes much less com-
putation but achieves comparable performance as FPF.

14

Under review as a conference paper at ICLR 2023

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Accuracy of ER Accuracy of FPF+ER

5.0

5.1

5.2

5.3

5.4

5.5

5.6

FL
OP

s

1e15

FLOPs of ER FLOPs of FPF+ER

BN FCCONV1BN+FC
BN+CONV1

FC+CONV1 Basis
Basis+Block1

Basis+Block2
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3

FPF Finetuned Parameters

0
1
2
3
4
5
6
7
8

Nu
m

be
r o

f P
ar

am
et

er
s

1e6

Number of trainable parameters during finetune of FPF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Accuracy of k-FPF-CE

2.0

2.2

2.4

2.6

2.8

3.0

3.2
1e15

FLOPs of SGD FLOPs of k-FPF-CE

BN FCCONV1BN+FC
BN+CONV1

FC+CONV1 Basis
Basis+Block1

Basis+Block2
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3

FPF Finetuned Parameters

0
1
2
3
4
5
6
7
8

1e6

Number of trainable parameters during finetune of k-FPF

Figure 9: Comparison of FLOPs, number of finetuned parameters, and accuracy for FPF(Top) and k-
FPF(Bottom) finetuning different combinations of parameters. All FLOPs are normalized together to (0,1],
as well as the number of finetuning parameters. “Basis” in the x-label refers to “BN+FC+CONV1”. Red stars
highlight the best accuracy and show both FPF and k-FPF only require to finetune a small portion of task-
specific parameters. k-FPF halves FPF’s FLOPs.

with the convolutional parameters to adjust the distribution of the output featuremap. In the deeper
layers, the functionality of each filter is relatively stable, so the distribution of the featuremap need
not change drastically.

10 12 14 16 18 20 22 24
Training epochs

10 4

10 3

Dy
na

m
ics

 o
f p

ar
am

et
er

s

BN Layer 1
BN Weight&Bias Block 1
BN Weight&Bias Block 2
Bn Weight&Bias Block 3
Bn Weight&Bias Block 4

Figure 10: The training dynamics of different groups of BN weights and biases in ResNet-18.

A.7 RESULTS OF OTHER NEURAL NETWORKS

In the Tab. 5, the results of various CL benchmarks and FPF on MLP and VGG-11 are reported.
Similar to the results in Tab.1, by finetuning the most sensitive parameters in MLP and VGG-11,
FPF can further improve the performance of all SOTA CL methods and achieve the best perfor-
mance. k-FPF-CE also achieves comparable performance as FPF + SOTA methods. Our methods
can generalize to various neural networks.

15

Under review as a conference paper at ICLR 2023

Table 5: Classification results for CL benchmarks and FPF on MLP and VGG-11. Bold and
underline indicate the best and second best algorithms in each setting.

BUFFER METHODS
CLASS-IL

SEQ-MNIST(MLP) SEQ-CIFAR10(VGG-11)

JOINT 95.58±0.33 69.50±0.73
SGD 19.64±0.07 18.71±0.33
OEWC 20.69±1.34 18.46±0.23

500

GDUMB 90.60±0.37 41.65±0.78
k-FPF-CE 90.63±0.57 55.45±1.16
ER 86.73±1.03 46.27±1.18
FPF+ER 91.15±0.16 53.48±1.08
AGEM 51.03±4.94 19.40±1.09
FPF+AGEM 89.26±0.52 29.84±1.37
ICARL 58.12±1.94 45.63±1.94
FTF+ICARL 80.83±0.49 48.03±0.65
FDR 83.79±4.15 45.56±2.23
FPF+FDR 89.67±0.37 55.59±1.56
DER 91.17±0.94 51.12±2.47
FPF+DER 91.25±0.89 57,46±1.15
DER++ 91.18±0.74 47.60±3.23
FTF+DER++ 91.22±0.67 54.69±0.73

A.8 PERFORMANCE OF FINETUNING DIFFERENT PARAMETERS FOR FPF AND K-FPF ON
DOMAIN-IL DATASET

In Figure 11, the performance of finetuning different parameters for FPF and k-FPF on domain-IL
dataset Seq-PACS are reported.

A.9 COMPARISON WITH RELATED WORKS (RAMASESH ET AL., 2020)

Paper “Anatomy of catastrophic forgetting: Hidden representations and task sementics” shows that
freezing bottom layers had little impact on the performance of the second task. (i) Their setting is
different: our study and most CL methods focus on the performance of ALL tasks. And it is unfair
in terms of parameter amount to compare freezing effects of multiple layers/blocks (e.g., block 1-3)
vs. one layer/block. (ii) Their result is partially consistent with ours since their unfrozen part covers
the last layer and many BN parameters, which are the most sensitive/critical part to finetune in our
paper. (iii) The rest difference is due to our finer-grained study on parameters and on > 2 tasks but
this paper only studies two tasks and focuses on the second. Table 6 shows the class-IL accuracy at
the end of each task if freezing different single ResNet block (bottom to top: block-1 to block-4).
At the end of task-2, our observation is the same as this paper and freezing bottom blocks showing
little reduction of accuracy. However, at the end of task 3-5, their performance drops and freezing
block-1 drops most.

A.10 HYPER-PARAMETER SEARCH SPACE

In the following, we provide a list of all the hyper-parameter combinations that were considered for
FPF and k-FPF.

16

Under review as a conference paper at ICLR 2023

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FLOPs of ER
FLOPs of FPF+ER

Accuracy of ER
Accuracy of FPF+ER

Number of trainable parameters during finetune

BN FC
CONV1

BN+FC

BN+CONV1

FC+CONV1 Basis

Basis+
Block1

Basis+
Block2

Basis+
Block3

Basis+
Block4

Basis+
Block1~2

Basis+
Block1~3

FPF Finetuned Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FLOPs of SGD
FLOPs of k-FPF-CE

Accuracy of k-FPF-CE
Number of trainable parameters during finetune

Figure 11: Comparison of FLOPs, number of finetuned parameters, and accuracy for FPF(Top) and k-
FPF(Bottom) finetuning different combinations of parameters. All FLOPs are normalized together to (0,1],
as well as the number of finetuning parameters. “Basis” in the x-label refers to “BN+FC+CONV1”. Red
stars highlight the best accuracy and show both FPF and k-FPF only require to finetune a small portion of
task-specific parameters. k-FPF halves FPF’s FLOPs. Different from the results of k-FPF in class-IL, in
Seq-PACS, since the output classes for different tasks are always the same, the last FC layer will not have
a large bias on particular classes. Only finetuning BN or CONV1 layers for k-FPF can get comparable
performance with ER. Similar to class-IL, since experience replay is not allowed during the training of CL
method SGD, a little more parameters are required to be finetuned by k-FPF to get comparable performance
with FPF (about 24.92% of all parameters).

17

Under review as a conference paper at ICLR 2023

Table 6: class-IL accuracy of ER at the end of each task on Seq-CIFAR-10

Task-1 Task-2 Task-3 Task-4 Task-5

No Freeze 97.52± 0.23 80.53± 0.80 63.96± 0.51 58.05± 1.91 57.03± 2.29
Freeze conv-1 97.52± 0.23 79.62± 2.75 63.28± 2.13 56.11± 0.61 55.58± 1.31
Freeze block-1 97.52± 0.23 78.88± 3.01 60.07± 0.61 55.49± 0.22 52.75± 1.90
Freeze block-2 97.52± 0.23 78.93± 3.34 63.78± 2.32 56.23± 0.82 56.55± 3.17
Freeze block-3 97.52± 0.23 80.37± 2.35 64.31± 2.23 57.21± 0.40 56.52± 0.76
Freeze block-4 97.52± 0.23 80.68± 1.53 64.89± 1.00 53.78± 3.37 54.01± 2.07

Table 7: The hyper-parameter search space for FPF on different datasets. For all experiments of FPF, we use
the same number of batch size 32 and finetuning steps 300. The hyper-parameter spaces of finetuning different
parameters in the models generated by different CL methods are always same for a given dataset. ft-lr refers to
the learning rate during finetuning of FPF.

Dataset Hyper-parameter Values

Seq-OrganAMNIST lr [1, 0.3, 0.1, 0.03, 0.01]
Seq-PathMNIST lr [1, 0.75, 0.3, 0.05, 0.03]
Seq-CIFAR-10 lr [1, 0.3, 0.1, 0.03, 0.01]

Seq-Tiny-ImageNet lr [1, 0.5, 0.3, 0.075, 0.05]
Seq-PACS lr [1, 0.5, 0.3, 0.05, 0.03, 0.005, 0.003]

Table 8: The hyper-parameter search space for k-FPF-SGD on different datasets. For all experiments of k-
FPF-SGD, we use the same number of batch size 32 and finetuning steps 100. The hyper-parameter spaces of
finetuning different parameters are always same for a given dataset. lr refers to the learning rate during training
of CL method SGD. ft-lr refers to the learning rate during finetuning.

Dataset Hyper-parameter Values

Seq-OrganAMNIST lr [0.2, 0.15, 0.1, 0.075]
ft-lr [0.5, 0.2, 0.15, 0.1]

Seq-PathMNIST lr [0.05, 0.03, 0.01]
lr [0.1, 0.075, 0.05, 0.03, 0.01]

Seq-CIFAR-10 lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.01]

Seq-Tiny-ImageNet lr [0.075, 0.05, 0.03]
ft-lr [0.1, 0.075, 0.05]

Seq-PACS lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.0075]

18

Under review as a conference paper at ICLR 2023

Table 9: The hyper-parameter search space for k-FPF-KD on different datasets. For all experiments of k-
FPF-KD, we use the same number of batch size 32 and finetuning steps 100. The hyper-parameter spaces of
finetuning different parameters are always same for a given dataset. lr refers to the learning rate during training
of CL method SGD. ft-lr refers to the learning rate during finetuning. λ is the hyper-parameter to balance the
two losses.

Dataset Hyper-parameter Values

Seq-OrganAMNIST lr [0.2, 0.15, 0.1, 0.075]
ft-lr [0.5, 0.2, 0.15, 0.1]
λ [1, 0.5, 0.2, 0.1]

Seq-PathMNIST lr [0.05, 0.03, 0.01]
lr [0.1, 0.075, 0.05, 0.03, 0.01]
λ [1, 0.5, 0.2, 0.1]

Seq-CIFAR-10 lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.01]
λ [0.5, 0.2, 0.1]

Seq-Tiny-ImageNet lr [0.075, 0.05, 0.03]]
ft-lr [0.1, 0.075, 0.05]
λ [1, 0.5, 0.2]

Seq-PACS lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.0075]
λ [1, 0.5 0.2 0.1]

19

	Introduction
	Related Work
	Problem Setup
	Forgetting of Different Parameters: An Empirical study
	Measuring Forgetting via Training Dynamics
	Forgetting of Different Parameters During CL

	Forgetting Prioritized Finetuning (FPF) Methods
	Experiments
	Main Results
	Comparison of finetuning different parameters in FPF and k-FPF
	Analysis of FPF and k-FPF in Different Scenarios

	Conclusion
	Appendix
	Selection of the sensitive part of diverse types of neural networks
	Comparison between FPF and the method fine-tuning all parameters
	Experiments on the task sequence containing totally different datasets
	A more clear version of Fig. 4 and Fig.5
	Performance of various methods during the training of CL
	Detailed dynamics of BN weights and bias in different groups
	Results of other neural networks
	Performance of finetuning different parameters for FPF and k-FPF on domain-IL dataset
	Comparison with related works ramasesh2020anatomy
	Hyper-parameter Search Space

